Search Results

Search found 2310 results on 93 pages for 'solaris containers'.

Page 34/93 | < Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >

  • World Record Batch Rate on Oracle JD Edwards Consolidated Workload with SPARC T4-2

    - by Brian
    Oracle produced a World Record batch throughput for single system results on Oracle's JD Edwards EnterpriseOne Day-in-the-Life benchmark using Oracle's SPARC T4-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2. The workload includes both online and batch workload. The SPARC T4-2 server delivered a result of 8,000 online users while concurrently executing a mix of JD Edwards EnterpriseOne Long and Short batch processes at 95.5 UBEs/min (Universal Batch Engines per minute). In order to obtain this record benchmark result, the JD Edwards EnterpriseOne, Oracle WebLogic and Oracle Database 11g Release 2 servers were executed each in separate Oracle Solaris Containers which enabled optimal system resources distribution and performance together with scalable and manageable virtualization. One SPARC T4-2 server running Oracle Solaris Containers and consolidating JD Edwards EnterpriseOne, Oracle WebLogic servers and the Oracle Database 11g Release 2 utilized only 55% of the available CPU power. The Oracle DB server in a Shared Server configuration allows for optimized CPU resource utilization and significant memory savings on the SPARC T4-2 server without sacrificing performance. This configuration with SPARC T4-2 server has achieved 33% more Users/core, 47% more UBEs/min and 78% more Users/rack unit than the IBM Power 770 server. The SPARC T4-2 server with 2 processors ran the JD Edwards "Day-in-the-Life" benchmark and supported 8,000 concurrent online users while concurrently executing mixed batch workloads at 95.5 UBEs per minute. The IBM Power 770 server with twice as many processors supported only 12,000 concurrent online users while concurrently executing mixed batch workloads at only 65 UBEs per minute. This benchmark demonstrates more than 2x cost savings by consolidating the complete solution in a single SPARC T4-2 server compared to earlier published results of 10,000 users and 67 UBEs per minute on two SPARC T4-2 and SPARC T4-1. The Oracle DB server used mirrored (RAID 1) volumes for the database providing high availability for the data without impacting performance. Performance Landscape JD Edwards EnterpriseOne Day in the Life (DIL) Benchmark Consolidated Online with Batch Workload System Rack Units BatchRate(UBEs/m) Online Users Users /Units Users /Core Version SPARC T4-2 (2 x SPARC T4, 2.85 GHz) 3 95.5 8,000 2,667 500 9.0.2 IBM Power 770 (4 x POWER7, 3.3 GHz, 32 cores) 8 65 12,000 1,500 375 9.0.2 Batch Rate (UBEs/m) — Batch transaction rate in UBEs per minute Configuration Summary Hardware Configuration: 1 x SPARC T4-2 server with 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 4 x 300 GB 10K RPM SAS internal disk 2 x 300 GB internal SSD 2 x Sun Storage F5100 Flash Arrays Software Configuration: Oracle Solaris 10 Oracle Solaris Containers JD Edwards EnterpriseOne 9.0.2 JD Edwards EnterpriseOne Tools (8.98.4.2) Oracle WebLogic Server 11g (10.3.4) Oracle HTTP Server 11g Oracle Database 11g Release 2 (11.2.0.1) Benchmark Description JD Edwards EnterpriseOne is an integrated applications suite of Enterprise Resource Planning (ERP) software. Oracle offers 70 JD Edwards EnterpriseOne application modules to support a diverse set of business operations. Oracle's Day in the Life (DIL) kit is a suite of scripts that exercises most common transactions of JD Edwards EnterpriseOne applications, including business processes such as payroll, sales order, purchase order, work order, and manufacturing processes, such as ship confirmation. These are labeled by industry acronyms such as SCM, CRM, HCM, SRM and FMS. The kit's scripts execute transactions typical of a mid-sized manufacturing company. The workload consists of online transactions and the UBE – Universal Business Engine workload of 61 short and 4 long UBEs. LoadRunner runs the DIL workload, collects the user’s transactions response times and reports the key metric of Combined Weighted Average Transaction Response time. The UBE processes workload runs from the JD Enterprise Application server. Oracle's UBE processes come as three flavors: Short UBEs < 1 minute engage in Business Report and Summary Analysis, Mid UBEs > 1 minute create a large report of Account, Balance, and Full Address, Long UBEs > 2 minutes simulate Payroll, Sales Order, night only jobs. The UBE workload generates large numbers of PDF files reports and log files. The UBE Queues are categorized as the QBATCHD, a single threaded queue for large and medium UBEs, and the QPROCESS queue for short UBEs run concurrently. Oracle's UBE process performance metric is Number of Maximum Concurrent UBE processes at transaction rate, UBEs/minute. Key Points and Best Practices Two JD Edwards EnterpriseOne Application Servers, two Oracle WebLogic Servers 11g Release 1 coupled with two Oracle Web Tier HTTP server instances and one Oracle Database 11g Release 2 database on a single SPARC T4-2 server were hosted in separate Oracle Solaris Containers bound to four processor sets to demonstrate consolidation of multiple applications, web servers and the database with best resource utilizations. Interrupt fencing was configured on all Oracle Solaris Containers to channel the interrupts to processors other than the processor sets used for the JD Edwards Application server, Oracle WebLogic servers and the database server. A Oracle WebLogic vertical cluster was configured on each WebServer Container with twelve managed instances each to load balance users' requests and to provide the infrastructure that enables scaling to high number of users with ease of deployment and high availability. The database log writer was run in the real time RT class and bound to a processor set. The database redo logs were configured on the raw disk partitions. The Oracle Solaris Container running the Enterprise Application server completed 61 Short UBEs, 4 Long UBEs concurrently as the mixed size batch workload. The mixed size UBEs ran concurrently from the Enterprise Application server with the 8,000 online users driven by the LoadRunner. See Also SPARC T4-2 Server oracle.com OTN JD Edwards EnterpriseOne oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Oracle Fusion Middleware oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 09/30/2012.

    Read the article

  • Best Practices - Dynamic Reconfiguration

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (formerly named Logical Domains) Overview of dynamic Reconfiguration Oracle VM Server for SPARC supports Dynamic Reconfiguration (DR), making it possible to add or remove resources to or from a domain (virtual machine) while it is running. This is extremely useful because resources can be shifted to or from virtual machines in response to load conditions without having to reboot or interrupt running applications. For example, if an application requires more CPU capacity, you can add CPUs to improve performance, and remove them when they are no longer needed. You can use even use Dynamic Resource Management (DRM) policies that automatically add and remove CPUs to domains based on load. How it works (in broad general terms) Dynamic Reconfiguration is done in coordination with Solaris, which recognises a hypervisor request to change its virtual machine configuration and responds appropriately. In essence, Solaris receives a message saying "you now have 16 more CPUs numbered 16 to 31" or "8GB more RAM starting at address X" or "here's a new network or disk device - have fun with it". These actions take very little time. Solaris then can start using the new resource. In the case of added CPUs, that means dispatching processes and potentially binding interrupts to the new CPUs. For memory, Solaris adds the new memory pages to its "free" list and starts using them. Comparable actions occur with network and disk devices: they are recognised by Solaris and then used. Removing is the reverse process: after receiving the DR message to free specific CPUs, Solaris unbinds interrupts assigned to the CPUs and stops dispatching process threads. That takes very little time. primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 1.0% 6d 22h 29m ldom1 active -n---- 5000 16 8G 0.9% 6h 59m primary # ldm set-core 5 ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 0.2% 6d 22h 29m ldom1 active -n---- 5000 40 8G 0.1% 6h 59m primary # ldm set-core 2 ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 1.0% 6d 22h 29m ldom1 active -n---- 5000 16 8G 0.9% 6h 59m Memory pages are vacated by copying their contents to other memory locations and wiping them clean. Solaris may have to swap memory contents to disk if the remaining RAM isn't enough to hold all the contents. For this reason, deallocating memory can take longer on a loaded system. Even on a lightly loaded system it took several 7 or 8 seconds to switch the domain below between 8GB and 24GB of RAM. primary # ldm set-mem 24g ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 0.1% 6d 22h 36m ldom1 active -n---- 5000 16 24G 0.2% 7h 6m primary # ldm set-mem 8g ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 0.7% 6d 22h 37m ldom1 active -n---- 5000 16 8G 0.3% 7h 7m What if the device is in use? (this is the anecdote that inspired this blog post) If CPU or memory is being removed, releasing it pretty straightforward, using the method described above. The resources are released, and Solaris continues with less capacity. It's not as simple with a network or I/O device: you don't want to yank a device out from underneath an application that might be using it. In the following example, I've added a virtual network device to ldom1 and want to take it away, even though it's been plumbed. primary # ldm rm-vnet vnet19 ldom1 Guest LDom returned the following reason for failing the operation: Resource Information ---------------------------------------------------------- ----------------------- /devices/virtual-devices@100/channel-devices@200/network@1 Network interface net1 VIO operation failed because device is being used in LDom ldom1 Failed to remove VNET instance That's what I call a helpful error message - telling me exactly what was wrong. In this case the problem is easily solved. I know this NIC is seen in the guest as net1 so: ldom1 # ifconfig net1 down unplumb Now I can dispose of it, and even the virtual switch I had created for it: primary # ldm rm-vnet vnet19 ldom1 primary # ldm rm-vsw primary-vsw9 If I had to take away the device disruptively, I could have used ldm rm-vnet -f but that could disrupt whoever was using it. It's better if that can be avoided. Summary Oracle VM Server for SPARC provides dynamic reconfiguration, which lets you modify a guest domain's CPU, memory and I/O configuration on the fly without reboot. You can add and remove resources as needed, and even automate this for CPUs by setting up resource policies. Taking things away can be more complicated than giving, especially for devices like disks and networks that may contain application and system state or be involved in a transaction. LDoms and Solaris cooperative work together to coordinate resource allocation and de-allocation in a safe and effective way. For best practices, use dynamic reconfiguration to make the best use of your system's resources.

    Read the article

  • What is bondib1 used for on SPARC SuperCluster with InfiniBand, Solaris 11 networking & Oracle RAC?

    - by user12620111
    A co-worker asked the following question about a SPARC SuperCluster InfiniBand network: > on the database nodes the RAC nodes communicate over the cluster_interconnect. This is the > 192.168.10.0 network on bondib0. (according to ./crs/install/crsconfig_params NETWORKS> setting) > What is bondib1 used for? Is it a HA counterpart in case bondib0 dies? This is my response: Summary: bondib1 is currently only being used for outbound cluster interconnect interconnect traffic. Details: bondib0 is the cluster_interconnect $ oifcfg getif            bondeth0  10.129.184.0  global  public bondib0  192.168.10.0  global  cluster_interconnect ipmpapp0  192.168.30.0  global  public bondib0 and bondib1 are on 192.168.10.1 and 192.168.10.2 respectively. # ipadm show-addr | grep bondi bondib0/v4static  static   ok           192.168.10.1/24 bondib1/v4static  static   ok           192.168.10.2/24 Hostnames tied to the IPs are node1-priv1 and node1-priv2  # grep 192.168.10 /etc/hosts 192.168.10.1    node1-priv1.us.oracle.com   node1-priv1 192.168.10.2    node1-priv2.us.oracle.com   node1-priv2 For the 4 node RAC interconnect: Each node has 2 private IP address on the 192.168.10.0 network. Each IP address has an active InfiniBand link and a failover InfiniBand link. Thus, the 4 node RAC interconnect is using a total of 8 IP addresses and 16 InfiniBand links. bondib1 isn't being used for the Virtual IP (VIP): $ srvctl config vip -n node1 VIP exists: /node1-ib-vip/192.168.30.25/192.168.30.0/255.255.255.0/ipmpapp0, hosting node node1 VIP exists: /node1-vip/10.55.184.15/10.55.184.0/255.255.255.0/bondeth0, hosting node node1 bondib1 is on bondib1_0 and fails over to bondib1_1: # ipmpstat -g GROUP       GROUPNAME   STATE     FDT       INTERFACES ipmpapp0    ipmpapp0    ok        --        ipmpapp_0 (ipmpapp_1) bondeth0    bondeth0    degraded  --        net2 [net5] bondib1     bondib1     ok        --        bondib1_0 (bondib1_1) bondib0     bondib0     ok        --        bondib0_0 (bondib0_1) bondib1_0 goes over net24 # dladm show-link | grep bond LINK                CLASS     MTU    STATE    OVER bondib0_0           part      65520  up       net21 bondib0_1           part      65520  up       net22 bondib1_0           part      65520  up       net24 bondib1_1           part      65520  up       net23 net24 is IB Partition FFFF # dladm show-ib LINK         HCAGUID         PORTGUID        PORT STATE  PKEYS net24        21280001A1868A  21280001A1868C  2    up     FFFF net22        21280001CEBBDE  21280001CEBBE0  2    up     FFFF,8503 net23        21280001A1868A  21280001A1868B  1    up     FFFF,8503 net21        21280001CEBBDE  21280001CEBBDF  1    up     FFFF On Express Module 9 port 2: # dladm show-phys -L LINK              DEVICE       LOC net21             ibp4         PCI-EM1/PORT1 net22             ibp5         PCI-EM1/PORT2 net23             ibp6         PCI-EM9/PORT1 net24             ibp7         PCI-EM9/PORT2 Outbound traffic on the 192.168.10.0 network will be multiplexed between bondib0 & bondib1 # netstat -rn Routing Table: IPv4   Destination           Gateway           Flags  Ref     Use     Interface -------------------- -------------------- ----- ----- ---------- --------- 192.168.10.0         192.168.10.2         U        16    6551834 bondib1   192.168.10.0         192.168.10.1         U         9    5708924 bondib0   There is a lot more traffic on bondib0 than bondib1 # /bin/time snoop -I bondib0 -c 100 > /dev/null Using device ipnet/bondib0 (promiscuous mode) 100 packets captured real        4.3 user        0.0 sys         0.0 (100 packets in 4.3 seconds = 23.3 pkts/sec) # /bin/time snoop -I bondib1 -c 100 > /dev/null Using device ipnet/bondib1 (promiscuous mode) 100 packets captured real       13.3 user        0.0 sys         0.0 (100 packets in 13.3 seconds = 7.5 pkts/sec) Half of the packets on bondib0 are outbound (from self). The remaining packet are split evenly, from the other nodes in the cluster. # snoop -I bondib0 -c 100 | awk '{print $1}' | sort | uniq -c Using device ipnet/bondib0 (promiscuous mode) 100 packets captured   49 node1-priv1.us.oracle.com   24 node2-priv1.us.oracle.com   14 node3-priv1.us.oracle.com   13 node4-priv1.us.oracle.com 100% of the packets on bondib1 are outbound (from self), but the headers in the packets indicate that they are from the IP address associated with bondib0: # snoop -I bondib1 -c 100 | awk '{print $1}' | sort | uniq -c Using device ipnet/bondib1 (promiscuous mode) 100 packets captured  100 node1-priv1.us.oracle.com The destination of the bondib1 outbound packets are split evenly, to node3 and node 4. # snoop -I bondib1 -c 100 | awk '{print $3}' | sort | uniq -c Using device ipnet/bondib1 (promiscuous mode) 100 packets captured   51 node3-priv1.us.oracle.com   49 node4-priv1.us.oracle.com Conclusion: bondib1 is currently only being used for outbound cluster interconnect interconnect traffic.

    Read the article

  • How to write a streaming 'operator<<' that can take arbitary containers (of type 'X')?

    - by Drew Dormann
    I have a C++ class "X" which would have special meaning if a container of them were to be sent to a std::ostream. I originally implemented it specifically for std::vector<X>: std::ostream& operator << ( std::ostream &os, const std::vector<X> &c ) { // The specialized logic here expects c to be a "container" in simple // terms - only that c.begin() and c.end() return input iterators to X } If I wanted to support std::ostream << std::deque<X> or std::ostream << std::set<X> or any similar container type, the only solution I know of is to copy-paste the entire function and change only the function signature! Is there a way to generically code operator << ( std::ostream &, const Container & )? ("Container" here would be any type that satisfies the commented description above.)

    Read the article

  • Efficient algorithm for creating an ideal distribution of groups into containers?

    - by Inshim
    I have groups of students that need to be allocated into classrooms of a fixed capacity (say, 100 chairs in each). Each group must only be allocated to a single classroom, even if it is larger than the capacity (ie there can be an overflow, with students standing up) I need an algorithm to make the allocations with minimum overflows and under-capacity classrooms. A naive algorithm to do this allocation is horrendously slow when having ~200 groups, with a distribution of about half of them being under 20% of the classroom size. Any ideas where I can find at least some good starting point for making this algorithm lightning fast? Thanks!

    Read the article

  • Which containers / graphics components to use in a simple Java Swing game?

    - by rize
    I'm creating a simple labyrinth game with Java + Swing. The game draws a randomized labyrinth on the screen, places a figure in the middle, and the player is then supposed to find the way out by moving the figure with arrow-keys. As for now, I'm using a plain background and drawing the walls of the labyrinth with Graphics.drawLine(). I have a custom picture of the figure in a .gif file, which I load as a BufferedImage object. However, I want the player to see only part of the labyrinth at a time, and the screen should follow the figure in the game, as the player moves around. I'm planning to do this by creating an Image object of the whole labyrinth when it is created, and then "cutting" a square around the current position of the figure and displaying this with Graphics.drawImage(). I'm new with Swing though, and I can't figure out how to draw the figure at different positions "above" the labyrinth without redrawing the whole thing. Which container/component should I use for the labyrinth and then for the figure to achieve this?

    Read the article

  • Why do C# containers and GUI classes use int and not uint for size related members ?

    - by smerlin
    I usually program in C++, but for school i have to do a project in C#. So i went ahead and coded like i was used to in C++, but was surprised when the compiler complained about code like the following: const uint size = 10; ArrayList myarray = new ArrayList(size); //Arg 1: cannot convert from 'uint' to 'int Ok they expect int as argument type, but why ? I would feel much more comfortable with uint as argument type, because uint fits much better in this case. Why do they use int as argument type pretty much everywhere in the .NET library even if though for many cases negative numbers dont make any sense (since no container nor gui element can have a negative size). If the reason that they used int is, that they didnt expect that the average user cares about signedness, why didnt they add overloads for uint additonally ? Is this just MS not caring about sign correctness or are there cases where negative values make some sense/ carry some information (error code ????) for container/gui widget/... sizes ?

    Read the article

  • Function templates for arbitrary STL containers containing arbitrary types.

    - by Chad Brewbaker
    I have an arbitrary STL container C, which contains elements of an arbitrary type T. I want to create an std::vector that has a copy of all the elements. What is the cleanest way to do this? template <typename C> void myfunction(C container){ /*Derive the type T of elements within the container*/ std::vector<T> mystack; /* Iterate over container and push_back() the elements into mystack*/ }

    Read the article

  • Seam reRender component in partial; reRender across naming containers

    - by meed2000
    Hello, I'm using seam to develop a simple web app. Using a4j commandButton in many places, with the property reRender="componentName" componentName is in most places a a4j outputPanel Which always worked, until I used a template. with include of two different views. reRender applied to the whole view does work, but reRender applied to an inner component does not. Same issue with page rules, all action I had defined are not functioning any more. Is this a problem with Seam, did someone experience this? <a4j:outputPanel id="panel1"> <h:form> <div class="section"> // whatever code </div> <a4j:commandButton id="button1" value="Add" action="#{bean1.action()}" reRender="panel1"/> <h:commandButton id="reset" value="Reset" action="#{bean1.reset}"/> </h:form> </a4j:outputPanel>

    Read the article

  • links for 2010-12-16

    - by Bob Rhubart
    Oracle Solaris 11 Express: Network Virtualization and Resource Control | Oracle Clinic XiangBingLiu's detailed overview of Oracle Solaris 11 Express features, including Crossbow. (tags: oracle solaris virtualization crossbow) A New Threat To Web Applications: Connection String Parameter Pollution (CSPP) (The Oracle Global Product Security Blog) "CSPP, if carried out successfully, can be used to steal user identities and hijack web credentials. CSPP is a high risk attack because of the relative ease with which it can be carried out (low access complexity) and the potential results it can have (high impact)." -- Shaomin Wang (tags: oracle otn security cspp)

    Read the article

  • Oracle Systems and Solutions at OpenWorld Tokyo 2012

    - by ferhat
    Oracle OpenWorld Tokyo and JavaOne Tokyo will start next week April 4th. We will cover Oracle systems and Oracle Optimized Solutions in several keynote talks and general sessions. Full schedule can be found here. Come by the DemoGrounds to learn more about mission critical integration and optimization of complete Oracle stack. Our Oracle Optimized Solutions experts will be at hand to discuss 1-1 several of Oracle's systems solutions and technologies. Oracle Optimized Solutions are proven blueprints that eliminate integration guesswork by combing best in class hardware and software components to deliver complete system architectures that are fully tested, and include documented best practices that reduce integration risks and deliver better application performance. And because they are highly flexible by design, Oracle Optimized Solutions can be implemented as an end-to-end solution or easily adapted into existing environments. Oracle Optimized Solutions, Servers,  Storage, and Oracle Solaris  Sessions, Keynotes, and General Session Talks DAY TIME TITLE Notes Session Wednesday  April 4 9:00 - 11:15 Keynote: ENGINEERED FOR INNOVATION - Engineered Systems Mark Hurd,  President, Oracle Takao Endo, President & CEO, Oracle Corporation Japan John Fowler, EVP of Systems, Oracle Ed Screven, Chief Corporate Architect, Oracle English Session K1-01 11:50 - 12:35 Simplifying IT: Transforming the Data Center with Oracle's Engineered Systems Robert Shimp, Group VP, Product Marketing, Oracle English Session S1-01 15:20 - 16:05 Introducing Tiered Storage Solution for low cost Big Data Archiving S1-33 16:30 - 17:15 Simplifying IT - IT System Consolidation that also Accelerates Business Agility S1-42 Thursday  April 5 9:30 - 11:15 Keynote: Extreme Innovation Larry Ellison, Chief Executive Officer, Oracle English Session K2-01 11:50 - 13:20 General Session: Server and Storage Systems Strategy John Fowler, EVP of Systems, Oracle English Session G2-01 16:30 - 17:15 Top 5 Reasons why ZFS Storage appliance is "The cloud storage" by SAKURA Internet Inc L2-04 16:30 - 17:15 The UNIX based Exa* Performance IT Integration Platform - SPARC SuperCluster S2-42 17:40 - 18:25 Full stack solutions of hardware and software with SPARC SuperCluster and Oracle E-Business Suite  to minimize the business cost while maximizing the agility, performance, and availability S2-53 Friday April 6 9:30 - 11:15 Keynote: Oracle Fusion Applications & Cloud Robert Shimp, Group VP, Product Marketing Anthony Lye, Senior VP English Session K3-01 11:50 - 12:35 IT at Oracle: The Art of IT Transformation to Enable Business Growth English Session S3-02 13:00-13:45 ZFS Storagge Appliance: Architecture of high efficient and high performance S3-13 14:10 - 14:55 Why "Niko Niko doga" chose ZFS Storage Appliance to support their growing requirements and storage infrastructure By DWANGO Co, Ltd. S3-21 15:20 - 16:05 Osaka University: Lower TCO and higher flexibility for student study by Virtual Desktop By Osaka University S3-33 Oracle Developer Sessions with Oracle Systems and Oracle Solaris DAY TIME TITLE Notes LOCATION Friday April 6 13:00 - 13:45 Oracle Solaris 11 Developers D3-03 13:00 - 14:30 Oracle Solaris Tuning Contest Hands-On Lab D3-04 14:00 - 14:35 How to build high performance and high security Oracle Database environment with Oracle SPARC/Solaris English Session D3-13 15:00 - 15:45 IT Assets preservation and constructive migration with Oracle Solaris virtualization D3-24 16:00 - 17:30 The best packaging system for cloud environment - Creating an IPS package D3-34 Follow Oracle Infrared at Twitter, Facebook, Google+, and LinkedIn  to catch the latest news, developments, announcements, and inside views from  Oracle Optimized Solutions.

    Read the article

  • Oracle Database 12c is available for download now!

    - by Mike Dietrich
    Good things come to those who wait ... finally ... Oracle Database 12c (Oracle 12.1.0.1) is available for download from the Oracle Software Cloud (formerly know as eDelivery) and OTN (Oracle Tech Network) for Linux 64bit (Solaris will follow within the next few hours): eDelivery:Oracle Database 12c (12.1.0.1) for Linux 64bitOracle Database 12c (12.1.0.1) for Solaris SPARC64Oracle Database 12c (12.1.0.1) for Solaris x86. OTN:Oracle Database 12c (12.1.0.1) for Linux 64bitOracle Database 12c (12.1.0.1) for Solaris SPARC64Oracle Database 12c (12.1.0.1) for Solaris x86  . And yes, it will be supported on Oracle Exadata and SuperCluster as well . . And with the release of Oracle Database 12c we are offering you also our NEWUpgrade, Migrate and Consolidate to Oracle Database 12cslide deck with (sorry, we've did it again!) over 500 slides covering: The brand new Parallel Upgrade including new Pre/Post-Upgrade-Fix-Ups The new Full Transportable Export/Import Feature Obviously Oracle Multitenant, which got talked about a lot as Pluggable Databases or Container Databases before Plenty of new parameters, cool and very helpful features and much more ... Download the slides Upgrade, Migrate and Consolidate to Oracle Database 12c And of course, the slide deck will see some updates in the near future -Mike . .

    Read the article

  • SPARC T4-2 Produces World Record Oracle Essbase Aggregate Storage Benchmark Result

    - by Brian
    Significance of Results Oracle's SPARC T4-2 server configured with a Sun Storage F5100 Flash Array and running Oracle Solaris 10 with Oracle Database 11g has achieved exceptional performance for the Oracle Essbase Aggregate Storage Option benchmark. The benchmark has upwards of 1 billion records, 15 dimensions and millions of members. Oracle Essbase is a multi-dimensional online analytical processing (OLAP) server and is well-suited to work well with SPARC T4 servers. The SPARC T4-2 server (2 cpus) running Oracle Essbase 11.1.2.2.100 outperformed the previous published results on Oracle's SPARC Enterprise M5000 server (4 cpus) with Oracle Essbase 11.1.1.3 on Oracle Solaris 10 by 80%, 32% and 2x performance improvement on Data Loading, Default Aggregation and Usage Based Aggregation, respectively. The SPARC T4-2 server with Sun Storage F5100 Flash Array and Oracle Essbase running on Oracle Solaris 10 achieves sub-second query response times for 20,000 users in a 15 dimension database. The SPARC T4-2 server configured with Oracle Essbase was able to aggregate and store values in the database for a 15 dimension cube in 398 minutes with 16 threads and in 484 minutes with 8 threads. The Sun Storage F5100 Flash Array provides more than a 20% improvement out-of-the-box compared to a mid-size fiber channel disk array for default aggregation and user-based aggregation. The Sun Storage F5100 Flash Array with Oracle Essbase provides the best combination for large Oracle Essbase databases leveraging Oracle Solaris ZFS and taking advantage of high bandwidth for faster load and aggregation. Oracle Fusion Middleware provides a family of complete, integrated, hot pluggable and best-of-breed products known for enabling enterprise customers to create and run agile and intelligent business applications. Oracle Essbase's performance demonstrates why so many customers rely on Oracle Fusion Middleware as their foundation for innovation. Performance Landscape System Data Size(millions of items) Database Load(minutes) Default Aggregation(minutes) Usage Based Aggregation(minutes) SPARC T4-2, 2 x SPARC T4 2.85 GHz 1000 149 398* 55 Sun M5000, 4 x SPARC64 VII 2.53 GHz 1000 269 526 115 Sun M5000, 4 x SPARC64 VII 2.4 GHz 400 120 448 18 * – 398 mins with CALCPARALLEL set to 16; 484 mins with CALCPARALLEL threads set to 8 Configuration Summary Hardware Configuration: 1 x SPARC T4-2 2 x 2.85 GHz SPARC T4 processors 128 GB memory 2 x 300 GB 10000 RPM SAS internal disks Storage Configuration: 1 x Sun Storage F5100 Flash Array 40 x 24 GB flash modules SAS HBA with 2 SAS channels Data Storage Scheme Striped - RAID 0 Oracle Solaris ZFS Software Configuration: Oracle Solaris 10 8/11 Installer V 11.1.2.2.100 Oracle Essbase Client v 11.1.2.2.100 Oracle Essbase v 11.1.2.2.100 Oracle Essbase Administration services 64-bit Oracle Database 11g Release 2 (11.2.0.3) HP's Mercury Interactive QuickTest Professional 9.5.0 Benchmark Description The objective of the Oracle Essbase Aggregate Storage Option benchmark is to showcase the ability of Oracle Essbase to scale in terms of user population and data volume for large enterprise deployments. Typical administrative and end-user operations for OLAP applications were simulated to produce benchmark results. The benchmark test results include: Database Load: Time elapsed to build a database including outline and data load. Default Aggregation: Time elapsed to build aggregation. User Based Aggregation: Time elapsed of the aggregate views proposed as a result of tracked retrieval queries. Summary of the data used for this benchmark: 40 flat files, each of size 1.2 GB, 49.4 GB in total 10 million rows per file, 1 billion rows total 28 columns of data per row Database outline has 15 dimensions (five of them are attribute dimensions) Customer dimension has 13.3 million members 3 rule files Key Points and Best Practices The Sun Storage F5100 Flash Array has been used to accelerate the application performance. Setting data load threads (DLTHREADSPREPARE) to 64 and Load Buffer to 6 improved dataloading by about 9%. Factors influencing aggregation materialization performance are "Aggregate Storage Cache" and "Number of Threads" (CALCPARALLEL) for parallel view materialization. The optimal values for this workload on the SPARC T4-2 server were: Aggregate Storage Cache: 32 GB CALCPARALLEL: 16   See Also Oracle Essbase Aggregate Storage Option Benchmark on Oracle's SPARC T4-2 Server oracle.com Oracle Essbase oracle.com OTN SPARC T4-2 Server oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 28 August 2012.

    Read the article

  • Network Balancing Act

    - by listey
    Next up in our popular Oracle Solaris How To series is the Integrated Load Balancer, part of the suite of network facilities that are built in to Oracle Solaris 11. Providing Layer 3 and Layer 4 load balancing capabilities you can use this device to simulate or even replace your hardware based network infrastructure. Read more about the capabilities and how to get a basic configuration working in How to Set Up a Load-Balanced Application Across Two Oracle Solaris Zones

    Read the article

  • New Options for MySQL High Availability

    - by Mat Keep
    Data is the currency of today’s web, mobile, social, enterprise and cloud applications. Ensuring data is always available is a top priority for any organization – minutes of downtime will result in significant loss of revenue and reputation. There is not a “one size fits all” approach to delivering High Availability (HA). Unique application attributes, business requirements, operational capabilities and legacy infrastructure can all influence HA technology selection. And then technology is only one element in delivering HA – “People and Processes” are just as critical as the technology itself. For this reason, MySQL Enterprise Edition is available supporting a range of HA solutions, fully certified and supported by Oracle. MySQL Enterprise HA is not some expensive add-on, but included within the core Enterprise Edition offering, along with the management tools, consulting and 24x7 support needed to deliver true HA. At the recent MySQL Connect conference, we announced new HA options for MySQL users running on both Linux and Solaris: - DRBD for MySQL - Oracle Solaris Clustering for MySQL DRBD (Distributed Replicated Block Device) is an open source Linux kernel module which leverages synchronous replication to deliver high availability database applications across local storage. DRBD synchronizes database changes by mirroring data from an active node to a standby node and supports automatic failover and recovery. Linux, DRBD, Corosync and Pacemaker, provide an integrated stack of mature and proven open source technologies. DRBD Stack: Providing Synchronous Replication for the MySQL Database with InnoDB Download the DRBD for MySQL whitepaper to learn more, including step-by-step instructions to install, configure and provision DRBD with MySQL Oracle Solaris Cluster provides high availability and load balancing to mission-critical applications and services in physical or virtualized environments. With Oracle Solaris Cluster, organizations have a scalable and flexible solution that is suited equally to small clusters in local datacenters or larger multi-site, multi-cluster deployments that are part of enterprise disaster recovery implementations. The Oracle Solaris Cluster MySQL agent integrates seamlessly with MySQL offering a selection of configuration options in the various Oracle Solaris Cluster topologies. Putting it All Together When you add MySQL Replication and MySQL Cluster into the HA mix, along with 3rd party solutions, users have extensive choice (and decisions to make) to deliver HA services built on MySQL To make the decision process simpler, we have also published a new MySQL HA Solutions Guide. Exploring beyond just the technology, the guide presents a methodology to select the best HA solution for your new web, cloud and mobile services, while also discussing the importance of people and process in ensuring service continuity. This is subject recently presented at Oracle Open World, and the slides are available here. Whatever your uptime requirements, you can be sure MySQL has an HA solution for your needs Please don't hesitate to let us know of your HA requirements in the comments section of this blog. You can also contact MySQL consulting to learn more about their HA Jumpstart offering which will help you scope out your scaling and HA requirements.

    Read the article

  • CVE-2011-2895 Buffer Overflow vulnerability in X.Org

    - by chandan
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2011-2895 Buffer Overflow vulnerability 9.3 X.Org Solaris 10 SPARC: 125719-41 119059-60 X86: 119060-59 125720-51 Solaris 9 Contact Support Solaris 8 Contact Support This notification describes vulnerabilities fixed in third-party components that are included in Sun's product distribution.Information about vulnerabilities affecting Oracle Sun products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • CVE-2014-0591 Buffer Errors vulnerability in Bind

    - by Ritwik Ghoshal
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2014-0591 Buffer Errors vulnerability 2.6 Bind Solaris 10 Patches planned but not yet available Solaris 11.1 11.1.19.6.0 Solaris 8 Patches planned but not yet available Solaris 9 Patches planned but not yet available Please Note: The patches mentioned above will upgrade Bind to 9.6-ESV-R11. The fix for CVE-2014-0591 was initially distributed via 9.6-ESV-R10-P2 as described at our previous blog post. This notification describes vulnerabilities fixed in third-party components that are included in Oracle's product distributions.Information about vulnerabilities affecting Oracle products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • CVE-2014-0591 Buffer Errors vulnerability in Bind

    - by Ritwik Ghoshal
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2014-0591 Buffer Errors vulnerability 2.6 Bind Solaris 10 SPARC: 119783-28 X86: 119784-28 Solaris 11.1 11.1.16.5.0 Solaris 9 SPARC: 112837-30 X86: 114265-29 Please Note: The patches mentioned above will upgrade Bind to 9.6-ESV-R10-P2. This notification describes vulnerabilities fixed in third-party components that are included in Oracle's product distributions.Information about vulnerabilities affecting Oracle products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • New Enhancements for InnoDB Memcached

    - by Calvin Sun
    In MySQL 5.6, we continued our development on InnoDB Memcached and completed a few widely desirable features that make InnoDB Memcached a competitive feature in more scenario. Notablely, they are 1) Support multiple table mapping 2) Added background thread to auto-commit long running transactions 3) Enhancement in binlog performance  Let’s go over each of these features one by one. And in the last section, we will go over a couple of internally performed performance tests. Support multiple table mapping In our earlier release, all InnoDB Memcached operations are mapped to a single InnoDB table. In the real life, user might want to use this InnoDB Memcached features on different tables. Thus being able to support access to different table at run time, and having different mapping for different connections becomes a very desirable feature. And in this GA release, we allow user just be able to do both. We will discuss the key concepts and key steps in using this feature. 1) "mapping name" in the "get" and "set" command In order to allow InnoDB Memcached map to a new table, the user (DBA) would still require to "pre-register" table(s) in InnoDB Memcached “containers” table (there is security consideration for this requirement). If you would like to know about “containers” table, please refer to my earlier blogs in blogs.innodb.com. Once registered, the InnoDB Memcached will then be able to look for such table when they are referred. Each of such registered table will have a unique "registration name" (or mapping_name) corresponding to the “name” field in the “containers” table.. To access these tables, user will include such "registration name" in their get or set commands, in the form of "get @@new_mapping_name.key", prefix "@@" is required for signaling a mapped table change. The key and the "mapping name" are separated by a configurable delimiter, by default, it is ".". So the syntax is: get [@@mapping_name.]key_name set [@@mapping_name.]key_name  or  get @@mapping_name set @@mapping_name Here is an example: Let's set up three tables in the "containers" table: The first is a map to InnoDB table "test/demo_test" table with mapping name "setup_1" INSERT INTO containers VALUES ("setup_1", "test", "demo_test", "c1", "c2", "c3", "c4", "c5", "PRIMARY");  Similarly, we set up table mappings for table "test/new_demo" with name "setup_2" and that to table "mydatabase/my_demo" with name "setup_3": INSERT INTO containers VALUES ("setup_2", "test", "new_demo", "c1", "c2", "c3", "c4", "c5", "secondary_index_x"); INSERT INTO containers VALUES ("setup_3", "my_database", "my_demo", "c1", "c2", "c3", "c4", "c5", "idx"); To switch to table "my_database/my_demo", and get the value corresponding to “key_a”, user will do: get @@setup_3.key_a (this will also output the value that corresponding to key "key_a" or simply get @@setup_3 Once this is done, this connection will switch to "my_database/my_demo" table until another table mapping switch is requested. so it can continue issue regular command like: get key_b  set key_c 0 0 7 These DMLs will all be directed to "my_database/my_demo" table. And this also implies that different connections can have different bindings (to different table). 2) Delimiter: For the delimiter "." that separates the "mapping name" and key value, we also added a configure option in the "config_options" system table with name of "table_map_delimiter": INSERT INTO config_options VALUES("table_map_delimiter", "."); So if user wants to change to a different delimiter, they can change it in the config_option table. 3) Default mapping: Once we have multiple table mapping, there should be always a "default" map setting. For this, we decided if there exists a mapping name of "default", then this will be chosen as default mapping. Otherwise, the first row of the containers table will chosen as default setting. Please note, user tables can be repeated in the "containers" table (for example, user wants to access different columns of the table in different settings), as long as they are using different mapping/configure names in the first column, which is enforced by a unique index. 4) bind command In addition, we also extend the protocol and added a bind command, its usage is fairly straightforward. To switch to "setup_3" mapping above, you simply issue: bind setup_3 This will switch this connection's InnoDB table to "my_database/my_demo" In summary, with this feature, you now can direct access to difference tables with difference session. And even a single connection, you can query into difference tables. Background thread to auto-commit long running transactions This is a feature related to the “batch” concept we discussed in earlier blogs. This “batch” feature allows us batch the read and write operations, and commit them only after certain calls. The “batch” size is controlled by the configure parameter “daemon_memcached_w_batch_size” and “daemon_memcached_r_batch_size”. This could significantly boost performance. However, it also comes with some disadvantages, for example, you will not be able to view “uncommitted” operations from SQL end unless you set transaction isolation level to read_uncommitted, and in addition, this will held certain row locks for extend period of time that might reduce the concurrency. To deal with this, we introduce a background thread that “auto-commits” the transaction if they are idle for certain amount of time (default is 5 seconds). The background thread will wake up every second and loop through every “connections” opened by Memcached, and check for idle transactions. And if such transaction is idle longer than certain limit and not being used, it will commit such transactions. This limit is configurable by change “innodb_api_bk_commit_interval”. Its default value is 5 seconds, and minimum is 1 second, and maximum is 1073741824 seconds. With the help of such background thread, you will not need to worry about long running uncommitted transactions when set daemon_memcached_w_batch_size and daemon_memcached_r_batch_size to a large number. This also reduces the number of locks that could be held due to long running transactions, and thus further increase the concurrency. Enhancement in binlog performance As you might all know, binlog operation is not done by InnoDB storage engine, rather it is handled in the MySQL layer. In order to support binlog operation through InnoDB Memcached, we would have to artificially create some MySQL constructs in order to access binlog handler APIs. In previous lab release, for simplicity consideration, we open and destroy these MySQL constructs (such as THD) for each operations. This required us to set the “batch” size always to 1 when binlog is on, no matter what “daemon_memcached_w_batch_size” and “daemon_memcached_r_batch_size” are configured to. This put a big restriction on our capability to scale, and also there are quite a bit overhead in creating destroying such constructs that bogs the performance down. With this release, we made necessary change that would keep MySQL constructs as long as they are valid for a particular connection. So there will not be repeated and redundant open and close (table) calls. And now even with binlog option is enabled (with innodb_api_enable_binlog,), we still can batch the transactions with daemon_memcached_w_batch_size and daemon_memcached_r_batch_size, thus scale the write/read performance. Although there are still overheads that makes InnoDB Memcached cannot perform as fast as when binlog is turned off. It is much better off comparing to previous release. And we are continuing optimize the solution is this area to improve the performance as much as possible. Performance Study: Amerandra of our System QA team have conducted some performance studies on queries through our InnoDB Memcached connection and plain SQL end. And it shows some interesting results. The test is conducted on a “Linux 2.6.32-300.7.1.el6uek.x86_64 ix86 (64)” machine with 16 GB Memory, Intel Xeon 2.0 GHz CPU X86_64 2 CPUs- 4 Core Each, 2 RAID DISKS (1027 GB,733.9GB). Results are described in following tables: Table 1: Performance comparison on Set operations Connections 5.6.7-RC-Memcached-plugin ( TPS / Qps) with memcached-threads=8*** 5.6.7-RC* X faster Set (QPS) Set** 8 30,000 5,600 5.36 32 59,000 13,000 4.54 128 68,000 8,000 8.50 512 63,000 6.800 9.23 * mysql-5.6.7-rc-linux2.6-x86_64 ** The “set” operation when implemented in InnoDB Memcached involves a couple of DMLs: it first query the table to see whether the “key” exists, if it does not, the new key/value pair will be inserted. If it does exist, the “value” field of matching row (by key) will be updated. So when used in above query, it is a precompiled store procedure, and query will just execute such procedures. *** added “–daemon_memcached_option=-t8” (default is 4 threads) So we can see with this “set” query, InnoDB Memcached can run 4.5 to 9 time faster than MySQL server. Table 2: Performance comparison on Get operations Connections 5.6.7-RC-Memcached-plugin ( TPS / Qps) with memcached-threads=8 5.6.7-RC* X faster Get (QPS) Get 8 42,000 27,000 1.56 32 101,000 55.000 1.83 128 117,000 52,000 2.25 512 109,000 52,000 2.10 With the “get” query (or the select query), memcached performs 1.5 to 2 times faster than normal SQL. Summary: In summary, we added several much-desired features to InnoDB Memcached in this release, allowing user to operate on different tables with this Memcached interface. We also now provide a background commit thread to commit long running idle transactions, thus allow user to configure large batch write/read without worrying about large number of rows held or not being able to see (uncommit) data. We also greatly enhanced the performance when Binlog is enabled. We will continue making efforts in both performance enhancement and functionality areas to make InnoDB Memcached a good demo case for our InnoDB APIs. Jimmy Yang, September 29, 2012

    Read the article

  • links for 2011-02-14

    - by Bob Rhubart
    Glenn Fawcett: Solaris Eye for the Linux Guy, or how I learned to stop worrying about Linux and Love Solaris (Part 1) Glenn says: "This entry goes out to my Oracle techie friends that have been in the Linux camp for sometime now and are suddenly finding themselves needing to know more about Solaris… hmmmm… I wonder if this has anything to do with Solaris now being an available option with Exadata?"  (tags: linux solaris oracle) Enterprise Software Development with Java: High Performance JPA with GlassFish and Coherence - Part 2 Oracle ACE Director Markus Eisele describes "the steps you have to take to configure a JPA backed Cache with Coherence and how you could use it from within GlassFish as a high performance data store." (tags: oracle otn oracleace java glassfish coherence) TOGAF a Registered Trademark and Surpasses 15k Certifications EA Blogs Mike Walker relays news on the TOGAF standard. (tags: entarch togaf) Weblogic or wait? | Capping IT Off | Capgemini "So when would you move over to the new Oracle Technology?" asks Arjan Kramer. " Well, as always there can be several reasons..." (tags: oracle capgemini weblogic) Random Monday Thoughs (Art of SOA Governance) "Governance is what insurance is to new cars, be it to SOA, IT transformations and software development. Governance is a insurance policy against risk of failure." - Terry Goldman (tags: oracle otn soa soagovernance)

    Read the article

  • CVE-2012-3410 stack-based buffer overflow vulnerability in Bash

    - by RitwikGhoshal
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2012-3410 Buffer overflow vulnerability 4.6 Bash Solaris 11 Contact Support Solaris 10 SPARC: 126546-04 X86: 126547-04 Solaris 9 Contact Support This notification describes vulnerabilities fixed in third-party components that are included in Oracle's product distributions.Information about vulnerabilities affecting Oracle products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • Multiple vulnerabilities in libpng

    - by chandan
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2011-2690 Buffer Overflow vulnerability 6.8 PNG reference library (libpng) Solaris 10 SPARC: 137080-06 X86: 137081-06 Solaris 9 Contact Support Solaris 8 Contact Support CVE-2011-2691 Denial of Service (Dos) vulnerability 5.0 CVE-2011-2692 Denial of Service (Dos) vulnerability 4.3 This notification describes vulnerabilities fixed in third-party components that are included in Sun's product distribution.Information about vulnerabilities affecting Oracle Sun products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • CVE-2009-5022 Buffer Overflow vulnerability in LibTIFF

    - by chandan
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2009-5022 Buffer Overflow vulnerability 6.8 LibTIFF Solaris 8 SPARC: 139093-03 X86: 139094-03 Solaris 9 SPARC: 125673-05 X86: 125674-05 Solaris 10 SPARC: 119900-13 X86: 119901-12 This notification describes vulnerabilities fixed in third-party components that are included in Sun's product distribution.Information about vulnerabilities affecting Oracle Sun products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • The premier support for Sun Cluster 3.1 ended

    - by JuergenS
    In October 2011 the premier support for Sun Cluster 3.1 ended. See details in Oracle Lifetime Support Policy for Oracle and Sun System Software document. There no 'Extended Support' and the 'Sustaining Support Ends' is indefinite. But for indefinite 'Sustaining Support' I like to point out from the mentioned document (version Sept. 2011) on page 5: Sustaining Support does NOT include: * New program updates, fixes, security alerts, general maintenance releases, selected functionality releases and documentation updates or upgrade tools * Certification with most new third-party products/versions and most new Oracle products * 24 hour commitment and response guidelines for Severity 1 service requests *Previously released fixes or updates that Oracle no longer supports This means Solaris 10 9/10 update9 is the last qualified release for Sun Cluster 3.1. So, Sun Cluster 3.1 is not qualified on Solaris 10 8/11 Update10. Furthermore there is an issue around with SVM patch 145899-06 or higher. This SVM patch is part of Solaris 10 8/11 Update10. The 145899-06 is the first released patch of this number, therefore the support for Sun Cluster 3.1 ends with the previous SVM patches 144622-01 and 139967-02. For details about the known problem with SVM patch 145899-06 please refer to doc 1378828.1. Further this means you should freeze (no patching, no upgrade) your Sun Cluster 3.1 configuration not later than Solaris 10 9/10 update9. Or even better plan an upgrade to Solaris Cluster 3.3 now to get back to full support.

    Read the article

  • CVE-2009-2042 Information Exposure vulnerability in libpng

    - by chandan
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2009-2042 Information Exposure vulnerability 4.3 PNG reference library (libpng) Solaris 10 SPARC: 137080-04 X86: 137081-04 Solaris 9 SPARC: 139382-03 X86: 139383-03 Solaris 8 SPARC: 114816-04 X86: 114817-04 This notification describes vulnerabilities fixed in third-party components that are included in Sun's product distribution.Information about vulnerabilities affecting Oracle Sun products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

< Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >