Search Results

Search found 3551 results on 143 pages for 'infant programmer aravind'.

Page 33/143 | < Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >

  • How to detect that a process is started using C# code[windows service]

    - by infant programmer
    I am trying to design a windows-service which monitors a process namely "Gtalk", if the process is started then, the browser Internet-explorer (process iexplore) should be closed. This should happen only when the process "Gtalk" is started, [not when running] The code I have written and implemented, doesn't allow to open IExplore when Gtalk is running. That is certainly what not I am trying for. The process Gtalk should close browser only at its start-up, After the process is started, it should allow to open IExplore. Is it possible with Windows service or is it must be the part of Gtalk process itself? This is my code: while (true) { if (Process.GetProcessesByName("Gtalk").Length > 0) { foreach (Process prc in Process.GetProcessesByName("IExplore")) { prc.Kill(); } } }

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Child Folder inheriting a permission that parent folder does not have (NTFS)

    - by just.another.programmer
    I'm reconfiguring roaming profiles on my network to use proper NTFS security settings according to this article. I have reset the following permissions on the roaming profile parent folder: CREATOR OWNER, Full Control, Subfolder and files only User group with profiles, List folder, Create folders, This folder only System, Full Control, This folder, subfolders, and files Then I select one of the actual roaming profile folders and follow these steps to fix the NTFS settings: Click Security, Advanced Uncheck "Allow inheritable permissions..." Choose "Remove..." Recheck "Allow inheritable permissions..." Click "Apply" After I choose apply, I get the following permissions listed on the roaming profile folder: Administrators (MYDOMAIN\Administrators) Full Control, This folder only CREATOR OWNER, Full Control, Subfolders and files only System, Full Control, This folder, subfolders, and files Where is the Administrators entry coming from!? There is an entry on the root of the drive for Administrators to have full control, but the Roaming Profile Parent folder is not set to inherit any permissions, and it does not have the administrators permission.

    Read the article

  • How to input 64-bit hex values in octave

    - by Chris Ashton
    I'm trying to use Octave as a programmer's calculator. I want to input a 64-bit pointer, but when I do apparently the 64-bit value gets silently truncated to 32-bit: octave:44> base_ptr=0x1010101020202020 base_ptr = 538976288 octave:45> uint64(base_ptr) ans = 538976288 octave:46> printf("%lx\n", base_ptr) 20202020 So it seems like it's truncated the input value to the low 32-bits. I would use scanf, but the docs say it should only be used internally. How can I input the full 64-bit value? Alternately, is there some awesome free programmer's calculator out there for Windows? (I know Windows calculator has a programmer's mode but I would like arbitrary variable support). I tried using my ti-89 but it also doesn't support 64-bit hex.

    Read the article

  • Changing Text in Visio Org Chart Shape Changes Multiple Shapes' Text

    - by Eric
    I have inherited an organizational chart that was created in Visio 2003. I am updating it with Visio 2007. When changing the text in one shape, such as a person's title, multiple shapes nearby change their text to the same. For example, if I change Bob's title from Programmer to Programmer/DBA then Wendy's text will change to "Bob - Programmer/DBA". Some changes update three or four other boxes. Some changes will only update one box. My thought is the originator copied or duplicated the one box to create multiple boxes and it created some type of link between them. How do I remove this link? Thanks!

    Read the article

  • Is an average RAM usage per Apache process of 43 MB "normal" for a Social Networking site? [closed]

    - by Programmer
    I have a Social Networking site that runs on a single LAMP Server that handles everything. The average RAM usage per Apache process is 43 MB. Is that amount roughly within the expected range for a Social Networking site, or is it too high? If it's too high, where and how can I look to bring that average number down? (If you need more details to determine whether it's within the expected range or not, just let me know and I'll edit my question to provide them as best I can.)

    Read the article

  • Invalid command 'SSLRequireSSL',

    - by Bad Programmer
    An svn server that I managed crashed. The server is up and running again, but I can't manage to get svn running anymore. I followed the instructions listed here: http://mark.koli.ch/2010/03/howto-setting-up-your-own-svn-server-using-apache-and-mod-dav-svn.html Yet when I try to start apache using /etc/init.d/httpd start I get a [FAILED] message. There is no content in the error logs. Any suggestions?

    Read the article

  • Documentation in RETL, RIB, and RSL Release 13.2.4

    - by Oracle Retail Documentation Team
    The Patch Release 13.2.4 of the integration-related products, Oracle Retail Extract, Transform and Load (RETL), Oracle Retail Integration Bus (RIB), and Oracle Retail Service Layer (RSL), is now available from My Oracle Support. End User Documentation Enhancements The following enhancements have been made to the documentation: New RETL Installation GuideNew in Release 13.2.4, the RETL Installation Guide includes complete instructions to install and configure RETL 13.2.4. Installation instructions were previously in the Programmer’s Guide. As part of this enhancement, content was added to and tested in the RETL Installation Guide to ensure that it contain similar chapters and sections included in other Oracle Retail Installation Guides. Template Creator documentation, under the RIB product umbrellaThe Oracle Retail Functional Artifact Guide and the Oracle Retail Functional ArtifactGenerator Guide contain new information about a new tool called the Template Creator. The Functional Artifacts Generator tool has been enhanced to generate custom and localized payloads business objects on demand, based on Oracle Retail Functional Artifact rules. A new tool called the Template Creator has been provided to create the placeholder XSDs and the import hooks in the base objects on an as-needed basis. In other words, this tool constructs the appropriate placeholders in the packaging structure in the correct locations. The Artifact Generator tools, including the Template Creator, can be used either as a command line or GUI tool set.   List of Documents in RETL, RIB, and the Oracle Retail Service Layer (RSL) 13.2.4  The following documents are included in release 13.2.4 of the applications noted above: RIB Oracle Retail Integration Bus Release Notes Oracle Retail Integration Bus Implementation Guide Oracle Retail Integration Bus Installation Guide Oracle Retail Integration Bus Operations Guide Oracle Retail Functional Artifact Generator Guide Oracle Retail Functional Artifacts Guide Oracle Retail Service Layer Installation Guide Oracle Retail SOA Enabler Tool Guide RIB Integration Guide (ID 1277421.1) RETL Oracle Retail Extract, Transform, and Load Release Notes Oracle Retail Extract, Transform, and Load Installation Guide Oracle Retail Extract, Transform, and Load Programmer’s Guide RSL Oracle Retail Service Layer Release Notes Oracle Retail Service Layer Installation Guide Oracle Retail Service Layer Programmer’s Guide

    Read the article

  • Can I save & store a user's submission in a way that proves that the data has not been altered, and that the timestamp is accurate?

    - by jt0dd
    There are many situations where the validity of the timestamp attached to a certain post (submission of information) might be invaluable for the post owner's legal usage. I'm not looking for a service to achieve this, as requested in this great question, but rather a method for the achievement of such a service. For the legal (in most any law system) authentication of text content and its submission time, the owner of the content would need to prove: that the timestamp itself has not been altered and was accurate to begin with. that the text content linked to the timestamp had not been altered I'd like to know how to achieve this via programming (not a language-specific solution, but rather the methodology behind the solution). Can a timestamp be validated to being accurate to the time that the content was really submitted? Can data be stored in a form that it can be read, but not written to, in a proven way? In other words, can I save & store a user's submission in a way that proves that the data has not been altered, and that the timestamp is accurate? I can't think of any programming method that would make this possible, but I am not the most experienced programmer out there. Based on MidnightLightning's answer to the question I cited, this sort of thing is being done. Clarification: I'm looking for a method (hashing, encryption, etc) that would allow an average guy like me to achieve the desired effect through programming. I'm interested in this subject for the purpose of Defensive Publication. I'd like to learn a method that allows an every-day programmer to pick up his computer, write a program, pass information through it, and say: I created this text at this moment in time, and I can prove it. This means the information should be protected from the programmer who writes the code as well. Perhaps a 3rd party API would be required. I'm ok with that.

    Read the article

  • Is my current employer expecting too much?

    - by priyank patel
    This is my first job as a programmer.I am working on ASP.NET/C#,HTML,CSS,Javascript/Jquery. I am working for a firm which develops software for small banking firms. Currently they have their software running in 100 firms.Their software is developed in Visual Fox Pro. I was hired to develop online version of this software.I am the solo developer. My boss is another developer.So my company has two developers. My boss doesnot have any idea about .NET development.I am working on their project since 8 months.The progress is surely there but not very big. I try my best to do what my boss asks.But the project just seems too ambitious for me. The company doesnot have any planning for the project.They just ask me to develop what their older software provides.So I have to deal with front end , back end,review codes , design architecture and etc. I have decided to give my best.I try a lot.But the project sometimes just seems to be overwhelming. So my questions is , is it normal for a programmer to be in this place. I always feel the need to work in atleast a small team if not big one. Are my employers just expecting too much of a fresher.Or is that I being a programmer am lacking the skills to deal with this. I am just not able judge my condition.Also I am paid very low salary.I do work on saturday as well. Can anyone just help me judge this scenario? Any suggestions are welcome.

    Read the article

  • Reading source code to learn

    - by perl.j
    As you develop as a programmer, IMO, you begin to see different practices, different Algorithms, and "more than one way to do it". Seeing this code can be a great learning experience for you, even though you did not write the code. But is doing this only going to confuse you? For example, let's say you have a library in any language that was created by a colleague, and you have been using it for a while. You decide to look at the actual source code, regardless of how extensive it is, and get a better look at how this library is written. For the sake of example, the function you use most often from this library is the max function, which finds the largest of two numbers. But this function is a lot more complicated than it needs to be. The way it is written is confusing the heck out of you, and you don't know how this works. Will this make you a better programmer, because you realize how complicated it is for such a simple function, or will it make you a worse coder because you feel less confidant? So my question, in general, is does reading source code make you a better programmer and if so how? If not why do people still do it?.

    Read the article

  • What's the best way to learn/increase problem-solving skills?

    - by tucaz
    Hi all! I'm not sure this is the right place to ask this question, neither if this is the right way to ask this question but I hope you help me if it is not. I work as a programmer since I was 15 (will be 24 next week) so learning programming logic was somehow natural during the course of my career and I think that it helped me to get pretty good problem-solving. One thing none of us (programmers) can deny is that programming logic helps us in a lot of fields outside computer programming. So I'd say it is a very valuable resource that one should learn. My girlfriend is not a programmer and graduated in college on a non related course (Foreign Relations) because she didn't know what to study back then. As the years passed she discovered that she liked Logistics and started to work with it almost two years ago. However, since she does not have a technical background (not even basic Math) she is really having a hard time with it. She is already trying to catch up with Math, but even simple questions/brain-teasers are hard to her. For example, trying to find the missing numbers of this sequence: 0, 1, 1, 2, 3, 5, 8, _, _, 34 and so on. We know that this is Fibonacci but if we didn't we would probably be able to get to the correct answer just by "guessing" (using our acquired problem-solving skills). I'm not sure if problem-solving skills or logic are the correct name for it, but this is what I mean: quick solve problems, brain-teasers, find patterns, have a "sharp" mind. So, the question is: what is the best way for someone to learn this kind of skills without being a programmer (or studying algorithms and such)? If you say it is a book, could you please recommend one? Thanks a lot!

    Read the article

  • Extending AutoVue Through the API

    - by GrahamOracle
    The AutoVue API (previously called the “VueBean” API) is a great way to extend AutoVue Client/Server Deployment – specifically the client component – beyond the out-of-the-box capabilities and into new use-cases. In addition to having a solid grasp of J2SE programming, make sure to leverage the following resources if you’re developing or interested in developing customizations/extensions to AutoVue Client/Server Deployment: Programmer’s Guide: Before all else, read through the AutoVue API Programmer’s Guide to get an understanding of the architecture of the API. The Programmer’s Guide is included with the installation of AutoVue, and is posted on the Oracle Technology Network (OTN) website for the recent versions of AutoVue: http://www.oracle.com/technetwork/documentation/autovue-091442.html Javadocs: The AutoVue API Javadocs document the many packages, classes, and methods available to you. The Javadocs are included in the product installation under the \docs\JavaDocs\VueBean folder (easiest starting point is through the file index.html). Integrations Forum: If you have development questions that aren’t answered through the documentation, feel free to register and post in the public AutoVue Integrations Forum. For more information refer to the following blog post from October 2010: https://blogs.oracle.com/enterprisevisualization/entry/exciting_news_autovue_integrat Code Samples: Although the Oracle Support team’s scope of Support for API/customization topics is to answer questions regarding information already provided in the documentation (i.e. not to design or develop custom solutions), there are cases where Support comes across interesting samples or code snippets that may benefit various customers. In those cases, our Support team posts the samples into the Oracle knowledge base, and tracks them through a single reference note. The link to the KM Note depends on how you currently access the My Oracle Support portal: Flash interface: https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&id=1325990.1 (New) HTML interface: https://supporthtml.oracle.com/epmos/faces/ui/km/SearchDocDisplay.jspx?type=DOCUMENT&id=1325990.1 Happy coding!

    Read the article

  • How do I start my career on a 3-year-old degree [on hold]

    - by Gabriel Burns
    I received my bachelor's degree in Com S (second major in math) in December 2011. I didn't have the best GPA (I was excellent at programming projects and had a deep understanding of CS concepts, but school is generally not the best format for displaying my strengths), and my only internship was with a now-defunct startup. After graduation I applied for several jobs, had a fair number of interviews, but never got hired. After a while, I got somewhat discouraged, and though I still said I was looking, and occasionally applied for something, my pace slowed down considerably. I remain convinced that software development is the right path for me, and that I could make a real contribution to someones work force, but I'm at a loss as to how I can convince anyone of this. My major problems are as follows. Lack of professional experience-- a problem for every entry-level programmer, I suppose, but everyone seems to want someone with a couple of years under their belt. Rustiness-- I've not really done any programming in about a year, and since school all I've really done is various programming competitions and puzzles. (codechef, hackerrank, etc.) I need a way to sharpen my skills. Long term unemployment-- while I had a basic fast-food job after I graduated, I've been truly unemployed for about a year now. Furthermore, no one has ever hired me as a programmer, and any potential employer is liable to wonder why. Old References-- my references are all college professors and one supervisor from my internship, none of whom I've had any contact with since I graduated. Confidence-- I have no doubt that I could be a good professional programmer, and make just about any employer glad that they hired me, but I'm aware of my red flags as a candidate, and have a hard time heading confidently into an interview. How can I overcome these problems and keep my career from being over before it starts?

    Read the article

  • How to test the tests?

    - by Ryszard Szopa
    We test our code to make it more correct (actually, less likely to be incorrect). However, the tests are also code -- they can also contain errors. And if your tests are buggy, they hardly make your code better. I can think of three possible types of errors in tests: Logical errors, when the programmer misunderstood the task at hand, and the tests do what he thought they should do, which is wrong; Errors in the underlying testing framework (eg. a leaky mocking abstraction); Bugs in the tests: the test is doing slightly different than what the programmer thinks it is. Type (1) errors seem to be impossible to prevent (unless the programmer just... gets smarter). However, (2) and (3) may be tractable. How do you deal with these types of errors? Do you have any special strategies to avoid them? For example, do you write some special "empty" tests, that only check the test author's presuppositions? Also, how do you approach debugging a broken test case?

    Read the article

  • I'm applying for a position at a startup. To whom should I address my cover letter?

    - by sapphiremirage
    One of the co-founders answered questions about the company when the job was posted, but I feel like I shouldn't assume that he's the one who is in charge of hiring. Since it's relatively new and has a lot of name overlap with other things already on the web, it's hard to find any information about the company online, much less the name of their hiring manager. I'm not even certain that they do have a hiring manager, since I seem to remember that they are just an 8 person team. I've heard that "To whom it may concern" is tacky, and normally I would say something along the lines of "Dear Head of Human Resources", but that clearly doesn't work in this case. Any idea what my salutation should be? Later Edits: Final Version: To Joe Programmer and/or the AwesomeStartup.com hiring team, (+ a few words in first paragraph explaining why I am addressing Joe Programmer) I've already sent the email, so nothing you say here will save me. However, feel free to comment on my decision if you think your words be useful to future generations. Old Version (left here because some people responded to it): To the hiring manager for internships at Awesomestartup.com, Additionally, because so many people made comments about the content of my letter: I did spent several hours writing the cover letter itself and making sure that it was awesome. After spending such a long time working on the important part, I asked this question because I wanted to make sure that it wouldn't get passed over by some human who was having a bad day and decided that my salutation was inappropriate. Not likely when the most likely reader of that email is a programmer type, I know, but I figured that it wouldn't hurt not to be sloppy.

    Read the article

  • I can't program because the code I am using uses old coding styles. Is this normal to programmers? [closed]

    - by Renato Dinhani Conceição
    I'm in my first real job as programmer, but I can't solve any problems because of the coding style used. The code here: Does not have comments Does not have functions (50, 100, 200, 300 or more lines executed in sequence) Uses a lot of if statements with a lot of paths Has variables that make no sense (eg.: cf_cfop, CF_Natop, lnom, r_procod) Uses an old language (Visual FoxPro 8 from 2002), but there are new releases from 2007. I feel like I have gone back to 1970. Is it normal for a programmer familiar with OOP, clean-code, design patterns, etc. to have trouble with coding in this old-fashion way? EDIT: All the answers are very good. For my (un)hope, appears that there are a lot of this kind of code bases around the world. A point mentioned to all answers is refactor the code. Yeah, I really like to do it. In my personal project, I always do this, but... I can't refactor the code. Programmers are only allowed to change the files in the task that they are designed for. Every change in old code must be keep commented in the code (even with Subversion as version control), plus meta informations (date, programmer, task) related to that change (this became a mess, there are code with 3 used lines and 50 old lines commented). I'm thinking that is not only a code problem, but a management of software development problem.

    Read the article

  • Pros and cons of PHP vs C,C++ as language in a programming interview ?

    - by DhruvPathak
    Hi All, Though this is a matter of personal choice and comfort. I would want your views on a situation like this. Programmer A has been working on PHP for some years, and has had prior experience in C.C++ during algorithm courses in university. The current fluency is good is PHP,but C,C++ can also be brushed up. So for interviews with major companies who put lot of emphasis on algorithms and data structures in programming interview e.g. binary trees, linked lists, arrays , strings . What should programmer A do ? Try to implement those things in PHP ( which is generally more suited for web development rather than programming contests/interviews ) or Or brush up the C,C++ skills and keep them as primary tool for tackling interview questions. What are advantages/ disadvantages of each language for an environment like programming contest or an interview ? Why would you recommend,not recommend Programmer A to participate in a contest like google code Jam/ ACM ICPC using PHP instead of C++ ? ( assuming PHP is allowed as a language there)

    Read the article

  • Who should have full visibility of all (non-data) requirements information?

    - by ebyrob
    I work at a smallish mid-size company where requirements are sometimes nothing more than an email or brief meeting with a subject matter manager requiring some new feature. Should a programmer working on a feature reasonably expect to have access to such "request emails" and other requirements information? Is it more appropriate for a "program manager" (PGM) to rewrite all requirements before sharing with programmers? The company is not technology-centric and has between 50 and 250 employees. (fewer than 10 programmers in sum) Our project management "software" consists of a "TODO.txt" checked into source control in "/doc/". Note: This is nothing to do with "sensitive data access". Unless a particular subject matter manager's style of email correspondence is top secret. Given the suggested duplicate, perhaps this could be a turf war, as the PGM would like to specify HOW. Whereas WHY is absent and WHAT is muddled by the time it gets through to the programmer(s)... Basically. Should specification be transparent to programmers? Perhaps a history of requirements might exist. Shouldn't a programmer be able to see that history of reqs if/when they can tell something is hinky in the spec? This isn't a question about organizing requirements. It is a question about WHO should have full VISIBILITY of requirements. I'd propose it should be ALL STAKEHOLDERS. Please point out where I'm wrong here.

    Read the article

  • Are small amounts of functional programming understandable by non-FP people?

    - by kd35a
    Case: I'm working at a company, writing an application in Python that is handling a lot of data in arrays. I'm the only developer of this program at the moment, but it will probably be used/modified/extended in the future (1-3 years) by some other programmer, at this moment unknown to me. I will probably not be there directly to help then, but maybe give some support via email if I have time for it. So, as a developer who has learned functional programming (Haskell), I tend to solve, for example, filtering like this: filtered = filter(lambda item: included(item.time, dur), measures) The rest of the code is OO, it's just some small cases where I want to solve it like this, because it is much simpler and more beautiful according to me. Question: Is it OK today to write code like this? How does a developer that hasn't written/learned FP react to code like this? Is it readable? Modifiable? Should I write documentation like explaining to a child what the line does? # Filter out the items from measures for which included(item.time, dur) != True I have asked my boss, and he just says "FP is black magic, but if it works and is the most efficient solution, then it's OK to use it." What is your opinion on this? As a non-FP programmer, how do you react to the code? Is the code "googable" so you can understand what it does? I would love feedback on this :) Edit: I marked phant0m's post as answer, because he gives good advice on how to write the code in a more readable way, and still keep the advantages. But I would also like to recommend superM's post because of his viewpoint as a non-FP programmer.

    Read the article

  • Is It Worth It To Learn Experimental Languages

    - by Xander Lamkins
    I'm a young programmer who desires to work in the field someday as a programmer. I know Java, VB.NET and C#. I want to learn a new language (as I programmer, I know that it is valuable to extend what I know - to learn languages that make you think differently). I took a look online to see what languages were common. Everybody knows C and C++ (even those muggles who know so little about computers in general), so I thought, maybe I should push for C. C and C++ are nice but they are old. Things like Haskell and Forth (etc. etc. etc.) are old and have lost their popularity. I'm scared of learning C (or even C++) for this same reason. Java is pretty old as well and is slow because it's run by the JVM and not compiled to native code. I've been a Windows developer for quite a while. I recently started using Java - but only because it was more versatile and spreadable to other places. The problem is that it doesn't look like a very usable language for these reasons: It's most used purpose is for web application and cellphone apps (specifically Android) As far as actual products made with it, the only things that come to mind are Netbeans, Eclipse (hurrah for making and IDE with the language the IDE is for - it's like making a webpage for writing HTML/CSS/Javascript), and Minecraft which happens to be fun but laggy and bipolar as far as computer spec. support. Other than that it's used for servers but heck - I don't only want to make/configure servers. The .NET languages are nice, however: People laugh if I even mention VB.NET or C# in a serious conversation. It isn't cross-platform unless you use MONO (which is still in development and has some improvements to be made). Lacks low level stuff because, like Java with the JVM, it is run/managed by the CLR. My first thought was learning something like C and then using it to springboard into C++ (just to make sure I would have a strong understanding/base), but like I said earlier, it's getting older and older by the minute. What I've Looked Into Fantom looks nice. It's like a nice middleman between my two favorite languages and even lets me publish between the two interchangeably, but, unlike what I want, it compiles to the CLR or JVM (depending on what you publish it to) instead of it being a complete compile. D also looks nice. It seems like a very usable language and from multiple sources it appears to actually be better than C/C++. I would jump right with it, but I'm still unsure of its success because it obviously isn't very mainstream at this point. There are a couple others that looked pretty nice that focused on other things such as Opa with web development and Go by GOOGLE. My Question Is it worth learning these "experimental" languages? I've read other questions that say that if you aren't constantly learning languages and open to all languages that you aren't in the right mindset for programming. I understand this and I still might not quite be getting it, but in truth, if a language isn't going to become mainstream, should I spend my time learning something else? I don't want to learn old (or any going to soon be old) programming languages. I know that many people see this as something important, *but would any of you ever actually consider (assuming you didn't already know) FORTRAN? My goal is to stay current to make sure I'm successful in the future. Disclaimer Yes, I am a young programmer, so I probably made a lot of naive statements in my question. Feel free to correct me on ANYTHING! I have to start learning somewhere so I'm sure a lot of my knowledge is sketchy enough to have caused to incorrect statements or flaws in my thinking. Please leave any feelings you have in the comments.

    Read the article

  • Is it worth to learn Experimental Languages?

    - by Xander Lamkins
    I'm a young programmer who desires to work in the field someday as a programmer. I know Java, VB.NET and C#. I want to learn a new language (as I programmer, I know that it is valuable to extend what I know - to learn languages that make you think differently). I took a look online to see what languages were common. Everybody knows C and C++ (even those muggles who know so little about computers in general), so I thought, maybe I should push for C. C and C++ are nice but they are old. Things like Haskell and Forth (etc. etc. etc.) are old and have lost their popularity. I'm scared of learning C (or even C++) for this same reason. Java is pretty old as well and is slow because it's run by the JVM and not compiled to native code. I've been a Windows developer for quite a while. I recently started using Java - but only because it was more versatile and spreadable to other places. The problem is that it doesn't look like a very usable language for these reasons: It's most used purpose is for web application and cellphone apps (specifically Android) As far as actual products made with it, the only things that come to mind are Netbeans, Eclipse (hurrah for making and IDE with the language the IDE is for - it's like making a webpage for writing HTML/CSS/Javascript), and Minecraft which happens to be fun but laggy and bipolar as far as computer spec. support. Other than that it's used for servers but heck - I don't only want to make/configure servers. The .NET languages are nice, however: People laugh if I even mention VB.NET or C# in a serious conversation. It isn't cross-platform unless you use MONO (which is still in development and has some improvements to be made). Lacks low level stuff because, like Java with the JVM, it is run/managed by the CLR. My first thought was learning something like C and then using it to springboard into C++ (just to make sure I would have a strong understanding/base), but like I said earlier, it's getting older and older by the minute. What I've Looked Into Fantom looks nice. It's like a nice middleman between my two favorite languages and even lets me publish between the two interchangeably, but, unlike what I want, it compiles to the CLR or JVM (depending on what you publish it to) instead of it being a complete compile. D also looks nice. It seems like a very usable language and from multiple sources it appears to actually be better than C/C++. I would jump right with it, but I'm still unsure of its success because it obviously isn't very mainstream at this point. There are a couple others that looked pretty nice that focused on other things such as Opa with web development and Go by GOOGLE. My Question Is it worth learning these "experimental" languages? I've read other questions that say that if you aren't constantly learning languages and open to all languages that you aren't in the right mindset for programming. I understand this and I still might not quite be getting it, but in truth, if a language isn't going to become mainstream, should I spend my time learning something else? I don't want to learn old (or any going to soon be old) programming languages. I know that many people see this as something important, *but would any of you ever actually consider (assuming you didn't already know) FORTRAN? My goal is to stay current to make sure I'm successful in the future. Disclaimer Yes, I am a young programmer, so I probably made a lot of naive statements in my question. Feel free to correct me on ANYTHING! I have to start learning somewhere so I'm sure a lot of my knowledge is sketchy enough to have caused to incorrect statements or flaws in my thinking. Please leave any feelings you have in the comments.

    Read the article

  • what differs a computer scientist/software engineer to regular people who learn programming language and APIs?

    - by Amumu
    In University, we learn and reinvent the wheel a lot to truly learn the programming concepts. For example, we may learn assembly language to understand, what happens inside the box, and how the system operates, when we execute our code. This helps understanding higher level concepts deeper. For example, memory management like in C is just an abstraction of manually managed memory contents and addresses. The problem is, when we're going to work, usually productivity is required more. I could program my own containers, or string class, or date/time (using POSIX with C system call) to do the job, but then, it would take much longer time to use existing STL or Boost library, which abstract all of those thing and very easy to use. This leads to an issue, that a regular person doesn't need to get through all the low level/under the hood stuffs, who learns only one programming language and using language-related APIs. These people may eventually compete with the mainstream graduates from computer science or software engineer and call themselves programmers. At first, I don't think it's valid to call them programmers. I used to think, a real programmer needs to understand the computer deeply (but not at the electronic level). But then I changed my mind. After all, they get the job done and satisfy all the test criteria (logic, performance, security...), and in business environment, who cares if you're an expert and understand how computer works or not. You may get behind the "amateurs" if you spend to much time learning about how things work inside. It is totally valid for those people to call themselves programmers. This makes me confuse. So, after all, programming should be considered an universal skill? Does programming language and concepts matter or the problems we solve matter? For example, many C/C++ vs Java and other high level language, one of the main reason is because C/C++ features performance, as well as accessing low level facility. One of the main reason (in my opinion), is coding in C/C++ seems complex, so people feel good about it (not trolling anyone, just my observation, and my experience as well. Try to google "C hacker syndrome"). While Java on the other hand, made for simplifying programming tasks to help developers concentrate on solving their problems. Based on Java rationale, if the programing language keeps evolve, one day everyone can map their logic directly with natural language. Everyone can program. On that day, maybe real programmers are mathematicians, who could perform most complex logic (including business logic and academic logic) without worrying about installing/configuring compiler, IDEs? What's our job as a computer scientist/software engineer? To solve computer specific problems or to solve problems in general? For example, take a look at this exame: http://cm.baylor.edu/ICPCWiki/attach/Problem%20Resources/2010WorldFinalProblemSet.pdf . The example requires only basic knowledge about the programming language, but focus more on problem solving with the language. In sum, what differs a computer scientist/software engineer to regular people who learn programming language and APIs? A mathematician can be considered a programmer, if he is good enough to use programming language to implement his formula. Can we programmer do this? Probably not for most of us, since we specialize about computer, not math. An electronic engineer, who learns how to use C to program for his devices, can be considered a programmer. If the programming languages keep being simplified, may one day the software engineers, who implements business logic and create softwares, be obsolete? (Not for computer scientist though, since many of the CS topics are scientific, and science won't change, but technology will).

    Read the article

  • Violation of the DRY Principle

    - by Onorio Catenacci
    I am sure there's a name for this anti-pattern somewhere; however I am not familiar enough with the anti-pattern literature to know it. Consider the following scenario: or0 is a member function in a class. For better or worse, it's heavily dependent on class member variables. Programmer A comes along and needs functionality like or0 but rather than calling or0, Programmer A copies and renames the entire class. I'm guessing that she doesn't call or0 because, as I say, it's heavily dependent on member variables for its functionality. Or maybe she's a junior programmer and doesn't know how to call it from other code. So now we've got or0 and c0 (c for copy). I can't completely fault Programmer A for this approach--we all get under tight deadlines and we hack code to get work done. Several programmers maintain or0 so it's now version orN. c0 is now version cN. Unfortunately most of the programmers that maintained the class containing or0 seemed to be completely unaware of c0--which is one of the strongest arguments I can think of for the wisdom of the DRY principle. And there may also have been independent maintainance of the code in c. Either way it appears that or0 and c0 were maintained independent of each other. And, joy and happiness, an error is occurring in cN that does not occur in orN. So I have a few questions: 1.) Is there a name for this anti-pattern? I've seen this happen so often I'd find it hard to believe this is not a named anti-pattern. 2.) I can see a few alternatives: a.) Fix orN to take a parameter that specifies the values of all the member variables it needs. Then modify cN to call orN with all of the needed parameters passed in. b.) Try to manually port fixes from orN to cN. (Mind you I don't want to do this but it is a realistic possibility.) c.) Recopy orN to cN--again, yuck but I list it for sake of completeness. d.) Try to figure out where cN is broken and then repair it independently of orN. Alternative a seems like the best fix in the long term but I doubt the customer will let me implement it. Never time or money to fix things right but always time and money to repair the same problem 40 or 50 times, right? Can anyone suggest other approaches I may not have considered? If you were in my place, which approach would you take? If there are other questions and answers here along these lines, please post links to them. I don't mind removing this question if it's a dupe but my searching hasn't turned up anything that addresses this question yet. EDIT: Thanks everyone for all the thoughtful responses. I asked about a name for the anti-pattern so I could research it further on my own. I'm surprised this particular bad coding practice doesn't seem to have a "canonical" name for it.

    Read the article

< Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >