Search Results

Search found 24560 results on 983 pages for 'asp placeholder'.

Page 34/983 | < Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >

  • In ASP.NET MVC, what is the equivalent of ASP classic's server side includes?

    - by Quakkels
    I have been developing in classic ASP for about 2.5 years and I am trying to update my skill set to include ASP.NET MVC. What is the MVC way of executing SSIs? IE: How can I include a database drawn navigation list in a sidebar? I have been looking into partial views, but they seem to get their content from the controller. As far as I can tell this means that I would need to write each controller to pass the navigation list. Am I thinking along the right lines?

    Read the article

  • Cascading DropDown List in MVC 4

    - by Misi
    I have a ASP.NET MVC 4 project with EF I have a table with Parteners. This table has 2 types of parteners : agents(part_type=1) and clients(part_type=2). In an Create view I have the first DropDownList that shows all my agents, a button and the second DDL that shows all my clients that correspond to the selected agent. Q1 : What button shoud I use ? , , @Html.ActionLink() ? Create.cshtml <div class="editor-field"> @Html.DropDownList("idagenti", ViewData["idagenti"] as List<SelectListItem>, String.Empty) </div> @*a button*@ <div class="editor-label"> @Html.LabelFor(model => model.id_parten, "Client") </div> <div class="editor-field"> @Html.DropDownList("id_parten", String.Empty) @Html.ValidationMessageFor(model => model.id_parten) </div> OrdersController.cs public ActionResult Create(int? id) // id is the selected agent { var agqry = db.partener.Where(p => p.part_type == 1).Where(p => p.activ == true); var cltqry = db.partener.Where(p => p.part_type == 2).Where(p => p.activ == true); List<SelectListItem> idagenti = new List<SelectListItem>(); foreach (partener ag in agqry) { idagenti.Add(new SelectListItem { Text = ag.den_parten, Value = ag.id_parten.ToString() }); } if (id != null) { cltqry = cltqry.Where(p => p.par_parten == id); } ViewData["idagenti"] = idagenti; ViewBag.id_parten = new SelectList(cltqry, "id_parten", "den_parten");// } Q: How can I pass the selected agent id from the first DDL to my controller ?

    Read the article

  • Button Onclick event (which is in codbehind) doesn't get triggered in MVC 2

    - by rksprst
    I had an MVC 1.0 web application that was in VS 2008; I just upgraded the project to VS 2010 which automatically upgraded MVC to 2.0. I have a bunch of viewpages have codebehind files that were manually added. The project worked fine before the upgrade, but now the onclick even't don't get triggered. I.e. I have an asp:button with an onclick event that points to a method in the codebehind. When you click the button, the onclick event doesn't get triggered. In fact, when you look at the Page variable, IsPostBack is false. This is really bizarre and I'm wondering if anyone know what happened and how to fix it. I'm thinking it has something to do with the changes in MVC 2.0; but I'm not sure. Any help is really appreciated, I've been trying to figure this out for a while. (deleting the codebehinds and moving that to the controller is not really an option since there is so many pages, moving back to vs 2008 is a last resort as I want to make use of some of the VS 2010 features like performance testing.)

    Read the article

  • How to store account-specific information in ASP.NET MVC 2

    - by PR_
    I have an ASP.NET MVC 2 web application. There are two tables like "FIRST_KIND_OF_USERS" and "SECOND_KIND_OF_USERS". Both are mapped to the default aspnet_users table via UserId column. Each of them has it's own integer primary key column like "FirstKindOfUsersId". When a user is trying to add some data to the database, for instance, "Create a new Task" I would like to add a new row in Tasks table with "FirstKindOfUsersId" value. Where should I store or get this value? At the moment I have these possible solutions: Get "FirstKindOfUsersId" value by User.Identity.Name each time; Use SESSION[] for storing these values (Where and when should I save these ones?) Use FormsAuthenticationTicket and create own custom IIdentity class. (http://stackoverflow.com/questions/1064271/asp-net-mvc-set-custom-iidentity-or-iprincipal) Which approach is better? And if I pick the 3rd one, how to save the necessary data property and at which stage?

    Read the article

  • ASP.NET MVC - Add XHTML into validation error messages

    - by Neil
    Hi, Just starting with ASP.Net MVC and have hit a bit of a snag regarding validation messages. I've a custom validation attribute assigned to my class validate several properties on my model. When this validation fails, we'd like the error message to contain XHTML mark-up, including a link to help page, (this was done in the original WebForms project as a ASP:Panel). At the moment the XHTML tags such as "< a ", in the ErrorMessage are being rendered to the screen. Is there any way to get the ValidationSummary to render the XHTML markup correctly? Or is there a better way to handle this kind of validation? Thanks

    Read the article

  • Assigning a MVC Controller property from Asp.Net page

    - by JasonMHirst
    I don't know if I've understanding MVC correctly if my question makes no sense, but I'm trying to understand the following: I have some code on a controller that returns JSON data. The JSON data is populated based on a choice from a dropdown box on an Asp.Net page. I thought (incorrectly) that Session variables would be shared between the Asp.Net project and the MVC Project. What I'd like to do therefore (if this is possible), is to call a Sub on the MVC that sets a variable before the JSON query is run. I have the following: Sub SetCountryID(ByVal CountryID As Integer) Me.pCountrySelectedID = CountryID End Sub Which I can call by the following: Response.Write("http://localhost:7970/Home/SetCountryID/?CountryID=44") But this then results in a blank page - again obviouslly totally incorrect! Am I going about MVC the wrong way or do I still have a hell of a lot more learning to do? Is this even possible to do?

    Read the article

  • Facebook IFrame Application issues for certain users

    - by Kon
    We have a strange issue with running an Facebook IFrame application (using MVC 2). When I run my app and log into Facebook, I get to the application just fine. But when my coworker does it, she gets the following error: API Error Code: 100 API Error Description: Invalid parameter Error Message: Requires valid next URL. Typically this error is resolved by updating the "New Data Permissions" setting of the Facebook application. However, in this case it doesn't help. We've also tried logging in with our accounts from different computers and it seems that neither computer nor which one the MVC ASP.NET app is running from matters. The only difference is who is logged into Facebook. We've looked at our Facebook account settings, but couldn't find any obvious differences. We both have Developer access to the FB application and we both can edit its settings. However, only one of us can actually run the application without getting the above mentioned error message. Any idea what could be happening here?

    Read the article

  • Show friendly message on ASP.NET Ajax error

    - by balexandre
    You all know how annoying is this: I do have a log system and the correct error is well explicit there, but I want to give a better message to the user. I keep trying several ways but I'm using Telerik components and well jQuery and I ended up using both ASP.NET Ajax methods and jQuery, so I use function pageLoad() { try { var manager = Sys.WebForms.PageRequestManager.getInstance(); manager.add_endRequest(endRequest); manager.add_beginRequest(OnBeginRequest); manager } catch (err) { alert(err); } } as well $(document).ready(function() { ... } that alert(err) is never fired even upon OnClick events what's the best approach to avoid this message errors and provide a cleaner way? all this happens in <asp:UpdatePanel> as I use that when I didn't know better (3 years ago!) and I really don't want to mess up and build all again from scratch :( Any help is greatly appreciated Updated with more error windows after volpav solution

    Read the article

  • ASP MVC: Keeping track of logged in users.

    - by user323395
    I'm creating a ASP MVC application. And because of the complex authorization i'm trying to build my own login system. (So i'm not using asp membership providers, and related classes). Now i'm able to create new accounts in the database with hashed passwords. But how do i keep track that a user is logged in. Is generating a long random number and putting this with the userID in the database and cookie enough? Sorry for my rather bad english! Ty in advance :)

    Read the article

  • Installing AJAX Control Toolkit 4 in Visual Studio 2010

    - by Yousef_Jadallah
      In this tutorial I’ll show you how to install AJAX Control toolkit step by step: You can download AJAX Toolkit .NET 4 “Apr 12 2010” released before 4 days, from http://ajaxcontroltoolkit.codeplex.com/releases/view/43475#DownloadId=116534, Once downloaded, extract AjaxControlToolkit.Binary.NET4  on your computer, then extract AjaxControlToolkitSampleSite. after that you need to open Visual Studio 2010, So we will add the toolkit to the toolbox. To do that press right-click in an empty space on your toolbox, then choose Add Tab.     You can rename the new tab to be “Ajax Toolkit” for example : Then when it is added, right-click under the tab and select Choose Items: When the dialog box appears Choose .NET Framework Components tab then click Browse button and find  AjaxControlToolkit folder that you installed the  AJAX Control Toolkit. In that directory you will find a sub-directory called AjaxControlToolkitSampleSite, and under that folder you will find bin Folder, in this folder choose AjaxControlToolkit.DLL which 5.59 MB.   The result of these steps, Visual Studio will load all the controls from the DLL file and by default it will be checked in this list:   To submit your steps press OK button.   Ultimately,you can find the components in your Toolbox and you can use it.     Happy programming!

    Read the article

  • Fix: Orchard Error ‘The controller for path '/OrchardLocal/' was not found or does not implement IController.

    - by Ken Cox [MVP]
    Suddenly, in a local Orchard 1.6 project, I started getting this error in ShellRoute.cs: The controller for path '/OrchardLocal/' was not found or does not implement IController. Obviously I had changed something, but the error wasn’t helping much.  After losing far too much time, I copied over the original Orchard source code and was back in business. Shortly thereafter, I further flattened my forehead by applying a sudden, solid blow with the lower portion of my palm! You see, in testing the importing of comments via blogML, I had set the added blog as the Orchard site’s Start page. Then, I deleted the blog so I could test another import batch. The upshot was that by deleting the blog, Orchard no longer had a default (home) page at the root of the site. The site’s default content was missing. The fix was to go to the Admin subdirectory (http://localhost:30320/OrchardLocal/admin) . add a new page, and check Set as homepage. Once again, the problem was between the keyboard and the chair. I hope this helps someone else. Ken

    Read the article

  • April 30th Links: ASP.NET, ASP.NET MVC, Visual Studio 2010

    Here is the latest in my link-listing series. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] ASP.NET Data Web Control Enhancements in ASP.NET 4.0: Scott Mitchell has a good article that summarizes some of the nice improvements coming to the ASP.NET 4 data controls. Refreshing an ASP.NET AJAX UpdatePanel with JavaScript: Scott Mitchell has another nice article in his series...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • April 30th Links: ASP.NET, ASP.NET MVC, Visual Studio 2010

    Here is the latest in my link-listing series. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] ASP.NET Data Web Control Enhancements in ASP.NET 4.0: Scott Mitchell has a good article that summarizes some of the nice improvements coming to the ASP.NET 4 data controls. Refreshing an ASP.NET AJAX UpdatePanel with JavaScript: Scott Mitchell has another nice article in his series...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 4 – Calling the base method

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors   The plan for calling the base methods from the proxy is to create a private method for each overridden proxy method, this will allow the proxy to use a delegate to simply invoke the private method when required. Quite a few helper classes have been created to make this possible so as usual I would suggest download or viewing the code at http://rapidioc.codeplex.com/. In this post I’m just going to cover the main points for when creating methods. Getting the methods to override The first two notable methods are for getting the methods. private static MethodInfo[] GetMethodsToOverride<TBase>() where TBase : class {     return typeof(TBase).GetMethods().Where(x =>         !methodsToIgnore.Contains(x.Name) &&                              (x.Attributes & MethodAttributes.Final) == 0)         .ToArray(); } private static StringCollection GetMethodsToIgnore() {     return new StringCollection()     {         "ToString",         "GetHashCode",         "Equals",         "GetType"     }; } The GetMethodsToIgnore method string collection contains an array of methods that I don’t want to override. In the GetMethodsToOverride method, you’ll notice a binary AND which is basically saying not to include any methods marked final i.e. not virtual. Creating the MethodInfo for calling the base method This method should hopefully be fairly easy to follow, it’s only function is to create a MethodInfo which points to the correct base method, and with the correct parameters. private static MethodInfo CreateCallBaseMethodInfo<TBase>(MethodInfo method) where TBase : class {     Type[] baseMethodParameterTypes = ParameterHelper.GetParameterTypes(method, method.GetParameters());       return typeof(TBase).GetMethod(        method.Name,        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        baseMethodParameterTypes,        null     ); }   /// <summary> /// Get the parameter types. /// </summary> /// <param name="method">The method.</param> /// <param name="parameters">The parameters.</param> public static Type[] GetParameterTypes(MethodInfo method, ParameterInfo[] parameters) {     Type[] parameterTypesList = Type.EmptyTypes;       if (parameters.Length > 0)     {         parameterTypesList = CreateParametersList(parameters);     }     return parameterTypesList; }   Creating the new private methods for calling the base method The following method outline how I’ve created the private methods for calling the base class method. private static MethodBuilder CreateCallBaseMethodBuilder(TypeBuilder typeBuilder, MethodInfo method) {     string callBaseSuffix = "GetBaseMethod";       if (method.IsGenericMethod || method.IsGenericMethodDefinition)     {                         return MethodHelper.SetUpGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     }     else     {         return MethodHelper.SetupNonGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     } } The CreateCallBaseMethodBuilder is the entry point method for creating the call base method. I’ve added a suffix to the base classes method name to keep it unique. Non Generic Methods Creating a non generic method is fairly simple public static MethodBuilder SetupNonGenericMethod(     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       Type returnType = method.ReturnType;       MethodBuilder methodBuilder = CreateMethodBuilder         (             typeBuilder,             method,             methodName,             methodAttributes,             parameterTypes,             returnType         );       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static MethodBuilder CreateMethodBuilder (     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes,     Type[] parameterTypes,     Type returnType ) { MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, methodAttributes, returnType, parameterTypes); return methodBuilder; } As you can see, you simply have to declare a method builder, get the parameter types, and set the method attributes you want.   Generic Methods Creating generic methods takes a little bit more work. /// <summary> /// Sets up generic method. /// </summary> /// <param name="typeBuilder">The type builder.</param> /// <param name="method">The method.</param> /// <param name="methodName">Name of the method.</param> /// <param name="methodAttributes">The method attributes.</param> public static MethodBuilder SetUpGenericMethod     (         TypeBuilder typeBuilder,         MethodInfo method,         string methodName,         MethodAttributes methodAttributes     ) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName,         methodAttributes);       Type[] genericArguments = method.GetGenericArguments();       GenericTypeParameterBuilder[] genericTypeParameters =         GetGenericTypeParameters(methodBuilder, genericArguments);       ParameterHelper.SetUpParameterConstraints(parameterTypes, genericTypeParameters);       SetUpReturnType(method, methodBuilder, genericTypeParameters);       if (method.IsGenericMethod)     {         methodBuilder.MakeGenericMethod(genericArguments);     }       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static GenericTypeParameterBuilder[] GetGenericTypeParameters     (         MethodBuilder methodBuilder,         Type[] genericArguments     ) {     return methodBuilder.DefineGenericParameters(GenericsHelper.GetArgumentNames(genericArguments)); }   private static void SetUpReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.IsGenericMethodDefinition)     {         SetUpGenericDefinitionReturnType(method, methodBuilder, genericTypeParameters);     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     } }   private static void SetUpGenericDefinitionReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.ReturnType == null)     {         methodBuilder.SetReturnType(typeof(void));     }     else if (method.ReturnType.IsGenericType)     {         methodBuilder.SetReturnType(genericTypeParameters.Where             (x => x.Name == method.ReturnType.Name).First());     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     }             } Ok, there are a few helper methods missing, basically there is way to much code to put in this post, take a look at the code at http://rapidioc.codeplex.com/ to follow it through completely. Basically though, when dealing with generics there is extra work to do in terms of getting the generic argument types setting up any generic parameter constraints setting up the return type setting up the method as a generic All of the information is easy to get via reflection from the MethodInfo.   Emitting the new private method Emitting the new private method is relatively simple as it’s only function is calling the base method and returning a result if the return type is not void. ILGenerator il = privateMethodBuilder.GetILGenerator();   EmitCallBaseMethod(method, callBaseMethod, il);   private static void EmitCallBaseMethod(MethodInfo method, MethodInfo callBaseMethod, ILGenerator il) {     int privateParameterCount = method.GetParameters().Length;       il.Emit(OpCodes.Ldarg_0);       if (privateParameterCount > 0)     {         for (int arg = 0; arg < privateParameterCount; arg++)         {             il.Emit(OpCodes.Ldarg_S, arg + 1);         }     }       il.Emit(OpCodes.Call, callBaseMethod);       il.Emit(OpCodes.Ret); } So in the main method building method, an ILGenerator is created from the method builder. The ILGenerator performs the following actions: Load the class (this) onto the stack using the hidden argument Ldarg_0. Create an argument on the stack for each of the method parameters (starting at 1 because 0 is the hidden argument) Call the base method using the Opcodes.Call code and the MethodInfo we created earlier. Call return on the method   Conclusion Now we have the private methods prepared for calling the base method, we have reached the last of the relatively easy part of the proxy building. Hopefully, it hasn’t been too hard to follow so far, there is a lot of code so I haven’t been able to post it all so please check it out at http://rapidioc.codeplex.com/. The next section should be up fairly soon, it’s going to cover creating the delegates for calling the private methods created in this post.   Kind Regards, Sean.

    Read the article

  • Running an intern program

    - by dotneteer
    This year I am running an unpaid internship program for high school students. I work for a small company. We have ideas for a few side projects but never have time to do them. So we experiment by making them intern projects. In return, we give these interns guidance to learn, personal attentions, and opportunities with real-world projects. A few years ago, I blogged about the idea of teaching kids to write application with no more than 6 hours of training. This time, I was able to reduce the instruction time to 4 hours and immediately put them into real work projects. When they encounter problems, I combine directions, pointer to various materials on w3school, Udacity, Codecademy and UTube, as well as encouraging them to  search for solutions with search engines. Now entering the third week, I am more than encouraged and feeling accomplished. Our the most senior intern, Christopher Chen, is a recent high school graduate and is heading to UC Berkeley to study computer science after the summer. He previously only had one year of Java experience through the AP computer science course but had no web development experience. Only 12 days into his internship, he has already gain advanced css skills with deeper understanding than more than half of the “senior” developers that I have ever worked with. I put him on a project to migrate an existing website to the Orchard content management system (CMS) with which I am new as well. We were able to teach each other and quickly gain advanced Orchard skills such as creating custom theme and modules. I felt very much a relationship similar to the those between professors and graduate students. On the other hand, I quite expect that I will lose him the next summer to companies like Google, Facebook or Microsoft. As a side note, Christopher and I will do a two part Orchard presentations together at the next SoCal code camp at UC San Diego July 27-28. The first part, “creating an Orchard website on Azure in 60 minutes”, is an introductory lecture and we will discuss how to create a website using Orchard without writing code. The 2nd part, “customizing Orchard websites without limit”, is an advanced lecture and we will discuss custom theme and module development with WebMatrix and Visual Studio.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • Using dnnModal.show in your modules and content

    - by Chris Hammond
    One thing that was added in DotNetNuke 6 but hasn’t been covered in great detail is a method called dnnModal.show. Calling this method is fairly straight forward depending on your need, but before we get into how to call/use the method, let’s talk about what it does first. dnnModal.show is a method that gets called via JavaScript and allows you to load up a URL into a modal popup window within your DotNetNuke site. Basically it will take that URL and load it into an IFrame within the current DotNetNuke...(read more)

    Read the article

  • Sending Messages to SignalR Hubs from the Outside

    - by Ricardo Peres
    Introduction You are by now probably familiarized with SignalR, Microsoft’s API for real-time web functionality. This is, in my opinion, one of the greatest products Microsoft has released in recent time. Usually, people login to a site and enter some page which is connected to a SignalR hub. Then they can send and receive messages – not just text messages, mind you – to other users in the same hub. Also, the server can also take the initiative to send messages to all or a specified subset of users on its own, this is known as server push. The normal flow is pretty straightforward, Microsoft has done a great job with the API, it’s clean and quite simple to use. And for the latter – the server taking the initiative – it’s also quite simple, just involves a little more work. The Problem The API for sending messages can be achieved from inside a hub – an instance of the Hub class – which is something that we don’t have if we are the server and we want to send a message to some user or group of users: the Hub instance is only instantiated in response to a client message. The Solution It is possible to acquire a hub’s context from outside of an actual Hub instance, by calling GlobalHost.ConnectionManager.GetHubContext<T>(). This API allows us to: Broadcast messages to all connected clients (possibly excluding some); Send messages to a specific client; Send messages to a group of clients. So, we have groups and clients, each is identified by a string. Client strings are called connection ids and group names are free-form, given by us. The problem with client strings is, we do not know how these map to actual users. One way to achieve this mapping is by overriding the Hub’s OnConnected and OnDisconnected methods and managing the association there. Here’s an example: 1: public class MyHub : Hub 2: { 3: private static readonly IDictionary<String, ISet<String>> users = new ConcurrentDictionary<String, ISet<String>>(); 4:  5: public static IEnumerable<String> GetUserConnections(String username) 6: { 7: ISet<String> connections; 8:  9: users.TryGetValue(username, out connections); 10:  11: return (connections ?? Enumerable.Empty<String>()); 12: } 13:  14: private static void AddUser(String username, String connectionId) 15: { 16: ISet<String> connections; 17:  18: if (users.TryGetValue(username, out connections) == false) 19: { 20: connections = users[username] = new HashSet<String>(); 21: } 22:  23: connections.Add(connectionId); 24: } 25:  26: private static void RemoveUser(String username, String connectionId) 27: { 28: users[username].Remove(connectionId); 29: } 30:  31: public override Task OnConnected() 32: { 33: AddUser(this.Context.Request.User.Identity.Name, this.Context.ConnectionId); 34: return (base.OnConnected()); 35: } 36:  37: public override Task OnDisconnected() 38: { 39: RemoveUser(this.Context.Request.User.Identity.Name, this.Context.ConnectionId); 40: return (base.OnDisconnected()); 41: } 42: } As you can see, I am using a static field to store the mapping between a user and its possibly many connections – for example, multiple open browser tabs or even multiple browsers accessing the same page with the same login credentials. The user identity, as is normal in .NET, is obtained from the IPrincipal which in SignalR hubs case is stored in Context.Request.User. Of course, this property will only have a meaningful value if we enforce authentication. Another way to go is by creating a group for each user that connects: 1: public class MyHub : Hub 2: { 3: public override Task OnConnected() 4: { 5: this.Groups.Add(this.Context.ConnectionId, this.Context.Request.User.Identity.Name); 6: return (base.OnConnected()); 7: } 8:  9: public override Task OnDisconnected() 10: { 11: this.Groups.Remove(this.Context.ConnectionId, this.Context.Request.User.Identity.Name); 12: return (base.OnDisconnected()); 13: } 14: } In this case, we will have a one-to-one equivalence between users and groups. All connections belonging to the same user will fall in the same group. So, if we want to send messages to a user from outside an instance of the Hub class, we can do something like this, for the first option – user mappings stored in a static field: 1: public void SendUserMessage(String username, String message) 2: { 3: var context = GlobalHost.ConnectionManager.GetHubContext<MyHub>(); 4: 5: foreach (String connectionId in HelloHub.GetUserConnections(username)) 6: { 7: context.Clients.Client(connectionId).sendUserMessage(message); 8: } 9: } And for using groups, its even simpler: 1: public void SendUserMessage(String username, String message) 2: { 3: var context = GlobalHost.ConnectionManager.GetHubContext<MyHub>(); 4:  5: context.Clients.Group(username).sendUserMessage(message); 6: } Using groups has the advantage that the IHubContext interface returned from GetHubContext has direct support for groups, no need to send messages to individual connections. Of course, you can wrap both mapping options in a common API, perhaps exposed through IoC. One example of its interface might be: 1: public interface IUserToConnectionMappingService 2: { 3: //associate and dissociate connections to users 4:  5: void AddUserConnection(String username, String connectionId); 6:  7: void RemoveUserConnection(String username, String connectionId); 8: } SignalR has built-in dependency resolution, by means of the static GlobalHost.DependencyResolver property: 1: //for using groups (in the Global class) 2: GlobalHost.DependencyResolver.Register(typeof(IUserToConnectionMappingService), () => new GroupsMappingService()); 3:  4: //for using a static field (in the Global class) 5: GlobalHost.DependencyResolver.Register(typeof(IUserToConnectionMappingService), () => new StaticMappingService()); 6:  7: //retrieving the current service (in the Hub class) 8: var mapping = GlobalHost.DependencyResolver.Resolve<IUserToConnectionMappingService>(); Now all you have to do is implement GroupsMappingService and StaticMappingService with the code I shown here and change SendUserMessage method to rely in the dependency resolver for the actual implementation. Stay tuned for more SignalR posts!

    Read the article

  • jQuery Ajax Error Handling – How To Show Custom Error Messages

    - by schnieds
    So you want to make your error feedback nice for your users…Kind of an ironic statement isn’t it? We obviously want to avoid errors if at all possible in our applications, but when errors do occur then we want to provide some nice feedback to our users. The worst thing that can happen is to blow up a huge server exception page when something goes wrong or equally bad is not providing any feedback at all and leaving the user in the dark. Although I do not recommend displaying actual .NET Framework exception messages or stack traces to the user in most instances; they are usually not helpful to the user and can be a security concern.... [Read More]Aaron Schniederhttp://www.churchofficeonline.com

    Read the article

  • March 21st Links: ASP.NET, ASP.NET MVC, AJAX, Visual Studio, Silverlight

    Here is the latest in my link-listing series. If you havent already, check out this months "Find a Hoster page on the www.asp.net website to learn about great (and very inexpensive) ASP.NET hosting offers.  [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] ASP.NET URL Routing in ASP.NET 4: Scott Mitchell has a nice article that talks about the new URL routing features coming to Web Forms...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • DotNetQuiz 2011 on BeyondRelational.com- Want to be quiz master or participant?

    - by Jalpesh P. Vadgama
    Test your knowledge with 31 Reputed persons (MVPS and bloggers) will ask question on each day of January and you need to give reply on that. You can win cool stuff.My friend Jacob Sebastian organizing this event on his site Beyondrelational.com to sharpen your dot net related knowledge. This Dot NET Quiz is a platform to verify your understanding of Microsoft .NET Technologies and enhance your skills around it. This is a general quiz which covers most of the .NET technology areas. Want to be Quiz Master? Also if you are well known blogger or Microsoft MVP then you can be Quiz master on the dotnetquiz 2011. Following are requirements to be quiz master on beyondrelational.com. I am also a quiz master on beyondrelational.com and Quiz master eligibility: You will be eligible to nominate yourself to become a quiz master if one of the following condition satisfies: You are a Microsoft MVP You are a Former Microsoft MVP You are a recognized blogger You are a recognized web master running one or more technology websites You are an active participant of one or more technical forums You are a consultant with considerable exposure to your technology area You believe that you can be a good Quiz Master and got a passion for that   Selection Process: Once you submit your nomination, the Quiz team will evaluate the details and will inform you the status of your submission. This usually takes a few weeks. Quiz Master's Responsibilities: Once you become a Quiz Master for a specific quiz, you are requested to take the following responsibilities. Moderate the discussion thread after your question is published Answer any clarification about your question that people ask in the forum Review the answers and help us to award grades to the participants For more information Please visit following page on beyondrelational.com http://beyondrelational.com/quiz/nominations/0/new.aspx Hope you liked it. Stay tuned!!!

    Read the article

  • Using Take and skip keyword to filter records in LINQ

    - by vik20000in
    In LINQ we can use the take keyword to filter out the number of records that we want to retrieve from the query. Let’s say we want to retrieve only the first 5 records for the list or array then we can use the following query     int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 };     var first3Numbers = numbers.Take(3); The TAKE keyword can also be easily applied to list of object in the following way. var first3WAOrders = (         from cust in customers         from order in cust.Orders         select cust ) .Take(3); [Note in the query above we are using the order clause so that the data is first ordered based on the orders field and then the first 3 records are taken. In both the above example we have been able to filter out data based on the number of records we want to fetch. But in both the cases we were fetching the records from the very beginning. But there can be some requirements whereby we want to fetch the records after skipping some of the records like in paging. For this purpose LINQ has provided us with the skip method which skips the number of records passed as parameter in the result set. int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; var allButFirst4Numbers = numbers.Skip(4); The SKIP keyword can also be easily applied to list of object in the following way. var first3WAOrders = (         from cust in customers         from order in cust.Orders         select cust ).Skip(3);  Vikram

    Read the article

< Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >