Search Results

Search found 4396 results on 176 pages for 'low poly'.

Page 33/176 | < Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >

  • LSI 9285-8e and Supermicro SC837E26-RJBOD1 duplicate enclosure ID and slot numbers

    - by Andy Shinn
    I am working with 2 x Supermicro SC837E26-RJBOD1 chassis connected to a single LSI 9285-8e card in a Supermicro 1U host. There are 28 drives in each chassis for a total of 56 drives in 28 RAID1 mirrors. The problem I am running in to is that there are duplicate slots for the 2 chassis (the slots list twice and only go from 0 to 27). All the drives also show the same enclosure ID (ID 36). However, MegaCLI -encinfo lists the 2 enclosures correctly (ID 36 and ID 65). My question is, why would this happen? Is there an option I am missing to use 2 enclosures effectively? This is blocking me rebuilding a drive that failed in slot 11 since I can only specify enclosure and slot as parameters to replace a drive. When I do this, it picks the wrong slot 11 (device ID 46 instead of device ID 19). Adapter #1 is the LSI 9285-8e, adapter #0 (which I removed due to space limitations) is the onboard LSI. Adapter information: Adapter #1 ============================================================================== Versions ================ Product Name : LSI MegaRAID SAS 9285-8e Serial No : SV12704804 FW Package Build: 23.1.1-0004 Mfg. Data ================ Mfg. Date : 06/30/11 Rework Date : 00/00/00 Revision No : 00A Battery FRU : N/A Image Versions in Flash: ================ BIOS Version : 5.25.00_4.11.05.00_0x05040000 WebBIOS Version : 6.1-20-e_20-Rel Preboot CLI Version: 05.01-04:#%00001 FW Version : 3.140.15-1320 NVDATA Version : 2.1106.03-0051 Boot Block Version : 2.04.00.00-0001 BOOT Version : 06.253.57.219 Pending Images in Flash ================ None PCI Info ================ Vendor Id : 1000 Device Id : 005b SubVendorId : 1000 SubDeviceId : 9285 Host Interface : PCIE ChipRevision : B0 Number of Frontend Port: 0 Device Interface : PCIE Number of Backend Port: 8 Port : Address 0 5003048000ee8e7f 1 5003048000ee8a7f 2 0000000000000000 3 0000000000000000 4 0000000000000000 5 0000000000000000 6 0000000000000000 7 0000000000000000 HW Configuration ================ SAS Address : 500605b0038f9210 BBU : Present Alarm : Present NVRAM : Present Serial Debugger : Present Memory : Present Flash : Present Memory Size : 1024MB TPM : Absent On board Expander: Absent Upgrade Key : Absent Temperature sensor for ROC : Present Temperature sensor for controller : Absent ROC temperature : 70 degree Celcius Settings ================ Current Time : 18:24:36 3/13, 2012 Predictive Fail Poll Interval : 300sec Interrupt Throttle Active Count : 16 Interrupt Throttle Completion : 50us Rebuild Rate : 30% PR Rate : 30% BGI Rate : 30% Check Consistency Rate : 30% Reconstruction Rate : 30% Cache Flush Interval : 4s Max Drives to Spinup at One Time : 2 Delay Among Spinup Groups : 12s Physical Drive Coercion Mode : Disabled Cluster Mode : Disabled Alarm : Enabled Auto Rebuild : Enabled Battery Warning : Enabled Ecc Bucket Size : 15 Ecc Bucket Leak Rate : 1440 Minutes Restore HotSpare on Insertion : Disabled Expose Enclosure Devices : Enabled Maintain PD Fail History : Enabled Host Request Reordering : Enabled Auto Detect BackPlane Enabled : SGPIO/i2c SEP Load Balance Mode : Auto Use FDE Only : No Security Key Assigned : No Security Key Failed : No Security Key Not Backedup : No Default LD PowerSave Policy : Controller Defined Maximum number of direct attached drives to spin up in 1 min : 10 Any Offline VD Cache Preserved : No Allow Boot with Preserved Cache : No Disable Online Controller Reset : No PFK in NVRAM : No Use disk activity for locate : No Capabilities ================ RAID Level Supported : RAID0, RAID1, RAID5, RAID6, RAID00, RAID10, RAID50, RAID60, PRL 11, PRL 11 with spanning, SRL 3 supported, PRL11-RLQ0 DDF layout with no span, PRL11-RLQ0 DDF layout with span Supported Drives : SAS, SATA Allowed Mixing: Mix in Enclosure Allowed Mix of SAS/SATA of HDD type in VD Allowed Status ================ ECC Bucket Count : 0 Limitations ================ Max Arms Per VD : 32 Max Spans Per VD : 8 Max Arrays : 128 Max Number of VDs : 64 Max Parallel Commands : 1008 Max SGE Count : 60 Max Data Transfer Size : 8192 sectors Max Strips PerIO : 42 Max LD per array : 16 Min Strip Size : 8 KB Max Strip Size : 1.0 MB Max Configurable CacheCade Size: 0 GB Current Size of CacheCade : 0 GB Current Size of FW Cache : 887 MB Device Present ================ Virtual Drives : 28 Degraded : 0 Offline : 0 Physical Devices : 59 Disks : 56 Critical Disks : 0 Failed Disks : 0 Supported Adapter Operations ================ Rebuild Rate : Yes CC Rate : Yes BGI Rate : Yes Reconstruct Rate : Yes Patrol Read Rate : Yes Alarm Control : Yes Cluster Support : No BBU : No Spanning : Yes Dedicated Hot Spare : Yes Revertible Hot Spares : Yes Foreign Config Import : Yes Self Diagnostic : Yes Allow Mixed Redundancy on Array : No Global Hot Spares : Yes Deny SCSI Passthrough : No Deny SMP Passthrough : No Deny STP Passthrough : No Support Security : No Snapshot Enabled : No Support the OCE without adding drives : Yes Support PFK : Yes Support PI : No Support Boot Time PFK Change : Yes Disable Online PFK Change : No PFK TrailTime Remaining : 0 days 0 hours Support Shield State : Yes Block SSD Write Disk Cache Change: Yes Supported VD Operations ================ Read Policy : Yes Write Policy : Yes IO Policy : Yes Access Policy : Yes Disk Cache Policy : Yes Reconstruction : Yes Deny Locate : No Deny CC : No Allow Ctrl Encryption: No Enable LDBBM : No Support Breakmirror : No Power Savings : Yes Supported PD Operations ================ Force Online : Yes Force Offline : Yes Force Rebuild : Yes Deny Force Failed : No Deny Force Good/Bad : No Deny Missing Replace : No Deny Clear : No Deny Locate : No Support Temperature : Yes Disable Copyback : No Enable JBOD : No Enable Copyback on SMART : No Enable Copyback to SSD on SMART Error : Yes Enable SSD Patrol Read : No PR Correct Unconfigured Areas : Yes Enable Spin Down of UnConfigured Drives : Yes Disable Spin Down of hot spares : No Spin Down time : 30 T10 Power State : Yes Error Counters ================ Memory Correctable Errors : 0 Memory Uncorrectable Errors : 0 Cluster Information ================ Cluster Permitted : No Cluster Active : No Default Settings ================ Phy Polarity : 0 Phy PolaritySplit : 0 Background Rate : 30 Strip Size : 64kB Flush Time : 4 seconds Write Policy : WB Read Policy : Adaptive Cache When BBU Bad : Disabled Cached IO : No SMART Mode : Mode 6 Alarm Disable : Yes Coercion Mode : None ZCR Config : Unknown Dirty LED Shows Drive Activity : No BIOS Continue on Error : No Spin Down Mode : None Allowed Device Type : SAS/SATA Mix Allow Mix in Enclosure : Yes Allow HDD SAS/SATA Mix in VD : Yes Allow SSD SAS/SATA Mix in VD : No Allow HDD/SSD Mix in VD : No Allow SATA in Cluster : No Max Chained Enclosures : 16 Disable Ctrl-R : Yes Enable Web BIOS : Yes Direct PD Mapping : No BIOS Enumerate VDs : Yes Restore Hot Spare on Insertion : No Expose Enclosure Devices : Yes Maintain PD Fail History : Yes Disable Puncturing : No Zero Based Enclosure Enumeration : No PreBoot CLI Enabled : Yes LED Show Drive Activity : Yes Cluster Disable : Yes SAS Disable : No Auto Detect BackPlane Enable : SGPIO/i2c SEP Use FDE Only : No Enable Led Header : No Delay during POST : 0 EnableCrashDump : No Disable Online Controller Reset : No EnableLDBBM : No Un-Certified Hard Disk Drives : Allow Treat Single span R1E as R10 : No Max LD per array : 16 Power Saving option : Don't Auto spin down Configured Drives Max power savings option is not allowed for LDs. Only T10 power conditions are to be used. Default spin down time in minutes: 30 Enable JBOD : No TTY Log In Flash : No Auto Enhanced Import : No BreakMirror RAID Support : No Disable Join Mirror : No Enable Shield State : Yes Time taken to detect CME : 60s Exit Code: 0x00 Enclosure information: # /opt/MegaRAID/MegaCli/MegaCli64 -encinfo -a1 Number of enclosures on adapter 1 -- 3 Enclosure 0: Device ID : 36 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port B Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 65 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11820 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 48 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 1: Device ID : 65 Number of Slots : 28 Number of Power Supplies : 2 Number of Fans : 3 Number of Temperature Sensors : 1 Number of Alarms : 1 Number of SIM Modules : 0 Number of Physical Drives : 28 Status : Normal Position : 1 Connector Name : Port A Enclosure type : SES VendorId is LSI CORP and Product Id is SAS2X36 VendorID and Product ID didnt match FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : 36 Inquiry data : Vendor Identification : LSI CORP Product Identification : SAS2X36 Product Revision Level : 0718 Vendor Specific : x36-55.7.24.1 Number of Voltage Sensors :2 Voltage Sensor :0 Voltage Sensor Status :OK Voltage Value :5020 milli volts Voltage Sensor :1 Voltage Sensor Status :OK Voltage Value :11760 milli volts Number of Power Supplies : 2 Power Supply : 0 Power Supply Status : OK Power Supply : 1 Power Supply Status : OK Number of Fans : 3 Fan : 0 Fan Speed :Low Speed Fan Status : OK Fan : 1 Fan Speed :Low Speed Fan Status : OK Fan : 2 Fan Speed :Low Speed Fan Status : OK Number of Temperature Sensors : 1 Temp Sensor : 0 Temperature : 47 Temperature Sensor Status : OK Number of Chassis : 1 Chassis : 0 Chassis Status : OK Enclosure 2: Device ID : 252 Number of Slots : 8 Number of Power Supplies : 0 Number of Fans : 0 Number of Temperature Sensors : 0 Number of Alarms : 0 Number of SIM Modules : 1 Number of Physical Drives : 0 Status : Normal Position : 1 Connector Name : Unavailable Enclosure type : SGPIO Failed in first Inquiry commnad FRU Part Number : N/A Enclosure Serial Number : N/A ESM Serial Number : N/A Enclosure Zoning Mode : N/A Partner Device Id : Unavailable Inquiry data : Vendor Identification : LSI Product Identification : SGPIO Product Revision Level : N/A Vendor Specific : Exit Code: 0x00 Now, notice that each slot 11 device shows an enclosure ID of 36, I think this is where the discrepancy happens. One should be 36. But the other should be on enclosure 65. Drives in slot 11: Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 5, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 48 WWN: Sequence Number: 11 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : YES Device Firmware Level: A5C0 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8a53 Connected Port Number: 1(path0) Inquiry Data: MJ1311YNG6YYXAHitachi HDS5C3030ALA630 MEAOA5C0 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Enclosure Device ID: 36 Slot Number: 11 Drive's postion: DiskGroup: 19, Span: 0, Arm: 1 Enclosure position: 0 Device Id: 19 WWN: Sequence Number: 4 Media Error Count: 0 Other Error Count: 0 Predictive Failure Count: 0 Last Predictive Failure Event Seq Number: 0 PD Type: SATA Raw Size: 2.728 TB [0x15d50a3b0 Sectors] Non Coerced Size: 2.728 TB [0x15d40a3b0 Sectors] Coerced Size: 2.728 TB [0x15d400000 Sectors] Firmware state: Online, Spun Up Is Commissioned Spare : NO Device Firmware Level: A580 Shield Counter: 0 Successful diagnostics completion on : N/A SAS Address(0): 0x5003048000ee8e53 Connected Port Number: 0(path0) Inquiry Data: MJ1313YNG1VA5CHitachi HDS5C3030ALA630 MEAOA580 FDE Enable: Disable Secured: Unsecured Locked: Unlocked Needs EKM Attention: No Foreign State: None Device Speed: 6.0Gb/s Link Speed: 6.0Gb/s Media Type: Hard Disk Device Drive Temperature :30C (86.00 F) PI Eligibility: No Drive is formatted for PI information: No PI: No PI Drive's write cache : Disabled Drive's NCQ setting : Enabled Port-0 : Port status: Active Port's Linkspeed: 6.0Gb/s Drive has flagged a S.M.A.R.T alert : No Update 06/28/12: I finally have some new information about (what we think) the root cause of this problem so I thought I would share. After getting in contact with a very knowledgeable Supermicro tech, they provided us with a tool called Xflash (doesn't appear to be readily available on their FTP). When we gathered some information using this utility, my colleague found something very strange: root@mogile2 test]# ./xflash.dat -i get avail Initializing Interface. Expander: SAS2X36 (SAS2x36) 1) SAS2X36 (SAS2x36) (50030480:00EE917F) (0.0.0.0) 2) SAS2X36 (SAS2x36) (50030480:00E9D67F) (0.0.0.0) 3) SAS2X36 (SAS2x36) (50030480:0112D97F) (0.0.0.0) This lists the connected enclosures. You see the 3 connected (we have since added a 3rd and a 4th which is not yet showing up) with their respective SAS address / WWN (50030480:00EE917F). Now we can use this address to get information on the individual enclosures: [root@mogile2 test]# ./xflash.dat -i 5003048000EE917F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00EE917F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 5003048000E9D67F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:00E9D67F Enclosure Logical Id: 50030480:0000007F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 [root@mogile2 test]# ./xflash.dat -i 500304800112D97F get exp Initializing Interface. Expander: SAS2X36 (SAS2x36) Reading the expander information.......... Expander: SAS2X36 (SAS2x36) B3 SAS Address: 50030480:0112D97F Enclosure Logical Id: 50030480:0112D97F IP Address: 0.0.0.0 Component Identifier: 0x0223 Component Revision: 0x05 Did you catch it? The first 2 enclosures logical ID is partially masked out where the 3rd one (which has a correct unique enclosure ID) is not. We pointed this out to Supermicro and were able to confirm that this address is supposed to be set during manufacturing and there was a problem with a certain batch of these enclosures where the logical ID was not set. We believe that the RAID controller is determining the ID based on the logical ID and since our first 2 enclosures have the same logical ID, they get the same enclosure ID. We also confirmed that 0000007F is the default which comes from LSI as an ID. The next pointer that helps confirm this could be a manufacturing problem with a run of JBODs is the fact that all 6 of the enclosures that have this problem begin with 00E. I believe that between 00E8 and 00EE Supermicro forgot to program the logical IDs correctly and neglected to recall or fix the problem post production. Fortunately for us, there is a tool to manage the WWN and logical ID of the devices from Supermicro: ftp://ftp.supermicro.com/utility/ExpanderXtools_Lite/. Our next step is to schedule a shutdown of these JBODs (after data migration) and reprogram the logical ID and see if it solves the problem. Update 06/28/12 #2: I just discovered this FAQ at Supermicro while Google searching for "lsi 0000007f": http://www.supermicro.com/support/faqs/faq.cfm?faq=11805. I still don't understand why, in the last several times we contacted Supermicro, they would have never directed us to this article :\

    Read the article

  • How to read oom-killer syslog messages?

    - by Grant
    I have a Ubuntu 12.04 server which sometimes dies completely - no SSH, no ping, nothing until it is physically rebooted. After the reboot, I see in syslog that the oom-killer killed, well, pretty much everything. There's a lot of detailed memory usage information in them. How do I read these logs to see what caused the OOM issue? The server has far more memory than it needs, so it shouldn't be running out of memory. Oct 25 07:28:04 nldedip4k031 kernel: [87946.529511] oom_kill_process: 9 callbacks suppressed Oct 25 07:28:04 nldedip4k031 kernel: [87946.529514] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529516] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529518] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:04 nldedip4k031 kernel: [87946.529519] Call Trace: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529525] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529528] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529530] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529532] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529535] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529537] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529541] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529543] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529546] [] vfs_read+0x8c/0x160 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529548] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529550] [] sys_read+0x3d/0x70 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529554] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529555] Mem-Info: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529556] DMA per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529557] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529558] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529560] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529561] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529562] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529563] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529564] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529565] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529566] Normal per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529567] CPU 0: hi: 186, btch: 31 usd: 179 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529568] CPU 1: hi: 186, btch: 31 usd: 182 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529569] CPU 2: hi: 186, btch: 31 usd: 132 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529570] CPU 3: hi: 186, btch: 31 usd: 175 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529571] CPU 4: hi: 186, btch: 31 usd: 91 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529572] CPU 5: hi: 186, btch: 31 usd: 173 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529573] CPU 6: hi: 186, btch: 31 usd: 159 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529574] CPU 7: hi: 186, btch: 31 usd: 164 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529575] HighMem per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529576] CPU 0: hi: 186, btch: 31 usd: 165 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529577] CPU 1: hi: 186, btch: 31 usd: 183 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529578] CPU 2: hi: 186, btch: 31 usd: 185 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529579] CPU 3: hi: 186, btch: 31 usd: 138 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529580] CPU 4: hi: 186, btch: 31 usd: 155 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529581] CPU 5: hi: 186, btch: 31 usd: 104 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529582] CPU 6: hi: 186, btch: 31 usd: 133 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529583] CPU 7: hi: 186, btch: 31 usd: 170 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529586] active_anon:5523 inactive_anon:354 isolated_anon:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529586] active_file:2815 inactive_file:6849119 isolated_file:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529587] unevictable:0 dirty:449 writeback:10 unstable:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529587] free:1304125 slab_reclaimable:104672 slab_unreclaimable:3419 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529588] mapped:2661 shmem:138 pagetables:313 bounce:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529591] DMA free:4252kB min:780kB low:972kB high:1168kB active_anon:0kB inactive_anon:0kB active_file:4kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15756kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:11564kB slab_unreclaimable:4kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1 all_unreclaimable? yes Oct 25 07:28:04 nldedip4k031 kernel: [87946.529594] lowmem_reserve[]: 0 869 32460 32460 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529599] Normal free:44052kB min:44216kB low:55268kB high:66324kB active_anon:0kB inactive_anon:0kB active_file:616kB inactive_file:568kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:890008kB mlocked:0kB dirty:0kB writeback:0kB mapped:4kB shmem:0kB slab_reclaimable:407124kB slab_unreclaimable:13672kB kernel_stack:992kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:2083 all_unreclaimable? yes Oct 25 07:28:04 nldedip4k031 kernel: [87946.529602] lowmem_reserve[]: 0 0 252733 252733 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529606] HighMem free:5168196kB min:512kB low:402312kB high:804112kB active_anon:22092kB inactive_anon:1416kB active_file:10640kB inactive_file:27395920kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:32349872kB mlocked:0kB dirty:1796kB writeback:40kB mapped:10640kB shmem:552kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:1252kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Oct 25 07:28:04 nldedip4k031 kernel: [87946.529609] lowmem_reserve[]: 0 0 0 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529611] DMA: 6*4kB 6*8kB 6*16kB 5*32kB 5*64kB 4*128kB 2*256kB 1*512kB 0*1024kB 1*2048kB 0*4096kB = 4232kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529616] Normal: 297*4kB 180*8kB 119*16kB 73*32kB 67*64kB 47*128kB 35*256kB 13*512kB 5*1024kB 1*2048kB 1*4096kB = 44052kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529622] HighMem: 1*4kB 6*8kB 27*16kB 11*32kB 2*64kB 1*128kB 0*256kB 0*512kB 4*1024kB 1*2048kB 1260*4096kB = 5168196kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529627] 6852076 total pagecache pages Oct 25 07:28:04 nldedip4k031 kernel: [87946.529628] 0 pages in swap cache Oct 25 07:28:04 nldedip4k031 kernel: [87946.529629] Swap cache stats: add 0, delete 0, find 0/0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529630] Free swap = 3998716kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529631] Total swap = 3998716kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.571914] 8437743 pages RAM Oct 25 07:28:04 nldedip4k031 kernel: [87946.571916] 8209409 pages HighMem Oct 25 07:28:04 nldedip4k031 kernel: [87946.571917] 159556 pages reserved Oct 25 07:28:04 nldedip4k031 kernel: [87946.571917] 6862034 pages shared Oct 25 07:28:04 nldedip4k031 kernel: [87946.571918] 123540 pages non-shared Oct 25 07:28:04 nldedip4k031 kernel: [87946.571919] [ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name Oct 25 07:28:04 nldedip4k031 kernel: [87946.571927] [ 421] 0 421 709 152 3 0 0 upstart-udev-br Oct 25 07:28:04 nldedip4k031 kernel: [87946.571929] [ 429] 0 429 773 326 5 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571931] [ 567] 0 567 772 224 4 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571932] [ 568] 0 568 772 231 7 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571934] [ 764] 0 764 712 103 1 0 0 upstart-socket- Oct 25 07:28:04 nldedip4k031 kernel: [87946.571936] [ 772] 103 772 815 164 5 0 0 dbus-daemon Oct 25 07:28:04 nldedip4k031 kernel: [87946.571938] [ 785] 0 785 1671 600 1 -17 -1000 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571940] [ 809] 101 809 7766 380 1 0 0 rsyslogd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571942] [ 869] 0 869 1158 213 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571943] [ 873] 0 873 1158 214 6 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571945] [ 911] 0 911 1158 215 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571947] [ 912] 0 912 1158 214 2 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571949] [ 914] 0 914 1158 213 1 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571950] [ 916] 0 916 618 86 1 0 0 atd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571952] [ 917] 0 917 655 226 3 0 0 cron Oct 25 07:28:04 nldedip4k031 kernel: [87946.571954] [ 948] 0 948 902 159 3 0 0 irqbalance Oct 25 07:28:04 nldedip4k031 kernel: [87946.571956] [ 993] 0 993 1145 363 3 0 0 master Oct 25 07:28:04 nldedip4k031 kernel: [87946.571957] [ 1002] 104 1002 1162 333 1 0 0 qmgr Oct 25 07:28:04 nldedip4k031 kernel: [87946.571959] [ 1016] 0 1016 730 149 2 0 0 mdadm Oct 25 07:28:04 nldedip4k031 kernel: [87946.571961] [ 1057] 0 1057 6066 2160 3 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571963] [ 1086] 0 1086 1158 213 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571965] [ 1088] 33 1088 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571967] [ 1089] 33 1089 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571969] [ 1090] 33 1090 6175 1451 3 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571971] [ 1091] 33 1091 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571972] [ 1092] 33 1092 6191 1451 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571974] [ 1109] 33 1109 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571976] [ 1151] 33 1151 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571978] [ 1201] 104 1201 1803 652 1 0 0 tlsmgr Oct 25 07:28:04 nldedip4k031 kernel: [87946.571980] [ 2475] 0 2475 2435 812 0 0 0 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571982] [ 2494] 0 2494 1745 839 1 0 0 bash Oct 25 07:28:04 nldedip4k031 kernel: [87946.571984] [ 2573] 0 2573 3394 1689 0 0 0 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571986] [ 2589] 0 2589 5014 457 3 0 0 rsync Oct 25 07:28:04 nldedip4k031 kernel: [87946.571988] [ 2590] 0 2590 7970 522 1 0 0 rsync Oct 25 07:28:04 nldedip4k031 kernel: [87946.571990] [ 2652] 104 2652 1150 326 5 0 0 pickup Oct 25 07:28:04 nldedip4k031 kernel: [87946.571992] Out of memory: Kill process 421 (upstart-udev-br) score 1 or sacrifice child Oct 25 07:28:04 nldedip4k031 kernel: [87946.572407] Killed process 421 (upstart-udev-br) total-vm:2836kB, anon-rss:156kB, file-rss:452kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.573107] init: upstart-udev-bridge main process (421) killed by KILL signal Oct 25 07:28:04 nldedip4k031 kernel: [87946.573126] init: upstart-udev-bridge main process ended, respawning Oct 25 07:28:34 nldedip4k031 kernel: [87976.461570] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461573] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461576] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:34 nldedip4k031 kernel: [87976.461578] Call Trace: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461585] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461588] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461591] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461595] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461599] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461602] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461606] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461609] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461613] [] vfs_read+0x8c/0x160 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461616] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461619] [] sys_read+0x3d/0x70 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461624] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461626] Mem-Info: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461628] DMA per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461629] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461631] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461633] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461634] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461636] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461638] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461639] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461641] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461642] Normal per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461644] CPU 0: hi: 186, btch: 31 usd: 61 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461646] CPU 1: hi: 186, btch: 31 usd: 49 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461647] CPU 2: hi: 186, btch: 31 usd: 8 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461649] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461651] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461652] CPU 5: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461654] CPU 6: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461656] CPU 7: hi: 186, btch: 31 usd: 30 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461657] HighMem per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461658] CPU 0: hi: 186, btch: 31 usd: 4 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461660] CPU 1: hi: 186, btch: 31 usd: 204 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461662] CPU 2: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461663] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461665] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461667] CPU 5: hi: 186, btch: 31 usd: 31 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461668] CPU 6: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461670] CPU 7: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461674] active_anon:5441 inactive_anon:412 isolated_anon:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461674] active_file:2668 inactive_file:6922842 isolated_file:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461675] unevictable:0 dirty:836 writeback:0 unstable:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461676] free:1231664 slab_reclaimable:105781 slab_unreclaimable:3399 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461677] mapped:2649 shmem:138 pagetables:313 bounce:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461682] DMA free:4248kB min:780kB low:972kB high:1168kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15756kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:11560kB slab_unreclaimable:4kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:5687 all_unreclaimable? yes Oct 25 07:28:34 nldedip4k031 kernel: [87976.461686] lowmem_reserve[]: 0 869 32460 32460 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461693] Normal free:44184kB min:44216kB low:55268kB high:66324kB active_anon:0kB inactive_anon:0kB active_file:20kB inactive_file:1096kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:890008kB mlocked:0kB dirty:4kB writeback:0kB mapped:4kB shmem:0kB slab_reclaimable:411564kB slab_unreclaimable:13592kB kernel_stack:992kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1816 all_unreclaimable? yes Oct 25 07:28:34 nldedip4k031 kernel: [87976.461697] lowmem_reserve[]: 0 0 252733 252733 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461703] HighMem free:4878224kB min:512kB low:402312kB high:804112kB active_anon:21764kB inactive_anon:1648kB active_file:10652kB inactive_file:27690268kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:32349872kB mlocked:0kB dirty:3340kB writeback:0kB mapped:10592kB shmem:552kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:1252kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Oct 25 07:28:34 nldedip4k031 kernel: [87976.461708] lowmem_reserve[]: 0 0 0 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461711] DMA: 8*4kB 7*8kB 6*16kB 5*32kB 5*64kB 4*128kB 2*256kB 1*512kB 0*1024kB 1*2048kB 0*4096kB = 4248kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461719] Normal: 272*4kB 178*8kB 76*16kB 52*32kB 42*64kB 36*128kB 23*256kB 20*512kB 7*1024kB 2*2048kB 1*4096kB = 44176kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461727] HighMem: 1*4kB 45*8kB 31*16kB 24*32kB 5*64kB 3*128kB 1*256kB 2*512kB 4*1024kB 2*2048kB 1188*4096kB = 4877852kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461736] 6925679 total pagecache pages Oct 25 07:28:34 nldedip4k031 kernel: [87976.461737] 0 pages in swap cache Oct 25 07:28:34 nldedip4k031 kernel: [87976.461739] Swap cache stats: add 0, delete 0, find 0/0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461740] Free swap = 3998716kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461741] Total swap = 3998716kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.524951] 8437743 pages RAM Oct 25 07:28:34 nldedip4k031 kernel: [87976.524953] 8209409 pages HighMem Oct 25 07:28:34 nldedip4k031 kernel: [87976.524954] 159556 pages reserved Oct 25 07:28:34 nldedip4k031 kernel: [87976.524955] 6936141 pages shared Oct 25 07:28:34 nldedip4k031 kernel: [87976.524956] 124602 pages non-shared Oct 25 07:28:34 nldedip4k031 kernel: [87976.524957] [ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name Oct 25 07:28:34 nldedip4k031 kernel: [87976.524966] [ 429] 0 429 773 326 5 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524968] [ 567] 0 567 772 224 4 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524971] [ 568] 0 568 772 231 7 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524973] [ 764] 0 764 712 103 3 0 0 upstart-socket- Oct 25 07:28:34 nldedip4k031 kernel: [87976.524976] [ 772] 103 772 815 164 2 0 0 dbus-daemon Oct 25 07:28:34 nldedip4k031 kernel: [87976.524979] [ 785] 0 785 1671 600 1 -17 -1000 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524981] [ 809] 101 809 7766 380 1 0 0 rsyslogd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524983] [ 869] 0 869 1158 213 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524986] [ 873] 0 873 1158 214 6 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524988] [ 911] 0 911 1158 215 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524990] [ 912] 0 912 1158 214 2 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524992] [ 914] 0 914 1158 213 1 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524995] [ 916] 0 916 618 86 1 0 0 atd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524997] [ 917] 0 917 655 226 3 0 0 cron Oct 25 07:28:34 nldedip4k031 kernel: [87976.524999] [ 948] 0 948 902 159 5 0 0 irqbalance Oct 25 07:28:34 nldedip4k031 kernel: [87976.525002] [ 993] 0 993 1145 363 3 0 0 master Oct 25 07:28:34 nldedip4k031 kernel: [87976.525004] [ 1002] 104 1002 1162 333 1 0 0 qmgr Oct 25 07:28:34 nldedip4k031 kernel: [87976.525007] [ 1016] 0 1016 730 149 2 0 0 mdadm Oct 25 07:28:34 nldedip4k031 kernel: [87976.525009] [ 1057] 0 1057 6066 2160 3 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525012] [ 1086] 0 1086 1158 213 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.525014] [ 1088] 33 1088 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525017] [ 1089] 33 1089 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525019] [ 1090] 33 1090 6175 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525021] [ 1091] 33 1091 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525024] [ 1092] 33 1092 6191 1451 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525026] [ 1109] 33 1109 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525029] [ 1151] 33 1151 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525031] [ 1201] 104 1201 1803 652 1 0 0 tlsmgr Oct 25 07:28:34 nldedip4k031 kernel: [87976.525033] [ 2475] 0 2475 2435 812 0 0 0 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.525036] [ 2494] 0 2494 1745 839 1 0 0 bash Oct 25 07:28:34 nldedip4k031 kernel: [87976.525038] [ 2573] 0 2573 3394 1689 3 0 0 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.525040] [ 2589] 0 2589 5014 457 3 0 0 rsync Oct 25 07:28:34 nldedip4k031 kernel: [87976.525043] [ 2590] 0 2590 7970 522 1 0 0 rsync Oct 25 07:28:34 nldedip4k031 kernel: [87976.525045] [ 2652] 104 2652 1150 326 5 0 0 pickup Oct 25 07:28:34 nldedip4k031 kernel: [87976.525048] [ 2847] 0 2847 709 89 0 0 0 upstart-udev-br Oct 25 07:28:34 nldedip4k031 kernel: [87976.525050] Out of memory: Kill process 764 (upstart-socket-) score 1 or sacrifice child Oct 25 07:28:34 nldedip4k031 kernel: [87976.525484] Killed process 764 (upstart-socket-) total-vm:2848kB, anon-rss:204kB, file-rss:208kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.526161] init: upstart-socket-bridge main process (764) killed by KILL signal Oct 25 07:28:34 nldedip4k031 kernel: [87976.526180] init: upstart-socket-bridge main process ended, respawning Oct 25 07:28:44 nldedip4k031 kernel: [87986.439671] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439674] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439676] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:44 nldedip4k031 kernel: [87986.439678] Call Trace: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439684] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439686] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439688] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439691] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439694] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439696] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439699] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439702] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439704] [] vfs_read+0x8c/0x160 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439707] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439709] [] sys_read+0x3d/0x70 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439712] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439714] Mem-Info: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439714] DMA per-cpu: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439716] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439717] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439718] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439719] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439720] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439721] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439722] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439723] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439724] Normal per-cpu: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439725] CPU 0: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439726] CPU 1: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439727] CPU 2: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439728] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439729] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:33:48 nldedip4k031 kernel: imklog 5.8.6, log source = /proc/kmsg started. Oct 25 07:33:48 nldedip4k031 rsyslogd: [origin software="rsyslogd" swVersion="5.8.6" x-pid="2880" x-info="http://www.rsyslog.com"] start Oct 25 07:33:48 nldedip4k031 rsyslogd: rsyslogd's groupid changed to 103 Oct 25 07:33:48 nldedip4k031 rsyslogd: rsyslogd's userid changed to 101 Oct 25 07:33:48 nldedip4k031 rsyslogd-2039: Could not open output pipe '/dev/xconsole' [try http://www.rsyslog.com/e/2039 ]

    Read the article

  • Best Practices for Handing over Legacy Code

    - by PersonalNexus
    In a couple of months a colleague will be moving on to a new project and I will be inheriting one of his projects. To prepare, I have already ordered Michael Feathers' Working Effectively with Legacy Code. But this books as well as most questions on legacy code I found so far are concerned with the case of inheriting code as-is. But in this case I actually have access to the original developer and we do have some time for an orderly hand-over. Some background on the piece of code I will be inheriting: It's functioning: There are no known bugs, but as performance requirements keep going up, some optimizations will become necessary in the not too distant future. Undocumented: There is pretty much zero documentation at the method and class level. What the code is supposed to do at a higher level, though, is well-understood, because I have been writing against its API (as a black-box) for years. Only higher-level integration tests: There are only integration tests testing proper interaction with other components via the API (again, black-box). Very low-level, optimized for speed: Because this code is central to an entire system of applications, a lot of it has been optimized several times over the years and is extremely low-level (one part has its own memory manager for certain structs/records). Concurrent and lock-free: While I am very familiar with concurrent and lock-free programming and have actually contributed a few pieces to this code, this adds another layer of complexity. Large codebase: This particular project is more than ten thousand lines of code, so there is no way I will be able to have everything explained to me. Written in Delphi: I'm just going to put this out there, although I don't believe the language to be germane to the question, as I believe this type of problem to be language-agnostic. I was wondering how the time until his departure would best be spent. Here are a couple of ideas: Get everything to build on my machine: Even though everything should be checked into source code control, who hasn't forgotten to check in a file once in a while, so this should probably be the first order of business. More tests: While I would like more class-level unit tests so that when I will be making changes, any bugs I introduce can be caught early on, the code as it is now is not testable (huge classes, long methods, too many mutual dependencies). What to document: I think for starters it would be best to focus documentation on those areas in the code that would otherwise be difficult to understand e.g. because of their low-level/highly optimized nature. I am afraid there are a couple of things in there that might look ugly and in need of refactoring/rewriting, but are actually optimizations that have been out in there for a good reason that I might miss (cf. Joel Spolsky, Things You Should Never Do, Part I) How to document: I think some class diagrams of the architecture and sequence diagrams of critical functions accompanied by some prose would be best. Who to document: I was wondering what would be better, to have him write the documentation or have him explain it to me, so I can write the documentation. I am afraid, that things that are obvious to him but not me would otherwise not be covered properly. Refactoring using pair-programming: This might not be possible to do due to time constraints, but maybe I could refactor some of his code to make it more maintainable while he was still around to provide input on why things are the way they are. Please comment on and add to this. Since there isn't enough time to do all of this, I am particularly interested in how you would prioritize.

    Read the article

  • Improving performance of a particle system (OpenGL ES)

    - by Jason
    I'm in the process of implementing a simple particle system for a 2D mobile game (using OpenGL ES 2.0). It's working, but it's pretty slow. I start getting frame rate battering after about 400 particles, which I think is pretty low. Here's a summary of my approach: I start with point sprites (GL_POINTS) rendered in a batch just using a native float buffer (I'm in Java-land on Android, so that translates as a java.nio.FloatBuffer). On GL context init, the following are set: GLES20.glViewport(0, 0, width, height); GLES20.glClearColor(0.0f, 0.0f, 0.0f, 0.0f); GLES20.glEnable(GLES20.GL_CULL_FACE); GLES20.glDisable(GLES20.GL_DEPTH_TEST); Each draw frame sets the following: GLES20.glEnable(GLES20.GL_BLEND); GLES20.glBlendFunc(GLES20.GL_ONE, GLES20.GL_ONE_MINUS_SRC_ALPHA); And I bind a single texture: GLES20.glActiveTexture(GLES20.GL_TEXTURE0); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureHandle); GLES20.glUniform1i(mUniformTextureHandle, 0); Which is just a simple circle with some blur (and hence some transparency) http://cl.ly/image/0K2V2p2L1H2x Then there are a bunch of glVertexAttribPointer calls: mBuffer.position(position); mGlEs20.glVertexAttribPointer(mAttributeRGBHandle, valsPerRGB, GLES20.GL_FLOAT, false, stride, mBuffer); ...4 more of these Then I'm drawing: GLES20.glUniformMatrix4fv(mUniformProjectionMatrixHandle, 1, false, Camera.mProjectionMatrix, 0); GLES20.glDrawArrays(GLES20.GL_POINTS, 0, drawCalls); GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, 0); My vertex shader does have some computation in it, but given that they're point sprites (with only 2 coordinate values) I'm not sure this is the problem: #ifdef GL_ES // Set the default precision to low. precision lowp float; #endif uniform mat4 u_ProjectionMatrix; attribute vec4 a_Position; attribute float a_PointSize; attribute vec3 a_RGB; attribute float a_Alpha; attribute float a_Burn; varying vec4 v_Color; void main() { vec3 v_FGC = a_RGB * a_Alpha; v_Color = vec4(v_FGC.x, v_FGC.y, v_FGC.z, a_Alpha * (1.0 - a_Burn)); gl_PointSize = a_PointSize; gl_Position = u_ProjectionMatrix * a_Position; } My fragment shader couldn't really be simpler: #ifdef GL_ES // Set the default precision to low. precision lowp float; #endif uniform sampler2D u_Texture; varying vec4 v_Color; void main() { gl_FragColor = texture2D(u_Texture, gl_PointCoord) * v_Color; } That's about it. I had read that transparent pixels in point sprites can cause issues, but surely not at only 400 points? I'm running on a fairly new device (12 month old Galaxy Nexus). My question is less about my approach (although I'm open to suggestion) but more about whether there are any specific OpenGL "no no's" that have leaked into my code. I'm sure there's GL master out there facepalming right now... I'd love to hear any critique.

    Read the article

  • FairWarning Privacy Monitoring Solutions Rely on MySQL to Secure Patient Data

    - by Rebecca Hansen
    FairWarning® solutions have audited well over 120 billion events, each of which was processed and stored in a MySQL database. FairWarning is the world's leading supplier of privacy monitoring solutions for electronic health records, relied on by over 1,200 Hospitals and 5,000 Clinics to keep their patients' data safe. In January 2014, FairWarning was awarded the highest commendation in healthcare IT as the first ever Category Leader for Patient Privacy Monitoring in the "2013 Best in KLAS: Software & Services" report[1]. FairWarning has used MySQL as their solutions’ database from their start in 2005 to worldwide expansion and market leadership. FairWarning recently migrated their solutions from MyISAM to InnoDB and updated from MySQL 5.5 to 5.6. Following are some of benefits they’ve had as a result of those changes and reasons for their continued reliance on MySQL (from FairWarning MySQL Case Study). Scalability to Handle Terabytes of Data FairWarning's customers have a lot of data: On average, FairWarning customers receive over 700,000 events to be processed daily. Over 25% of their customers receive over 30 million events per day, which equates to over 1 billion events and nearly one terabyte (TB) of new data each month. Databases range in size from a few hundred GBs to 10+ TBs for enterprise deployments (data are rolled off after 13 months). Low or Zero Admin = Few DBAs "MySQL has not required a lot of administration. After it's been tuned, configured, and optimized for size on initial setup, we have very low administrative costs. I can scale and add more customers without adding DBAs. This has had a big, positive impact on our business.” - Chris Arnold, FairWarning Vice President of Product Management and Engineering. Performance Schema  As the size of FairWarning's customers has increased, so have their tables and data volumes. MySQL 5.6’ new maintenance and management features have helped FairWarning keep up. In particular, MySQL 5.6 performance schema’s low-level metrics have provided critical insight into how the system is performing and why. Support for Mutli-CPU Threads MySQL 5.6' support for multiple concurrent CPU threads, and FairWarning's custom data loader allow multiple files to load into a single table simultaneously vs. one at a time. As a result, their data load time has been reduced by 500%. MySQL Enterprise Hot Backup Because hospitals and clinics never stop, FairWarning solutions can’t either. FairWarning changed from using mysqldump to MySQL Enterprise Hot Backup, which has reduced downtime, restore time, and storage requirements. For many of their larger customers, restore time has decreased by 80%. MySQL Enterprise Edition and Product Roadmap Provide Complete Solution "MySQL's product roadmap fully addresses our needs. We like the fact that MySQL Enterprise Edition has everything included; there's no need to purchase separate modules."  - Chris Arnold Learn More>> FairWarning MySQL Case Study Why MySQL 5.6 is an Even Better Embedded Database for Your Products presentation Updating Your Products to MySQL 5.6, Best Practices for OEMs on-demand webinar (audio and / or slides + Q&A transcript) MyISAM to InnoDB – Why and How on-demand webinar (same stuff) Top 10 Reasons to Use MySQL as an Embedded Database white paper [1] 2013 Best in KLAS: Software & Services report, January, 2014. © 2014 KLAS Enterprises, LLC. All rights reserved.

    Read the article

  • How to create projection/view matrix for hole in the monitor effect

    - by Mr Bell
    Lets say I have my XNA app window that is sized at 640 x 480 pixels. Now lets say I have a cube model with its poly's facing in to make a room. This cube is sized 640 units wide by 480 units high by 480 units deep. Lets say the camera is somewhere in front of the box looking at it. How can I set up the view and projection matrices such that the front edge of the box lines up exactly with the edges of the application window? It seems like this should probably involve the Matrix.CreatePerspectiveOffCenter method, but I don't fully understand how the parameters translate on to the screen. For reference, the end result will be something like Johhny Lee's wii head tracking demo: http://www.youtube.com/watch?v=Jd3-eiid-Uw&feature=player_embedded P.S. I realize that his source code is available, but I am afraid I haven't been able to make heads or tails out of it.

    Read the article

  • Good university for computer science with plans for game development

    - by DukeYore
    I am starting my computer science degree at a local community college in programming using C++. However, I will be transferring to a 4-year university. Does anyone have any insight on university programs? I know Cal State Fullerton has a degree with a minor in Game Development. however, is that as important as getting a degree from a really great school? If I could shoot for something like Cal Poly would that be better? Or even Stanford or SF State being so close to so many gaming companies up there in the Bay area? Thank you in advance for any guidance.

    Read the article

  • Why are my 3ds Max .fbx exports huge?

    - by abracadabra1980
    I've made an animation in 3ds Max and want to export it to .fbx and import it into Unity. I've done this once without problems. But this time, my .max file is 2,8MB and my .fbx file came out a huge 630MB! There's nothing wrong with my model: I exported it from a Blender model (to .fbx) and imported it to 3ds max (converted it to an editable poly) to do my rigging and animation. As soon as I import some .bip animations, I get these huge files. Is there a safe way to get smaller file sizes? I don't mind redoing the rigging if I can solve this.

    Read the article

  • Car Modelling for race game

    - by Mert Toka
    I am taking Computer Graphics course this semester and we have a video game competition. I am making racing game with simulated dynamics. Our professor told us that we don't have to do much of a modelling but since we haven't started the gaming part and since I have free time I want to model the car. My question is firstly which software do you recommend to design game components? I know Maya right now. Secondly, if I design the car or any other part, what should its polygon count in order to run game smoothly? I can design pretty much everything but I assume that it is hard to design low-poly models.

    Read the article

  • The Power to Control Power

    - by speakjava
    I'm currently working on a number of projects using embedded Java on the Raspberry Pi and Beagle Board.  These are nice and small, so don't take up much room on my desk as you can see in this picture. As you can also see I have power and network connections emerging from under my desk.  One of the (admittedly very minor) drawbacks of these systems is that they have no on/off switch.  Instead you insert or remove the power connector (USB for the RasPi, a barrel connector for the Beagle).  For the Beagle Board this can potentially be an issue; with the micro-SD card located right next to the connector it has been known for people to eject the card when trying to power off the board, which can be quite serious for the hardware. The alternative is obviously to leave the boards plugged in and then disconnect the power from the outlet.  Simple enough, but a picture of underneath my desk shows that this is not the ideal situation either. This made me think that it would be great if I could have some way of controlling a mains voltage outlet using a remote switch or, even better, from software via a USB connector.  A search revealed not much that fit my requirements, and anything that was close seemed very expensive.  Obviously the only way to solve this was to build my own.Here's my solution.  I decided my system would support both control mechanisms (remote physical switch and USB computer control) and be modular in its design for optimum flexibility.  I did a bit of searching and found a company in Hong Kong that were offering solid state relays for 99p plus shipping (£2.99, but still made the total price very reasonable).  These would handle up to 380V AC on the output side so more than capable of coping with the UK 240V supply.  The other great thing was that being solid state, the input would work with a range of 3-32V and required a very low current of 7.5mA at 12V.  For the USB control an Arduino board seemed the obvious low-cost and simple choice.  Given the current requirments of the relay, the Arduino would not require the additional power supply and could be powered just from the USB.Having secured the relays I popped down to Homebase for a couple of 13A sockets, RS for a box and an Arduino and Maplin for a toggle switch.  The circuit is pretty straightforward, as shown in the diagram (only one output is shown to make it as simple as possible).  Originally I used a 2 pole toggle switch to select the remote switch or USB control by switching the negative connections of the low voltage side.  Unfortunately, the resistance between the digital pins of the Arduino board was not high enough, so when using one of the remote switches it would turn on both of the outlets.  I changed to a 4 pole switch and isolated both positive and negative connections. IMPORTANT NOTE: If you want to follow my design, please be aware that it requires working with mains voltages.  If you are at all concerned with your ability to do this please consult a qualified electrician to help you.It was a tight fit, especially getting the Arduino in, but in the end it all worked.  The completed box is shown in the photos. The remote switch was pretty simple just requiring the squeezing of two rocker switches and a 9V battery into the small RS supplied box.  I repurposed a standard stereo cable with phono plugs to connect the switch box to the mains outlets.  I chopped off one set of plugs and wired it to the rocker switches.  The photo shows the RasPi and the Beagle board now controllable from the switch box on the desk. I've tested the Arduino side of things and this works fine.  Next I need to write some software to provide an interface for control of the outlets.  I'm thinking a JavaFX GUI would be in keeping with the total overkill style of this project.

    Read the article

  • Stale statistics on a newly created temporary table in a stored procedure can lead to poor performance

    - by sqlworkshops
    When you create a temporary table you expect a new table with no past history (statistics based on past existence), this is not true if you have less than 6 updates to the temporary table. This might lead to poor performance of queries which are sensitive to the content of temporary tables.I was optimizing SQL Server Performance at one of my customers who provides search functionality on their website. They use stored procedure with temporary table for the search. The performance of the search depended on who searched what in the past, option (recompile) by itself had no effect. Sometimes a simple search led to timeout because of non-optimal plan usage due to this behavior. This is not a plan caching issue rather temporary table statistics caching issue, which was part of the temporary object caching feature that was introduced in SQL Server 2005 and is also present in SQL Server 2008 and SQL Server 2012. In this customer case we implemented a workaround to avoid this issue (see below for example for workarounds).When temporary tables are cached, the statistics are not newly created rather cached from the past and updated based on automatic update statistics threshold. Caching temporary tables/objects is good for performance, but caching stale statistics from the past is not optimal.We can work around this issue by disabling temporary table caching by explicitly executing a DDL statement on the temporary table. One possibility is to execute an alter table statement, but this can lead to duplicate constraint name error on concurrent stored procedure execution. The other way to work around this is to create an index.I think there might be many customers in such a situation without knowing that stale statistics are being cached along with temporary table leading to poor performance.Ideal solution is to have more aggressive statistics update when the temporary table has less number of rows when temporary table caching is used. I will open a connect item to report this issue.Meanwhile you can mitigate the issue by creating an index on the temporary table. You can monitor active temporary tables using Windows Server Performance Monitor counter: SQL Server: General Statistics->Active Temp Tables. The script to understand the issue and the workaround is listed below:set nocount onset statistics time offset statistics io offdrop table tab7gocreate table tab7 (c1 int primary key clustered, c2 int, c3 char(200))gocreate index test on tab7(c2, c1, c3)gobegin trandeclare @i intset @i = 1while @i <= 50000begininsert into tab7 values (@i, 1, ‘a’)set @i = @i + 1endcommit trangoinsert into tab7 values (50001, 1, ‘a’)gocheckpointgodrop proc test_slowgocreate proc test_slow @i intasbegindeclare @j intcreate table #temp1 (c1 int primary key)insert into #temp1 (c1) select @iselect @j = t7.c1 from tab7 t7 inner join #temp1 t on (t7.c2 = t.c1)endgodbcc dropcleanbuffersset statistics time onset statistics io ongo–high reads as expected for parameter ’1'exec test_slow 1godbcc dropcleanbuffersgo–high reads that are not expected for parameter ’2'exec test_slow 2godrop proc test_with_recompilegocreate proc test_with_recompile @i intasbegindeclare @j intcreate table #temp1 (c1 int primary key)insert into #temp1 (c1) select @iselect @j = t7.c1 from tab7 t7 inner join #temp1 t on (t7.c2 = t.c1)option (recompile)endgodbcc dropcleanbuffersset statistics time onset statistics io ongo–high reads as expected for parameter ’1'exec test_with_recompile 1godbcc dropcleanbuffersgo–high reads that are not expected for parameter ’2'–low reads on 3rd execution as expected for parameter ’2'exec test_with_recompile 2godrop proc test_with_alter_table_recompilegocreate proc test_with_alter_table_recompile @i intasbegindeclare @j intcreate table #temp1 (c1 int primary key)–to avoid caching of temporary tables one can create a constraint–but this might lead to duplicate constraint name error on concurrent usagealter table #temp1 add constraint test123 unique(c1)insert into #temp1 (c1) select @iselect @j = t7.c1 from tab7 t7 inner join #temp1 t on (t7.c2 = t.c1)option (recompile)endgodbcc dropcleanbuffersset statistics time onset statistics io ongo–high reads as expected for parameter ’1'exec test_with_alter_table_recompile 1godbcc dropcleanbuffersgo–low reads as expected for parameter ’2'exec test_with_alter_table_recompile 2godrop proc test_with_index_recompilegocreate proc test_with_index_recompile @i intasbegindeclare @j intcreate table #temp1 (c1 int primary key)–to avoid caching of temporary tables one can create an indexcreate index test on #temp1(c1)insert into #temp1 (c1) select @iselect @j = t7.c1 from tab7 t7 inner join #temp1 t on (t7.c2 = t.c1)option (recompile)endgoset statistics time onset statistics io ondbcc dropcleanbuffersgo–high reads as expected for parameter ’1'exec test_with_index_recompile 1godbcc dropcleanbuffersgo–low reads as expected for parameter ’2'exec test_with_index_recompile 2go

    Read the article

  • Fast software color interpolating triangle rasterization technique

    - by Belgin
    I'm implementing a software renderer with this rasterization method, however, I was wondering if there is a possibility to improve it, or if there exists an alternative technique that is much faster. I'm specifically interested in rendering small triangles, like the ones from this 100k poly dragon: As you can see, the method I'm using is not perfect either, as it leaves small gaps from time to time (at least I think that's what's happening). I don't mind using assembly optimizations. Pseudocode or actual code (C/C++ or similar) is appreciated. Thanks in advance.

    Read the article

  • Good university for computer science with plans for Game Dev.

    - by DukeYore
    I am starting my Computer science degree at a local community college in Programming using C++. However, i will be transferring to a 4-year university. Does anyone have any insight on university programs? I know Cal State Fullerton has a degree with a minor in Game Dev. however, is that as important as getting a degree from a really great school? if i could shoot for something like Cal Poly would that be better? Or even Stanford or SF state being so close to so many gaming companies up there in the bay area? thank you in advance for any guidance.

    Read the article

  • Cannot get ATI Drivers installed

    - by bittoast67
    I am trying to install the Catalyst driver. The best I can get is a strange resolution problem and firefox acts all wonkt. The worst I have gotten is low graphics mode in which I just reinstall Ubuntu. I have a HP Pavilion Dv7 laptop. With Radeon 3200 HD. I plan to try again with a fresh install of Ubuntu 12.4.3 as I have heard its the most compatible. This is what I have done: I have tried just the easy way of going to synaptic and installing the drivers that way. the fglrx package (not the fglrx update). And if memory serves I think that boots me into low graphics mode. So, fresh install of Ubuntu and tried again. I have done everything a couple times from this site (http://wiki.cchtml.com/index.php/Ubuntu_Precise_Installation_Guide) following every instruction to a T. That gets me something, such as a lowered fan speed and a much cooler computer, but I also lose most of my resolution. And displays says its the best resolution I can get. I also have a very screwy firefox. Using this method I can see AMD Catalyst Control Center in my dash (two of them really one administrator and one not) but when I try to open it it says no amd driver detected. So again, ubuntu reinstall. I have tried the GUI method from the Legacy driver I got from AMD's site. It runs through smoothly and at the very end after I exit the installer it gives me an error. I have also tried various other methods using terminal, as well as various different drivers (the one from the amd's site and the one suggested in the above link for my graphics card) both to no avail. When I try the method in the link on number 2, and I get the super low res and screwy fire fox. I type in, fglrxinfo ,and get a badrequest error. I have yet to type in fglrxinfo and get anything like what I am supposed to. UPDATE: I am now currently reinstalling Ubuntu 12.4. I tried the above mentioned link - thank you very much!- just to see on the previously failed driver attempt by following the purge commands. And to no avail when typing fglrxinfo I still get the badrequest thing. I will update again after a try with a true fresh install. Thanks again!! UPDATE: Alright everyone. Still no go. I have done everything word per word in the provided tutorial. I have rebooted my computer again to a fucked up resolution and this is what I get when typing fglrxinfo: $ fglrxinfo X Error of failed request: BadRequest (invalid request code or no such operation) Major opcode of failed request: 153 (GLX) Minor opcode of failed request: 19 (X_GLXQueryServerString) Serial number of failed request: 12 Current serial number in output stream: 12 I would like to add that when installing this file: fglrx_8.970-0ubuntu1_amd64.deb I got this: Building initial module for 3.8.0-29-generic Error! Bad return status for module build on kernel: 3.8.0-29-generic (x86_64) Consult /var/lib/dkms/fglrx/8.970/build/make.log for more information. update-initramfs: deferring update (trigger activated) Processing triggers for ureadahead ... Processing triggers for bamfdaemon ... Rebuilding /usr/share/applications/bamf.index... Processing triggers for initramfs-tools ... update-initramfs: Generating /boot/initrd.img-3.8.0-29-generic Processing triggers for libc-bin ... ldconfig deferred processing now taking place Any ideas? Anyone? I cant for the life of me figure out what I am doing wrong.

    Read the article

  • Threading iPhone

    - by bobobobo
    Say I have a group of large meshes that I have to intersect rays against. Assume also, for whatever reason, I cannot further simplify/reduce poly check count by spatial subdivisioning. I can do this in parallel: bool intersects( list of meshes ) // a mesh is a group of triangles { create n threads foreach mesh in meshes assign to a thread in threads wait until ( threads.run() ) ; // run asynchronously // when they're all done // pull out intersected triangles // from per-thread context data } Can you do this in ios for games? Or is the overhead of thread creation and mutex waiting going to beat-out the benefit of multithreading?

    Read the article

  • What is a good university for computer science and game development?

    - by DukeYore
    I am starting my computer science degree at a local community college in programming using C++. However, I will be transferring to a 4-year university. Does anyone have any insight on university programs? I know Cal State Fullerton has a degree with a minor in Game Development. however, is that as important as getting a degree from a really great school? If I could shoot for something like Cal Poly would that be better? Or even Stanford or SF State being so close to so many gaming companies up there in the Bay area?

    Read the article

  • What is an achievable way of setting content budgets (e.g. polygon count) for level content in a 3D title?

    - by MrCranky
    In answering this question for swquinn, the answer raised a more pertinent question that I'd like to hear answers to. I'll post our own strategy (promise I won't accept it as the answer), but I'd like to hear others. Specifically: how do you go about setting a sensible budget for your content team. Usually one of the very first questions asked in a development is: what's our polygon budget? Of course, these days it's rare that vertex/poly count alone is the limiting factor, instead shader complexity, fill-rate, lighting complexity, all come into play. What the content team want are some hard numbers / limits to work to such that they have a reasonable expectation that their content, once it actually gets into the engine, will not be too heavy. Given that 'it depends' isn't a particularly useful answer, I'd like to hear a strategy that allows me to give them workable limits without being a) misleading, or b) wrong.

    Read the article

  • Central Coast Code Camp 2010 is here!

    SLO .NET Users Group Presents Date:  5/22, 8am Location: Cal Poly College of Business Building 3, San Luis Obispo Registration Starts at 8am Tomorrow! Central Coast Code Camp is upon us!  Registration starts tomorrow at 8am and will be followed by a keynote speech from the event organizers.  You can now view the Session Schedule from your phone: http://www.CentralCoastCodeCamp.com/m/ Stick Around for the Raffle! The event will conclude with a raffle with...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Best way to develop a level from Top down image using 3dmax

    - by fire'fly
    I have to create a game level from a top down view of an area. I used a plane converted to an editable poly to do the job. I used edges to create the top view of roads, walkways and parks so that i can extrude/edit them later. My problem is the curves in the road look blocky I tried appying mesh smooth modifier on the final model but that interfered with material mapping. Again i tried it on the plane without the extrusions and still the modifier does not work(The roads loose their shape). I know one way to solve the problem is to add more vertices on the curve and transform their location to create a more natural curve but i have a lot of curves so before doing it manually i need to know if there is a tool that refines the curves. Also i need to know if there is a better or proper way of doing the task.

    Read the article

  • How to analyze 'dbcc memorystatus' result in SQL Server 2008

    - by envykok
    Currently i am facing a sql memory pressure issue. i have run 'dbcc memorystatus', here is part of my result: Memory Manager KB VM Reserved 23617160 VM Committed 14818444 Locked Pages Allocated 0 Reserved Memory 1024 Reserved Memory In Use 0 Memory node Id = 0 KB VM Reserved 23613512 VM Committed 14814908 Locked Pages Allocated 0 MultiPage Allocator 387400 SinglePage Allocator 3265000 MEMORYCLERK_SQLBUFFERPOOL (node 0) KB VM Reserved 16809984 VM Committed 14184208 Locked Pages Allocated 0 SM Reserved 0 SM Committed 0 SinglePage Allocator 0 MultiPage Allocator 408 MEMORYCLERK_SQLCLR (node 0) KB VM Reserved 6311612 VM Committed 141616 Locked Pages Allocated 0 SM Reserved 0 SM Committed 0 SinglePage Allocator 1456 MultiPage Allocator 20144 CACHESTORE_SQLCP (node 0) KB VM Reserved 0 VM Committed 0 Locked Pages Allocated 0 SM Reserved 0 SM Committed 0 SinglePage Allocator 3101784 MultiPage Allocator 300328 Buffer Pool Value Committed 1742946 Target 1742946 Database 1333883 Dirty 940 In IO 1 Latched 18 Free 89 Stolen 408974 Reserved 2080 Visible 1742946 Stolen Potential 1579938 Limiting Factor 13 Last OOM Factor 0 Page Life Expectancy 5463 Process/System Counts Value Available Physical Memory 258572288 Available Virtual Memory 8771398631424 Available Paging File 16030617600 Working Set 15225597952 Percent of Committed Memory in WS 100 Page Faults 305556823 System physical memory high 1 System physical memory low 0 Process physical memory low 0 Process virtual memory low 0 Procedure Cache Value TotalProcs 11382 TotalPages 430160 InUsePages 28 Can you lead me to analyze this result ? Is it a lot execute plan have been cached causing the memory issue or other reasons?

    Read the article

  • Parsing a file in C

    - by sfactor
    I need parse through a file and do some processing into it. The file is a text file and the data is a variable length data of the form "PP1004181350D001002003..........". So there will be timestamps if there is PP so 1004181350 is 2010-04-08 13:50. The ones where there are D are the data points that are three separate data each three digits long, so D001002003 has three coordonates of 001, 002 and 003. Now I need to parse this data from a file for which I need to store each timestamp into a array and the corresponding datas into arrays that has as many rows as the number of data and three rows for each co-ordinate. The end array might be like TimeStamp[1] = "135000", low[1] = "001", medium[1] = "002", high[1] = "003" TimeStamp[2] = "135015", low[2] = "010", medium[2] = "012", high[2] = "013" TimeStamp[3] = "135030", low[3] = "051", medium[3] = "052", high[3] = "043" .... The question is how do I go about doing this in C? How do I go through this string looking for these patterns? Note: Here the seconds value in timestamp is added on our own as it is known at each data comes after 15 seconds.

    Read the article

  • what is the best way to stream a audio file to website users/listners

    - by Naveen Chamikara Gamage
    I'm developing a music site which will stream audio files stored in a server to users, audio files will be played through flash player placed in a webpage.. As I heard I need to use a streaming media server for streaming audio files ( like 2mb to 3mb in size).. Do I need to use one? I found some streaming media server softwares like http://www.icecast.org - but as in their documentation, It is used for streaming radio stations and live streaming purposes, but I just need to stream audio files faster and in low size (low bandwidth) with good quality.. I heard I need to encode the audio files first and then send them to listeners and in their end audio files need to be decoded again. Is that true? How can I do that? if I need to use a special web server, where should I host my files? Any good hosting providers? if I host audio files in a normal web server, they will use HTTP or TCP to deliver my audio files to users/ listners but I found that HTTP and TCP are not good ways to use for multi media purposes like streaming audio and video files, and they are used for delivering HTML and stuff. I found I should use RSTP or UDP for streaming audio files.. What should I use? I know that .MP3 files has much better quality than the other formats but it also gives huge size to the audio files.. which format should I use for audio files? Most of the best quality audio files are more than 7mb so I'm planning to convert them my self using a software so I could get low size files with some level of good quality. If I'm converting my audio files what is the good BITRATE I should use for my files? Any known best softwares for converting audio files while keeping quality in a good level? Note** - I know that I will not need complex requirements at the beginning of the site but I wanted to what are the best ways like they are using for soundcloud.com

    Read the article

  • How to hide zero values in bar3 plot in MATLAB

    - by Doresoom
    I've got a 2-D histogram (the plot is 3D - several histograms graphed side by side) that I've generated with the bar3 plot command. However, all the zero values show up as flat squares in the x-y plane. Is there a way I can prevent MATLAB from displaying the values? I already tried replacing all zeros with NaNs, but it didn't change anything about the plot. Here's the code I've been experimenting with: x1=normrnd(50,15,100,1); %generate random data to test code x2=normrnd(40,13,100,1); x3=normrnd(65,12,100,1); low=min([x1;x2;x3]); high=max([x1;x2;x3]); y=linspace(low,high,(high-low)/4); %establish consistent bins for histogram z1=hist(x1,y); z2=hist(x2,y); z3=hist(x3,y); z=[z1;z2;z3]'; bar3(z) As you can see, there are quite a few zero values on the plot. Closing the figure and re-plotting after replacing zeros with NaNs seems to change nothing: close z(z==0)=NaN; bar3(z)

    Read the article

  • Perl cron job stays running

    - by Dylan
    I'm currently using a cron job to have a Perl script that tells my Arduino to cycle my aquaponics system and all is well, except the Perl script doesn't die as intended. Here is my cron job: */15 * * * * /home/dburke/scripts/hal/bin/main.pl cycle And below is my Perl script: #!/usr/bin/perl -w # Sample Perl script to transmit number # to Arduino then listen for the Arduino # to echo it back use strict; use Device::SerialPort; use Switch; use Time::HiRes qw ( alarm ); $|++; # Set up the serial port # 19200, 81N on the USB ftdi driver my $device = '/dev/arduino0'; # Tomoc has to use a different tty for testing #$device = '/dev/ttyS0'; my $port = new Device::SerialPort ($device) or die('Unable to open connection to device');; $port->databits(8); $port->baudrate(19200); $port->parity("none"); $port->stopbits(1); my $lastChoice = ' '; my $pid = fork(); my $signalOut; my $args = shift(@ARGV); # Parent must wait for child to exit before exiting itself on CTRL+C $SIG{'INT'} = sub { waitpid($pid,0) if $pid != 0; exit(0); }; # What child process should do if($pid == 0) { # Poll to see if any data is coming in print "\nListening...\n\n"; while (1) { my $incmsg = $port->lookfor(9); # If we get data, then print it if ($incmsg) { print "\nFrom arduino: " . $incmsg . "\n\n"; } } } # What parent process should do else { if ($args eq "cycle") { my $stop = 0; sleep(1); $SIG{ALRM} = sub { print "Expecting plant bed to be full; please check.\n"; $signalOut = $port->write('2'); # Signal to set pin 3 low print "Sent cmd: 2\n"; $stop = 1; }; $signalOut = $port->write('1'); # Signal to arduino to set pin 3 High print "Sent cmd: 1\n"; print "Waiting for plant bed to fill...\n"; alarm (420); while ($stop == 0) { sleep(2); } die "Done."; } else { sleep(1); my $choice = ' '; print "Please pick an option you'd like to use:\n"; while(1) { print " [1] Cycle [2] Relay OFF [3] Relay ON [4] Config [$lastChoice]: "; chomp($choice = <STDIN>); switch ($choice) { case /1/ { $SIG{ALRM} = sub { print "Expecting plant bed to be full; please check.\n"; $signalOut = $port->write('2'); # Signal to set pin 3 low print "Sent cmd: 2\n"; }; $signalOut = $port->write('1'); # Signal to arduino to set pin 3 High print "Sent cmd: 1\n"; print "Waiting for plant bed to fill...\n"; alarm (420); $lastChoice = $choice; } case /2/ { $signalOut = $port->write('2'); # Signal to set pin 3 low print "Sent cmd: 2"; $lastChoice = $choice; } case /3/ { $signalOut = $port->write('1'); # Signal to arduino to set pin 3 High print "Sent cmd: 1"; $lastChoice = $choice; } case /4/ { print "There is no configuration available yet. Please stab the developer."; } else { print "Please select a valid option.\n\n"; } } } } } Why wouldn't it die from the statement die "Done.";? It runs fine from the command line and also interprets the 'cycle' argument fine. When it runs in cron it runs fine, however, the process never dies and while each process doesn't continue to cycle the system it does seem to be looping in some way due to the fact that it ups my system load very quickly. If you'd like more information, just ask. EDIT: I have changed to code to: #!/usr/bin/perl -w # Sample Perl script to transmit number # to Arduino then listen for the Arduino # to echo it back use strict; use Device::SerialPort; use Switch; use Time::HiRes qw ( alarm ); $|++; # Set up the serial port # 19200, 81N on the USB ftdi driver my $device = '/dev/arduino0'; # Tomoc has to use a different tty for testing #$device = '/dev/ttyS0'; my $port = new Device::SerialPort ($device) or die('Unable to open connection to device');; $port->databits(8); $port->baudrate(19200); $port->parity("none"); $port->stopbits(1); my $lastChoice = ' '; my $signalOut; my $args = shift(@ARGV); # Parent must wait for child to exit before exiting itself on CTRL+C if ($args eq "cycle") { open (LOG, '>>log.txt'); print LOG "Cycle started.\n"; my $stop = 0; sleep(2); $SIG{ALRM} = sub { print "Expecting plant bed to be full; please check.\n"; $signalOut = $port->write('2'); # Signal to set pin 3 low print "Sent cmd: 2\n"; $stop = 1; }; $signalOut = $port->write('1'); # Signal to arduino to set pin 3 High print "Sent cmd: 1\n"; print "Waiting for plant bed to fill...\n"; print LOG "Alarm is being set.\n"; alarm (420); print LOG "Alarm is set.\n"; while ($stop == 0) { print LOG "In while-sleep loop.\n"; sleep(2); } print LOG "The loop has been escaped.\n"; die "Done."; print LOG "No one should ever see this."; } else { my $pid = fork(); $SIG{'INT'} = sub { waitpid($pid,0) if $pid != 0; exit(0); }; # What child process should do if($pid == 0) { # Poll to see if any data is coming in print "\nListening...\n\n"; while (1) { my $incmsg = $port->lookfor(9); # If we get data, then print it if ($incmsg) { print "\nFrom arduino: " . $incmsg . "\n\n"; } } } # What parent process should do else { sleep(1); my $choice = ' '; print "Please pick an option you'd like to use:\n"; while(1) { print " [1] Cycle [2] Relay OFF [3] Relay ON [4] Config [$lastChoice]: "; chomp($choice = <STDIN>); switch ($choice) { case /1/ { $SIG{ALRM} = sub { print "Expecting plant bed to be full; please check.\n"; $signalOut = $port->write('2'); # Signal to set pin 3 low print "Sent cmd: 2\n"; }; $signalOut = $port->write('1'); # Signal to arduino to set pin 3 High print "Sent cmd: 1\n"; print "Waiting for plant bed to fill...\n"; alarm (420); $lastChoice = $choice; } case /2/ { $signalOut = $port->write('2'); # Signal to set pin 3 low print "Sent cmd: 2"; $lastChoice = $choice; } case /3/ { $signalOut = $port->write('1'); # Signal to arduino to set pin 3 High print "Sent cmd: 1"; $lastChoice = $choice; } case /4/ { print "There is no configuration available yet. Please stab the developer."; } else { print "Please select a valid option.\n\n"; } } } } }

    Read the article

  • Force windows video driver reload. Is it possible at all?

    - by somemorebytes
    Hi there, Some drivers use parameters written in the registry to configure themselves when they get loaded at boot time. I can modify those values and then reboot, but I would like to know if it is possible to force the driver reload, making the changes effective without rebooting. Specifically, I am talking about the video driver (nvidia). I read somewhere, that calling through pINvoke() [User32.ll]::ChangeDisplaySettings() with a 640x480x8bits resolution,(which is so low that it should not be supported by a modern driver) will force windows to load the "Standard VGA driver", and making another call with the current resolution will load the nvidia driver again. This does not work though. At least in Windows 7, even if the low res is not displayed as "supported" the system reduces the screen to a little square in the center of the screen, showing the low res wihtout unloading the nvidia driver. So, is there any .NET/Win32 API, service to restart, or any way at all to force a video driver reload? Perhaps programatically disabling the device (as you could do from the Device Manager) and reenabling it again? Any idea? Thanks a lot.

    Read the article

< Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >