Search Results

Search found 52807 results on 2113 pages for 'system tables'.

Page 339/2113 | < Previous Page | 335 336 337 338 339 340 341 342 343 344 345 346  | Next Page >

  • Nice Generic Example that implements an interface.

    - by mbcrump
    I created this quick generic example after noticing that several people were asking questions about it. If you have any questions then let me know. using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Globalization; namespace ConsoleApplication4 { //New class where Type implements IConvertible interface (interface = contract) class Calculate<T> where T : IConvertible { //Setup fields public T X; NumberFormatInfo fmt = NumberFormatInfo.CurrentInfo; //Constructor 1 public Calculate() { X = default(T); } //Constructor 2 public Calculate (T x) { X = x; } //Method that we know will return a double public double DistanceTo (Calculate<T> cal) { //Remove the.ToDouble if you want to see the methods available for IConvertible return (X.ToDouble(fmt) - cal.X.ToDouble(fmt)); } } class Program { static void Main(string[] args) { //Pass value type and call DistanceTo with an Int. Calculate<int> cal = new Calculate<int>(); Calculate<int> cal2 = new Calculate<int>(10); Console.WriteLine("Int : " + cal.DistanceTo(cal2)); //Pass value type and call DistanceTo with an Double. Calculate<double> cal3 = new Calculate<double>(); Calculate<double> cal4 = new Calculate<double>(10.6); Console.WriteLine("Double : " + cal3.DistanceTo(cal4)); //Pass reference type and call DistanceTo with an String. Calculate<string> cal5 = new Calculate<string>("0"); Calculate<string> cal6 = new Calculate<string>("345"); Console.WriteLine("String : " + cal5.DistanceTo(cal6)); } } }

    Read the article

  • The penultimate audit trigger framework

    - by Piotr Rodak
    So, it’s time to see what I came up with after some time of playing with COLUMNS_UPDATED() and bitmasks. The first part of this miniseries describes the mechanics of the encoding which columns are updated within DML operation. The task I was faced with was to prepare an audit framework that will be fairly easy to use. The audited tables were to be the ones directly modified by user applications, not the ones heavily used by batch or ETL processes. The framework consists of several tables and procedures...(read more)

    Read the article

  • Requirement refinement between two levels of specification

    - by user107149
    I am currently working on the definition of the documentation architecture of a system, from customers needs to software/hardware requirements. I encounter a big problem with the level of refinement of requirements. The classic architecture is : PTS -- SSS -- SSDD -- SRS/HRS with PTS : Purshaser Technical Specification SSS : Supplier System Specification SSDD : System Segment Design Description SRS / HRS : Software / Hardware Requirement Specification. Requirements from PTS are reworked in SSS, this document only expressed the needs (no design requirements are defined at this level). Then, the system design is described in SSDD : we allocate requirements from the SSS to functions from the design and functions are then allocated to component (Software or hardware) (we are still at the SSDD level). Finally, for each component, we write one SRS or one HRS. Requirements in SRS or HRS are refinement of requirements from SSS (and traceability matrix are made between these two levels). My problem is the following one : Our system is a complex one, and some of the requirements in the SSS needs to be refined twice to be at the right level in the SRS (means that software people can understand the requirement to make their coding). But, with this document architecture, I can only refine once the requirements from the SSS. The second problem is that only a part of the requirements from the SSS needs to be refined twice. The other part only need one refinement. On the picture below, the green boxes are requirements at the right level for SRS or HRS. And purple boxes are intermediate requirements which can not be included in SSS since they are design requirements. Where can I put these purple requirements ?? Is there someone who has already encountered this problem ? Should I write two documents at SRS level ? Should I include intermediate requirements in SSDD ? Should I includes the two refinement levels (purple and green) in the same SRS document (not sure that's possible since a SRS is only for one component) ??? Thanks for your help and expertise ;-)

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • WCF – interchangeable data-contract types

    - by nmarun
    In a WSDL based environment, unlike a CLR-world, we pass around the ‘state’ of an object and not the reference of an object. Well firstly, what does ‘state’ mean and does this also mean that we can send a struct where a class is expected (or vice-versa) as long as their ‘state’ is one and the same? Let’s see. So I have an operation contract defined as below: 1: [ServiceContract] 2: public interface ILearnWcfServiceExtend : ILearnWcfService 3: { 4: [OperationContract] 5: Employee SaveEmployee(Employee employee); 6: } 7:  8: [ServiceBehavior] 9: public class LearnWcfService : ILearnWcfServiceExtend 10: { 11: public Employee SaveEmployee(Employee employee) 12: { 13: employee.EmployeeId = 123; 14: return employee; 15: } 16: } Quite simplistic operation there (which translates to ‘absolutely no business value’). Now, the data contract Employee mentioned above is a struct. 1: public struct Employee 2: { 3: public int EmployeeId { get; set; } 4:  5: public string FName { get; set; } 6: } After compilation and consumption of this service, my proxy (in the Reference.cs file) looks like below (I’ve ignored the rest of the details just to avoid unwanted confusion): 1: public partial struct Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged I call the service with the code below: 1: private static void CallWcfService() 2: { 3: Employee employee = new Employee { FName = "A" }; 4: Console.WriteLine("IsValueType: {0}", employee.GetType().IsValueType); 5: Console.WriteLine("IsClass: {0}", employee.GetType().IsClass); 6: Console.WriteLine("Before calling the service: {0} - {1}", employee.EmployeeId, employee.FName); 7: employee = LearnWcfServiceClient.SaveEmployee(employee); 8: Console.WriteLine("Return from the service: {0} - {1}", employee.EmployeeId, employee.FName); 9: } The output is: I now change my Employee type from a struct to a class in the proxy class and run the application: 1: public partial class Employee : System.Runtime.Serialization.IExtensibleDataObject, System.ComponentModel.INotifyPropertyChanged { The output this time is: The state of an object implies towards its composition, the properties and the values of these properties and not based on whether it is a reference type (class) or a value type (struct). And as shown above, we’re actually passing an object by its state and not by reference. Continuing on the same topic of ‘type-interchangeability’, WCF treats two data contracts as equivalent if they have the same ‘wire-representation’. We can do so using the DataContract and DataMember attributes’ Name property. 1: [DataContract] 2: public struct Person 3: { 4: [DataMember] 5: public int Id { get; set; } 6:  7: [DataMember] 8: public string FirstName { get; set; } 9: } 10:  11: [DataContract(Name="Person")] 12: public class Employee 13: { 14: [DataMember(Name = "Id")] 15: public int EmployeeId { get; set; } 16:  17: [DataMember(Name="FirstName")] 18: public string FName { get; set; } 19: } I’ve created two data contracts with the exact same wire-representation. Just remember that the names and the types of data members need to match to be considered equivalent. The question then arises as to what gets generated in the proxy class. Despite us declaring two data contracts (Person and Employee), only one gets emitted – Person. This is because we’re saying that the Employee type has the same wire-representation as the Person type. Also that the signature of the SaveEmployee operation gets changed on the proxy side: 1: [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0")] 2: [System.ServiceModel.ServiceContractAttribute(ConfigurationName="ServiceProxy.ILearnWcfServiceExtend")] 3: public interface ILearnWcfServiceExtend 4: { 5: [System.ServiceModel.OperationContractAttribute(Action="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployee", ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/SaveEmployeeResponse")] 6: ClientApplication.ServiceProxy.Person SaveEmployee(ClientApplication.ServiceProxy.Person employee); 7: } But, on the service side, the SaveEmployee still accepts and returns an Employee data contract. 1: [ServiceBehavior] 2: public class LearnWcfService : ILearnWcfServiceExtend 3: { 4: public Employee SaveEmployee(Employee employee) 5: { 6: employee.EmployeeId = 123; 7: return employee; 8: } 9: } Despite all these changes, our output remains the same as the last one: This is type-interchangeability at work! Here’s one more thing to ponder about. Our Person type is a struct and Employee type is a class. Then how is it that the Person type got emitted as a ‘class’ in the proxy? It’s worth mentioning that WSDL describes a type called Employee and does not say whether it is a class or a struct (see the SOAP message below): 1: <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 2: xmlns:tem="http://tempuri.org/" 3: xmlns:ser="http://schemas.datacontract.org/2004/07/ServiceApplication"> 4: <soapenv:Header/> 5: <soapenv:Body> 6: <tem:SaveEmployee> 7: <!--Optional:--> 8: <tem:employee> 9: <!--Optional:--> 10: <ser:EmployeeId>?</ser:EmployeeId> 11: <!--Optional:--> 12: <ser:FName>?</ser:FName> 13: </tem:employee> 14: </tem:SaveEmployee> 15: </soapenv:Body> 16: </soapenv:Envelope> There are some differences between how ‘Add Service Reference’ and the svcutil.exe generate the proxy class, but turns out both do some kind of reflection and determine the type of the data contract and emit the code accordingly. So since the Employee type is a class, the proxy ‘Person’ type gets generated as a class. In fact, reflecting on svcutil.exe application, you’ll see that there are a couple of places wherein a flag actually determines a type as a class or a struct. One example is in the ExportISerializableDataContract method in the System.Runtime.Serialization.CodeExporter class. Seems like these flags have a say in deciding whether the type gets emitted as a struct or a class. This behavior is different if you use the WSDL tool though. WSDL tool does not do any kind of reflection of the data contract / serialized type, it emits the type as a class by default. You can check this using the two command lines below:   Note to self: Remember ‘state’ and type-interchangeability when traversing through the WSDL planet!

    Read the article

  • Great Blogs About Oracle Solaris 11

    - by Markus Weber
    Now that Oracle Solaris 11 has been released, why not blog about blogs. There is of course a tremendous amount of resource and information available, but valuable insights directly from people actually building the product is priceless. Here's a list of such great blogs. NOTE: If you think we missed some good ones, please let us know in the comments section !  Topic Title Author Top 11 Things My 11 favourite Solaris 11 features Darren Moffat Top 11 Things These are 11 of my favorite things! Mike Gerdts Top 11 Things 11 reason to love Solaris 11     Jim Laurent SysAdmin Resources Solaris 11 Resources for System Administrators Rick Ramsey Overview Oracle Solaris 11: The First Cloud OS Larry Wake Overview What's a "Cloud Operating System"? Harry Foxwell Overview What's New in Oracle Solaris 11 Jeff Victor Try it ! Virtually the fastest way to try Solaris 11 (and Solaris 10 zones) Dave Miner Upgrade Upgrading Solaris 11 Express b151a with support to Solaris 11 Alan Hargreaves IPS The IPS System Repository Tim Foster IPS Building a Solaris 11 repository without network connection Jim Laurent IPS IPS Self-assembly – Part 1: overlays Tim Foster IPS Self assembly – Part 2: multiple packages delivering configuration Tim Foster Security Immutable Zones on Encrypted ZFS Darren Moffat Security User home directory encryption with ZFS Darren Moffat Security Password (PAM) caching for Solaris su - "a la sudo" Darren Moffat Security Completely disabling root logins on Solaris 11 Darren Moffat Security OpenSSL Version in Solaris Darren Moffat Security Exciting Crypto Advances with the T4 processor and Oracle Solaris 11 Valerie Fenwick Performance Critical Threads Optimization Rafael Vanoni Performance SPARC T4-2 Delivers World Record SPECjvm2008 Result with Oracle Solaris 11 BestPerf Blog Performance Recent Benchmarks Using Oracle Solaris 11 BestPerf Blog Predictive Self Healing Introducing SMF Layers Sean Wilcox Predictive Self Healing Oracle Solaris 11 - New Fault Management Features Gavin Maltby Desktop What's new on the Solaris 11 Desktop? Calum Benson Desktop S11 X11: ye olde window system in today's new operating system Alan Coopersmith Desktop Accessible Oracle Solaris 11 - released! Peter Korn

    Read the article

  • How to propagate http response code from back-end to client

    - by Manoj Neelapu
    Oracle service bus can be used as for pass through casses. Some use cases require propagating the http-response code back to the caller. http://forums.oracle.com/forums/thread.jspa?messageID=4326052&#4326052 is one such example we will try to accomplish in this tutorial.We will try to demonstrate this feature using Oracle Service Bus (11.1.1.3.0. We will also use commons-logging-1.1.1, httpcomponents-client-4.0.1, httpcomponents-core-4.0.1 for writing the client to demonstrate.First we create a simple JSP which will always set response code to 304.The JSP snippet will look like <%@ page language="java"     contentType="text/xml;     charset=UTF-8"        pageEncoding="UTF-8" %><%      System.out.println("Servlet setting Responsecode=304");    response.setStatus(304);    response.flushBuffer();%>We will now deploy this JSP on weblogic server with URI=http://localhost:7021/reponsecode/For this JSP we will create a simple Any XML BS We will also create proxy service as shown below Once the proxy is created we configure pipeline for the proxy to use route node, which invokes the BS(JSPCaller) created in the first place. So now we will create a error handler for route node and will add a stage. When a HTTP BS sends a request, the JSP sends the response back. If the response code is not 200, then the http BS will consider that as error and the above configured error handler is invoked. We will print $outbound to show the response code sent by the JSP. The next actions. To test this I had create a simple clientimport org.apache.http.Header;import org.apache.http.HttpEntity;import org.apache.http.HttpHost;import org.apache.http.HttpResponse;import org.apache.http.HttpVersion;import org.apache.http.client.methods.HttpGet;import org.apache.http.conn.ClientConnectionManager;import org.apache.http.conn.scheme.PlainSocketFactory;import org.apache.http.conn.scheme.Scheme;import org.apache.http.conn.scheme.SchemeRegistry;import org.apache.http.impl.client.DefaultHttpClient;import org.apache.http.impl.conn.tsccm.ThreadSafeClientConnManager;import org.apache.http.params.BasicHttpParams;import org.apache.http.params.HttpParams;import org.apache.http.params.HttpProtocolParams;import org.apache.http.util.EntityUtils;/** * @author MNEELAPU * */public class TestProxy304{    public static void main(String arg[]) throws Exception{     HttpHost target = new HttpHost("localhost", 7021, "http");     // general setup     SchemeRegistry supportedSchemes = new SchemeRegistry();     // Register the "http" protocol scheme, it is required     // by the default operator to look up socket factories.     supportedSchemes.register(new Scheme("http",              PlainSocketFactory.getSocketFactory(), 7021));     // prepare parameters     HttpParams params = new BasicHttpParams();     HttpProtocolParams.setVersion(params, HttpVersion.HTTP_1_1);     HttpProtocolParams.setContentCharset(params, "UTF-8");     HttpProtocolParams.setUseExpectContinue(params, true);     ClientConnectionManager connMgr = new ThreadSafeClientConnManager(params,              supportedSchemes);     DefaultHttpClient httpclient = new DefaultHttpClient(connMgr, params);     HttpGet req = new HttpGet("/HttpResponseCode/ProxyExposed");     System.out.println("executing request to " + target);     HttpResponse rsp = httpclient.execute(target, req);     HttpEntity entity = rsp.getEntity();     System.out.println("----------------------------------------");     System.out.println(rsp.getStatusLine());     Header[] headers = rsp.getAllHeaders();     for (int i = 0; i < headers.length; i++) {         System.out.println(headers[i]);     }     System.out.println("----------------------------------------");     if (entity != null) {         System.out.println(EntityUtils.toString(entity));     }     // When HttpClient instance is no longer needed,      // shut down the connection manager to ensure     // immediate deallocation of all system resources     httpclient.getConnectionManager().shutdown();     }}On compiling and executing this we see the below output in STDOUT which clearly indicates the response code was propagated from Business Service to Proxy serviceexecuting request to http://localhost:7021----------------------------------------HTTP/1.1 304 Not ModifiedDate: Tue, 08 Jun 2010 16:13:42 GMTContent-Type: text/xml; charset=UTF-8X-Powered-By: Servlet/2.5 JSP/2.1----------------------------------------  

    Read the article

  • Improper output in SSH session on OSX using FreeSSHd on Windows with cygwin bash/sh shell

    - by Tyler Clendenin
    I am testing out running an SSH server on a local Windows VM. I have installed FreeSSHd and set the command shell to "c:\cygwin\bin\sh --login -i" (bash as well) with "Use new console engine" unchecked. (When it was enabled no output would show through the ssh connection anyway) The shell seems to work, but when connecting from my OS-X terminal using ssh all of the shell results comes out ill formatted. $ ls -al total 17 drwxr-xr-x+ 1 SYSTEM Administrators 4096 Feb 2 01:00 . drwxrwxrwt+ 1 Administrator Administrators 0 Feb 2 01:01 .. -rw------- 1 SYSTEM Administrators 128 Feb 2 01:30 .bash_history -rwxr-xr-x 1 SYSTEM Administrators 1150 Feb 2 00:55 .bash_profile -rwxr-xr-x 1 SYSTEM Administrators 3754 Feb 2 00:55 .bashrc -rwxr-xr-x 1 SYSTEM Administrators 1461 Feb 2 00:55 .inputrc Any ideas on why this is happening, how I can fix this?

    Read the article

  • Conditional Operator Example

    - by mbcrump
    If you haven’t taken the time to learn conditional operators, then now is the time. I’ve added a quick and dirty example for those on the forums.   Code Snippet using System; using System.Net.Mail; using System.Net; using System.Globalization; using System.Windows.Forms;   class Demo {     //Please use conditional statements in your code. See example below.       public static void Main()     {         int dollars = 10;           //Bad Coder Bad !!! Don't do this         if (dollars == 1)         {             Console.WriteLine("Please deposit {0} dollar.", dollars);         }         else         {             Console.WriteLine("Please deposit {0} dollars.", dollars);         }             //Good Coder Good !!! Do this         Console.WriteLine("Please deposit {0} dollar{1}.", dollars, dollars == 1 ? ' ' : 's');         //                                                          expression   ? true : false           Console.ReadLine();          } }

    Read the article

  • When I shutdown the computer, it restarts

    - by Prabu
    I am unable to shutdown. Whenever I try to shutdown, it reboots. I am running Ubuntu 12.10. I have run the boot-repair and this is the result: Boot Info Script 0.61.full + Boot-Repair extra info [Boot-Info November 20th 2012] ============================= Boot Info Summary: =============================== => Grub2 (v2.00) is installed in the MBR of /dev/sda and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks in partition 1 for (,msdos1)/boot/grub. sda1: __________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu 12.10 Boot files: /boot/grub/grub.cfg /etc/fstab /boot/grub/i386-pc/core.img sda2: __________________________________________________________________________ File system: Extended Partition Boot sector type: - Boot sector info: sda5: __________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 * 2,048 1,936,809,983 1,936,807,936 83 Linux /dev/sda2 1,936,812,030 1,953,523,711 16,711,682 5 Extended /dev/sda5 1,936,812,032 1,953,523,711 16,711,680 82 Linux swap / Solaris "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/loop0 squashfs /dev/sda1 229a5484-7659-4ce1-98ce-2f05f61a1ffa ext4 /dev/sda5 6c6dca25-ab67-4de4-8602-26fdb6154781 swap /dev/sr0 iso9660 Ubuntu 12.10 amd64 ================================ Mount points: ================================= Device Mount_Point Type Options /dev/loop0 /rofs squashfs (ro,noatime) /dev/sr0 /cdrom iso9660 (ro,noatime) =========================== sda1/boot/grub/grub.cfg: =========================== -------------------------------------------------------------------------------- # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ x"${feature_menuentry_id}" = xy ]; then menuentry_id_option="--id" else menuentry_id_option="" fi export menuentry_id_option if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { if [ x$feature_all_video_module = xy ]; then insmod all_video else insmod efi_gop insmod efi_uga insmod ieee1275_fb insmod vbe insmod vga insmod video_bochs insmod video_cirrus fi } if [ x$feature_default_font_path = xy ] ; then font=unicode else insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi font="/usr/share/grub/unicode.pf2" fi if loadfont $font ; then set gfxmode=auto load_video insmod gfxterm set locale_dir=$prefix/locale set lang=en_US insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ]; then set timeout=10 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="${1}" if [ "${1}" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ "${recordfail}" != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "${linux_gfx_mode}" != "text" ]; then load_video; fi menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-simple-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi linux /boot/vmlinuz-3.5.0-19-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro quiet splash acpi=force $vt_handoff initrd /boot/initrd.img-3.5.0-19-generic } submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnulinux-advanced-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { menuentry 'Ubuntu, with Linux 3.5.0-19-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-19-generic-advanced-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi echo 'Loading Linux 3.5.0-19-generic ...' linux /boot/vmlinuz-3.5.0-19-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro quiet splash acpi=force $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-19-generic } menuentry 'Ubuntu, with Linux 3.5.0-19-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-19-generic-recovery-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi echo 'Loading Linux 3.5.0-19-generic ...' linux /boot/vmlinuz-3.5.0-19-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-19-generic } menuentry 'Ubuntu, with Linux 3.5.0-17-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-advanced-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro quiet splash acpi=force $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } menuentry 'Ubuntu, with Linux 3.5.0-17-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-recovery-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/30_uefi-firmware ### ### END /etc/grub.d/30_uefi-firmware ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f ${config_directory}/custom.cfg ]; then source ${config_directory}/custom.cfg elif [ -z "${config_directory}" -a -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### -------------------------------------------------------------------------------- =============================== sda1/etc/fstab: ================================ -------------------------------------------------------------------------------- # /etc/fstab: static file system information. # # Use 'blkid' to print the universally unique identifier for a # device; this may be used with UUID= as a more robust way to name devices # that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> # / was on /dev/sda1 during installation UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa / ext4 errors=remount-ro 0 1 # swap was on /dev/sda5 during installation UUID=6c6dca25-ab67-4de4-8602-26fdb6154781 none swap sw 0 0 -------------------------------------------------------------------------------- =================== sda1: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) 200.155235291 = 214.915047424 boot/grub/grub.cfg 1 40.280788422 = 43.251167232 boot/initrd.img-3.5.0-17-generic 1 2.468288422 = 2.650304512 boot/initrd.img-3.5.0-19-generic 1 200.149234772 = 214.908604416 boot/vmlinuz-3.5.0-17-generic 1 1.990135193 = 2.136891392 boot/vmlinuz-3.5.0-19-generic 1 2.468288422 = 2.650304512 initrd.img 1 1.990135193 = 2.136891392 vmlinuz 1 1.990135193 = 2.136891392 vmlinuz.old 1 =============================== StdErr Messages: =============================== cat: write error: Broken pipe File descriptor 8 (/proc/6297/mounts) leaked on lvscan invocation. Parent PID 13390: bash No volume groups found ADDITIONAL INFORMATION : =================== log of boot-repair 2012-12-17__01h53 =================== boot-repair version : 3.197~ppa1~quantal boot-sav version : 3.197~ppa1~quantal glade2script version : 3.2.2~ppa45~quantal boot-sav-extra version : 3.197~ppa1~quantal boot-repair is executed in live-session (Ubuntu 12.10, quantal, Ubuntu, x86_64) CPU op-mode(s): 32-bit, 64-bit file=/cdrom/preseed/ubuntu.seed boot=casper initrd=/casper/initrd.lz quiet splash -- maybe-ubiquity =================== os-prober: /dev/sda1:Ubuntu 12.10 (12.10):Ubuntu:linux =================== blkid: /dev/loop0: TYPE="squashfs" /dev/sr0: LABEL="Ubuntu 12.10 amd64" TYPE="iso9660" /dev/sda1: UUID="229a5484-7659-4ce1-98ce-2f05f61a1ffa" TYPE="ext4" /dev/sda5: UUID="6c6dca25-ab67-4de4-8602-26fdb6154781" TYPE="swap" 1 disks with OS, 1 OS : 1 Linux, 0 MacOS, 0 Windows, 0 unknown type OS. Warning: extended partition does not start at a cylinder boundary. DOS and Linux will interpret the contents differently. =================== sda1/etc/default/grub : # If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. # For full documentation of the options in this file, see: # info -f grub -n 'Simple configuration' GRUB_DEFAULT=0 GRUB_HIDDEN_TIMEOUT=0 GRUB_HIDDEN_TIMEOUT_QUIET=true GRUB_TIMEOUT=10 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="quiet splash acpi=force" GRUB_CMDLINE_LINUX="" # Uncomment to enable BadRAM filtering, modify to suit your needs # This works with Linux (no patch required) and with any kernel that obtains # the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...) #GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef" # Uncomment to disable graphical terminal (grub-pc only) #GRUB_TERMINAL=console # The resolution used on graphical terminal # note that you can use only modes which your graphic card supports via VBE # you can see them in real GRUB with the command `vbeinfo' #GRUB_GFXMODE=640x480 # Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux #GRUB_DISABLE_LINUX_UUID=true # Uncomment to disable generation of recovery mode menu entries #GRUB_DISABLE_RECOVERY="true" # Uncomment to get a beep at grub start #GRUB_INIT_TUNE="480 440 1" =================== sda1/etc/grub.d/ : drwxr-xr-x 2 root root 4096 Oct 17 14:59 grub.d total 72 -rwxr-xr-x 1 root root 7541 Oct 14 17:36 00_header -rwxr-xr-x 1 root root 5488 Oct 4 09:30 05_debian_theme -rwxr-xr-x 1 root root 10891 Oct 14 17:36 10_linux -rwxr-xr-x 1 root root 10258 Oct 14 17:36 20_linux_xen -rwxr-xr-x 1 root root 1688 Oct 11 14:10 20_memtest86+ -rwxr-xr-x 1 root root 10976 Oct 14 17:36 30_os-prober -rwxr-xr-x 1 root root 1426 Oct 14 17:36 30_uefi-firmware -rwxr-xr-x 1 root root 214 Oct 14 17:36 40_custom -rwxr-xr-x 1 root root 216 Oct 14 17:36 41_custom -rw-r--r-- 1 root root 483 Oct 14 17:36 README =================== UEFI/Legacy mode: This live-session is not in EFI-mode. SecureBoot maybe enabled. =================== PARTITIONS & DISKS: sda1 : sda, not-sepboot, grubenv-ok grub2, grub-pc , update-grub, 64, with-boot, is-os, not--efi--part, fstab-without-boot, fstab-without-efi, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, apt-get, grub-install, with--usr, fstab-without-usr, not-sep-usr, standard, farbios, /mnt/boot-sav/sda1. sda : not-GPT, BIOSboot-not-needed, has-no-EFIpart, not-usb, has-os, 2048 sectors * 512 bytes =================== parted -l: Model: ATA ST1000DM003-1CH1 (scsi) Disk /dev/sda: 1000GB Sector size (logical/physical): 512B/4096B Partition Table: msdos Number Start End Size Type File system Flags 1 1049kB 992GB 992GB primary ext4 boot 2 992GB 1000GB 8556MB extended 5 992GB 1000GB 8556MB logical linux-swap(v1) Warning: Unable to open /dev/sr0 read-write (Read-only file system). /dev/sr0 has been opened read-only. Error: Can't have a partition outside the disk! =================== parted -lm: BYT; /dev/sda:1000GB:scsi:512:4096:msdos:ATA ST1000DM003-1CH1; 1:1049kB:992GB:992GB:ext4::boot; 2:992GB:1000GB:8556MB:::; 5:992GB:1000GB:8556MB:linux-swap(v1)::; Warning: Unable to open /dev/sr0 read-write (Read-only file system). /dev/sr0 has been opened read-only. Error: Can't have a partition outside the disk! =================== mount: /cow on / type overlayfs (rw) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) /dev/sr0 on /cdrom type iso9660 (ro,noatime) /dev/loop0 on /rofs type squashfs (ro,noatime) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) tmpfs on /tmp type tmpfs (rw,nosuid,nodev) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) none on /run/user type tmpfs (rw,noexec,nosuid,nodev,size=104857600,mode=0755) gvfsd-fuse on /run/user/ubuntu/gvfs type fuse.gvfsd-fuse (rw,nosuid,nodev,user=ubuntu) /dev/sda1 on /mnt/boot-sav/sda1 type ext4 (rw) =================== ls: /sys/block/sda (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro sda1 sda2 sda5 size slaves stat subsystem trace uevent /sys/block/sr0 (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro size slaves stat subsystem trace uevent /dev (filtered): alarm ashmem autofs binder block bsg btrfs-control bus cdrom cdrw char console core cpu cpu_dma_latency disk dri dvd dvdrw ecryptfs fb0 fd full fuse fw0 hidraw0 hidraw1 hpet input kmsg kvm log mapper mcelog mei mem net network_latency network_throughput null oldmem port ppp psaux ptmx pts random rfkill rtc rtc0 sda sda1 sda2 sda5 sg0 sg1 shm snapshot snd sr0 stderr stdin stdout uinput urandom usb vga_arbiter vhost-net zero ls /dev/mapper: control =================== df -Th: Filesystem Type Size Used Avail Use% Mounted on /cow overlayfs 3.9G 100M 3.8G 3% / udev devtmpfs 3.9G 12K 3.9G 1% /dev tmpfs tmpfs 1.6G 864K 1.6G 1% /run /dev/sr0 iso9660 763M 763M 0 100% /cdrom /dev/loop0 squashfs 717M 717M 0 100% /rofs tmpfs tmpfs 3.9G 32K 3.9G 1% /tmp none tmpfs 5.0M 4.0K 5.0M 1% /run/lock none tmpfs 3.9G 176K 3.9G 1% /run/shm none tmpfs 100M 52K 100M 1% /run/user /dev/sda1 ext4 910G 26G 838G 3% /mnt/boot-sav/sda1 =================== fdisk -l: Disk /dev/sda: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x000da1e9 Device Boot Start End Blocks Id System /dev/sda1 * 2048 1936809983 968403968 83 Linux /dev/sda2 1936812030 1953523711 8355841 5 Extended Partition 2 does not start on physical sector boundary. /dev/sda5 1936812032 1953523711 8355840 82 Linux swap / Solaris Partition outside the disk detected. =================== Recommended repair Recommended-Repair This setting will reinstall the grub2 of sda1 into the MBR of sda. Additional repair will be performed: unhide-bootmenu-10s Unhide GRUB boot menu in sda1/etc/default/grub grub-install (GRUB) 2.00-7ubuntu11,grub-install (GRUB) 2. Reinstall the GRUB of sda1 into the MBR of sda Installation finished. No error reported. grub-install /dev/sda: exit code of grub-install /dev/sda:0 chroot /mnt/boot-sav/sda1 update-grub Generating grub.cfg ... Found linux image: /boot/vmlinuz-3.5.0-19-generic Found initrd image: /boot/initrd.img-3.5.0-19-generic Found linux image: /boot/vmlinuz-3.5.0-17-generic Found initrd image: /boot/initrd.img-3.5.0-17-generic Found memtest86+ image: /boot/memtest86+.bin Unhide GRUB boot menu in sda1/boot/grub/grub.cfg Boot successfully repaired. You can now reboot your computer.

    Read the article

  • Server Administration

    - by Kassem
    Hi everyone, My client asked me for a job description of a system administration because I might be assigned this position along with the other guy I'm working with. To be honest, I do not know much about a System Administrator's job but I'm willing to learn. Questions: What are the security requirements of a server? * What are the key responsibilities in a system admin's job description? What are some of the day to day tasks of a system admin? What is the average monthly salary of a system admin? Note: I will be working inside a Windows environment. But your replies do not necessarily need to be constricted to a Windows environment. (*) Other software I know will be required are: Windows Server 2008 IIS 7.0 MS SQL Server .NET 4.0 Runtime Let me know if there are other things I should be aware of as well. Thanks!

    Read the article

  • Opening the Internet Settings Dialog and using Windows Default Network Settings via Code

    - by Rick Strahl
    Ran into a question from a client the other day that asked how to deal with Internet Connection settings for running  HTTP requests. In this case this is an old FoxPro app and it's using WinInet to handle the actual HTTP connection. Another client asked a similar question about using the IE Web Browser control and configuring connection properties. Regardless of platform or tools used to do HTTP connections, you can probably configure custom connection and proxy settings in your application to configure http connection settings manually. However, this is a repetitive process for each application requires you to track system information in your application which is undesirable. Often it's much easier to rely on the system wide proxy settings that Windows provides via the Internet Settings dialog. The dialog is a Control Panel applet (inetcpl.cpl) and is the same dialog that you see when you pop up Internet Explorer's Options dialog: This dialog controls the Windows connection properties that determine how the Windows HTTP stack connects to the Internet and how Proxy's are used if configured. Depending on how the HTTP client is configured - it can typically inherit and use these global settings. Loading the Settings Dialog Programmatically The settings dialog is a Control Panel applet with the name of: inetcpl.cpl and you can use any Shell execution mechanism (Run dialog, ShellExecute API, Process.Start() in .NET etc.) to invoke the dialog. Changes made there are immediately reflected in any applications that use the default connection settings. In .NET you can simply do this to bring up the Internet Settings dialog with the Connection tab enabled: Process.Start("inetcpl.cpl",",4"); In FoxPro you can simply use the RUN command to execute inetcpl.cpl: lcCmd = "inetcpl.cpl ,4" RUN &lcCmd Using the Default Connection/Proxy Settings When using WinInet you specify the Http connect type in the call to InternetOpen() like this (FoxPro code here): hInetConnection=; InternetOpen(THIS.cUserAgent,0,; THIS.chttpproxyname,THIS.chttpproxybypass,0) The second parameter of 0 specifies that the default system proxy settings should be used and it uses the settings from the Internet Settings Connections tab. Other connection options for HTTP connections include 1 - direct (no proxies and ignore system settings), 3 - explicit Proxy specification. In most situations a connection mode setting of 0 should work. In .NET HTTP connections by default are direct connections and so you need to explicitly specify a default proxy or proxy configuration to use. The easiest way to do this is on the application level in the config file: <configuration> <system.net> <defaultProxy> <proxy bypassonlocal="False" autoDetect="True" usesystemdefault="True" /> </defaultProxy> </system.net> </configuration> You can do the same sort of thing in code specifying the proxy explicitly and using System.Net.WebProxy.GetDefaultProxy(). So when making HTTP calls to Web Services or using the HttpWebRequest class you can set the proxy with: StoreService.Proxy = WebProxy.GetDefaultProxy(); All of this is pretty easy to deal with and in my opinion is a way better choice to managing connection settings than having to track this stuff in your own application. Plus if you use default settings, most of the time it's highly likely that the connection settings are already properly configured making further configuration rare.© Rick Strahl, West Wind Technologies, 2005-2011Posted in Windows  HTTP  .NET  FoxPro   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Beginner Geek: How To Change the Boot Order in Your Computer’s BIOS

    - by Chris Hoffman
    The boot order in your computer’s BIOS controls which device it loads the operating system from. Modify your boot order to force your computer to boot from a USB drive, CD or DVD drive, or another hard drive. You may need to change this setting when booting from another device, whether you’re running an operating system from a live USB drive or installing a new operating system from a disc. Note: This process will look different on each computer. The instructions here will guide you through the process, but the screenshots won’t look exactly the same. How To Use USB Drives With the Nexus 7 and Other Android Devices Why Does 64-Bit Windows Need a Separate “Program Files (x86)” Folder? Why Your Android Phone Isn’t Getting Operating System Updates and What You Can Do About It

    Read the article

  • Extension Methods in Dot Net 2.0

    - by Tom Hines
    Not that anyone would still need this, but in case you have a situation where the code MUST be .NET 2.0 compliant and you want to use a cool feature like Extension methods, there is a way.  I saw this article when looking for ways to create extension methods in C++, C# and VB:  http://msdn.microsoft.com/en-us/magazine/cc163317.aspx The author shows a simple  way to declare/define the ExtensionAttribute so it's available to 2.0 .NET code. Please read the article to learn about the when and why and use the content below to learn HOW. In the next post, I'll demonstrate cross-language calling of extension methods. Here is a version of it in C# First, here's the project showing there's no VOODOO included: using System; namespace System.Runtime.CompilerServices {    [       AttributeUsage(          AttributeTargets.Assembly          | AttributeTargets.Class          | AttributeTargets.Method,       AllowMultiple = false, Inherited = false)    ]    class ExtensionAttribute : Attribute{} } namespace TestTwoDotExtensions {    public static class Program    {       public static void DoThingCS(this string str)       {          Console.WriteLine("2.0\t{0:G}\t2.0", str);       }       static void Main(string[] args)       {          "asdf".DoThingCS();       }    } }   Here is the C++ version: // TestTwoDotExtensions_CPP.h #pragma once using namespace System; namespace System {        namespace Runtime {               namespace CompilerServices {               [                      AttributeUsage(                            AttributeTargets::Assembly                             | AttributeTargets::Class                            | AttributeTargets::Method,                      AllowMultiple = false, Inherited = false)               ]               public ref class ExtensionAttribute : Attribute{};               }        } } using namespace System::Runtime::CompilerServices; namespace TestTwoDotExtensions_CPP { public ref class CTestTwoDotExtensions_CPP {    public:            [ExtensionAttribute] // or [Extension]            static void DoThingCPP(String^ str)    {       Console::WriteLine("2.0\t{0:G}\t2.0", str);    } }; }

    Read the article

  • How To - Guide to Importing Data from a MySQL Database to Excel using MySQL for Excel

    - by Javier Treviño
    Fetching data from a database to then get it into an Excel spreadsheet to do analysis, reporting, transforming, sharing, etc. is a very common task among users. There are several ways to extract data from a MySQL database to then import it to Excel; for example you can use the MySQL Connector/ODBC to configure an ODBC connection to a MySQL database, then in Excel use the Data Connection Wizard to select the database and table from which you want to extract data from, then specify what worksheet you want to put the data into.  Another way is to somehow dump a comma delimited text file with the data from a MySQL table (using the MySQL Command Line Client, MySQL Workbench, etc.) to then in Excel open the file using the Text Import Wizard to attempt to correctly split the data in columns. These methods are fine, but involve some degree of technical knowledge to make the magic happen and involve repeating several steps each time data needs to be imported from a MySQL table to an Excel spreadsheet. So, can this be done in an easier and faster way? With MySQL for Excel you can. MySQL for Excel features an Import MySQL Data action where you can import data from a MySQL Table, View or Stored Procedure literally with a few clicks within Excel.  Following is a quick guide describing how to import data using MySQL for Excel. This guide assumes you already have a working MySQL Server instance, Microsoft Office Excel 2007 or 2010 and MySQL for Excel installed. 1. Opening MySQL for Excel Being an Excel Add-In, MySQL for Excel is opened from within Excel, so to use it open Excel, go to the Data tab located in the Ribbon and click MySQL for Excel at the far right of the Ribbon. 2. Creating a MySQL Connection (may be optional) If you have MySQL Workbench installed you will automatically see the same connections that you can see in MySQL Workbench, so you can use any of those and there may be no need to create a new connection. If you want to create a new connection (which normally you will do only once), in the Welcome Panel click New Connection, which opens the Setup New Connection dialog. Here you only need to give your new connection a distinctive Connection Name, specify the Hostname (or IP address) where the MySQL Server instance is running on (if different than localhost), the Port to connect to and the Username for the login. If you wish to test if your setup is good to go, click Test Connection and an information dialog will pop-up stating if the connection is successful or errors were found. 3.Opening a connection to a MySQL Server To open a pre-configured connection to a MySQL Server you just need to double-click it, so the Connection Password dialog is displayed where you enter the password for the login. 4. Selecting a MySQL Schema After opening a connection to a MySQL Server, the Schema Selection Panel is shown, where you can select the Schema that contains the Tables, Views and Stored Procedures you want to work with. To do so, you just need to either double-click the desired Schema or select it and click Next >. 5. Importing data… All previous steps were really the basic minimum needed to drill-down to the DB Object Selection Panel  where you can see the Database Objects (grouped by type: Tables, Views and Procedures in that order) that you want to perform actions against; in the case of this guide, the action of importing data from them. a. From a MySQL Table To import from a Table you just need to select it from the list of Database Objects’ Tables group, after selecting it you will note actions below the list become available; then click Import MySQL Data. The Import Data dialog is displayed; you can see some basic information here like the name of the Excel worksheet the data will be imported to (in the window title), the Table Name, the total Row Count and a 10 row preview of the data meant for the user to see the columns that the table contains and to provide a way to select which columns to import. The Import Data dialog is designed with defaults in place so all data is imported (all rows and all columns) by just clicking Import; this is important to minimize the number of clicks needed to get the job done. After the import is performed you will have the data in the Excel worksheet formatted automatically. If you need to override the defaults in the Import Data dialog to change the columns selected for import or to change the number of imported rows you can easily do so before clicking Import. In the screenshot below the defaults are overridden to import only the first 3 columns and rows 10 – 60 (Limit to 50 Rows and Start with Row 10). If the number of rows to be imported exceeds the maximum number of rows Excel can hold in its worksheet, a warning will be displayed in the dialog, meaning the imported number of rows will be limited by that maximum number (65,535 rows if the worksheet is in Compatibility Mode).  In the screenshot below you can see the Table contains 80,559 rows, but only 65,534 rows will be imported since the first row is used for the column names if the Include Column Names as Headers checkbox is checked. b. From a MySQL View Similar to the way of importing from a Table, to import from a View you just need to select it from the list of Database Objects’ Views group, then click Import MySQL Data. The Import Data dialog is displayed; identically to the way everything looks when importing from a table, the dialog displays the View Name, the total Row Count and the data preview grid. Since Views are really a filtered way to display data from Tables, it is actually as if we are extracting data from a Table; so the Import Data dialog is actually identical for those 2 Database Objects. After the import is performed, the data in the Excel spreadsheet looks like the following screenshot. Note that you can override the defaults in the Import Data dialog in the same way described above for importing data from Tables. Also the Compatibility Mode warning will be displayed if data exceeds the maximum number of rows explained before. c. From a MySQL Procedure Too import from a Procedure you just need to select it from the list of Database Objects’ Procedures group (note you can see Procedures here but not Functions since these return a single value, so by design they are filtered out). After the selection is made, click Import MySQL Data. The Import Data dialog is displayed, but this time you can see it looks different to the one used for Tables and Views.  Given the nature of Store Procedures, they require first that values are supplied for its Parameters and also Procedures can return multiple Result Sets; so the Import Data dialog shows the Procedure Name and the Procedure Parameters in a grid where their values are input. After you supply the Parameter Values click Call. After calling the Procedure, the Result Sets returned by it are displayed at the bottom of the dialog; output parameters and the return value of the Procedure are appended as the last Result Set of the group. You can see each Result Set is displayed as a tab so you can see a preview of the returned data.  You can specify if you want to import the Selected Result Set (default), All Result Sets – Arranged Horizontally or All Result Sets – Arranged Vertically using the Import drop-down list; then click Import. After the import is performed, the data in the Excel spreadsheet looks like the following screenshot.  Note in this example all Result Sets were imported and arranged vertically. As you can see using MySQL for Excel importing data from a MySQL database becomes an easy task that requires very little technical knowledge, so it can be done by any type of user. Hope you enjoyed this guide! Remember that your feedback is very important for us, so drop us a message: MySQL on Windows (this) Blog - https://blogs.oracle.com/MySqlOnWindows/ Forum - http://forums.mysql.com/list.php?172 Facebook - http://www.facebook.com/mysql Cheers!

    Read the article

  • Web application / Domain model integration using JSON capable DTOs [on hold]

    - by g-makulik
    I'm a bit confused about architectural choices for the web-applications/java/python world. For c/c++ world the available (open source) choices to implement web applications is pretty limited to zero, involving java or python the choices explode to a,- hard to sort out -, mess of available 'frameworks' and application approaches. I want to sort out a clean MVC model, where the M stands for a fully blown (POCO, POJO driven) domain model (according M.Fowler's EAA pattern) using a mature OO language (Java,C++) for implementation. The background is: I have a system with certain hardware components (that introduce system immanent active behavior) and a configuration database for system meta and HW-components configuration data (these are even usually self contained, since the HW-components are capable to persist their configuration data anyway). For realization of the configuration/status data exchange protocol with the HW-components we have chosen the Google Protobuf format, which works well for the directly wired communication with these components. This protocol is already used successfully with a Java based GUI application via TCP/IP connection to the main system controlling HW-component. This application has some drawbacks and design flaws for historical reasons. Now we want to develop an abstract model (domain model) for configuration and monitoring those HW-components, that represents a more use case oriented view to the overall system behavior. I have the feeling that a plain Java class model would fit best for this (c++ implementation seems to have too much implementation/integration overhead with viable language-bridge interfaces). Google Protobuf message definitions could still serve well to describe DTO objects used to interact with a domain model API. But integrating Google Protobuf messages client side for e.g. data binding in the current view doesn't seem to be a good choice. I'm thinking about some extra serialization features, e.g. for JSON based data exchange with the views/controllers. Most lightweight solutions seem to involve a python based presentation layer using JSON based data transfer (I'm at least not sure to be fully informed about this). Is there some lightweight (applicable for a limited ARM Linux platform) framework available, supporting such architecture to realize a web-application? UPDATE: According to my recent research and comments of colleagues I've noticed that using Java (and some JVM) might not be the preferable choice for integration with python on a limited linux system as we have (running on ARM9 with hard to discuss memory and MCU costs), but C/C++ modules would do well for this (since this forms the native interface to python extensions, doesn't it?). I can imagine to provide a domain model from an appropriate C/C++ API (though I still think it's more efforts and higher skill requirements for the involved developers to do with these languages). Still I'm searching for a good approach that supports such architecture. I'll appreciate any pointers!

    Read the article

  • Device cannot be added on software-raid-1 array on Ubuntu 12.04

    - by George Pligor
    Unfortunately all tutorials I have found online until now on how to setup software-raid-1 are outdated on ubuntu 12.40 My target is to setup it on a system with a secondary disk drive that is already running. Format is not an option! I am trying to follow and adapt from 11.10 to 12.04 the following tutorial: http://www.howtoforge.com/how-to-set-up-software-raid1-on-a-running-lvm-system-incl-grub2-configuration-ubuntu-11.10-p2 On the above tutorial there is a successful command which creates a raid-1 array by setting the first disk drive with the installed system as missing: mdadm --create /dev/md0 --level=1 --raid-disks=2 missing /dev/sdb1 But when the time comes to add the first main drive with the installed system on the raid-array with this command: mdadm --add /dev/md0 /dev/sda1 I receive an error message. The error message says that the device /dev/sda is (which makes sense) busy! Note: hardware raid solution is not available since the system is a laptop with two disk drives! Thank you

    Read the article

  • Changing the default installation path to a newly installed hard disk

    - by mgj
    Hi, I am currently working on a dual-booted PC. I am using Windows XP and Ubuntu 10.04 Lucid Lynx released in April 2010. The allocated partition to Ubuntu that I am making use of has almost exhausted. Current memory allocations on the PC wrt Ubuntu OS looks like this: bodhgaya@pc146724-desktop:~$ df -h Filesystem Size Used Avail Use% Mounted on /dev/sda2 8.6G 8.0G 113M 99% / none 998M 268K 998M 1% /dev none 1002M 580K 1002M 1% /dev/shm none 1002M 100K 1002M 1% /var/run none 1002M 0 1002M 0% /var/lock none 1002M 0 1002M 0% /lib/init/rw /dev/sda1 25G 16G 9.8G 62% /media/C /dev/sdb1 37G 214M 35G 1% /media/ubuntulinuxstore bodhgaya@pc146724-desktop:~$ cd /tmp I am trying to mount a 40GB(/dev/sdb1 - given below) new hard disk along with my existing Ubuntu system to overcome with hard disk space related issues. I referred to the following tutorial to mount a new hard disk onto the system:- http://www.smorgasbord.net/how-to-in...untu-linux%20/ I was able to successfully mount this hard disk for Ubuntu 0S. I have this new hard disk setup in /media/ubuntulinuxstore directory. The current partition in my system looks like this: bodhgaya@pc146724-desktop:/media/ubuntulinuxstore$ sudo fdisk -l [sudo] password for bodhgaya: Disk /dev/sda: 40.0 GB, 40000000000 bytes 255 heads, 63 sectors/track, 4863 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x446eceb5 Device Boot Start End Blocks Id System /dev/sda1 * 2 3264 26210047+ 7 HPFS/NTFS /dev/sda2 3265 4385 9004432+ 83 Linux /dev/sda3 4386 4863 3839535 82 Linux swap / Solaris Disk /dev/sdb: 40.0 GB, 40000000000 bytes 255 heads, 63 sectors/track, 4863 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xfa8afa8a Device Boot Start End Blocks Id System /dev/sdb1 1 4862 39053983+ 7 HPFS/NTFS bodhgaya@pc146724-desktop:/media/ubuntulinuxstore$ Now, I have a concern wrt the "location" where the new softwares will be installed. Generally softwares are installed via the terminal and by default a fixed path is used to where the post installation set up files can be found (I am talking in context of the drive). This is like the typical case of Windows, where softwares by default are installed in the C: drive. These days people customize their installations to a drive which they find apt to serve their purpose (generally based on availability of hard disk space). I am trying to figure out how to customize the same for Ubuntu. As we all know the most softwares are installed via commands given from the Terminal. My road block is how do I redirect the default path set on the terminal where files get installed to this new hard disk. This if done will help me overcome space constraints I am currently facing wrt the partition on which my Ubuntu is initially installed. I would also by this, save time on not formatting my system and reinstalling Ubuntu and other softwares all over again. Please help me with this, your suggestions are much appreciated.

    Read the article

  • Virtualization in Solaris 11 Express

    - by lynn.rohrer(at)oracle.com
    In Oracle Solaris 10 we introduced Oracle Solaris Containers -- lightweight virtual application environments that allow you to consolidate your Oracle Solaris applications onto a single Oracle Solaris server and make the most of your system resources.The majority of our customers are now using Oracle Solaris Containers on their enterprise systems for applications ranging from web servers to Oracle Database installations. We can also make these Containers highly available with Oracle Solaris Cluster, the industry's first virtualization-aware enterprise cluster product. Using Oracle Solaris Cluster you can failover applications in a Container to another Container on a single system or across systems for additional availability.We've added significant features in Oracle Solaris 11 Express to improve and extend the Oracle Solaris Zone model:Integration of Zones with our new Solaris 11 packaging system (aka Image Packaging System) to provide easy software updates within a zoneSupport for Oracle Solaris 10 Zones to run your Solaris 10 applications unaltered on an Oracle Solaris 11 Express systemIntegration with the new Oracle Solaris 11 network stack architecture (more on this in a future blog post)Improved observability with the zonestat management interface and commandsDelegated administration rights for owners of individual non-global zonesTight integration with Oracle Solaris ZFS to allow dedicated datasets per zoneWith ZFS as the default file system we can now provide easy to manage Boot Environments for zonesThis quick summary is just to whet your appetite to learn more about Oracle Solaris 11 Express Zones enhancements. Fortunately we can serve a full meal at the Oracle Solaris 11 Express Technology Spotlight on Virtualization page on the Oracle Technical Network.

    Read the article

  • Auto DOP and Concurrency

    - by jean-pierre.dijcks
    After spending some time in the cloud, I figured it is time to come down to earth and start discussing some of the new Auto DOP features some more. As Database Machines (the v2 machine runs Oracle Database 11.2) are effectively selling like hotcakes, it makes some sense to talk about the new parallel features in more detail. For basic understanding make sure you have read the initial post. The focus there is on Auto DOP and queuing, which is to some extend the focus here. But now I want to discuss the concurrency a little and explain some of the relevant parameters and their impact, specifically in a situation with concurrency on the system. The goal of Auto DOP The idea behind calculating the Automatic Degree of Parallelism is to find the highest possible DOP (ideal DOP) that still scales. In other words, if we were to increase the DOP even more  above a certain DOP we would see a tailing off of the performance curve and the resource cost / performance would become less optimal. Therefore the ideal DOP is the best resource/performance point for that statement. The goal of Queuing On a normal production system we should see statements running concurrently. On a Database Machine we typically see high concurrency rates, so we need to find a way to deal with both high DOP’s and high concurrency. Queuing is intended to make sure we Don’t throttle down a DOP because other statements are running on the system Stay within the physical limits of a system’s processing power Instead of making statements go at a lower DOP we queue them to make sure they will get all the resources they want to run efficiently without trashing the system. The theory – and hopefully – practice is that by giving a statement the optimal DOP the sum of all statements runs faster with queuing than without queuing. Increasing the Number of Potential Parallel Statements To determine how many statements we will consider running in parallel a single parameter should be looked at. That parameter is called PARALLEL_MIN_TIME_THRESHOLD. The default value is set to 10 seconds. So far there is nothing new here…, but do realize that anything serial (e.g. that stays under the threshold) goes straight into processing as is not considered in the rest of this post. Now, if you have a system where you have two groups of queries, serial short running and potentially parallel long running ones, you may want to worry only about the long running ones with this parallel statement threshold. As an example, lets assume the short running stuff runs on average between 1 and 15 seconds in serial (and the business is quite happy with that). The long running stuff is in the realm of 1 – 5 minutes. It might be a good choice to set the threshold to somewhere north of 30 seconds. That way the short running queries all run serial as they do today (if it ain’t broken, don’t fix it) and allows the long running ones to be evaluated for (higher degrees of) parallelism. This makes sense because the longer running ones are (at least in theory) more interesting to unleash a parallel processing model on and the benefits of running these in parallel are much more significant (again, that is mostly the case). Setting a Maximum DOP for a Statement Now that you know how to control how many of your statements are considered to run in parallel, lets talk about the specific degree of any given statement that will be evaluated. As the initial post describes this is controlled by PARALLEL_DEGREE_LIMIT. This parameter controls the degree on the entire cluster and by default it is CPU (meaning it equals Default DOP). For the sake of an example, let’s say our Default DOP is 32. Looking at our 5 minute queries from the previous paragraph, the limit to 32 means that none of the statements that are evaluated for Auto DOP ever runs at more than DOP of 32. Concurrently Running a High DOP A basic assumption about running high DOP statements at high concurrency is that you at some point in time (and this is true on any parallel processing platform!) will run into a resource limitation. And yes, you can then buy more hardware (e.g. expand the Database Machine in Oracle’s case), but that is not the point of this post… The goal is to find a balance between the highest possible DOP for each statement and the number of statements running concurrently, but with an emphasis on running each statement at that highest efficiency DOP. The PARALLEL_SERVER_TARGET parameter is the all important concurrency slider here. Setting this parameter to a higher number means more statements get to run at their maximum parallel degree before queuing kicks in.  PARALLEL_SERVER_TARGET is set per instance (so needs to be set to the same value on all 8 nodes in a full rack Database Machine). Just as a side note, this parameter is set in processes, not in DOP, which equates to 4* Default DOP (2 processes for a DOP, default value is 2 * Default DOP, hence a default of 4 * Default DOP). Let’s say we have PARALLEL_SERVER_TARGET set to 128. With our limit set to 32 (the default) we are able to run 4 statements concurrently at the highest DOP possible on this system before we start queuing. If these 4 statements are running, any next statement will be queued. To run a system at high concurrency the PARALLEL_SERVER_TARGET should be raised from its default to be much closer (start with 60% or so) to PARALLEL_MAX_SERVERS. By using both PARALLEL_SERVER_TARGET and PARALLEL_DEGREE_LIMIT you can control easily how many statements run concurrently at good DOPs without excessive queuing. Because each workload is a little different, it makes sense to plan ahead and look at these parameters and set these based on your requirements.

    Read the article

  • Gnome keyring doesn't unlock after loging in using Pam-face-authentication.

    - by Gaurav Butola
    I am using http://pam-face-authentication.org/ to log into my system using face detection and it is working just great except for one thing,The authentication runs out of the box, but it doesn't unlock my keyring. So after loging into my system, I see my desktop and everything normally but then a password prompt pops-up asking for Gnome-keyring, I think if it can log me into the system just fine then it should also be able to unlock the gnome-kerying. This guy also have the same issue -- https://bugs.launchpad.net/gdm/+bug/479881/comments/4

    Read the article

  • SQL SERVER – ASYNC_IO_COMPLETION – Wait Type – Day 11 of 28

    - by pinaldave
    For any good system three things are vital: CPU, Memory and IO (disk). Among these three, IO is the most crucial factor of SQL Server. Looking at real-world cases, I do not see IT people upgrading CPU and Memory frequently. However, the disk is often upgraded for either improving the space, speed or throughput. Today we will look at another IO-related wait type. From Book On-Line: Occurs when a task is waiting for I/Os to finish. ASYNC_IO_COMPLETION Explanation: Any tasks are waiting for I/O to finish. If by any means your application that’s connected to SQL Server is processing the data very slowly, this type of wait can occur. Several long-running database operations like BACKUP, CREATE DATABASE, ALTER DATABASE or other operations can also create this wait type. Reducing ASYNC_IO_COMPLETION wait: When it is an issue related to IO, one should check for the following things associated to IO subsystem: Look at the programming and see if there is any application code which processes the data slowly (like inefficient loop, etc.). Note that it should be re-written to avoid this  wait type. Proper placing of the files is very important. We should check the file system for proper placement of the files – LDF and MDF on separate drive, TempDB on another separate drive, hot spot tables on separate filegroup (and on separate disk), etc. Check the File Statistics and see if there is a higher IO Read and IO Write Stall SQL SERVER – Get File Statistics Using fn_virtualfilestats. Check event log and error log for any errors or warnings related to IO. If you are using SAN (Storage Area Network), check the throughput of the SAN system as well as configuration of the HBA Queue Depth. In one of my recent projects, the SAN was performing really badly and so the SAN administrator did not accept it. After some investigations, he agreed to change the HBA Queue Depth on the development setup (test environment). As soon as we changed the HBA Queue Depth to quite a higher value, there was a sudden big improvement in the performance. It is very likely to happen that there are no proper indexes on the system and yet there are lots of table scans and heap scans. Creating proper index can reduce the IO bandwidth considerably. If SQL Server can use appropriate cover index instead of clustered index, it can effectively reduce lots of CPU, Memory and IO (considering cover index has lesser columns than cluster table and all other; it depends upon the situation). You can refer to the following two articles I wrote that talk about how to optimize indexes: Create Missing Indexes Drop Unused Indexes Checking Memory Related Perfmon Counters SQLServer: Memory Manager\Memory Grants Pending (Consistent higher value than 0-2) SQLServer: Memory Manager\Memory Grants Outstanding (Consistent higher value, Benchmark) SQLServer: Buffer Manager\Buffer Hit Cache Ratio (Higher is better, greater than 90% for usually smooth running system) SQLServer: Buffer Manager\Page Life Expectancy (Consistent lower value than 300 seconds) Memory: Available Mbytes (Information only) Memory: Page Faults/sec (Benchmark only) Memory: Pages/sec (Benchmark only) Checking Disk Related Perfmon Counters Average Disk sec/Read (Consistent higher value than 4-8 millisecond is not good) Average Disk sec/Write (Consistent higher value than 4-8 millisecond is not good) Average Disk Read/Write Queue Length (Consistent higher value than benchmark is not good) Read all the post in the Wait Types and Queue series. Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussions of Wait Stats in this blog are generic and vary from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • CCNet TFS Migration - Dealing with left over folders

    - by Michael Stephenson
    Im currently in the process of migrating our many BizTalk projects from MKS source control to TFS.  While we will be using TFS for work item tracking and source control etc we will be continuing to use Cruise Control for continuous integration although im updating this to CCNet 1.5 at the same time. Ill post a few things as much as a reminder to myself about some of the problems we come across. Problem After the first build of our code the next time a build is triggered an error is encountered by the TFS source control block refreshing the source code. System.IO.IOException: The directory is not empty.    at System.IO.Directory.DeleteHelper(String fullPath, String userPath, Boolean recursive)    at System.IO.Directory.Delete(String fullPath, String userPath, Boolean recursive)    at ThoughtWorks.CruiseControl.Core.Sourcecontrol.Vsts.deleteDirectory(String path)    at ThoughtWorks.CruiseControl.Core.Sourcecontrol.Vsts.GetSource(IIntegrationResult result)    at ThoughtWorks.CruiseControl.Core.IntegrationRunner.Build(IIntegrationResult result)    at ThoughtWorks.CruiseControl.Core.IntegrationRunner.Integrate(IntegrationRequest request) System.IO.IOException: The directory is not empty. at System.IO.Directory.DeleteHelper(String fullPath, String userPath, Boolean recursive) at System.IO.Directory.Delete(String fullPath, String userPath, Boolean recursive) at ThoughtWorks.CruiseControl.Core.Sourcecontrol.Vsts.deleteDirectory(String path) at ThoughtWorks.CruiseControl.Core.Sourcecontrol.Vsts.GetSource(IIntegrationResult result) at ThoughtWorks.CruiseControl.Core.IntegrationRunner.Build(IIntegrationResult result) at ThoughtWorks.CruiseControl.Core.IntegrationRunner.Integrate(IntegrationRequest request) Project: Bupa.BPI.Documents Date of build: 2011-01-28 14:54:21 Running time: 00:00:05 Integration Request: Build (ForceBuild) triggered from VMOPBZDEV11 Solution The problem seems to be with a folder called TestLocations which is created by the build process and used along with the file adapter as a way to get messages into BizTalk.  For some reason the source control block when it does a full refresh of the code does not get rid of this folder and then complains thats a problem and fails the build. Interestingly there are other folders created by the build which are deleted fine.  My assumption is that this if something to do with the file adapter polling the directory.  However note that we have not had this problem with other source control blocks in the past. To workaround this I have added a prebuild task to the ccnet.config file to delete this folder before the source control block is executed.  See below for example < prebuild> exec>executable>cmd.exe</executable>buildArgs>/c "if exist "C:\<MyCode>\TestLocations" rd /s /q "C:\<MyCode>\TestLocations""</buildArgs>exec> prebuild> < < < </ </

    Read the article

  • Linux - Imaging backup solution?

    - by xperator
    I want to know is there a way to make a snapshot-like backup of a linux system into a single file and restore it in another system ? You know in windows there are programs which makes a copy of a drive (like C:\ ) into a single image file. So you can restore this file later incase you are infected or something happens. Every time I want to migrate my vps into another host, I have to setup the new server from scratch and move the files manually. Can I just make a snapshot backup of the whole system and restore it somewhere else (or on the same server) ? I am not familiar with linux and I have no idea if this is technically possible or not ? Does the paritions, configs, system files,etc... are individual for each system ? I heard about rsync, but that's not what I am looking for.

    Read the article

< Previous Page | 335 336 337 338 339 340 341 342 343 344 345 346  | Next Page >