Search Results

Search found 13927 results on 558 pages for 'programming theory'.

Page 34/558 | < Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >

  • What non-programming books should a programmer read to help develop programming/thinking skills?

    - by FeatureCreep
    There are a lot of questions about what programming books should be on the programmer's bookshelf. How about non-programming related books that can help you become a better programmer or developer? It would also be interesting to know why they would help. My first choice would be Sun Tzu's "Art of War" (however cliché), because it made it obvious that the success of any project depends on the strength of its weakest link (and warfare is a big project).

    Read the article

  • Programming Languages

    - by Shannon
    I realize this will be a very vague question, but please bear with me. I have a concept for an open-world game, hand to hand combat, with a fairly open storyline, but there is an issue. I'm not sure which programming language to use, as I'm fairly new to programming. I am considering c++, but I would like to hear your opinions on which language you believe would support this type of game most efficiently. Pros and cons would be appreciated.

    Read the article

  • What non-programming books should a programmer read (that helps developing programming skills/thinking)?

    - by FeatureCreep
    There are a lot of questions about what programming books should be on the programmer's bookshelf. How about non-programming related books that can help you become a better programmer or developer? It would also be interesting to know why they would help. My first choice would be Sun Tzu's "Art of War" (however cliché), because it made it obvious that the success of any project depends on the strength of its weakest link (and warfare is a big project).

    Read the article

  • Implement a vpn

    - by jackson
    I want to build an application client(client.exe) - server to do the following: when the clients run it they are thrown in a VPN and they can communicate each other within 1 applicataion. For example : clients run client.exe and they can see each other in LAN ONLY in Starcraft. From what i have read the right type of vpn for this situation is Secured Socket Tunneling Protocol: "Secure socket tunneling protocol, also referred to as SSTP, is by definition an application-layer protocol. It is designed to employ a synchronous communication in a back and forth motion between two programs. It allows many application endpoints over one network connection, between peer nodes, thereby enabling efficient usage of the communication resources that are available to that network. " Question: I don't have experience with networking programming so my question for the ones who have, is this the right approach? PS1: i don't want something done like OpenVpn, i do this as learning exercise. PS2: the application is targeting Windows and i plan to use .NET Thanks for reading the whole story, i am waiting for your replies.

    Read the article

  • Is this too much to ask for a game programming and developing enthusiast? Am I doing this wrong?

    - by I_Question_Things_Deeply
    I have been a computer-fanatic for almost a decade now. I've always loved and wondered how computers work, even from the purest, lowest hardware level to the very smallest pixel on the screen, and all the software around that. That seems to be my problem though ... as I try to write code (I'm pretty fluent at C++) I always sit there enormous amounts of time in front of a text-editor wondering how every line, statement, datum, function, etc. will correspond to every Assembly and machine instruction performed to do absolutely everything necessary for the kernel to allocate memory to run my compiled program, and all of the other hardware being used as well. For example ... I would write cout << "Before memory changed" << endl; and run the debugger to get the Assembly for this, and then try and reverse disassemble the Assembly to machine code based on my ISA, and then research every .dll, library file, linked library, linking process, linker source code of the program, the make file, the kernel I'm using's steps of processing this compilation, the hardware's part aside from the processor (e.g. video card, sound card, chipset, cache latency, byte-sized registers, calling convention use, DDR3 RAM and disk drive, filesystem functioning and so many other things). Am I going about programming wrong? I mean I feel I should know everything that goes on underneath English syntax on a computer program. But the problem is that the more I research every little thing the less I actually accomplish at all. I can never finish anything because of this mentality, yet I feel compelled to know everything... what should I do?

    Read the article

  • Translation of clustering problem to graph theory language

    - by honk
    I have a rectangular planar grid, with each cell assigned some integer weight. I am looking for an algorithm to identify clusters of 3 to 6 adjacent cells with higher-than-average weight. These blobs should have approximately circular shape. For my case the average weight of the cells not containing a cluster is around 6, and that for cells containing a cluster is around 6+4, i.e. there is a "background weight" somewhere around 6. The weights fluctuate with a Poisson statistic. For small background greedy or seeded algorithms perform pretty well, but this breaks down if my cluster cells have weights close to fluctuations in the background. Also, I cannot do a brute-force search looping through all possible setups because my grid is large (something like 1000x1000). I have the impression there might exist ways to tackle this in graph theory. I heard of vertex-covers and cliques, but am not sure how to best translate my problem into their language.

    Read the article

  • box stacking in graph theory

    - by mozhdeh
    Please help me find a good solution for this problem. We have n boxes with 3 dimensions. We can orient them and we want to put them on top of another to have a maximun height. We can put a box on top of an other box, if 2 dimensions (width and lenght) are lower than the dimensions of the box below. For exapmle we have 3 dimensions w*D*h, we can show it in to (h*d,d*h,w*d,d*W,h*w,w*h) please help me to solve it in graph theory.

    Read the article

  • Theory of computation - Using the pumping lemma for context free languages

    - by Tony
    I'm reviewing my notes for my course on theory of computation and I'm having trouble understanding how to complete a certain proof. Here is the question: A = {0^n 1^m 0^n | n>=1, m>=1} Prove that A is not regular. It's pretty obvious that the pumping lemma has to be used for this. So, we have |vy| = 1 |vxy| <= p (p being the pumping length, = 1) uv^ixy^iz exists in A for all i = 0 Trying to think of the correct string to choose seems a bit iffy for this. I was thinking 0^p 1^q 0^p, but I don't know if I can obscurely make a q, and since there is no bound on u, this could make things unruly.. So, how would one go about this?

    Read the article

  • Theory of computation - Using the pumping lemma for CFLs

    - by Tony
    I'm reviewing my notes for my course on theory of computation and I'm having trouble understanding how to complete a certain proof. Here is the question: A = {0^n 1^m 0^n | n>=1, m>=1} Prove that A is not regular. It's pretty obvious that the pumping lemma has to be used for this. So, we have |vy| = 1 |vxy| <= p (p being the pumping length, = 1) uv^ixy^iz exists in A for all i = 0 Trying to think of the correct string to choose seems a bit iffy for this. I was thinking 0^p 1^q 0^p, but I don't know if I can obscurely make a q, and since there is no bound on u, this could make things unruly.. So, how would one go about this?

    Read the article

  • Real life usage of the projective plane theory

    - by Elazar Leibovich
    I'm learning about the theory of the projective plane. Very generally speaking, it is an extension of the plane, which includes additional points which are defined as the intersection points of two parallel lines. In the projective plane, every two lines have an interesection point. Whether they're parallel or not. Every point in the projective plane can be represented by three numbers (you actually need less than that, but nevemind now). Is there any real life application which uses the projective plane? I can think that, for instance, a software which needs to find the intersections of a line, can benefit from always having an intersection point which might lead to simpler code, but is it really used?

    Read the article

  • A compiler for automata theory

    - by saadtaame
    I'm designing a programming language for automata theory. My goal is to allow programmers to use machines (DFA, NFA, etc...) as units in expressions. I'm confused whether the language should be compiled, interpreted, or jit-compiled! My intuition is that compilation is a good choice, for some operations might take too much time (converting NFA's to equivalent DFA's can be expensive). Translating to x86 seems good. There is one issue however: I want the user to be able to plot machines. Any ideas?

    Read the article

  • C# 4.0: Dynamic Programming

    - by Paulo Morgado
    The major feature of C# 4.0 is dynamic programming. Not just dynamic typing, but dynamic in broader sense, which means talking to anything that is not statically typed to be a .NET object. Dynamic Language Runtime The Dynamic Language Runtime (DLR) is piece of technology that unifies dynamic programming on the .NET platform, the same way the Common Language Runtime (CLR) has been a common platform for statically typed languages. The CLR always had dynamic capabilities. You could always use reflection, but its main goal was never to be a dynamic programming environment and there were some features missing. The DLR is built on top of the CLR and adds those missing features to the .NET platform. The Dynamic Language Runtime is the core infrastructure that consists of: Expression Trees The same expression trees used in LINQ, now improved to support statements. Dynamic Dispatch Dispatches invocations to the appropriate binder. Call Site Caching For improved efficiency. Dynamic languages and languages with dynamic capabilities are built on top of the DLR. IronPython and IronRuby were already built on top of the DLR, and now, the support for using the DLR is being added to C# and Visual Basic. Other languages built on top of the CLR are expected to also use the DLR in the future. Underneath the DLR there are binders that talk to a variety of different technologies: .NET Binder Allows to talk to .NET objects. JavaScript Binder Allows to talk to JavaScript in SilverLight. IronPython Binder Allows to talk to IronPython. IronRuby Binder Allows to talk to IronRuby. COM Binder Allows to talk to COM. Whit all these binders it is possible to have a single programming experience to talk to all these environments that are not statically typed .NET objects. The dynamic Static Type Let’s take this traditional statically typed code: Calculator calculator = GetCalculator(); int sum = calculator.Sum(10, 20); Because the variable that receives the return value of the GetCalulator method is statically typed to be of type Calculator and, because the Calculator type has an Add method that receives two integers and returns an integer, it is possible to call that Sum method and assign its return value to a variable statically typed as integer. Now lets suppose the calculator was not a statically typed .NET class, but, instead, a COM object or some .NET code we don’t know he type of. All of the sudden it gets very painful to call the Add method: object calculator = GetCalculator(); Type calculatorType = calculator.GetType(); object res = calculatorType.InvokeMember("Add", BindingFlags.InvokeMethod, null, calculator, new object[] { 10, 20 }); int sum = Convert.ToInt32(res); And what if the calculator was a JavaScript object? ScriptObject calculator = GetCalculator(); object res = calculator.Invoke("Add", 10, 20); int sum = Convert.ToInt32(res); For each dynamic domain we have a different programming experience and that makes it very hard to unify the code. With C# 4.0 it becomes possible to write code this way: dynamic calculator = GetCalculator(); int sum = calculator.Add(10, 20); You simply declare a variable who’s static type is dynamic. dynamic is a pseudo-keyword (like var) that indicates to the compiler that operations on the calculator object will be done dynamically. The way you should look at dynamic is that it’s just like object (System.Object) with dynamic semantics associated. Anything can be assigned to a dynamic. dynamic x = 1; dynamic y = "Hello"; dynamic z = new List<int> { 1, 2, 3 }; At run-time, all object will have a type. In the above example x is of type System.Int32. When one or more operands in an operation are typed dynamic, member selection is deferred to run-time instead of compile-time. Then the run-time type is substituted in all variables and normal overload resolution is done, just like it would happen at compile-time. The result of any dynamic operation is always dynamic and, when a dynamic object is assigned to something else, a dynamic conversion will occur. Code Resolution Method double x = 1.75; double y = Math.Abs(x); compile-time double Abs(double x) dynamic x = 1.75; dynamic y = Math.Abs(x); run-time double Abs(double x) dynamic x = 2; dynamic y = Math.Abs(x); run-time int Abs(int x) The above code will always be strongly typed. The difference is that, in the first case the method resolution is done at compile-time, and the others it’s done ate run-time. IDynamicMetaObjectObject The DLR is pre-wired to know .NET objects, COM objects and so forth but any dynamic language can implement their own objects or you can implement your own objects in C# through the implementation of the IDynamicMetaObjectProvider interface. When an object implements IDynamicMetaObjectProvider, it can participate in the resolution of how method calls and property access is done. The .NET Framework already provides two implementations of IDynamicMetaObjectProvider: DynamicObject : IDynamicMetaObjectProvider The DynamicObject class enables you to define which operations can be performed on dynamic objects and how to perform those operations. For example, you can define what happens when you try to get or set an object property, call a method, or perform standard mathematical operations such as addition and multiplication. ExpandoObject : IDynamicMetaObjectProvider The ExpandoObject class enables you to add and delete members of its instances at run time and also to set and get values of these members. This class supports dynamic binding, which enables you to use standard syntax like sampleObject.sampleMember, instead of more complex syntax like sampleObject.GetAttribute("sampleMember").

    Read the article

  • Minimizing data sent over a webservice call on expensive connection

    - by aceinthehole
    I am working on a system that has many remote laptops all connected to the internet through cellular data connections. The application will synchronize periodically to a central database. The problem is, due to factors outside our control, the cost to move data across the cellular networks are spectacularly expensive. Currently the we are sending a compressed XML file across the wire where it is being processed and various things are done with (mainly stuffing it into a database). My first couple of thoughts were to convert that XML doc to json, just prior to transmission and convert back to XML just after receipt on the other end, and get some extra compression for free without changing much. Another thought was to test various other compression algorithms to determine the smallest one possible. Although, I am not entirely sure how much difference json vs xml would make once it is compressed. I thought that their must be resources available that address this problem from an information theory perspective. Does anyone know of any such resources or suggestions on what direction to go in. This developed on the MS .net stack on windows for reference.

    Read the article

  • Japanese Multiplication simulation - is a program actually capable of improving calculation speed?

    - by jt0dd
    On SuperUser, I asked a (possibly silly) question about processors using mathematical shortcuts and would like to have a look at the possibility at the software application of that concept. I'd like to write a simulation of Japanese Multiplication to get benchmarks on large calculations utilizing the shortcut vs traditional CPU multiplication. I'm curious as to whether it makes sense to try this. My Question: I'd like to know whether or not a software math shortcut, as described above is actually a shortcut at all. This is a question of programming concept. By utilizing the simulation of Japanese Multiplication, is a program actually capable of improving calculation speed? Or am I doomed from the start? The answer to this question isn't required to determine whether or not the experiment will succeed, but rather whether or not it's logically possible for such a thing to occur in any program, using this concept as an example. My theory is that since addition is computed faster than multiplication, a simulation of Japanese multiplication may actually allow a program to multiply (large) numbers faster than the CPU arithmetic unit can. I think this would be a very interesting finding, if it proves to be true. If, in the multiplication of numbers of any immense size, the shortcut were to calculate the result via less instructions (or faster) than traditional ALU multiplication, I would consider the experiment a success.

    Read the article

  • How to manipulate *huge* amounts of data

    - by Alejandro
    Hi there! I'm having the following problem. I need to store huge amounts of information (~32 GB) and be able to manipulate it as fast as possible. I'm wondering what's the best way to do it (combinations of programming language + OS + whatever you think its important). The structure of the information I'm using is a 4D array (NxNxNxN) of double-precission floats (8 bytes). Right now my solution is to slice the 4D array into 2D arrays and store them in separate files in the HDD of my computer. This is really slow and the manipulation of the data is unbearable, so this is no solution at all! I'm thinking on moving into a Supercomputing facility in my country and store all the information in the RAM, but I'm not sure how to implement an application to take advantage of it (I'm not a professional programmer, so any book/reference will help me a lot). An alternative solution I'm thinking on is to buy a dedicated server with lots of RAM, but I don't know for sure if that will solve the problem. So right now my ignorance doesn't let me choose the best way to proceed. What would you do if you were in this situation? I'm open to any idea. Thanks in advance!

    Read the article

  • Most useful parallel programming algorithm?

    - by Zubair
    I recenty asked a question about parallel programming algorithms which was closed quite fast due to my bad ability to communicate my intent: http://stackoverflow.com/questions/2407631/what-is-the-most-useful-parallel-programming-algorithm-closed I had also recently asked another question, specifically: http://stackoverflow.com/questions/2407493/is-mapreduce-such-a-generalisation-of-another-programming-principle/2407570#2407570 The other question was specifically about map reduce and to see if mapreduce was a more specific version of some other concept in parallel programming. This question (about a useful parallel programming algorithm) is more about the whole series of algorithms for parallel programming. You will have to excuse me though as I am quite new to parallel programming, so maybe MapReduce or something that is a more general form of mapreduce is the "only" parallel programming construct which is available, in which case I apologise for my ignorance

    Read the article

  • AJI Report #19 | Scott K Davis and his son Tommy on Gamification and Programming for Kids

    - by Jeff Julian
    We are very excited about this show. John and Jeff sat down with Scott Davis and his son Tommy to talk about Gamification and Programming for Kids. Tommy is nine years old and the Iowa Code Camp was his second time presenting. Scott and Tommy introduce a package called Scratch that was developed by MIT to teach kids about logic and interacting with programming using sprites. Tommy's favorite experience with programming right now is Lego Mindstorms because of the interaction with the Legos and the development. Most adults when they get started with development also got started with interacting more with the physical machines. The next generation is given amazing tools, but the tools tend to be sealed and the physical interaction is not there. With some of these alternative hobby platforms like Legos, Arduino, and .NET Micro Framework, kids can write some amazing application and see their code work with physical movement and interaction with devices and sensors. In the second half of this podcast, Scott talks about how companies can us Gamification to prompt employees to interact with software and processes in the organization. We see gamification throughout the consumer space and you need to do is open up the majority of the apps on our phones or tablets and there is some interaction point to give the user a reward for using the tool. Scott gets into his product Qonqr which is described as the board game Risk and Foursquare together. Scott gets into the different mindsets of gamers (Bartle Index) and how you can use these mindsets to get the most out of your team through gamification techniques. Listen to the Show Site: http://scottkdavis.com/ Twitter: @ScottKDavis LinkedIn: ScottKDavis Scratch: http://scratch.mit.edu/ Lego Mindstorms: http://mindstorms.lego.com/ Bartle Test: Wikipedia Gamification: Wikipedia

    Read the article

  • Programming concepts taken from the arts and humanities

    - by Joey Adams
    After reading Paul Graham's essay Hackers and Painters and Joel Spolsky's Advice for Computer Science College Students, I think I've finally gotten it through my thick skull that I should not be loath to work hard in academic courses that aren't "programming" or "computer science" courses. To quote the former: I've found that the best sources of ideas are not the other fields that have the word "computer" in their names, but the other fields inhabited by makers. Painting has been a much richer source of ideas than the theory of computation. — Paul Graham, "Hackers and Painters" There are certainly other, much stronger reasons to work hard in the "boring" classes. However, it'd also be neat to know that these classes may someday inspire me in programming. My question is: what are some specific examples where ideas from literature, art, humanities, philosophy, and other fields made their way into programming? In particular, ideas that weren't obviously applied the way they were meant to (like most math and domain-specific knowledge), but instead gave utterance or inspiration to a program's design and choice of names. Good examples: The term endian comes from Gulliver's Travels by Tom Swift (see here), where it refers to the trivial matter of which side people crack open their eggs. The terms journal and transaction refer to nearly identical concepts in both filesystem design and double-entry bookkeeping (financial accounting). mkfs.ext2 even says: Writing superblocks and filesystem accounting information: done Off-topic: Learning to write English well is important, as it enables a programmer to document and evangelize his/her software, as well as appear competent to other programmers online. Trigonometry is used in 2D and 3D games to implement rotation and direction aspects. Knowing finance will come in handy if you want to write an accounting package. Knowing XYZ will come in handy if you want to write an XYZ package. Arguably on-topic: The Monad class in Haskell is based on a concept by the same name from category theory. Actually, Monads in Haskell are monads in the category of Haskell types and functions. Whatever that means...

    Read the article

  • What are Web runtime environments and programming languages

    - by Bradly Spicer
    I've been looking into the details behind these two different categories: Web runtime environments Web application programming languages I believe I have the correct information and have phrased it correctly but I am unsure. I have been searching for a while but only find snippets of information or what I can see as useless information (I could be wrong). Here are my descriptions so far: Web runtime environments - A Run-time environment implements part of the core behaviour of any computer language and allows it to be modified via an API or embedded domain-specific language. A web runtime environment is similar except it uses web based languages such as Java-script which utilises the core behaviour a computer language. Another example of a Run-time environment web language is JsLibs which is a standable JavaScript development runtime environment for using JavaScript as a general all round scripting language. JavaScript is often used to create responsive interfaces which improve the user experience and provide dynamic functionality without having to wait for the server to react and direct to another page. Web application programming languages - A web application program language is something that mimics a traditional desktop application within a web page. For example, using PHP you can create forms and tables which use a database similar to that of Microsoft Excel. Some of the other languages for web application programming are: Ajax Perl Ruby Here are some of the resources used: http://en.wikipedia.org/wiki/Web_application_development http://code.google.com/p/jslibs/ I would like some confirmation that the descriptions I have created are correct as I am still slightly unsure as to whether I have hit the nail on the head.

    Read the article

  • Empirical evidence for choice of programming paradigm to address a problem

    - by Graham Lee
    The C2 wiki has a discussion of Empirical Evidence for Object-Oriented Programming that basically concludes there is none beyond appeal to authority. This was last edited in 2008. Discussion here seems to bear this out: questions on whether OO is outdated, when functional programming is a bad choice and the advantages and disadvantages of AOP are all answered with contributors' opinions without reliance on evidence. Of course, opinions of established and reputed practitioners are welcome and valuable things to have, but they're more plausible when they're consistent with experimental data. Does this evidence exist? Is evidence-based software engineering a thing? Specifically, if I have a particular problem P that I want to solve by writing software, does there exist a body of knowledge, studies and research that would let me see how the outcome of solving problems like P has depended on the choice of programming paradigm? I know that which paradigm comes out as "the right answer" can depend on what metrics a particular study pays attention to, on what conditions the study holds constant or varies, and doubtless on other factors too. That doesn't affect my desire to find this information and critically appraise it. It becomes clear that some people think I'm looking for a "turn the crank" solution - some sausage machine into which I put information about my problem and out of which comes a word like "functional" or "structured". This is not my intention. What I'm looking for is research into how - with a lot of caveats and assumptions that I'm not going into here but good literature on the matter would - certain properties of software vary depending on the problem and the choice of paradigm. In other words: some people say "OO gives better flexibility" or "functional programs have fewer bugs" - (part of) what I'm asking for is the evidence of this. The rest is asking for evidence against this, or the assumptions under which these statements are true, or evidence showing that these considerations aren't important. There are plenty of opinions on why one paradigm is better than another; is there anything objective behind any of these?

    Read the article

  • Can I assume interface oriented programming as a good object oriented programming?

    - by david
    I have been programming for decades but I have not been used to object oriented programming. But for recenet years, I had a great opportunity to learn OOP, its principles, and a lot of patterns that are great. Since I've learned OOP, I tried to apply them to a couple of projects and found those projects successful. Unfortunately I didn't follow extreme programming that suggests writing test first, mainly because their time frame were tight. What I did for those projects were Identify all necessary classes and create them with proper properties and methods whenever there is dependency between classes, write interface between them see if there is any patterns for certain relationships between classes to replace By successful, I meant that it was quick development effort, the classes can be reused better, and flexible enough so that another programmer does not have to change something else to fix another part. But I wonder if this is a good practice. Of course, I know I need to put writing unit tests first in my work process. But other than that, is there any problem with this approach - creating lots of interfaces - in long term?

    Read the article

  • Adult Swim Brings Their Programming Lineup to iOS Devices

    - by ETC
    If you’re a fan of the programming lineup on Adult Swim–such as Family Guy, Aqua Teen Hunger Force, and The Boondocks–you can now get the entire lineup for free on your iOS device. Adult Swim’s new iOS app streams Adult Swim’s programming lineup including popular shows such as Robot Chicken, Aqua Teen Hunger Force, Family Guy, The Boondocks, Metalocalypse. Hit up the link below to read more and grab a free copy. Adult Swim [iTunes App Store via Download Squad] Latest Features How-To Geek ETC What Can Super Mario Teach Us About Graphics Technology? Windows 7 Service Pack 1 is Released: But Should You Install It? How To Make Hundreds of Complex Photo Edits in Seconds With Photoshop Actions How to Enable User-Specific Wireless Networks in Windows 7 How to Use Google Chrome as Your Default PDF Reader (the Easy Way) How To Remove People and Objects From Photographs In Photoshop Make Efficient Use of Tab Bar Space by Customizing Tab Width in Firefox See the Geeky Work Done Behind the Scenes to Add Sounds to Movies [Video] Use a Crayon to Enhance Engraved Lettering on Electronics Adult Swim Brings Their Programming Lineup to iOS Devices Feel the Chill of the South Atlantic with the Antarctica Theme for Windows 7 Seas0nPass Now Offers Untethered Apple TV Jailbreaking

    Read the article

  • Learning Programming from scratch

    - by David542
    I am entirely new to programming, other than basic HTML/CSS knowledge. I want to learn programming as quickly and efficiently as possible, and I'm willing to put in the time (at least 70 hours a week). The reason I want to learn is because I have a startup that I've written a business plan for and have prototyped in Photoshop (both front-end and back-end pages). My goals is to have a prototype of the site up within 6 months. I have a good aptitude for math (A's in all math courses up through DiffEq and Linear Algebra). I assume learning programming from scratch can be a daunting task -- not because it is particularly difficult, but because there are so many areas and so much information. I want to make sure that I learn as efficiently as possible and have individuals (in addition to Google) to solicit advice from and that will help me when I get stuck or have questions. I know with other's help, my learning experience will be both more productive and enjoyable. What is the best way to find people that will help me in this? What are some good 'live' resources in addition to asking questions on Stack Overflow? Thank you very much for your time and help.

    Read the article

< Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >