Search Results

Search found 3996 results on 160 pages for 'operations'.

Page 34/160 | < Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >

  • Timestep schemes for physics simulations

    - by ktodisco
    The operations used for stepping a physics simulation are most commonly: Integrate velocity and position Collision detection and resolution Contact resolution (in advanced cases) A while ago I came across this paper from Stanford that proposed an alternative scheme, which is as follows: Collision detection and resolution Integrate velocity Contact resolution Integrate position It's intriguing because it allows for robust solutions to the stacking problem. So it got me wondering... What, if any, alternative schemes are available, either simple or complex? What are their benefits, drawbacks, and performance considerations?

    Read the article

  • Transforming Government with ERP Solutions

    Liz La Rosa and Jerry Linden from Oracle's Public Sector Industry Strategy and Marketing team talk with Fred about the issues public sector managers face today and how governments can meet these challenges by using ERP systems to transform government operations.

    Read the article

  • Survey: Do you write custom SQL CLR procedures/functions/etc

    - by James Luetkehoelter
    I'm quite curious because despite the great capabilities of writing CLR-based stored procedures to off-load those nasty operations TSQL isn't that great at (like iteration, or complex math), I'm continuing to see a wealth of SQL 2008 databases with complex stored procedures and functions which would make great candidates. The in-house skill to create the CLR code exists as well, but there is flat out resistance to use it. In one scenario I was told "Oh, iteration isn't a problem because we've trained...(read more)

    Read the article

  • Array Multiplication and Division

    - by Narfanator
    I came across a question that (eventually) landed me wondering about array arithmetic. I'm thinking specifically in Ruby, but I think the concepts are language independent. So, addition and subtraction are defined, in Ruby, as such: [1,6,8,3,6] + [5,6,7] == [1,6,8,3,6,5,6,7] # All the elements of the first, then all the elements of the second [1,6,8,3,6] - [5,6,7] == [1,8,3] # From the first, remove anything found in the second and array * scalar is defined: [1,2,3] * 2 == [1,2,3,1,2,3] But What, conceptually, should the following be? None of these are (as far as I can find) defined: Array x Array: [1,2,3] * [1,2,3] #=> ? Array / Scalar: [1,2,3,4,5] / 2 #=> ? Array / Scalar: [1,2,3,4,5] % 2 #=> ? Array / Array: [1,2,3,4,5] / [1,2] #=> ? Array / Array: [1,2,3,4,5] % [1,2] #=> ? I've found some mathematical descriptions of these operations for set theory, but I couldn't really follow them, and sets don't have duplicates (arrays do). Edit: Note, I do not mean vector (matrix) arithmetic, which is completely defined. Edit2: If this is the wrong stack exchange, tell me which is the right one and I'll move it. Edit 3: Add mod operators to the list. Edit 4: I figure array / scalar is derivable from array * scalar: a * b = c => a = b / c [1,2,3] * 3 = [1,2,3]+[1,2,3]+[1,2,3] = [1,2,3,1,2,3,1,2,3] => [1,2,3] = [1,2,3,1,2,3,1,2,3] / 3 Which, given that programmer's division ignore the remained and has modulus: [1,2,3,4,5] / 2 = [[1,2], [3,4]] [1,2,3,4,5] % 2 = [5] Except that these are pretty clearly non-reversible operations (not that modulus ever is), which is non-ideal. Edit: I asked a question over on Math that led me to Multisets. I think maybe extensible arrays are "multisets", but I'm not sure yet.

    Read the article

  • New Whitepaper: Oracle WebLogic Clustering

    - by ACShorten
    A new whitepaper is available that outlines the concepts and steps on implementing web application server clustering using the Oracle Utilities Application Framework and Oracle WebLogic Server. The whitepaper include the following: A short discussion on the concepts of clustering How to setup a cluster using Oracle WebLogic's utilities How to configure the Oracle Utilities Application Framework to take advantage of clustering How to deploy the Oracle Utilities Application based products in a clustered environment Common cluster operations The whitepaper is available from My Oracle Support at Doc Id: 1334558.1.

    Read the article

  • Announcing: Improvements to the Windows Azure Portal

    - by ScottGu
    Earlier today we released a number of enhancements to the new Windows Azure Management Portal.  These new capabilities include: Service Bus Management and Monitoring Support for Managing Co-administrators Import/Export support for SQL Databases Virtual Machine Experience Enhancements Improved Cloud Service Status Notifications Media Services Monitoring Support Storage Container Creation and Access Control Support All of these improvements are now live in production and available to start using immediately.  Below are more details on them: Service Bus Management and Monitoring The new Windows Azure Management Portal now supports Service Bus management and monitoring. Service Bus provides rich messaging infrastructure that can sit between applications (or between cloud and on-premise environments) and allow them to communicate in a loosely coupled way for improved scale and resiliency. With the new Service Bus experience, you can now create and manage Service Bus Namespaces, Queues, Topics, Relays and Subscriptions. You can also get rich monitoring for Service Bus Queues, Topics and Subscriptions. To create a Service Bus namespace, you can now select the “Service Bus” tab in the Windows Azure portal and then simply select the CREATE command: Doing so will bring up a new “Create a Namespace” dialog that allows you to name and create a new Service Bus Namespace: Once created, you can obtain security credentials associated with the Namespace via the ACCESS KEY command. This gives you the ability to obtain the connection string associated with the service namespace. You can copy and paste these values into any application that requires these credentials: It is also now easy to create Service Bus Queues and Topics via the NEW experience in the portal drawer.  Simply click the NEW command and navigate to the “App Services” category to create a new Service Bus entity: Once you provision a new Queue or Topic it can be managed in the portal.  Clicking on a namespace will display all queues and topics within it: Clicking on an item in the list will allow you to drill down into a dashboard view that allows you to monitor the activity and traffic within it, as well as perform operations on it. For example, below is a view of an “orders” queue – note how we now surface both the incoming and outgoing message flow rate, as well as the total queue length and queue size: To monitor pub/sub subscriptions you can use the ADD METRICS command within a topic and select a specific subscription to monitor. Support for Managing Co-Administrators You can now add co-administrators for your Windows Azure subscription using the new Windows Azure Portal. This allows you to share management of your Windows Azure services with other users. Subscription co-administrators share the same administrative rights and permissions that service administrator have - except a co-administrator cannot change or view billing details about the account, nor remove the service administrator from a subscription. In the SETTINGS section, click on the ADMINISTRATORS tab, and select the ADD button to add a co-administrator to your subscription: To add a co-administrator, you specify the email address for a Microsoft account (formerly Windows Live ID) or an organizational account, and choose the subscription you want to add them to: You can later update the subscriptions that the co-administrator has access to by clicking on the EDIT button, and then select or deselect the subscriptions to which they belong. Import/Export Support for SQL Databases The Windows Azure administration portal now supports importing and exporting SQL Databases to/from Blob Storage.  Databases can be imported/exported to blob storage using the same BACPAC file format that is supported with SQL Server 2012.  Among other benefits, this makes it easy to copy and migrate databases between on-premise and cloud environments. SQL Databases now have an EXPORT command in the bottom drawer that when pressed will prompt you to save your database to a Windows Azure storage container: The UI allows you to choose an existing storage account or create a new one, as well as the name of the BACPAC file to persist in blob storage: You can also now import and create a new SQL Database by using the NEW command.  This will prompt you to select the storage container and file to import the database from: The Windows Azure Portal enables you to monitor the progress of import and export operations. If you choose to log out of the portal, you can come back later and check on the status of all of the operations in the new history tab of the SQL Database server – this shows your entire import and export history and the status (success/fail) of each: Enhancements to the Virtual Machine Experience One of the common pain-points we have heard from customers using the preview of our new Virtual Machine support has been the inability to delete the associated VHDs when a VM instance (or VM drive) gets deleted. Prior to today’s release the VHDs would continue to be in your storage account and accumulate storage charges. You can now navigate to the Disks tab within the Virtual Machine extension, select a VM disk to delete, and click the DELETE DISK command: When you click the DELETE DISK button you have the option to delete the disk + associated .VHD file (completely clearing it from storage).  Alternatively you can delete the disk but still retain a .VHD copy of it in storage. Improved Cloud Service Status Notifications The Windows Azure portal now exposes more information of the health status of role instances.  If any of the instances are in a non-running state, the status at the top of the dashboard will summarize the status (and update automatically as the role health changes): Clicking the instance hyperlink within this status summary view will navigate you to a detailed role instance view, and allow you to get more detailed health status of each of the instances.  The portal has been updated to provide more specific status information within this detailed view – giving you better visibility into the health of your app: Monitoring Support for Media Services Windows Azure Media Services allows you to create media processing jobs (for example: encoding media files) in your Windows Azure Media Services account. In the Windows Azure Portal, you can now monitor the number of encoding jobs that are queued up for processing as well as active, failed and queued tasks for encoding jobs. On your media services account dashboard, you can visualize the monitoring data for last 6 hours, 24 hours or 7 days. Storage Container Creation and Access Control Support You can now create Windows Azure Storage storage containers from within the Windows Azure Portal.  After selecting a storage account, you can navigate to the CONTAINERS tab and click the ADD CONTAINER command: This will display a dialog that lets you name the new container and control access to it: You can also update the access setting as well as container metadata of existing containers by selecting one and then using the new EDIT CONTAINER command: This will then bring up the edit container dialog that allows you to change and save its settings: In addition to creating and editing containers, you can click on them within the portal to drill-in and view blobs within them.  Summary The above features are all now live in production and available to use immediately.  If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using them today.  Visit the Windows Azure Developer Center to learn more about how to build apps with it. We’ll have even more new features and enhancements coming later this month – including support for the recent Windows Server 2012 and .NET 4.5 releases (we will enable new web and worker role images with Windows Server 2012 and .NET 4.5, and support .NET 4.5 with Websites).  Keep an eye out on my blog for details as these new features become available. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Oracle Database 12 c New Partition Maintenance Features by Gwen Lazenby

    - by hamsun
    One of my favourite new features in Oracle Database 12c is the ability to perform partition maintenance operations on multiple partitions. This means we can now add, drop, truncate and merge multiple partitions in one operation, and can split a single partition into more than two partitions also in just one command. This would certainly have made my life slightly easier had it been available when I administered a data warehouse at Oracle 9i. To demonstrate this new functionality and syntax, I am going to create two tables, ORDERS and ORDERS_ITEMS which have a parent-child relationship. ORDERS is to be partitioned using range partitioning on the ORDER_DATE column, and ORDER_ITEMS is going to partitioned using reference partitioning and its foreign key relationship with the ORDERS table. This form of partitioning was a new feature in 11g and means that any partition maintenance operations performed on the ORDERS table will also take place on the ORDER_ITEMS table as well. First create the ORDERS table - SQL CREATE TABLE orders ( order_id NUMBER(12), order_date TIMESTAMP, order_mode VARCHAR2(8), customer_id NUMBER(6), order_status NUMBER(2), order_total NUMBER(8,2), sales_rep_id NUMBER(6), promotion_id NUMBER(6), CONSTRAINT orders_pk PRIMARY KEY(order_id) ) PARTITION BY RANGE(order_date) (PARTITION Q1_2007 VALUES LESS THAN (TO_DATE('01-APR-2007','DD-MON-YYYY')), PARTITION Q2_2007 VALUES LESS THAN (TO_DATE('01-JUL-2007','DD-MON-YYYY')), PARTITION Q3_2007 VALUES LESS THAN (TO_DATE('01-OCT-2007','DD-MON-YYYY')), PARTITION Q4_2007 VALUES LESS THAN (TO_DATE('01-JAN-2008','DD-MON-YYYY')) ); Table created. Now the ORDER_ITEMS table SQL CREATE TABLE order_items ( order_id NUMBER(12) NOT NULL, line_item_id NUMBER(3) NOT NULL, product_id NUMBER(6) NOT NULL, unit_price NUMBER(8,2), quantity NUMBER(8), CONSTRAINT order_items_fk FOREIGN KEY(order_id) REFERENCES orders(order_id) on delete cascade) PARTITION BY REFERENCE(order_items_fk) tablespace example; Table created. Now look at DBA_TAB_PARTITIONS to get details of what partitions we have in the two tables – SQL select table_name,partition_name, partition_position position, high_value from dba_tab_partitions where table_owner='SH' and table_name like 'ORDER_%' order by partition_position, table_name; TABLE_NAME PARTITION_NAME POSITION HIGH_VALUE -------------- --------------- -------- ------------------------- ORDERS Q1_2007 1 TIMESTAMP' 2007-04-01 00:00:00' ORDER_ITEMS Q1_2007 1 ORDERS Q2_2007 2 TIMESTAMP' 2007-07-01 00:00:00' ORDER_ITEMS Q2_2007 2 ORDERS Q3_2007 3 TIMESTAMP' 2007-10-01 00:00:00' ORDER_ITEMS Q3_2007 3 ORDERS Q4_2007 4 TIMESTAMP' 2008-01-01 00:00:00' ORDER_ITEMS Q4_2007 4 Just as an aside it is also now possible in 12c to use interval partitioning on reference partitioned tables. In 11g it was not possible to combine these two new partitioning features. For our first example of the new 12cfunctionality, let us add all the partitions necessary for 2008 to the tables using one command. Notice that the partition specification part of the add command is identical in format to the partition specification part of the create command as shown above - SQL alter table orders add PARTITION Q1_2008 VALUES LESS THAN (TO_DATE('01-APR-2008','DD-MON-YYYY')), PARTITION Q2_2008 VALUES LESS THAN (TO_DATE('01-JUL-2008','DD-MON-YYYY')), PARTITION Q3_2008 VALUES LESS THAN (TO_DATE('01-OCT-2008','DD-MON-YYYY')), PARTITION Q4_2008 VALUES LESS THAN (TO_DATE('01-JAN-2009','DD-MON-YYYY')); Table altered. Now look at DBA_TAB_PARTITIONS and we can see that the 4 new partitions have been added to both tables – SQL select table_name,partition_name, partition_position position, high_value from dba_tab_partitions where table_owner='SH' and table_name like 'ORDER_%' order by partition_position, table_name; TABLE_NAME PARTITION_NAME POSITION HIGH_VALUE -------------- --------------- -------- ------------------------- ORDERS Q1_2007 1 TIMESTAMP' 2007-04-01 00:00:00' ORDER_ITEMS Q1_2007 1 ORDERS Q2_2007 2 TIMESTAMP' 2007-07-01 00:00:00' ORDER_ITEMS Q2_2007 2 ORDERS Q3_2007 3 TIMESTAMP' 2007-10-01 00:00:00' ORDER_ITEMS Q3_2007 3 ORDERS Q4_2007 4 TIMESTAMP' 2008-01-01 00:00:00' ORDER_ITEMS Q4_2007 4 ORDERS Q1_2008 5 TIMESTAMP' 2008-04-01 00:00:00' ORDER_ITEMS Q1_2008 5 ORDERS Q2_2008 6 TIMESTAMP' 2008-07-01 00:00:00' ORDER_ITEM Q2_2008 6 ORDERS Q3_2008 7 TIMESTAMP' 2008-10-01 00:00:00' ORDER_ITEMS Q3_2008 7 ORDERS Q4_2008 8 TIMESTAMP' 2009-01-01 00:00:00' ORDER_ITEMS Q4_2008 8 Next, we can drop or truncate multiple partitions by giving a comma separated list in the alter table command. Note the use of the plural ‘partitions’ in the command as opposed to the singular ‘partition’ prior to 12c– SQL alter table orders drop partitions Q3_2008,Q2_2008,Q1_2008; Table altered. Now look at DBA_TAB_PARTITIONS and we can see that the 3 partitions have been dropped in both the two tables – TABLE_NAME PARTITION_NAME POSITION HIGH_VALUE -------------- --------------- -------- ------------------------- ORDERS Q1_2007 1 TIMESTAMP' 2007-04-01 00:00:00' ORDER_ITEMS Q1_2007 1 ORDERS Q2_2007 2 TIMESTAMP' 2007-07-01 00:00:00' ORDER_ITEMS Q2_2007 2 ORDERS Q3_2007 3 TIMESTAMP' 2007-10-01 00:00:00' ORDER_ITEMS Q3_2007 3 ORDERS Q4_2007 4 TIMESTAMP' 2008-01-01 00:00:00' ORDER_ITEMS Q4_2007 4 ORDERS Q4_2008 5 TIMESTAMP' 2009-01-01 00:00:00' ORDER_ITEMS Q4_2008 5 Now let us merge all the 2007 partitions together to form one single partition – SQL alter table orders merge partitions Q1_2005, Q2_2005, Q3_2005, Q4_2005 into partition Y_2007; Table altered. TABLE_NAME PARTITION_NAME POSITION HIGH_VALUE -------------- --------------- -------- ------------------------- ORDERS Y_2007 1 TIMESTAMP' 2008-01-01 00:00:00' ORDER_ITEMS Y_2007 1 ORDERS Q4_2008 2 TIMESTAMP' 2009-01-01 00:00:00' ORDER_ITEMS Q4_2008 2 Splitting partitions is a slightly more involved. In the case of range partitioning one of the new partitions must have no high value defined, and in list partitioning one of the new partitions must have no list of values defined. I call these partitions the ‘everything else’ partitions, and will contain any rows contained in the original partition that are not contained in the any of the other new partitions. For example, let us split the Y_2007 partition back into 4 quarterly partitions – SQL alter table orders split partition Y_2007 into (PARTITION Q1_2007 VALUES LESS THAN (TO_DATE('01-APR-2007','DD-MON-YYYY')), PARTITION Q2_2007 VALUES LESS THAN (TO_DATE('01-JUL-2007','DD-MON-YYYY')), PARTITION Q3_2007 VALUES LESS THAN (TO_DATE('01-OCT-2007','DD-MON-YYYY')), PARTITION Q4_2007); Now look at DBA_TAB_PARTITIONS to get details of the new partitions – TABLE_NAME PARTITION_NAME POSITION HIGH_VALUE -------------- --------------- -------- ------------------------- ORDERS Q1_2007 1 TIMESTAMP' 2007-04-01 00:00:00' ORDER_ITEMS Q1_2007 1 ORDERS Q2_2007 2 TIMESTAMP' 2007-07-01 00:00:00' ORDER_ITEMS Q2_2007 2 ORDERS Q3_2007 3 TIMESTAMP' 2007-10-01 00:00:00' ORDER_ITEMS Q3_2007 3 ORDERS Q4_2007 4 TIMESTAMP' 2008-01-01 00:00:00' ORDER_ITEMS Q4_2007 4 ORDERS Q4_2008 5 TIMESTAMP' 2009-01-01 00:00:00' ORDER_ITEMS Q4_2008 5 Partition Q4_2007 has a high value equal to the high value of the original Y_2007 partition, and so has inherited its upper boundary from the partition that was split. As for a list partitioning example let look at the following another table, SALES_PAR_LIST, which has 2 partitions, Americas and Europe and a partitioning key of country_name. SQL select table_name,partition_name, high_value from dba_tab_partitions where table_owner='SH' and table_name = 'SALES_PAR_LIST'; TABLE_NAME PARTITION_NAME HIGH_VALUE -------------- --------------- ----------------------------- SALES_PAR_LIST AMERICAS 'Argentina', 'Canada', 'Peru', 'USA', 'Honduras', 'Brazil', 'Nicaragua' SALES_PAR_LIST EUROPE 'France', 'Spain', 'Ireland', 'Germany', 'Belgium', 'Portugal', 'Denmark' Now split the Americas partition into 3 partitions – SQL alter table sales_par_list split partition americas into (partition south_america values ('Argentina','Peru','Brazil'), partition north_america values('Canada','USA'), partition central_america); Table altered. Note that no list of values was given for the ‘Central America’ partition. However it should have inherited any values in the original ‘Americas’ partition that were not assigned to either the ‘North America’ or ‘South America’ partitions. We can confirm this by looking at the DBA_TAB_PARTITIONS view. SQL select table_name,partition_name, high_value from dba_tab_partitions where table_owner='SH' and table_name = 'SALES_PAR_LIST'; TABLE_NAME PARTITION_NAME HIGH_VALUE --------------- --------------- -------------------------------- SALES_PAR_LIST SOUTH_AMERICA 'Argentina', 'Peru', 'Brazil' SALES_PAR_LIST NORTH_AMERICA 'Canada', 'USA' SALES_PAR_LIST CENTRAL_AMERICA 'Honduras', 'Nicaragua' SALES_PAR_LIST EUROPE 'France', 'Spain', 'Ireland', 'Germany', 'Belgium', 'Portugal', 'Denmark' In conclusion, I hope that DBA’s whose work involves maintaining partitions will find the operations a bit more straight forward to carry out once they have upgraded to Oracle Database 12c. Gwen Lazenby is a Principal Training Consultant at Oracle. She is part of Oracle University's Core Technology delivery team based in the UK, teaching Database Administration and Linux courses. Her specialist topics include using Oracle Partitioning and Parallelism in Data Warehouse environments, as well as Oracle Spatial and RMAN.

    Read the article

  • More Great Improvements to the Windows Azure Management Portal

    - by ScottGu
    Over the last 3 weeks we’ve released a number of enhancements to the new Windows Azure Management Portal.  These new capabilities include: Localization Support for 6 languages Operation Log Support Support for SQL Database Metrics Virtual Machine Enhancements (quick create Windows + Linux VMs) Web Site Enhancements (support for creating sites in all regions, private github repo deployment) Cloud Service Improvements (deploy from storage account, configuration support of dedicated cache) Media Service Enhancements (upload, encode, publish, stream all from within the portal) Virtual Networking Usability Enhancements Custom CNAME support with Storage Accounts All of these improvements are now live in production and available to start using immediately.  Below are more details on them: Localization Support The Windows Azure Portal now supports 6 languages – English, German, Spanish, French, Italian and Japanese. You can easily switch between languages by clicking on the Avatar bar on the top right corner of the Portal: Selecting a different language will automatically refresh the UI within the portal in the selected language: Operation Log Support The Windows Azure Portal now supports the ability for administrators to review the “operation logs” of the services they manage – making it easy to see exactly what management operations were performed on them.  You can query for these by selecting the “Settings” tab within the Portal and then choosing the “Operation Logs” tab within it.  This displays a filter UI that enables you to query for operations by date and time: As of the most recent release we now show logs for all operations performed on Cloud Services and Storage Accounts.  You can click on any operation in the list and click the “Details” button in the command bar to retrieve detailed status about it.  This now makes it possible to retrieve details about every management operation performed. In future updates you’ll see us extend the operation log capability to apply to all Windows Azure Services – which will enable great post-mortem and audit support. Support for SQL Database Metrics You can now monitor the number of successful connections, failed connections and deadlocks in your SQL databases using the new “Dashboard” view provided on each SQL Database resource: Additionally, if the database is added as a “linked resource” to a Web Site or Cloud Service, monitoring metrics for the linked SQL database are shown along with the Web Site or Cloud Service metrics in the dashboard. This helps with viewing and managing aggregated information across both resources in your application. Enhancements to Virtual Machines The most recent Windows Azure Portal release brings with it some nice usability improvements to Virtual Machines: Integrated Quick Create experience for Windows and Linux VMs Creating a new Windows or Linux VM is now easy using the new “Quick Create” experience in the Portal: In addition to Windows VM templates you can also now select Linux image templates in the quick create UI: This makes it incredibly easy to create a new Virtual Machine in only a few seconds. Enhancements to Web Sites Prior to this past month’s release, users were forced to choose a single geographical region when creating their first site.  After that, subsequent sites could only be created in that same region.  This restriction has now been removed, and you can now create sites in any region at any time and have up to 10 free sites in each supported region: One of the new regions we’ve recently opened up is the “East Asia” region.  This allows you to now deploy sites to North America, Europe and Asia simultaneously.  Private GitHub Repository Support This past week we also enabled Git based continuous deployment support for Web Sites from private GitHub and BitBucket repositories (previous to this you could only enable this with public repositories).  Enhancements to Cloud Services Experience The most recent Windows Azure Portal release brings with it some nice usability improvements to Cloud Services: Deploy a Cloud Service from a Windows Azure Storage Account The Windows Azure Portal now supports deploying an application package and configuration file stored in a blob container in Windows Azure Storage. The ability to upload an application package from storage is available when you custom create, or upload to, or update a cloud service deployment. To upload an application package and configuration, create a Cloud Service, then select the file upload dialog, and choose to upload from a Windows Azure Storage Account: To upload an application package from storage, click the “FROM STORAGE” button and select the application package and configuration file to use from the new blob storage explorer in the portal. Configure Windows Azure Caching in a caching enabled cloud service If you have deployed the new dedicated cache within a cloud service role, you can also now configure the cache settings in the portal by navigating to the configuration tab of for your Cloud Service deployment. The configuration experience is similar to the one in Visual Studio when you create a cloud service and add a caching role.  The portal now allows you to add or remove named caches and change the settings for the named caches – all from within the Portal and without needing to redeploy your application. Enhancements to Media Services You can now upload, encode, publish, and play your video content directly from within the Windows Azure Portal.  This makes it incredibly easy to get started with Windows Azure Media Services and perform common tasks without having to write any code. Simply navigate to your media service and then click on the “Content” tab.  All of the media content within your media service account will be listed here: Clicking the “upload” button within the portal now allows you to upload a media file directly from your computer: This will cause the video file you chose from your local file-system to be uploaded into Windows Azure.  Once uploaded, you can select the file within the content tab of the Portal and click the “Encode” button to transcode it into different streaming formats: The portal includes a number of pre-set encoding formats that you can easily convert media content into: Once you select an encoding and click the ok button, Windows Azure Media Services will kick off an encoding job that will happen in the cloud (no need for you to stand-up or configure a custom encoding server).  When it’s finished, you can select the video in the “Content” tab and then click PUBLISH in the command bar to setup an origin streaming end-point to it: Once the media file is published you can point apps against the public URL and play the content using Windows Azure Media Services – no need to setup or run your own streaming server.  You can also now select the file and click the “Play” button in the command bar to play it using the streaming endpoint directly within the Portal: This makes it incredibly easy to try out and use Windows Azure Media Services and test out an end-to-end workflow without having to write any code.  Once you test things out you can of course automate it using script or code – providing you with an incredibly powerful Cloud Media platform that you can use. Enhancements to Virtual Network Experience Over the last few months, we have received feedback on the complexity of the Virtual Network creation experience. With these most recent Portal updates, we have added a Quick Create experience that makes the creation experience very simple. All that an administrator now needs to do is to provide a VNET name, choose an address space and the size of the VNET address space. They no longer need to understand the intricacies of the CIDR format or walk through a 4-page wizard or create a VNET / subnet. This makes creating virtual networks really simple: The portal also now has a “Register DNS Server” task that makes it easy to register DNS servers and associate them with a virtual network. Enhancements to Storage Experience The portal now lets you register custom domain names for your Windows Azure Storage Accounts.  To enable this, select a storage resource and then go to the CONFIGURE tab for a storage account, and then click MANAGE DOMAIN on the command bar: Clicking “Manage Domain” will bring up a dialog that allows you to register any CNAME you want: Summary The above features are all now live in production and available to use immediately.  If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using them today.  Visit the Windows Azure Developer Center to learn more about how to build apps with it. One of the other cool features that is now live within the portal is our new Windows Azure Store – which makes it incredibly easy to try and purchase developer services from a variety of partners.  It is an incredibly awesome new capability – and something I’ll be doing a dedicated post about shortly. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • What are the basic features of an email module in a common web application?

    - by Coral Doe
    When developing an email module, what are the features to have in mind, besides actual email sending? I am talking about an email module that notifies users of events and periodically sends reports. The only other feature I have in mind is maintaining grey/black lists for users that do illegal operations in the system or any other things that may lead to email/domain/IP banning. Is there an etiquette for developing email modules? Are there some references of requirements for such modules?

    Read the article

  • SQL SERVER – BI Quiz Hint – Performance Tuning Cubes – Hints

    - by pinaldave
    I earlier wrote about SQL BI Quiz over here and here. The details of the quiz is here: Working with huge data is very common when it is about Data Warehousing. It is necessary to create Cubes on the data to make it meaningful and consumable. There are cases when retrieving the data from cube takes lots of the time. Let us assume that your cube is returning you data very quickly. Suddenly on one day it is returning the data very slowly. What are the three things will you to diagnose this. After diagnose what you will do to resolve performance issue. Participate in my question over here I required BI Expert Jason Thomas to help with few hints to blog readers. He is one of the leading SSAS expert and writes a complicated subject in simple words. If queries were executing properly before but now take a long time to return the data, it means that there has been a change in the environment in which it is running. Some possible changes are listed below:-  1) Data factors:- Compare the data size then and now. Increase in data can result in different execution times. Poorly written queries as well as poor design will not start showing issues till the data grows. How to find it out? (Ans : SQL Server profiler and Perfmon Counters can be used for identifying the issues and performance  tuning the MDX queries)  2) Internal Factors:- Is some slow MDX query / multiple mdx queries running at the same time, which was not running when you had tested it before? Is there any locking happening due to proactive caching or processing operations? Are the measure group caches being cleared by processing operations? (Ans : Again, profiler and perfmon counters will help in finding it out. Load testing can be done using AS Performance Workbench (http://asperfwb.codeplex.com/) by running multiple queries at once)  3) External factors:- Is some other application competing for the same resources?  HINT : Read “Identifying and Resolving MDX Query Performance Bottlenecks in SQL Server 2005 Analysis Services” (http://sqlcat.com/whitepapers/archive/2007/12/16/identifying-and-resolving-mdx-query-performance-bottlenecks-in-sql-server-2005-analysis-services.aspx) Well, these are great tips. Now win big prizes by participate in my question over here. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Why Solid-State Drives Slow Down As You Fill Them Up

    - by Chris Hoffman
    The benchmarks are clear: Solid-state drives slow down as you fill them up. Fill your solid-state drive to near-capacity and its write performance will decrease dramatically. The reason why lies in the way SSDs and NAND Flash storage work. Filling the drive to capacity is one of the things you should never do with a solid-state drive. A nearly full solid-state drive will have much slower write operations, slowing down your computer.    

    Read the article

  • Precompiling LINQ Queries

    Did you know that by precompiling LINQ queries you might actually be degrading your app’s performance if you’re not careful? Julie Lerman explains how to ensure you’re not re-precompiling queries each time and losing the expected performance benefits across post-backs, short-lived service operations and other code where critical instances are going out of scope.

    Read the article

  • Design Anti-Patterns - C# - Do you call this a God object?

    - by Reddy S R
    I am writing Portfolio module for my web site and it has 3 components. Gallery Category, Gallery, & Gallery Images. I am doing all the request handling, (creating, reading, updating, other), for the above 3 components in 1 class, Portfolio. DB handling jobs for Portfolio module is done in another file. My question is, even just for request handling purpose, can you do all the operations in 1 class? -Reddy

    Read the article

  • Google I/O 2012 - Managing Google Compute Engine Virtual Machines Through Google App Engine

    Google I/O 2012 - Managing Google Compute Engine Virtual Machines Through Google App Engine Alon Levi, Adam Eijdenberg Google Compute Engine provides highly efficient and scalable virtual machines for large scale data processing operations. Integration with Google App Engine provides an orchestration framework to manage large virtual machine clusters used for data processing. This session will talk demonstrate integration and discuss future use cases of the two technologies. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 0 0 ratings Time: 51:06 More in Science & Technology

    Read the article

  • Internal Mutation of Persistent Data Structures

    - by Greg Ros
    To clarify, when I mean use the terms persistent and immutable on a data structure, I mean that: The state of the data structure remains unchanged for its lifetime. It always holds the same data, and the same operations always produce the same results. The data structure allows Add, Remove, and similar methods that return new objects of its kind, modified as instructed, that may or may not share some of the data of the original object. However, while a data structure may seem to the user as persistent, it may do other things under the hood. To be sure, all data structures are, internally, at least somewhere, based on mutable storage. If I were to base a persistent vector on an array, and copy it whenever Add is invoked, it would still be persistent, as long as I modify only locally created arrays. However, sometimes, you can greatly increase performance by mutating a data structure under the hood. In more, say, insidious, dangerous, and destructive ways. Ways that might leave the abstraction untouched, not letting the user know anything has changed about the data structure, but being critical in the implementation level. For example, let's say that we have a class called ArrayVector implemented using an array. Whenever you invoke Add, you get a ArrayVector build on top of a newly allocated array that has an additional item. A sequence of such updates will involve n array copies and allocations. Here is an illustration: However, let's say we implement a lazy mechanism that stores all sorts of updates -- such as Add, Set, and others in a queue. In this case, each update requires constant time (adding an item to a queue), and no array allocation is involved. When a user tries to get an item in the array, all the queued modifications are applied under the hood, requiring a single array allocation and copy (since we know exactly what data the final array will hold, and how big it will be). Future get operations will be performed on an empty cache, so they will take a single operation. But in order to implement this, we need to 'switch' or mutate the internal array to the new one, and empty the cache -- a very dangerous action. However, considering that in many circumstances (most updates are going to occur in sequence, after all), this can save a lot of time and memory, it might be worth it -- you will need to ensure exclusive access to the internal state, of course. This isn't a question about the efficacy of such a data structure. It's a more general question. Is it ever acceptable to mutate the internal state of a supposedly persistent or immutable object in destructive and dangerous ways? Does performance justify it? Would you still be able to call it immutable? Oh, and could you implement this sort of laziness without mutating the data structure in the specified fashion?

    Read the article

  • Virtual Management with Oracle Enterprise Manager

    - by Get_Specialized!
    Whether you have already been working with Oracle VM or considering to use it, there are management capabilities available to you to use as a partner as part of your solution or services. The integration of Oracle VM Server for x86 with Oracle Enterprise Manager Ops Center provides you the platform to manage Oracle VM Manager, Oracle VM Servers, server pools, and the virtual machines through Oracle Enterprise Manager Ops Center UI. If you utilize Oracle Enterprise Manager Ops Center, the following are example management operations available to you for Oracle VM Server for x86 deployments: Discover deployed Oracle VM Managers Provision Oracle VM Servers Discover existing Oracle VM Servers Launch Oracle VM Manager UI Create virtual machines Provision OS on virtual machines Create server pools Connect to Oracle VM Manager console Manage storage repositories of Oracle VM Server for x86 Perform management operations on Oracle VM Servers and virtual machines Learn more about this capability from the reference guide Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Here. For more information about Oracle Enterprise Manager and how it can be used by partners join the Oracle PartnerNetwork KnowledgeZone at http://www.oracle.com/partners/goto/enterprisemanager

    Read the article

  • CVE-2006-4514 Buffer overflow vulnerability in Gnome Structured File library (libgsf)

    - by RitwikGhoshal
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2006-4514 Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability 7.5 Gnome Structured File library (libgsf) Solaris 10 SPARC: 149108-01 X86: 149109-01 This notification describes vulnerabilities fixed in third-party components that are included in Oracle's product distributions.Information about vulnerabilities affecting Oracle products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • When to use SOAP over REST

    So, how does REST based services differ from SOAP based services, and when should you use SOAP? Representational State Transfer (REST) implements the standard HTTP/HTTPS as an interface allowing clients to obtain access to resources based on requested URIs. An example of a URI may look like this http://mydomain.com/service/method?parameter=var1&parameter=var2. It is important to note that REST based services are stateless because http/https is natively stateless. One of the many benefits for implementing HTTP/HTTPS as an interface is can be found in caching. Caching can be done on a web service much like caching is done on requested web pages. Caching allows for reduced web server processing and increased response times because content is already processed and stored for immediate access. Typical actions performed by REST based services include generic CRUD (Create, Read, Update, and Delete) operations and operations that do not require state. Simple Object Access Protocol (SOAP) on the other hand uses a generic interface in order to transport messages. Unlike REST, SOAP can use HTTP/HTTPS, SMTP, JMS, or any other standard transport protocols. Furthermore, SOAP utilizes XML in the following ways: Define a message Defines how a message is to be processed Defines the encoding of a message Lays out procedure calls and responses As REST aligns more with a Resource View, SOAP aligns more with a Method View in that business logic is exposed as methods typically through SOAP web service because they can retain state. In addition, SOAP requests are not cached therefore every request will be processed by the server. As stated before Soap does retain state and this gives it a special advantage over REST for services that need to preform transactions where multiple calls to a service are need in order to complete a task. Additionally, SOAP is more ideal for enterprise level services that implement standard exchange formats in the form of contracts due to the fact that REST does not currently support this. A real world example of where SOAP is preferred over REST can be seen in the banking industry where money is transferred from one account to another. SOAP would allow a bank to perform a transaction on an account and if the transaction failed, SOAP would automatically retry the transaction ensuring that the request was completed. Unfortunately, with REST, failed service calls must be handled manually by the requesting application. References: Francia, S. (2010). SOAP vs. REST. Retrieved 11 20, 2011, from spf13: http://spf13.com/post/soap-vs-rest Rozlog, M. (2010). REST and SOAP: When Should I Use Each (or Both)? Retrieved 11 20, 2011, from Infoq.com: http://www.infoq.com/articles/rest-soap-when-to-use-each

    Read the article

  • Thread travailleur avec Qt en utilisant les signaux et les slots, un article de Christophe Dumez traduit par Thibaut Cuvelier

    Qt fournit des classes de threads indépendantes de la plateforme, une manière thread-safe de poster des événements et des connexions entre signaux et slots entre les threads. La programmation multithreadée s'avantage des machines à plusieurs processeurs et est aussi utile pour effectuer les opérations chronophages sans geler l'interface utilisateur d'une application. Sans multithreading, tout est fait dans le thread principal.

    Read the article

  • When is a Seek not a Seek?

    - by Paul White
    The following script creates a single-column clustered table containing the integers from 1 to 1,000 inclusive. IF OBJECT_ID(N'tempdb..#Test', N'U') IS NOT NULL DROP TABLE #Test ; GO CREATE TABLE #Test ( id INTEGER PRIMARY KEY CLUSTERED ); ; INSERT #Test (id) SELECT V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 1000 ; Let’s say we need to find the rows with values from 100 to 170, excluding any values that divide exactly by 10.  One way to write that query would be: SELECT T.id FROM #Test AS T WHERE T.id IN ( 101,102,103,104,105,106,107,108,109, 111,112,113,114,115,116,117,118,119, 121,122,123,124,125,126,127,128,129, 131,132,133,134,135,136,137,138,139, 141,142,143,144,145,146,147,148,149, 151,152,153,154,155,156,157,158,159, 161,162,163,164,165,166,167,168,169 ) ; That query produces a pretty efficient-looking query plan: Knowing that the source column is defined as an INTEGER, we could also express the query this way: SELECT T.id FROM #Test AS T WHERE T.id >= 101 AND T.id <= 169 AND T.id % 10 > 0 ; We get a similar-looking plan: If you look closely, you might notice that the line connecting the two icons is a little thinner than before.  The first query is estimated to produce 61.9167 rows – very close to the 63 rows we know the query will return.  The second query presents a tougher challenge for SQL Server because it doesn’t know how to predict the selectivity of the modulo expression (T.id % 10 > 0).  Without that last line, the second query is estimated to produce 68.1667 rows – a slight overestimate.  Adding the opaque modulo expression results in SQL Server guessing at the selectivity.  As you may know, the selectivity guess for a greater-than operation is 30%, so the final estimate is 30% of 68.1667, which comes to 20.45 rows. The second difference is that the Clustered Index Seek is costed at 99% of the estimated total for the statement.  For some reason, the final SELECT operator is assigned a small cost of 0.0000484 units; I have absolutely no idea why this is so, or what it models.  Nevertheless, we can compare the total cost for both queries: the first one comes in at 0.0033501 units, and the second at 0.0034054.  The important point is that the second query is costed very slightly higher than the first, even though it is expected to produce many fewer rows (20.45 versus 61.9167). If you run the two queries, they produce exactly the same results, and both complete so quickly that it is impossible to measure CPU usage for a single execution.  We can, however, compare the I/O statistics for a single run by running the queries with STATISTICS IO ON: Table '#Test'. Scan count 63, logical reads 126, physical reads 0. Table '#Test'. Scan count 01, logical reads 002, physical reads 0. The query with the IN list uses 126 logical reads (and has a ‘scan count’ of 63), while the second query form completes with just 2 logical reads (and a ‘scan count’ of 1).  It is no coincidence that 126 = 63 * 2, by the way.  It is almost as if the first query is doing 63 seeks, compared to one for the second query. In fact, that is exactly what it is doing.  There is no indication of this in the graphical plan, or the tool-tip that appears when you hover your mouse over the Clustered Index Seek icon.  To see the 63 seek operations, you have click on the Seek icon and look in the Properties window (press F4, or right-click and choose from the menu): The Seek Predicates list shows a total of 63 seek operations – one for each of the values from the IN list contained in the first query.  I have expanded the first seek node to show the details; it is seeking down the clustered index to find the entry with the value 101.  Each of the other 62 nodes expands similarly, and the same information is contained (even more verbosely) in the XML form of the plan. Each of the 63 seek operations starts at the root of the clustered index B-tree and navigates down to the leaf page that contains the sought key value.  Our table is just large enough to need a separate root page, so each seek incurs 2 logical reads (one for the root, and one for the leaf).  We can see the index depth using the INDEXPROPERTY function, or by using the a DMV: SELECT S.index_type_desc, S.index_depth FROM sys.dm_db_index_physical_stats ( DB_ID(N'tempdb'), OBJECT_ID(N'tempdb..#Test', N'U'), 1, 1, DEFAULT ) AS S ; Let’s look now at the Properties window when the Clustered Index Seek from the second query is selected: There is just one seek operation, which starts at the root of the index and navigates the B-tree looking for the first key that matches the Start range condition (id >= 101).  It then continues to read records at the leaf level of the index (following links between leaf-level pages if necessary) until it finds a row that does not meet the End range condition (id <= 169).  Every row that meets the seek range condition is also tested against the Residual Predicate highlighted above (id % 10 > 0), and is only returned if it matches that as well. You will not be surprised that the single seek (with a range scan and residual predicate) is much more efficient than 63 singleton seeks.  It is not 63 times more efficient (as the logical reads comparison would suggest), but it is around three times faster.  Let’s run both query forms 10,000 times and measure the elapsed time: DECLARE @i INTEGER, @n INTEGER = 10000, @s DATETIME = GETDATE() ; SET NOCOUNT ON; SET STATISTICS XML OFF; ; WHILE @n > 0 BEGIN SELECT @i = T.id FROM #Test AS T WHERE T.id IN ( 101,102,103,104,105,106,107,108,109, 111,112,113,114,115,116,117,118,119, 121,122,123,124,125,126,127,128,129, 131,132,133,134,135,136,137,138,139, 141,142,143,144,145,146,147,148,149, 151,152,153,154,155,156,157,158,159, 161,162,163,164,165,166,167,168,169 ) ; SET @n -= 1; END ; PRINT DATEDIFF(MILLISECOND, @s, GETDATE()) ; GO DECLARE @i INTEGER, @n INTEGER = 10000, @s DATETIME = GETDATE() ; SET NOCOUNT ON ; WHILE @n > 0 BEGIN SELECT @i = T.id FROM #Test AS T WHERE T.id >= 101 AND T.id <= 169 AND T.id % 10 > 0 ; SET @n -= 1; END ; PRINT DATEDIFF(MILLISECOND, @s, GETDATE()) ; On my laptop, running SQL Server 2008 build 4272 (SP2 CU2), the IN form of the query takes around 830ms and the range query about 300ms.  The main point of this post is not performance, however – it is meant as an introduction to the next few parts in this mini-series that will continue to explore scans and seeks in detail. When is a seek not a seek?  When it is 63 seeks © Paul White 2011 email: [email protected] twitter: @SQL_kiwi

    Read the article

< Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >