Search Results

Search found 1292 results on 52 pages for 'readonly'.

Page 33/52 | < Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >

  • Implementing an async "read all currently available data from stream" operation

    - by Jon
    I recently provided an answer to this question: C# - Realtime console output redirection. As often happens, explaining stuff (here "stuff" was how I tackled a similar problem) leads you to greater understanding and/or, as is the case here, "oops" moments. I realized that my solution, as implemented, has a bug. The bug has little practical importance, but it has an extremely large importance to me as a developer: I can't rest easy knowing that my code has the potential to blow up. Squashing the bug is the purpose of this question. I apologize for the long intro, so let's get dirty. I wanted to build a class that allows me to receive input from a console's standard output Stream. Console output streams are of type FileStream; the implementation can cast to that, if needed. There is also an associated StreamReader already present to leverage. There is only one thing I need to implement in this class to achieve my desired functionality: an async "read all the data available this moment" operation. Reading to the end of the stream is not viable because the stream will not end unless the process closes the console output handle, and it will not do that because it is interactive and expecting input before continuing. I will be using that hypothetical async operation to implement event-based notification, which will be more convenient for my callers. The public interface of the class is this: public class ConsoleAutomator { public event EventHandler<ConsoleOutputReadEventArgs> StandardOutputRead; public void StartSendingEvents(); public void StopSendingEvents(); } StartSendingEvents and StopSendingEvents do what they advertise; for the purposes of this discussion, we can assume that events are always being sent without loss of generality. The class uses these two fields internally: protected readonly StringBuilder inputAccumulator = new StringBuilder(); protected readonly byte[] buffer = new byte[256]; The functionality of the class is implemented in the methods below. To get the ball rolling: public void StartSendingEvents(); { this.stopAutomation = false; this.BeginReadAsync(); } To read data out of the Stream without blocking, and also without requiring a carriage return char, BeginRead is called: protected void BeginReadAsync() { if (!this.stopAutomation) { this.StandardOutput.BaseStream.BeginRead( this.buffer, 0, this.buffer.Length, this.ReadHappened, null); } } The challenging part: BeginRead requires using a buffer. This means that when reading from the stream, it is possible that the bytes available to read ("incoming chunk") are larger than the buffer. Remember that the goal here is to read all of the chunk and call event subscribers exactly once for each chunk. To this end, if the buffer is full after EndRead, we don't send its contents to subscribers immediately but instead append them to a StringBuilder. The contents of the StringBuilder are only sent back whenever there is no more to read from the stream. private void ReadHappened(IAsyncResult asyncResult) { var bytesRead = this.StandardOutput.BaseStream.EndRead(asyncResult); if (bytesRead == 0) { this.OnAutomationStopped(); return; } var input = this.StandardOutput.CurrentEncoding.GetString( this.buffer, 0, bytesRead); this.inputAccumulator.Append(input); if (bytesRead < this.buffer.Length) { this.OnInputRead(); // only send back if we 're sure we got it all } this.BeginReadAsync(); // continue "looping" with BeginRead } After any read which is not enough to fill the buffer (in which case we know that there was no more data to be read during the last read operation), all accumulated data is sent to the subscribers: private void OnInputRead() { var handler = this.StandardOutputRead; if (handler == null) { return; } handler(this, new ConsoleOutputReadEventArgs(this.inputAccumulator.ToString())); this.inputAccumulator.Clear(); } (I know that as long as there are no subscribers the data gets accumulated forever. This is a deliberate decision). The good This scheme works almost perfectly: Async functionality without spawning any threads Very convenient to the calling code (just subscribe to an event) Never more than one event for each time data is available to be read Is almost agnostic to the buffer size The bad That last almost is a very big one. Consider what happens when there is an incoming chunk with length exactly equal to the size of the buffer. The chunk will be read and buffered, but the event will not be triggered. This will be followed up by a BeginRead that expects to find more data belonging to the current chunk in order to send it back all in one piece, but... there will be no more data in the stream. In fact, as long as data is put into the stream in chunks with length exactly equal to the buffer size, the data will be buffered and the event will never be triggered. This scenario may be highly unlikely to occur in practice, especially since we can pick any number for the buffer size, but the problem is there. Solution? Unfortunately, after checking the available methods on FileStream and StreamReader, I can't find anything which lets me peek into the stream while also allowing async methods to be used on it. One "solution" would be to have a thread wait on a ManualResetEvent after the "buffer filled" condition is detected. If the event is not signaled (by the async callback) in a small amount of time, then more data from the stream will not be forthcoming and the data accumulated so far should be sent to subscribers. However, this introduces the need for another thread, requires thread synchronization, and is plain inelegant. Specifying a timeout for BeginRead would also suffice (call back into my code every now and then so I can check if there's data to be sent back; most of the time there will not be anything to do, so I expect the performance hit to be negligible). But it looks like timeouts are not supported in FileStream. Since I imagine that async calls with timeouts are an option in bare Win32, another approach might be to PInvoke the hell out of the problem. But this is also undesirable as it will introduce complexity and simply be a pain to code. Is there an elegant way to get around the problem? Thanks for being patient enough to read all of this. Update: I definitely did not communicate the scenario well in my initial writeup. I have since revised the writeup quite a bit, but to be extra sure: The question is about how to implement an async "read all the data available this moment" operation. My apologies to the people who took the time to read and answer without me making my intent clear enough.

    Read the article

  • How to find cause of main file system going to read only mode

    - by user606521
    Ubuntu 12.04 File system goes to readonly mode frequently. First of all I have read this question file system is going into read only mode frequently already. But I have to know if it's not caused by something else than dying hard drive. This is server provided by my client and I am just runing there some node.js workers + one node.js server and I am using mongodb. From time to time (every 20-50h) system suddenly makes filesystem read only, mongodb process fails (due read-only fs) and my node workers/server (which are started by forever) are just killed. Here is the log from dmesg - I can see there some errors and messages that FS is going to read-only, and there is also some JOURNAL error but I would like to find cause of those errors.. http://speedy.sh/Ux2VV/dmesg.log.txt edit smartctl -t long /dev/sda smartctl 5.41 2011-06-09 r3365 [x86_64-linux-3.5.0-23-generic] (local build) Copyright (C) 2002-11 by Bruce Allen, http://smartmontools.sourceforge.net SMART support is: Unavailable - device lacks SMART capability. A mandatory SMART command failed: exiting. To continue, add one or more '-T permissive' options. What I am doing wrong? Same is for sda2. Morover now when I type any command that not exists in shell I get this: Sorry, command-not-found has crashed! Please file a bug report at: https://bugs.launchpad.net/command-not-found/+filebug Please include the following information with the report:

    Read the article

  • Sharing disk volumes across OpenVZ guests to reduce Package Management Overhead

    - by andyortlieb
    Is it feasible to create a single "master" OpenVZ guest who would only be used for package management, and use something like mount --bind on several other OpenVZ guests sort of trick them into using the environment installed by the master guest? The point of this would be so that users can maintain their own containers, and yet stay in sync with the master development environment, so they'll always have the latest & greatest requirements without worrying too much about system administration. If they need to install their own packages, could put them in /opt, or /usr/local (or set a path to their home directory)? To rephrase, I would like several (developer's, for example) OpenVZ guests whose /bin, /usr (and so on...) actually refer to the same disk location as that of a master OpenVZ guest who can be started up to install and update common packages for the environment to be shared by all of this group of OpenVZ guests. For what it's worth, we're running Debian 6. Edit: I have tried mounting (bind, and readonly) /bin, /lib, /sbin, /usr in this fashion and it refuses to start the containers stating that files are already mounted or otherwise in use: Starting container ... vzquota : (error) Quota on syscall for id 1102: Device or resource busy vzquota : (error) Possible reasons: vzquota : (error) - Container's root is already mounted vzquota : (error) - there are opened files inside Container's private area vzquota : (error) - your current working directory is inside Container's vzquota : (error) private area vzquota : (error) Currently used file(s): /var/lib/vz/private/1102/sbin /var/lib/vz/private/1102/usr /var/lib/vz/private/1102/lib /var/lib/vz/private/1102/bin vzquota on failed [3] If I unmount these four volumes, and start the guest, and then mount them after the guest has started, the guest never sees them mounted.

    Read the article

  • Problems with LDAP auth in Apache, works only for one group

    - by tore-
    Hi, I'm currently publishing some subversions repos within Apache: <Location /dev/> DAV svn SVNPath /opt/svn/repos/dev/ AuthType Basic AuthName "Subversion repo authentication" AuthBasicProvider ldap AuthzLDAPAuthoritative On AuthLDAPBindDN "CN=readonlyaccount,OU=Objects,DC=invalid,DC=now" AuthLDAPBindPassword readonlyaccountspassword AuthLDAPURL "ldap://invalid.domain:389/OU=Objects,DC=invalid,DC=domain?sAMAccountName?sub?(objectClass=*)" Require ldap-group cn=dev,ou=SVN,DC=invalid,DC=domain </Location> This setup works great, but now we want to give an LDAP group read only access to our repo, then my apache config looks like this: <Location /dev/> DAV svn SVNPath /opt/svn/repos/dev/ AuthType Basic AuthName "Subversion repo authentication" AuthBasicProvider ldap AuthzLDAPAuthoritative On AuthLDAPBindDN "CN=readonlyaccount,OU=Objects,DC=invalid,DC=now" AuthLDAPBindPassword readonlyaccountspassword AuthLDAPURL "ldap://invalid.domain:389/OU=Objects,DC=invalid,DC=domain?sAMAccountName?sub?(objectClass=*)" <Limit OPTIONS PROPFIND GET REPORT> Require ldap-group cn=dev-ro,ou=SVN,dc=invalid,dc=domain </Limit> <LimitExcept OPTIONS PROPFIND GET REPORT> Require ldap-group cn=dev-rw,ou=SVN,dc=invalid,dc=domain </LimitExcept> </Location> All of my user accounts is under: OU=Objects,DC=invalid,DC=domain All groups related to subversion is under: ou=SVN,dc=invalid,dc=domain The problem after modification, only users in the dev-ro LDAP group is able to authenticate. I know that authentication with LDAP works, since my apache logs show my usernames: 10.1.1.126 - tore [...] "GET /dev/ HTTP/1.1" 200 339 "-" "Mozilla/5.0 (...)" 10.1.1.126 - - [...] "GET /dev/ HTTP/1.1" 401 501 "-" "Mozilla/4.0 (...)" 10.1.1.126 - readonly [...] "GET /dev/ HTTP/1.1" 401 501 "-" "Mozilla/4.0 (...) line = user in group dev-rw, 2. line is unauthenticated user, 3. line is unauthenticated user, authenticated as a user in group dev-ro So I think I've messed up my apache config. Advise?

    Read the article

  • Virtualbox - differencing disk based on different differencing disk

    - by Klinki
    I'm trying to create differencing image based on differencing image in VirtualBox 4.2.18. Official documentation says it should be possible: http://www.virtualbox.org/manual/ch05.html#diffimages Basically I want to achieve this drive hierarchy: + immutable image with Debian and all software installed +---- differencing image with specific configuration, autoreset=off, readonly +-------- differencing image with autoreset=on +---- another differencing image for different virtual machine +-------- differencing image with autoreset=on I successfully created differencing image based on differencing image, but I'm not able to connect it to virtual machine :( It always shows error: Failed to open the hard disk .... cannot register hard disk ... because hard disk with UUID ... already exists Here is screenshot of Virtual Media Manager and error dialog Virtual Media Manager Window screenshot Very strange is that the new differencing image (tempdrive.vdi) doesn't have Actual Size 0. I wasn't able to connect it, but still, it has 36KB of data on it... This is very similar to this older question: How to create a chained differencing disk of another differencing disk in Virtual Box? but suggested solution is not working anymore in VirtualBox 4.2.18, so I posted it as a new question. (Limit for posting links and screenshots is quite annoying..)

    Read the article

  • Implementing a robust async stream reader

    - by Jon
    I recently provided an answer to this question: C# - Realtime console output redirection. As often happens, explaining stuff (here "stuff" was how I tackled a similar problem) leads you to greater understanding and/or, as is the case here, "oops" moments. I realized that my solution, as implemented, has a bug. The bug has little practical importance, but it has an extremely large importance to me as a developer: I can't rest easy knowing that my code has the potential to blow up. Squashing the bug is the purpose of this question. I apologize for the long intro, so let's get dirty. I wanted to build a class that allows me to receive input from a Stream in an event-based manner. The stream, in my scenario, is guaranteed to be a FileStream and there is also an associated StreamReader already present to leverage. The public interface of the class is this: public class MyStreamManager { public event EventHandler<ConsoleOutputReadEventArgs> StandardOutputRead; public void StartSendingEvents(); public void StopSendingEvents(); } Obviously this specific scenario has to do with a console's standard output, but that is a detail and does not play an important role. StartSendingEvents and StopSendingEvents do what they advertise; for the purposes of this discussion, we can assume that events are always being sent without loss of generality. The class uses these two fields internally: protected readonly StringBuilder inputAccumulator = new StringBuilder(); protected readonly byte[] buffer = new byte[256]; The functionality of the class is implemented in the methods below. To get the ball rolling: public void StartSendingEvents(); { this.stopAutomation = false; this.BeginReadAsync(); } To read data out of the Stream without blocking, and also without requiring a carriage return char, BeginRead is called: protected void BeginReadAsync() { if (!this.stopAutomation) { this.StandardOutput.BaseStream.BeginRead( this.buffer, 0, this.buffer.Length, this.ReadHappened, null); } } The challenging part: BeginRead requires using a buffer. This means that when reading from the stream, it is possible that the bytes available to read ("incoming chunk") are larger than the buffer. Since we are only handing off data from the stream to a consumer, and that consumer may well have inside knowledge about the size and/or format of these chunks, I want to call event subscribers exactly once for each chunk. Otherwise the abstraction breaks down and the subscribers have to buffer the incoming data and reconstruct the chunks themselves using said knowledge. This is much less convenient to the calling code, and detracts from the usefulness of my class. To this end, if the buffer is full after EndRead, we don't send its contents to subscribers immediately but instead append them to a StringBuilder. The contents of the StringBuilder are only sent back whenever there is no more to read from the stream (thus preserving the chunks). private void ReadHappened(IAsyncResult asyncResult) { var bytesRead = this.StandardOutput.BaseStream.EndRead(asyncResult); if (bytesRead == 0) { this.OnAutomationStopped(); return; } var input = this.StandardOutput.CurrentEncoding.GetString( this.buffer, 0, bytesRead); this.inputAccumulator.Append(input); if (bytesRead < this.buffer.Length) { this.OnInputRead(); // only send back if we 're sure we got it all } this.BeginReadAsync(); // continue "looping" with BeginRead } After any read which is not enough to fill the buffer, all accumulated data is sent to the subscribers: private void OnInputRead() { var handler = this.StandardOutputRead; if (handler == null) { return; } handler(this, new ConsoleOutputReadEventArgs(this.inputAccumulator.ToString())); this.inputAccumulator.Clear(); } (I know that as long as there are no subscribers the data gets accumulated forever. This is a deliberate decision). The good This scheme works almost perfectly: Async functionality without spawning any threads Very convenient to the calling code (just subscribe to an event) Maintains the "chunkiness" of the data; this allows the calling code to use inside knowledge of the data without doing any extra work Is almost agnostic to the buffer size (it will work correctly with any size buffer irrespective of the data being read) The bad That last almost is a very big one. Consider what happens when there is an incoming chunk with length exactly equal to the size of the buffer. The chunk will be read and buffered, but the event will not be triggered. This will be followed up by a BeginRead that expects to find more data belonging to the current chunk in order to send it back all in one piece, but... there will be no more data in the stream. In fact, as long as data is put into the stream in chunks with length exactly equal to the buffer size, the data will be buffered and the event will never be triggered. This scenario may be highly unlikely to occur in practice, especially since we can pick any number for the buffer size, but the problem is there. Solution? Unfortunately, after checking the available methods on FileStream and StreamReader, I can't find anything which lets me peek into the stream while also allowing async methods to be used on it. One "solution" would be to have a thread wait on a ManualResetEvent after the "buffer filled" condition is detected. If the event is not signaled (by the async callback) in a small amount of time, then more data from the stream will not be forthcoming and the data accumulated so far should be sent to subscribers. However, this introduces the need for another thread, requires thread synchronization, and is plain inelegant. Specifying a timeout for BeginRead would also suffice (call back into my code every now and then so I can check if there's data to be sent back; most of the time there will not be anything to do, so I expect the performance hit to be negligible). But it looks like timeouts are not supported in FileStream. Since I imagine that async calls with timeouts are an option in bare Win32, another approach might be to PInvoke the hell out of the problem. But this is also undesirable as it will introduce complexity and simply be a pain to code. Is there an elegant way to get around the problem? Thanks for being patient enough to read all of this.

    Read the article

  • Copy from CDROM is very slow in Ubuntu

    - by ???
    I'm using the command to copy CDROM image: # dd if=/dev/sr0 of=./maverick.iso But it's very slow, at about 350k bytes/sec. I've searched the google, and try the command # hdparm -vi /dev/sr0 /dev/sr0: HDIO_DRIVE_CMD(identify) failed: Bad address IO_support = 1 (32-bit) readonly = 0 (off) readahead = 256 (on) HDIO_GETGEO failed: Inappropriate ioctl for device Model=DVD-ROM UJDA775, FwRev=DA03, SerialNo= Config={ Fixed Removeable DTR<=5Mbs DTR>10Mbs nonMagnetic } RawCHS=0/0/0, TrkSize=0, SectSize=0, ECCbytes=0 BuffType=unknown, BuffSize=unknown, MaxMultSect=0 (maybe): CurCHS=0/0/0, CurSects=0, LBA=yes, LBAsects=0 IORDY=yes, tPIO={min:180,w/IORDY:120}, tDMA={min:120,rec:120} PIO modes: pio0 pio1 pio2 pio3 pio4 DMA modes: sdma0 sdma1 sdma2 mdma0 mdma1 mdma2 UDMA modes: udma0 udma1 *udma2 AdvancedPM=no Drive conforms to: ATA/ATAPI-5 T13 1321D revision 3: ATA/ATAPI-1,2,3,4,5 * signifies the current active mode Seems like DMA is already on. And a device test gives: # hdparm -t /dev/sr0 /dev/sr0: Timing buffered disk reads: 2 MB in 6.58 seconds = 311.10 kB/sec # sudo hdparm -tT /dev/sr0 /dev/sr0: Timing cached reads: 2 MB in 2.69 seconds = 760.96 kB/sec Timing buffered disk reads: m 4 MB in 5.19 seconds = 789.09 kB/sec The CD-ROM device and disc should be okay because I can copy it very fast in Windows, using UltraISO utility. So I guess there is something not configured right in Ubuntu, is it?

    Read the article

  • How do I remove a USB drive's write protection?

    - by nate
    I have a SanDisk Cruser Blade USB stick that suddenly seems to be write protected. I tried running DiskPart but after I write the command "attributes disk clear readonly" it displays this: Microsoft DiskPart version 5.1.3565 ADD - Add a mirror to a simple volume. ACTIVE - Marks the current basic partition as an active boot partition. ASSIGN - Assign a drive letter or mount point to the selected volume. BREAK - Break a mirror set. CLEAN - Clear the configuration information, or all information, off the disk. CONVERT - Converts between different disk formats. CREATE - Create a volume or partition. DELETE - Delete an object. DETAIL - Provide details about an object. EXIT - Exit DiskPart EXTEND - Extend a volume. HELP - Prints a list of commands. IMPORT - Imports a disk group. LIST - Prints out a list of objects. INACTIVE - Marks the current basic partition as an inactive partition. ONLINE - Online a disk that is currently marked as offline. REM - Does nothing. Used to comment scripts. REMOVE - Remove a drive letter or mount point assignment. REPAIR - Repair a RAID-5 volume. RESCAN - Rescan the computer looking for disks and volumes. RETAIN - Place a retainer partition under a simple volume. SELECT - Move the focus to an object. It's like when you type help at the DiskPart prompt, so how do I get past this? This problem started when I plugged the stick into a laptop which had viruses, if that's any help.

    Read the article

  • Implementing a robust async stream reader for a console

    - by Jon
    I recently provided an answer to this question: C# - Realtime console output redirection. As often happens, explaining stuff (here "stuff" was how I tackled a similar problem) leads you to greater understanding and/or, as is the case here, "oops" moments. I realized that my solution, as implemented, has a bug. The bug has little practical importance, but it has an extremely large importance to me as a developer: I can't rest easy knowing that my code has the potential to blow up. Squashing the bug is the purpose of this question. I apologize for the long intro, so let's get dirty. I wanted to build a class that allows me to receive input from a Stream in an event-based manner. The stream, in my scenario, is guaranteed to be a FileStream and there is also an associated StreamReader already present to leverage. The public interface of the class is this: public class MyStreamManager { public event EventHandler<ConsoleOutputReadEventArgs> StandardOutputRead; public void StartSendingEvents(); public void StopSendingEvents(); } Obviously this specific scenario has to do with a console's standard output. StartSendingEvents and StopSendingEvents do what they advertise; for the purposes of this discussion, we can assume that events are always being sent without loss of generality. The class uses these two fields internally: protected readonly StringBuilder inputAccumulator = new StringBuilder(); protected readonly byte[] buffer = new byte[256]; The functionality of the class is implemented in the methods below. To get the ball rolling: public void StartSendingEvents(); { this.stopAutomation = false; this.BeginReadAsync(); } To read data out of the Stream without blocking, and also without requiring a carriage return char, BeginRead is called: protected void BeginReadAsync() { if (!this.stopAutomation) { this.StandardOutput.BaseStream.BeginRead( this.buffer, 0, this.buffer.Length, this.ReadHappened, null); } } The challenging part: BeginRead requires using a buffer. This means that when reading from the stream, it is possible that the bytes available to read ("incoming chunk") are larger than the buffer. Since we are only handing off data from the stream to a consumer, and that consumer may well have inside knowledge about the size and/or format of these chunks, I want to call event subscribers exactly once for each chunk. Otherwise the abstraction breaks down and the subscribers have to buffer the incoming data and reconstruct the chunks themselves using said knowledge. This is much less convenient to the calling code, and detracts from the usefulness of my class. Edit: There are comments below correctly stating that since the data is coming from a stream, there is absolutely nothing that the receiver can infer about the structure of the data unless it is fully prepared to parse it. What I am trying to do here is leverage the "flush the output" "structure" that the owner of the console imparts while writing on it. I am prepared to assume (better: allow my caller to have the option to assume) that the OS will pass me the data written between two flushes of the stream in exactly one piece. To this end, if the buffer is full after EndRead, we don't send its contents to subscribers immediately but instead append them to a StringBuilder. The contents of the StringBuilder are only sent back whenever there is no more to read from the stream (thus preserving the chunks). private void ReadHappened(IAsyncResult asyncResult) { var bytesRead = this.StandardOutput.BaseStream.EndRead(asyncResult); if (bytesRead == 0) { this.OnAutomationStopped(); return; } var input = this.StandardOutput.CurrentEncoding.GetString( this.buffer, 0, bytesRead); this.inputAccumulator.Append(input); if (bytesRead < this.buffer.Length) { this.OnInputRead(); // only send back if we 're sure we got it all } this.BeginReadAsync(); // continue "looping" with BeginRead } After any read which is not enough to fill the buffer, all accumulated data is sent to the subscribers: private void OnInputRead() { var handler = this.StandardOutputRead; if (handler == null) { return; } handler(this, new ConsoleOutputReadEventArgs(this.inputAccumulator.ToString())); this.inputAccumulator.Clear(); } (I know that as long as there are no subscribers the data gets accumulated forever. This is a deliberate decision). The good This scheme works almost perfectly: Async functionality without spawning any threads Very convenient to the calling code (just subscribe to an event) Maintains the "chunkiness" of the data; this allows the calling code to use inside knowledge of the data without doing any extra work Is almost agnostic to the buffer size (it will work correctly with any size buffer irrespective of the data being read) The bad That last almost is a very big one. Consider what happens when there is an incoming chunk with length exactly equal to the size of the buffer. The chunk will be read and buffered, but the event will not be triggered. This will be followed up by a BeginRead that expects to find more data belonging to the current chunk in order to send it back all in one piece, but... there will be no more data in the stream. In fact, as long as data is put into the stream in chunks with length exactly equal to the buffer size, the data will be buffered and the event will never be triggered. This scenario may be highly unlikely to occur in practice, especially since we can pick any number for the buffer size, but the problem is there. Solution? Unfortunately, after checking the available methods on FileStream and StreamReader, I can't find anything which lets me peek into the stream while also allowing async methods to be used on it. One "solution" would be to have a thread wait on a ManualResetEvent after the "buffer filled" condition is detected. If the event is not signaled (by the async callback) in a small amount of time, then more data from the stream will not be forthcoming and the data accumulated so far should be sent to subscribers. However, this introduces the need for another thread, requires thread synchronization, and is plain inelegant. Specifying a timeout for BeginRead would also suffice (call back into my code every now and then so I can check if there's data to be sent back; most of the time there will not be anything to do, so I expect the performance hit to be negligible). But it looks like timeouts are not supported in FileStream. Since I imagine that async calls with timeouts are an option in bare Win32, another approach might be to PInvoke the hell out of the problem. But this is also undesirable as it will introduce complexity and simply be a pain to code. Is there an elegant way to get around the problem? Thanks for being patient enough to read all of this.

    Read the article

  • How do I create a read only MySQL user for backup purposes with mysqldump?

    - by stickmangumby
    I'm using the automysqlbackup script to dump my mysql databases, but I want to have a read-only user to do this with so that I'm not storing my root database password in a plaintext file. I've created a user like so: grant select, lock tables on *.* to 'username'@'localhost' identified by 'password'; When I run mysqldump (either through automysqlbackup or directly) I get the following warning: mysqldump: Got error: 1044: Access denied for user 'username'@'localhost' to database 'information_schema' when using LOCK TABLES Am I doing it wrong? Do I need additional grants for my readonly user? Or can only root lock the information_schema table? What's going on? Edit: GAH and now it works. I may not have run FLUSH PRIVILEGES previously. As an aside, how often does this occur automatically? Edit: No, it doesn't work. Running mysqldump -u username -p --all-databases > dump.sql manually doesn't generate an error, but doesn't dump information_schema. automysqlbackup does raise an error.

    Read the article

  • Windows 7 search does not return results from indexed folders

    - by Dilbert
    I am experiencing this issue over and over again and I just cannot seem to find the answer. It doesn't make sense, but search simply does not return results from folders that certainly have these files inside. It's weird that this technology exists for more than 5 years now (it could be added to Windows XP as an addon), and they still haven't got it right. My folder contains 10 image files with .png extensions. Two scenarios: Scenario 1: I exclude the folder using Indexing options. Search works. Scenario 2: I turn on indexing for this folder. Search does not work. Of course, Agent Ransack returns results every time. When I check Advanced options for the Indexing options inside control panel, .png files are checked in the File Types tab, using the "File Properties filter". What's the deal with this? [Edit] To clarify, this doesn't happen with all folders, but does with more than one. For the "problematic" folders, even *.* doesn't return a single result. I found some advice to clear the archive and readonly attributes for all files (doesn't make sense, but hey), but it didn't work. Indexing status in Control panel is: Indexing complete. 100,000 items indexed. Folder is included in the list. File types list contains the .png extension (although it doesn't work with any filter, not even *.*).

    Read the article

  • Help, my CentOS servers keep going down , No route to host after a random uptime

    - by user249071
    Hello , I have a couple of Centos linux servers, that have a very simple task, they run nginx + fastcgi for php , and some NFS mounts between them, readonly They have some RPC commands to start some downloading processes with wget, nothing fancy , from a main server, but their behavior is very unstable, they simply go down, we tried to monitor ram , processor usage, even network connections, they don't load up so much, max network connections up to... 250 max, 15% processor usage and memory , well, doesn't even fill up, 2.5GB from 8GB max , I have no ideea why can a linux server go down like that, they aren't even public servers, no domain names installed no public serving, for sites. The only thing that I've discovered was that if i didn't restart the network service every couple of hours or so... the servers were becoming very slow, starting apps very slow, but not repoting a high usage of resources...Maybe Centos doesn't free the timeout connections, or something like that...It's based on Red Hat right? I'm not a linux expert , but I'm sure that there are a few guys out there that can easily have an answer to this , or even have some leads to what i can do ... I haven't installed snort, or other things to view if we have some DOS attacks, still the scheduled script that restarts the network each hour should put the system back online, and it doesn't.... Thank you in advance

    Read the article

  • Failover Cluster Quorum Failing

    - by oruchreis
    Hi, I have two nodes which boots from iscsi to implement windows 2008 cluster. And I'm using disk majority option as quorum over iscsi. But when the quorum's iscsi connection failed(May be san server reset), the failover cluster is failed too. If I reset one of the nodes, it can open, but its system disk goes offline. I cant change its status as online, because it says that its reserved by failover cluster(disk is on iscsi, beacuse iscsi boot). And this disk works as readonly. Anything on it cant be deleted or written. So, I cant rejoin the node to the cluster again. I have to reinstall windows. So, what I'm asking is, how can I implement more quorum backup? I mean, can I use both disk majority and file share majority at same time? AFAIK, every nodes also keep the quorum's copy too. But I don't know sometimes san servers goes offline. And quorum's iscsi connection and nodes' iscsi connections get lost. So, nor the quorum that is kept in the nodes neither the quorum iscsi disk is not enough to start the cluster again. I want to use both disk majority and file share majority at the same time. Can I do this? Have you any other suggestion? Regards.

    Read the article

  • Cannot write to directory after taking ownership

    - by jeff charles
    I had a directory on an internal hard-drive that was created in an old Windows 7 install. After re-installing my operating system, when I try to create a new directory inside that directory, I get an Access Denied message. This isn't a protected directory, just a random directory I created at the drive root (that drive was not the C drive in either install). I tried to take ownership by opening folder properties, going to the Security tab, clicking on Advanced, going to Owner tab, clicking on Edit, selecting my user account, checking Replace owner on subcontainers and objects, and clicking Apply. There were no error messages and I closed the dialogs. I rebooted, checked the owner on that folder and a couple subfolders and it appears to be set correctly. I am still getting an Access Denied message however when trying to create a directory in it. I've also tried using attrib -R . to remove any possible readonly attribute inside the directory in an admin command prompt but am still unable to create a directory using a non-admin prompt (it does work in an admin prompt). Is there anything I can do to get write access to that folder and it's subcontents in a non-elevated context without disabling UAC?

    Read the article

  • Write once, read many (WORM) using Linux file system

    - by phil_ayres
    I have a requirement to write files to a Linux file system that can not be subsequently overwritten, appended to, updated in any way, or deleted. Not by a sudo-er, root, or anybody. I am attempting to meet the requirements of the financial services regulations for recordkeeping, FINRA 17A-4, which basically requires that electronic documents are written to WORM (write once, read many) devices. I would very much like to avoid having to use DVDs or expensive EMC Centera devices. Is there a Linux file system, or can SELinux support the requirement for files to be made complete immutable immediately (or at least soon) after write? Or is anybody aware of a way I could enforce this on an existing file system using Linux permissions, etc? I understand that I can set readonly permissions, and the immutable attribute. But of course I expect that a root user would be able to unset those. I considered storing data to small volumes that are unmounted and then remounted read-only, but then I think that root could still unmount and remount as writable again. I'm looking for any smart ideas, and worst case scenario I'm willing to do a little coding to 'enhance' an existing file system to provide this. Assuming there is a file system that is a good starting point. And put in place a carefully configured Linux server to act as this type of network storage device, doing nothing else. After all of that, encryption on the files would be useful too!

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • Building applications with WCF - Intro

    - by skjagini
    I am going to write series of articles using Windows Communication Framework (WCF) to develop client and server applications and this is the first part of that series. What is WCF As Juwal puts in his Programming WCF book, WCF provides an SDK for developing and deploying services on Windows, provides runtime environment to expose CLR types as services and consume services as CLR types. Building services with WCF is incredibly easy and it’s implementation provides a set of industry standards and off the shelf plumbing including service hosting, instance management, reliability, transaction management, security etc such that it greatly increases productivity Scenario: Lets consider a typical bank customer trying to create an account, deposit amount and transfer funds between accounts, i.e. checking and savings. To make it interesting, we are going to divide the functionality into multiple services and each of them working with database directly. We will run test cases with and without transactional support across services. In this post we will build contracts, services, data access layer, unit tests to verify end to end communication etc, nothing big stuff here and we dig into other features of the WCF in subsequent posts with incremental changes. In any distributed architecture we have two pieces i.e. services and clients. Services as the name implies provide functionality to execute various pieces of business logic on the server, and clients providing interaction to the end user. Services can be built with Web Services or with WCF. Service built on WCF have the advantage of binding independent, i.e. can run against TCP and HTTP protocol without any significant changes to the code. Solution Services Profile: For creating a new bank customer, getting details about existing customer ProfileContract ProfileService Checking Account: To get checking account balance, deposit or withdraw amount CheckingAccountContract CheckingAccountService Savings Account: To get savings account balance, deposit or withdraw amount SavingsAccountContract SavingsAccountService ServiceHost: To host services, i.e. running the services at particular address, binding and contract where client can connect to Client: Helps end user to use services like creating account and amount transfer between the accounts BankDAL: Data access layer to work with database     BankDAL It’s no brainer not to use an ORM as many matured products are available currently in market including Linq2Sql, Entity Framework (EF), LLblGenPro etc. For this exercise I am going to use Entity Framework 4.0, CTP 5 with code first approach. There are two approaches when working with data, data driven and code driven. In data driven we start by designing tables and their constrains in database and generate entities in code while in code driven (code first) approach entities are defined in code and the metadata generated from the entities is used by the EF to create tables and table constrains. In previous versions the entity classes had  to derive from EF specific base classes. In EF 4 it  is not required to derive from any EF classes, the entities are not only persistence ignorant but also enable full test driven development using mock frameworks.  Application consists of 3 entities, Customer entity which contains Customer details; CheckingAccount and SavingsAccount to hold the respective account balance. We could have introduced an Account base class for CheckingAccount and SavingsAccount which is certainly possible with EF mappings but to keep it simple we are just going to follow 1 –1 mapping between entity and table mappings. Lets start out by defining a class called Customer which will be mapped to Customer table, observe that the class is simply a plain old clr object (POCO) and has no reference to EF at all. using System;   namespace BankDAL.Model { public class Customer { public int Id { get; set; } public string FullName { get; set; } public string Address { get; set; } public DateTime DateOfBirth { get; set; } } }   In order to inform EF about the Customer entity we have to define a database context with properties of type DbSet<> for every POCO which needs to be mapped to a table in database. EF uses convention over configuration to generate the metadata resulting in much less configuration. using System.Data.Entity;   namespace BankDAL.Model { public class BankDbContext: DbContext { public DbSet<Customer> Customers { get; set; } } }   Entity constrains can be defined through attributes on Customer class or using fluent syntax (no need to muscle with xml files), CustomerConfiguration class. By defining constrains in a separate class we can maintain clean POCOs without corrupting entity classes with database specific information.   using System; using System.Data.Entity.ModelConfiguration;   namespace BankDAL.Model { public class CustomerConfiguration: EntityTypeConfiguration<Customer> { public CustomerConfiguration() { Initialize(); }   private void Initialize() { //Setting the Primary Key this.HasKey(e => e.Id);   //Setting required fields this.HasRequired(e => e.FullName); this.HasRequired(e => e.Address); //Todo: Can't create required constraint as DateOfBirth is not reference type, research it //this.HasRequired(e => e.DateOfBirth); } } }   Any queries executed against Customers property in BankDbContext are executed against Cusomers table. By convention EF looks for connection string with key of BankDbContext when working with the context.   We are going to define a helper class to work with Customer entity with methods for querying, adding new entity etc and these are known as repository classes, i.e., CustomerRepository   using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CustomerRepository { private readonly IDbSet<Customer> _customers;   public CustomerRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _customers = bankDbContext.Customers; }   public IQueryable<Customer> Query() { return _customers; }   public void Add(Customer customer) { _customers.Add(customer); } } }   From the above code it is observable that the Query methods returns customers as IQueryable i.e. customers are retrieved only when actually used i.e. iterated. Returning as IQueryable also allows to execute filtering and joining statements from business logic using lamba expressions without cluttering the data access layer with tens of methods.   Our CheckingAccountRepository and SavingsAccountRepository look very similar to each other using System; using System.Data.Entity; using System.Linq; using BankDAL.Model;   namespace BankDAL.Repositories { public class CheckingAccountRepository { private readonly IDbSet<CheckingAccount> _checkingAccounts;   public CheckingAccountRepository(BankDbContext bankDbContext) { if (bankDbContext == null) throw new ArgumentNullException(); _checkingAccounts = bankDbContext.CheckingAccounts; }   public IQueryable<CheckingAccount> Query() { return _checkingAccounts; }   public void Add(CheckingAccount account) { _checkingAccounts.Add(account); }   public IQueryable<CheckingAccount> GetAccount(int customerId) { return (from act in _checkingAccounts where act.CustomerId == customerId select act); }   } } The repository classes look very similar to each other for Query and Add methods, with the help of C# generics and implementing repository pattern (Martin Fowler) we can reduce the repeated code. Jarod from ElegantCode has posted an article on how to use repository pattern with EF which we will implement in the subsequent articles along with WCF Unity life time managers by Drew Contracts It is very easy to follow contract first approach with WCF, define the interface and append ServiceContract, OperationContract attributes. IProfile contract exposes functionality for creating customer and getting customer details.   using System; using System.ServiceModel; using BankDAL.Model;   namespace ProfileContract { [ServiceContract] public interface IProfile { [OperationContract] Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth);   [OperationContract] Customer GetCustomer(int id);   } }   ICheckingAccount contract exposes functionality for working with checking account, i.e., getting balance, deposit and withdraw of amount. ISavingsAccount contract looks the same as checking account.   using System.ServiceModel;   namespace CheckingAccountContract { [ServiceContract] public interface ICheckingAccount { [OperationContract] decimal? GetCheckingAccountBalance(int customerId);   [OperationContract] void DepositAmount(int customerId,decimal amount);   [OperationContract] void WithdrawAmount(int customerId, decimal amount);   } }   Services   Having covered the data access layer and contracts so far and here comes the core of the business logic, i.e. services.   .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } ProfileService implements the IProfile contract for creating customer and getting customer detail using CustomerRepository. using System; using System.Linq; using System.ServiceModel; using BankDAL; using BankDAL.Model; using BankDAL.Repositories; using ProfileContract;   namespace ProfileService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Profile: IProfile { public Customer CreateAccount( string customerName, string address, DateTime dateOfBirth) { Customer cust = new Customer { FullName = customerName, Address = address, DateOfBirth = dateOfBirth };   using (var bankDbContext = new BankDbContext()) { new CustomerRepository(bankDbContext).Add(cust); bankDbContext.SaveChanges(); } return cust; }   public Customer CreateCustomer(string customerName, string address, DateTime dateOfBirth) { return CreateAccount(customerName, address, dateOfBirth); } public Customer GetCustomer(int id) { return new CustomerRepository(new BankDbContext()).Query() .Where(i => i.Id == id).FirstOrDefault(); }   } } From the above code you shall observe that we are calling bankDBContext’s SaveChanges method and there is no save method specific to customer entity because EF manages all the changes centralized at the context level and all the pending changes so far are submitted in a batch and it is represented as Unit of Work. Similarly Checking service implements ICheckingAccount contract using CheckingAccountRepository, notice that we are throwing overdraft exception if the balance falls by zero. WCF has it’s own way of raising exceptions using fault contracts which will be explained in the subsequent articles. SavingsAccountService is similar to CheckingAccountService. using System; using System.Linq; using System.ServiceModel; using BankDAL.Model; using BankDAL.Repositories; using CheckingAccountContract;   namespace CheckingAccountService { [ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class Checking:ICheckingAccount { public decimal? GetCheckingAccountBalance(int customerId) { using (var bankDbContext = new BankDbContext()) { CheckingAccount account = (new CheckingAccountRepository(bankDbContext) .GetAccount(customerId)).FirstOrDefault();   if (account != null) return account.Balance;   return null; } }   public void DepositAmount(int customerId, decimal amount) { using(var bankDbContext = new BankDbContext()) { var checkingAccountRepository = new CheckingAccountRepository(bankDbContext); CheckingAccount account = (checkingAccountRepository.GetAccount(customerId)) .FirstOrDefault();   if (account == null) { account = new CheckingAccount() { CustomerId = customerId }; checkingAccountRepository.Add(account); }   account.Balance = account.Balance + amount; if (account.Balance < 0) throw new ApplicationException("Overdraft not accepted");   bankDbContext.SaveChanges(); } } public void WithdrawAmount(int customerId, decimal amount) { DepositAmount(customerId, -1*amount); } } }   BankServiceHost The host acts as a glue binding contracts with it’s services, exposing the endpoints. The services can be exposed either through the code or configuration file, configuration file is preferred as it allows run time changes to service behavior even after deployment. We have 3 services and for each of the service you need to define name (the class that implements the service with fully qualified namespace) and endpoint known as ABC, i.e. address, binding and contract. We are using netTcpBinding and have defined the base address with for each of the contracts .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } <system.serviceModel> <services> <service name="ProfileService.Profile"> <endpoint binding="netTcpBinding" contract="ProfileContract.IProfile"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Profile"/> </baseAddresses> </host> </service> <service name="CheckingAccountService.Checking"> <endpoint binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Checking"/> </baseAddresses> </host> </service> <service name="SavingsAccountService.Savings"> <endpoint binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/> <host> <baseAddresses> <add baseAddress="net.tcp://localhost:1000/Savings"/> </baseAddresses> </host> </service> </services> </system.serviceModel> Have to open the services by creating service host which will handle the incoming requests from clients.   using System;   namespace ServiceHost { class Program { static void Main(string[] args) { CreateHosts(); Console.ReadLine(); }   private static void CreateHosts() { CreateHost(typeof(ProfileService.Profile),"Profile Service"); CreateHost(typeof(SavingsAccountService.Savings), "Savings Account Service"); CreateHost(typeof(CheckingAccountService.Checking), "Checking Account Service"); }   private static void CreateHost(Type type, string hostDescription) { System.ServiceModel.ServiceHost host = new System.ServiceModel.ServiceHost(type); host.Open();   if (host.ChannelDispatchers != null && host.ChannelDispatchers.Count != 0 && host.ChannelDispatchers[0].Listener != null) Console.WriteLine("Started: " + host.ChannelDispatchers[0].Listener.Uri); else Console.WriteLine("Failed to start:" + hostDescription); } } } BankClient    The client has no knowledge about service business logic other than the functionality it exposes through the contract, end points and a proxy to work against. The endpoint data and server proxy can be generated by right clicking on the project reference and choosing ‘Add Service Reference’ and entering the service end point address. Or if you have access to source, you can manually reference contract dlls and update clients configuration file to point to the service end point if the server and client happens to be being built using .Net framework. One of the pros with the manual approach is you don’t have to work against messy code generated files.   <system.serviceModel> <client> <endpoint name="tcpProfile" address="net.tcp://localhost:1000/Profile" binding="netTcpBinding" contract="ProfileContract.IProfile"/> <endpoint name="tcpCheckingAccount" address="net.tcp://localhost:1000/Checking" binding="netTcpBinding" contract="CheckingAccountContract.ICheckingAccount"/> <endpoint name="tcpSavingsAccount" address="net.tcp://localhost:1000/Savings" binding="netTcpBinding" contract="SavingsAccountContract.ISavingsAccount"/>   </client> </system.serviceModel> The client uses a façade to connect to the services   using System.ServiceModel; using CheckingAccountContract; using ProfileContract; using SavingsAccountContract;   namespace Client { public class ProxyFacade { public static IProfile ProfileProxy() { return (new ChannelFactory<IProfile>("tcpProfile")).CreateChannel(); }   public static ICheckingAccount CheckingAccountProxy() { return (new ChannelFactory<ICheckingAccount>("tcpCheckingAccount")) .CreateChannel(); }   public static ISavingsAccount SavingsAccountProxy() { return (new ChannelFactory<ISavingsAccount>("tcpSavingsAccount")) .CreateChannel(); }   } }   With that in place, lets get our unit tests going   using System; using System.Diagnostics; using BankDAL.Model; using NUnit.Framework; using ProfileContract;   namespace Client { [TestFixture] public class Tests { private void TransferFundsFromSavingsToCheckingAccount(int customerId, decimal amount) { ProxyFacade.CheckingAccountProxy().DepositAmount(customerId, amount); ProxyFacade.SavingsAccountProxy().WithdrawAmount(customerId, amount); }   private void TransferFundsFromCheckingToSavingsAccount(int customerId, decimal amount) { ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, amount); ProxyFacade.CheckingAccountProxy().WithdrawAmount(customerId, amount); }     [Test] public void CreateAndGetProfileTest() { IProfile profile = ProxyFacade.ProfileProxy(); const string customerName = "Tom"; int customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)).Id; Customer customer = profile.GetCustomer(customerId); Assert.AreEqual(customerName,customer.FullName); }   [Test] public void DepositWithDrawAndTransferAmountTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Smith" + DateTime.Now.ToString("HH:mm:ss"); var customer = profile.CreateCustomer(customerName, "NJ", new DateTime(1982, 1, 1)); // Deposit to Savings ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 100); ProxyFacade.SavingsAccountProxy().DepositAmount(customer.Id, 25); Assert.AreEqual(125, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); // Withdraw ProxyFacade.SavingsAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(95, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id));   // Deposit to Checking ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 60); ProxyFacade.CheckingAccountProxy().DepositAmount(customer.Id, 40); Assert.AreEqual(100, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); // Withdraw ProxyFacade.CheckingAccountProxy().WithdrawAmount(customer.Id, 30); Assert.AreEqual(70, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Savings to Checking TransferFundsFromSavingsToCheckingAccount(customer.Id,10); Assert.AreEqual(85, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id));   // Transfer from Checking to Savings TransferFundsFromCheckingToSavingsAccount(customer.Id, 50); Assert.AreEqual(135, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customer.Id)); Assert.AreEqual(30, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customer.Id)); }   [Test] public void FundTransfersWithOverDraftTest() { IProfile profile = ProxyFacade.ProfileProxy(); string customerName = "Angelina" + DateTime.Now.ToString("HH:mm:ss");   var customerId = profile.CreateCustomer(customerName, "NJ", new DateTime(1972, 1, 1)).Id;   ProxyFacade.SavingsAccountProxy().DepositAmount(customerId, 100); TransferFundsFromSavingsToCheckingAccount(customerId,80); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); Assert.AreEqual(80, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId));   try { TransferFundsFromSavingsToCheckingAccount(customerId,30); } catch (Exception e) { Debug.WriteLine(e.Message); }   Assert.AreEqual(110, ProxyFacade.CheckingAccountProxy().GetCheckingAccountBalance(customerId)); Assert.AreEqual(20, ProxyFacade.SavingsAccountProxy().GetSavingsAccountBalance(customerId)); } } }   We are creating a new instance of the channel for every operation, we will look into instance management and how creating a new instance of channel affects it in subsequent articles. The first two test cases deals with creation of Customer, deposit and withdraw of month between accounts. The last case, FundTransferWithOverDraftTest() is interesting. Customer starts with depositing $100 in SavingsAccount followed by transfer of $80 in to checking account resulting in $20 in savings account.  Customer then initiates $30 transfer from Savings to Checking resulting in overdraft exception on Savings with $30 being deposited to Checking. As we are not running both the requests in transactions the customer ends up with more amount than what he started with $100. In subsequent posts we will look into transactions handling.  Make sure the ServiceHost project is set as start up project and start the solution. Run the test cases either from NUnit client or TestDriven.Net/Resharper which ever is your favorite tool. Make sure you have updated the data base connection string in the ServiceHost config file to point to your local database

    Read the article

  • Custom ASP.Net MVC 2 ModelMetadataProvider for using custom view model attributes

    - by SeanMcAlinden
    There are a number of ways of implementing a pattern for using custom view model attributes, the following is similar to something I’m using at work which works pretty well. The classes I’m going to create are really simple: 1. Abstract base attribute 2. Custom ModelMetadata provider which will derive from the DataAnnotationsModelMetadataProvider   Base Attribute MetadataAttribute using System; using System.Web.Mvc; namespace Mvc2Templates.Attributes {     /// <summary>     /// Base class for custom MetadataAttributes.     /// </summary>     public abstract class MetadataAttribute : Attribute     {         /// <summary>         /// Method for processing custom attribute data.         /// </summary>         /// <param name="modelMetaData">A ModelMetaData instance.</param>         public abstract void Process(ModelMetadata modelMetaData);     } } As you can see, the class simple has one method – Process. Process accepts the ModelMetaData which will allow any derived custom attributes to set properties on the model meta data and add items to its AdditionalValues collection.   Custom Model Metadata Provider For a quick explanation of the Model Metadata and how it fits in to the MVC 2 framework, it is basically a set of properties that are usually set via attributes placed above properties on a view model, for example the ReadOnly and HiddenInput attributes. When EditorForModel, DisplayForModel or any of the other EditorFor/DisplayFor methods are called, the ModelMetadata information is used to determine how to display the properties. All of the information available within the model metadata is also available through ViewData.ModelMetadata. The following class derives from the DataAnnotationsModelMetadataProvider built into the mvc 2 framework. I’ve overridden the CreateMetadata method in order to process any custom attributes that may have been placed above a property in a view model.   CustomModelMetadataProvider using System; using System.Collections.Generic; using System.Linq; using System.Web.Mvc; using Mvc2Templates.Attributes; namespace Mvc2Templates.Providers {     public class CustomModelMetadataProvider : DataAnnotationsModelMetadataProvider     {         protected override ModelMetadata CreateMetadata(             IEnumerable<Attribute> attributes,             Type containerType,             Func<object> modelAccessor,             Type modelType,             string propertyName)         {             var modelMetadata = base.CreateMetadata(attributes, containerType, modelAccessor, modelType, propertyName);               attributes.OfType<MetadataAttribute>().ToList().ForEach(x => x.Process(modelMetadata));               return modelMetadata;         }     } } As you can see, once the model metadata is created through the base method, a check for any attributes deriving from our new abstract base attribute MetadataAttribute is made, the Process method is then called on any existing custom attributes with the model meta data for the property passed in.   Hooking it up The last thing you need to do to hook it up is set the new CustomModelMetadataProvider as the current ModelMetadataProvider, this is done within the Global.asax Application_Start method. Global.asax protected void Application_Start()         {             AreaRegistration.RegisterAllAreas();               RegisterRoutes(RouteTable.Routes);               ModelMetadataProviders.Current = new CustomModelMetadataProvider();         }   In my next post, I’m going to demonstrate a cool custom attribute that turns a textbox into an ajax driven AutoComplete text box. Hope this is useful. Kind Regards, Sean McAlinden.

    Read the article

  • Extracting the Date from a DateTime in Entity Framework 4 and LINQ

    - by Ken Cox [MVP]
    In my current ASP.NET 4 project, I’m displaying dates in a GridDateTimeColumn of Telerik’s ASP.NET Radgrid control. I don’t care about the time stuff, so my DataFormatString shows only the date bits: <telerik:GridDateTimeColumn FilterControlWidth="100px"   DataField="DateCreated" HeaderText="Created"    SortExpression="DateCreated" ReadOnly="True"    UniqueName="DateCreated" PickerType="DatePicker"    DataFormatString="{0:dd MMM yy}"> My problem was that I couldn’t get the built-in column filtering (it uses Telerik’s DatePicker control) to behave.  The DatePicker assumes that the time is 00:00:00 but the data would have times like 09:22:21. So, when you select a date and apply the EqualTo filter, you get no results. You would get results if all the time portions were 00:00:00. In essence, I wanted my Entity Framework query to give the DatePicker what it wanted… a Date without the Time portion. Fortunately, EF4 provides the TruncateTime  function. After you include Imports System.Data.Objects.EntityFunctions You’ll find that your EF queries will accept the TruncateTime function. Here’s my routine: Protected Sub RadGrid1_NeedDataSource _     (ByVal source As Object, _      ByVal e As Telerik.Web.UI.GridNeedDataSourceEventArgs) _     Handles RadGrid1.NeedDataSource     Dim ent As New OfficeBookDBEntities1     Dim TopBOMs = From t In ent.TopBom, i In ent.Items _                   Where t.BusActivityID = busActivityID _       And i.BusActivityID And t.ItemID = i.RecordID _       Order By t.DateUpdated Descending _       Select New With {.TopBomID = t.TopBomID, .ItemID = t.ItemID, _                        .PartNumber = i.PartNumber, _                        .Description = i.Description, .Notes = t.Notes, _                        .DateCreated = TruncateTime(t.DateCreated), _                        .DateUpdated = TruncateTime(t.DateUpdated)}     RadGrid1.DataSource = TopBOMs End Sub Now when I select March 14, 2011 on the DatePicker, the filter doesn’t stumble on time values that don’t make sense. Full Disclosure: Telerik gives me (and other developer MVPs) free copies of their suite.

    Read the article

  • Extended Logging with Caller Info Attributes

    - by João Angelo
    .NET 4.5 caller info attributes may be one of those features that do not get much airtime, but nonetheless are a great addition to the framework. These attributes will allow you to programmatically access information about the caller of a given method, more specifically, the code file full path, the member name of the caller and the line number at which the method was called. They are implemented by taking advantage of C# 4.0 optional parameters and are a compile time feature so as an added bonus the returned member name is not affected by obfuscation. The main usage scenario will be for tracing and debugging routines as will see right now. In this sample code I’ll be using NLog, but the example is also applicable to other logging frameworks like log4net. First an helper class, without any dependencies and that can be used anywhere to obtain caller information: using System; using System.IO; using System.Runtime.CompilerServices; public sealed class CallerInfo { private CallerInfo(string filePath, string memberName, int lineNumber) { this.FilePath = filePath; this.MemberName = memberName; this.LineNumber = lineNumber; } public static CallerInfo Create( [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { return new CallerInfo(filePath, memberName, lineNumber); } public string FilePath { get; private set; } public string FileName { get { return this.fileName ?? (this.fileName = Path.GetFileName(this.FilePath)); } } public string MemberName { get; private set; } public int LineNumber { get; private set; } public override string ToString() { return string.Concat(this.FilePath, "|", this.MemberName, "|", this.LineNumber); } private string fileName; } Then an extension class specific for NLog Logger: using System; using System.Runtime.CompilerServices; using NLog; public static class LoggerExtensions { public static void TraceMemberEntry( this Logger logger, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { LogMemberEntry(logger, LogLevel.Trace, filePath, memberName, lineNumber); } public static void TraceMemberExit( this Logger logger, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { LogMemberExit(logger, LogLevel.Trace, filePath, memberName, lineNumber); } public static void DebugMemberEntry( this Logger logger, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { LogMemberEntry(logger, LogLevel.Debug, filePath, memberName, lineNumber); } public static void DebugMemberExit( this Logger logger, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { LogMemberExit(logger, LogLevel.Debug, filePath, memberName, lineNumber); } public static void LogMemberEntry( this Logger logger, LogLevel logLevel, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { const string MsgFormat = "Entering member {1} at line {2}"; InternalLog(logger, logLevel, MsgFormat, filePath, memberName, lineNumber); } public static void LogMemberExit( this Logger logger, LogLevel logLevel, [CallerFilePath] string filePath = "", [CallerMemberName] string memberName = "", [CallerLineNumber] int lineNumber = 0) { const string MsgFormat = "Exiting member {1} at line {2}"; InternalLog(logger, logLevel, MsgFormat, filePath, memberName, lineNumber); } private static void InternalLog( Logger logger, LogLevel logLevel, string format, string filePath, string memberName, int lineNumber) { if (logger == null) throw new ArgumentNullException("logger"); if (logLevel == null) throw new ArgumentNullException("logLevel"); logger.Log(logLevel, format, filePath, memberName, lineNumber); } } Finally an usage example: using NLog; internal static class Program { private static readonly Logger Logger = LogManager.GetCurrentClassLogger(); private static void Main(string[] args) { Logger.TraceMemberEntry(); // Compile time feature // Next three lines output the same except for line number Logger.Trace(CallerInfo.Create().ToString()); Logger.Trace(() => CallerInfo.Create().ToString()); Logger.Trace(delegate() { return CallerInfo.Create().ToString(); }); Logger.TraceMemberExit(); } } NOTE: Code for helper class and Logger extension also available here.

    Read the article

  • Doing your first mock with JustMock

    - by mehfuzh
    In this post, i will start with a  more traditional mocking example that  includes a fund transfer scenario between two different currency account using JustMock.Our target interface that we will be mocking looks similar to: public interface ICurrencyService {     float GetConversionRate(string fromCurrency, string toCurrency); } Moving forward the SUT or class that will be consuming the  service and will be invoked by user [provided that the ICurrencyService will be passed in a DI style] looks like: public class AccountService : IAccountService         {             private readonly ICurrencyService currencyService;               public AccountService(ICurrencyService currencyService)             {                 this.currencyService = currencyService;             }               #region IAccountService Members               public void TransferFunds(Account from, Account to, float amount)             {                 from.Withdraw(amount);                 float conversionRate = currencyService.GetConversionRate(from.Currency, to.Currency);                 float convertedAmount = amount * conversionRate;                 to.Deposit(convertedAmount);             }               #endregion         }   As, we can see there is a TransferFunds action implemented from IAccountService  takes in a source account from where it withdraws some money and a target account to where the transfer takes place using the provided conversion rate. Our first step is to create the mock. The syntax for creating your instance mocks is pretty much same and  is valid for all interfaces, non-sealed/sealed concrete instance classes. You can pass in additional stuffs like whether its an strict mock or not, by default all the mocks in JustMock are loose, you can use it as default valued objects or stubs as well. ICurrencyService currencyService = Mock.Create<ICurrencyService>(); Using JustMock, setting up your expectations and asserting them always goes with Mock.Arrang|Assert and this is pretty much same syntax no matter what type of mocking you are doing. Therefore,  in the above scenario we want to make sure that the conversion rate always returns 2.20F when converting from GBP to CAD. To do so we need to arrange in the following way: Mock.Arrange(() => currencyService.GetConversionRate("GBP", "CAD")).Returns(2.20f).MustBeCalled(); Here, I have additionally marked the mock call as must. That means it should be invoked anywhere in the code before we do Mock.Assert, we can also assert mocks directly though lamda expressions  but the more general Mock.Assert(mocked) will assert only the setups that are marked as "MustBeCalled()”. Now, coming back to the main topic , as we setup the mock, now its time to act on it. Therefore, first we create our account service class and create our from and to accounts respectively. var accountService = new AccountService(currencyService);   var canadianAccount = new Account(0, "CAD"); var britishAccount = new Account(0, "GBP"); Next, we add some money to the GBP  account: britishAccount.Deposit(100); Finally, we do our transfer by the following: accountService.TransferFunds(britishAccount, canadianAccount, 100); Once, everything is completed, we need to make sure that things were as it is we have expected, so its time for assertions.Here, we first do the general assertions: Assert.Equal(0, britishAccount.Balance); Assert.Equal(220, canadianAccount.Balance); Following, we do our mock assertion,  as have marked the call as “MustBeCalled” it will make sure that our mock is actually invoked. Moreover, we can add filters like how many times our expected mock call has occurred that will be covered in coming posts. Mock.Assert(currencyService); So far, that actually concludes our  first  mock with JustMock and do stay tuned for more. Enjoy!!

    Read the article

  • Ongoing confusion about ivars and properties in objective C

    - by Earl Grey
    After almost 8 months being in ios programming, I am again confused about the right approach. Maybe it is not the language but some OOP principle I am confused about. I don't know.. I was trying C# a few years back. There were fields (private variables, private data in an object), there were getters and setters (methods which exposed something to the world) ,and properties which was THE exposed thing. I liked the elegance of the solution, for example there could be a class that would have a property called DailyRevenue...a float...but there was no private variable called dailyRevenue, there was only a field - an array of single transaction revenues...and the getter for DailyRevenue property calculated the revenue transparently. If somehow the internals of daily revenue calculation would change, it would not affect somebody who consumed my DailyRevenue property in any way, since he would be shielded from getter implementation. I understood that sometimes there was , and sometimes there wasn't a 1-1 relationship between fields and properties. depending on the requirements. It seemed ok in my opinion. And that properties are THE way to acces the data in object. I know the difference betweeen private, protected, and public keyword. Now lets get to objectiveC. On what factor should I base my decision about making someting only an ivar or making it as a property? Is the mental model the same as I describe above? I know that ivars are "protected" by default, not "private" asi in c#..But thats ok I think, no big deal for my presnet level of understanding the whole ios development. The point is ivars are not accesible from outside (given i don't make them public..but i won't). The thing that clouds my clear understanding is that I can have IBOutlets from ivars. Why am I seeing internal object data in the UI? *Why is it ok?* On the other hand, if I make an IBOutlet from property, and I do not make it readonly, anybody can change it. Is this ok too? Let's say I have a ParseManager object. This object would use a built in Foundation framework class called NSXMLParser. Obviously my ParseManager will utilize this nsxmlparser's capabilities but will also do some additional work. Now my question is, who should initialize this NSXMLParser object and in which way should I make a reference to it from the ParseManager object, when there is a need to parse something. A) the ParseManager -1) in its default init method (possible here ivar - or - ivar+ppty) -2) with lazyloading in getter (required a ppty here) B) Some other object - who will pass a reference to NSXMLParser object to the ParseManager object. -1) in some custom initializer (initWithParser:(NSXMLPArser *) parser) when creating the ParseManager object.. A1 - the problem is, we create a parser and waste memory while it is not yet needed. However, we can be sure that all methods that are part ot ParserManager object, can use the ivar safely, since it exists. A2 - the problem is, the nsxmlparser is exposed to outside world, although it could be read only. Would we want a parser to be exposed in some scenario? B1 - this could maybe be useful when we would want to use more types of parsers..i dont know... I understand that architectural requirements and and language is not the same. But clearly the two are in relation. How to get out of that mess of my? Please bear with me, I wasn't able to come up with a single ultimate question. And secondly, it's better to not scare me with some superadvanced newspeak that talks about some crazy internals (what the compiler does) and edge cases.

    Read the article

  • Why you shouldn't add methods to interfaces in APIs

    - by Simon Cooper
    It is an oft-repeated maxim that you shouldn't add methods to a publically-released interface in an API. Recently, I was hit hard when this wasn't followed. As part of the work on ApplicationMetrics, I've been implementing auto-reporting of MVC action methods; whenever an action was called on a controller, ApplicationMetrics would automatically report it without the developer needing to add manual ReportEvent calls. Fortunately, MVC provides easy hook when a controller is created, letting me log when it happens - the IControllerFactory interface. Now, the dll we provide to instrument an MVC webapp has to be compiled against .NET 3.5 and MVC 1, as the lowest common denominator. This MVC 1 dll will still work when used in an MVC 2, 3 or 4 webapp because all MVC 2+ webapps have a binding redirect redirecting all references to previous versions of System.Web.Mvc to the correct version, and type forwards taking care of any moved types in the new assemblies. Or at least, it should. IControllerFactory In MVC 1 and 2, IControllerFactory was defined as follows: public interface IControllerFactory { IController CreateController(RequestContext requestContext, string controllerName); void ReleaseController(IController controller); } So, to implement the logging controller factory, we simply wrap the existing controller factory: internal sealed class LoggingControllerFactory : IControllerFactory { private readonly IControllerFactory m_CurrentController; public LoggingControllerFactory(IControllerFactory currentController) { m_CurrentController = currentController; } public IController CreateController( RequestContext requestContext, string controllerName) { // log the controller being used FeatureSessionData.ReportEvent("Controller used:", controllerName); return m_CurrentController.CreateController(requestContext, controllerName); } public void ReleaseController(IController controller) { m_CurrentController.ReleaseController(controller); } } Easy. This works as expected in MVC 1 and 2. However, in MVC 3 this type was throwing a TypeLoadException, saying a method wasn't implemented. It turns out that, in MVC 3, the definition of IControllerFactory was changed to this: public interface IControllerFactory { IController CreateController(RequestContext requestContext, string controllerName); SessionStateBehavior GetControllerSessionBehavior( RequestContext requestContext, string controllerName); void ReleaseController(IController controller); } There's a new method in the interface. So when our MVC 1 dll was redirected to reference System.Web.Mvc v3, LoggingControllerFactory tried to implement version 3 of IControllerFactory, was missing the GetControllerSessionBehaviour method, and so couldn't be loaded by the CLR. Implementing the new method Fortunately, there was a workaround. Because interface methods are normally implemented implicitly in the CLR, if we simply declare a virtual method matching the signature of the new method in MVC 3, then it will be ignored in MVC 1 and 2 and implement the extra method in MVC 3: internal sealed class LoggingControllerFactory : IControllerFactory { ... public virtual SessionStateBehaviour GetControllerSessionBehaviour( RequestContext requestContext, string controllerName) {} ... } However, this also has problems - the SessionStateBehaviour type only exists in .NET 4, and we're limited to .NET 3.5 by support for MVC 1 and 2. This means that the only solutions to support all MVC versions are: Construct the LoggingControllerFactory type at runtime using reflection Produce entirely separate dlls for MVC 1&2 and MVC 3. Ugh. And all because of that blasted extra method! Another solution? Fortunately, in this case, there is a third option - System.Web.Mvc also provides a DefaultControllerFactory type that can provide the implementation of GetControllerSessionBehaviour for us in MVC 3, while still allowing us to override CreateController and ReleaseController. However, this does mean that LoggingControllerFactory won't be able to wrap any calls to GetControllerSessionBehaviour. This is an acceptable bug, given the other options, as very few developers will be overriding GetControllerSessionBehaviour in their own custom controller factory. So, if you're providing an interface as part of an API, then please please please don't add methods to it. Especially if you don't provide a 'default' implementing type. Any code compiled against the previous version that can't be updated will have some very tough decisions to make to support both versions.

    Read the article

  • Restrict number of characters to be typed for af:autoSuggestBehavior

    - by Arunkumar Ramamoorthy
    When using AutoSuggestBehavior for a UI Component, the auto suggest list is displayed as soon as the user starts typing in the field. In this article, we will find how to restrict the autosuggest list to be displayed till the user types in couple of characters. This would be more useful in the low latency networks and also the autosuggest list is bigger. We could display a static message to let the user know that they need to type in more characters to get a list for picking a value from. Final output we would expect is like the below image Lets see how we can implement this. Assuming we have an input text for the users to enter the country name and an autosuggest behavior is added to it. <af:inputText label="Country" id="it1"> <af:autoSuggestBehavior /> </af:inputText> Also, assuming we have a VO (we'll name it as CountryView for this example), with a view criteria to filter out the VO based on the bind variable passed. Now, we would generate View Impl class from the java node (including bind variables) and then expose the setter method of the bind variable to client interface. In the View layer, we would create a tree binding for the VO and the method binding for the setter method of the bind variable exposed above, in the pagedef file As we've already added an input text and an autosuggestbehavior for the test, we would not need to build the suggested items for the autosuggest list.Let us add a method in the backing bean to return us List of select items to be bound to the autosuggest list. padding: 5px; background-color: #fbfbfb; min-height: 40px; width: 544px; height: 168px; overflow: auto;"> public List onSuggest(String searchTerm) { ArrayList<SelectItem> selectItems = new ArrayList<SelectItem>(); if(searchTerm.length()>1) { //get access to the binding context and binding container at runtime BindingContext bctx = BindingContext.getCurrent(); BindingContainer bindings = bctx.getCurrentBindingsEntry(); //set the bind variable value that is used to filter the View Object //query of the suggest list. The View Object instance has a View //Criteria assigned OperationBinding setVariable = (OperationBinding) bindings.get("setBind_CountryName"); setVariable.getParamsMap().put("value", searchTerm); setVariable.execute(); //the data in the suggest list is queried by a tree binding. JUCtrlHierBinding hierBinding = (JUCtrlHierBinding) bindings.get("CountryView1"); //re-query the list based on the new bind variable values hierBinding.executeQuery(); //The rangeSet, the list of queries entries, is of type //JUCtrlValueBndingRef. List<JUCtrlValueBindingRef> displayDataList = hierBinding.getRangeSet(); for (JUCtrlValueBindingRef displayData : displayDataList){ Row rw = displayData.getRow(); //populate the SelectItem list selectItems.add(new SelectItem( (String)rw.getAttribute("Name"), (String)rw.getAttribute("Name"))); } } else{ SelectItem a = new SelectItem("","Type in two or more characters..","",true); selectItems.add(a); } return selectItems; } So, what we are doing in the above method is, to check the length of the search term and if it is more than 1 (i.e 2 or more characters), the return the actual suggest list. Otherwise, create a read only select item new SelectItem("","Type in two or more characters..","",true); and add it to the list of suggested items to be displayed. The last parameter for the SelectItem (boolean) is to make it as readOnly, so that users would not be able to select this static message from the displayed list. Finally, bind this method to the input text's autosuggestbehavior's suggestedItems property. <af:inputText label="Country" id="it1"> <af:autoSuggestBehavior suggestedItems="#{AutoSuggestBean.onSuggest}"/> </af:inputText>

    Read the article

  • Writing an unthemed view while still using Orchard shapes and helpers

    - by Bertrand Le Roy
    This quick tip will show how you can write a custom view for a custom controller action in Orchard that does not use the current theme, but that still retains the ability to use shapes, as well as zones, Script and Style helpers. The controller action, first, needs to opt out of theming: [Themed(false)] public ActionResult Index() {} .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Then, we still want to use a shape as the view model, because Clay is so awesome: private readonly dynamic _shapeFactory; public MyController(IShapeFactory shapeFactory) { _shapeFactory = shapeFactory; } [Themed(false)] public ActionResult Index() { return View(_shapeFactory.MyShapeName( Foo: 42, Bar: "baz" )); } As you can see, we injected a shape factory, and that enables us to build our shape from our action and inject that into the view as the model. Finally, in the view (that would in Views/MyController/Index.cshtml here), just use helpers as usual. The only gotcha is that you need to use “Layout” in order to declare zones, and that two of those zones, Head and Tail, are mandatory for the top and bottom scripts and stylesheets to be injected properly. Names are important here. @{ Style.Include("somestylesheet.css"); Script.Require("jQuery"); Script.Include("somescript.js"); using(Script.Foot()) { <script type="text/javascript"> $(function () { // Do stuff }) </script> } } <!DOCTYPE html> <html> <head> <title>My unthemed page</title> @Display(Layout.Head) </head> <body> <h1>My unthemed page</h1> <div>@Model.Foo is the answer.</div> </body> @Display(Layout.Tail) </html> Note that if you define your own zones using @Display(Layout.SomeZone) in your view, you can perfectly well send additional shapes to them from your controller action, if you injected an instance of IWorkContextAccessor: _workContextAccessor.GetContext().Layout .SomeZone.Add(_shapeFactory.SomeOtherShape()); Of course, you’ll need to write a SomeOtherShape.cshtml template for that shape but I think this is pretty neat.

    Read the article

< Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >