Search Results

Search found 61110 results on 2445 pages for 'windows hosting'.

Page 34/2445 | < Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >

  • Windows: Should I install Server or stick with regular?

    - by stalker92
    I hope somebody can help me solve my dilemma. I have my home PC (using Windows 7) which I use for both work and leisure (gaming, surfing, movies etc.) I tend to never turn it off, only when I must reboot because some installation requires me to or when the power gets lost. But, sometimes Windows starts acting weird (usually after the long period of system uptime), per example eats up randomly all the space on my system partition etc. which is solved after the reset by itself. I was thinking to switch to Windows Server, I guess that it is more optimized for long uptime, well, obviously it is meant for use on servers. Can somebody with more experience with this help me decide is it worth it, will it solve these issues connected with long uptime periods? Thanks in advance.

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • Share a Printer on Your Network from Vista or XP to Windows 7

    - by Mysticgeek
    The other day we looked at sharing a printer between Windows 7 machines, but you may only have one Windows 7 machine and the printer is connected to a Vista or XP computer. Today we show you how to share a printer from either Vista or XP to Windows 7. We previously showed you how to share files and printers between Windows 7 and XP. But what if you have a printer connected to an XP or Vista machine in another room, and you want to print to it from Windows 7? This guide will walk you through the process. Note: In these examples we’re using 32-bit versions of Windows 7, Vista, and XP on a basic home network. We are using an HP PSC 1500 printer, but keep in mind every printer is different so finding and installing the correct drivers will vary. Share a Printer from Vista To share the printer on a Vista machine click on Start and enter printers into the search box and hit Enter. Right-click on the printer you want to share and select Sharing from the context menu. Now in Printer Properties, select the Sharing tab, mark the box next to Share this printer, and give the printer a name. Make sure the name is something simple with no spaces then click Ok. Share a Printer from XP To share a printer from XP click on Start then select Printers and Faxes. In the Printers and Faxes window right-click on the printer to share and select Sharing. In the Printer Properties window select the Sharing tab and the radio button next to Share this printer and give it a short name with no spaces then click Ok. Add Printer to Windows 7 Now that we have the printer on Vista or XP set up to be shared, it’s time to add it to Windows 7. Open the Start Menu and click on Devices and Printers. In Devices and Printers click on Add a printer. Next click on Add a network, wireless or Bluetooth printer. Windows 7 will search for the printer on your network and once its been found click Next. The printer has been successfully added…click Next. Now you can set it as the default printer and send a test page to verify everything works. If everything is successful, close out of the add printer screens and you should be good to go.   Alternate Method If the method above doesn’t work, you’ll can try the following for either XP or Vista. In our example, when trying to add the printer connected to our XP machine, it wasn’t recognized automatically. If you’re search pulls up nothing then click on The printer that I want isn’t listed. In the Add Printer window under Find a printer by name or TCP/IP address click the radio button next to Select a shared printer by name. You can either type in the path to the printer or click on Browse to find it. In this instance we decided to browse to it and notice we have 5 computers found on the network. We want to be able to print to the XPMCE computer so we double-click on that. Type in the username and password for that computer… Now we see the printer and can select it. The path to the printer is put into the Select a shared printer by name field. Wait while Windows connects to the printer and installs it… It’s successfully added…click Next. Now you can set it as the default printer or not and print a test page to make sure everything works successfully. Now when we go back to Devices and Printers under Printers and Faxes, we see the HP printer on XPMCE. Conclusion Sharing a printer from one machine to another can sometimes be tricky, but the method we used here in our setup worked well. Since the printer we used is fairly new, there wasn’t a problem with locating any drivers for it. Windows 7 includes a lot of device drivers already so you may be surprised on what it’s able to install. Your results may vary depending on your type of printer, Windows version, and network setup. This should get you started configuring the machines on your network—hopefully with good results.  If you you have two Windows 7 computers, then sharing a printer or files is easy through the Homegroup feature. You can also share a printer between Windows 7 machines on the same network but not Homegroup. Similar Articles Productive Geek Tips Share a Printer Between Windows 7 Machines Not in the Same HomegroupShare Files and Printers between Windows 7 and XPHow To Share Files and Printers Between Windows 7 and VistaEnable Mapping to \HostnameC$ Share on Windows 7 or VistaUse the Homegroup Feature in Windows 7 to Share Printers and Files TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Enable Check Box Selection in Windows 7 OnlineOCR – Free OCR Service Betting on the Blind Side, a Vanity Fair article 30 Minimal Logo Designs that Say More with Less LEGO Digital Designer – Free Create a Personal Website Quickly using Flavors.me

    Read the article

  • Share a Printer on Your Network from Vista or XP to Windows 7

    - by Mysticgeek
    The other day we looked at sharing a printer between Windows 7 machines, but you may only have one Windows 7 machine and the printer is connected to a Vista or XP computer. Today we show you how to share a printer from either Vista or XP to Windows 7. We previously showed you how to share files and printers between Windows 7 and XP. But what if you have a printer connected to an XP or Vista machine in another room, and you want to print to it from Windows 7? This guide will walk you through the process. Note: In these examples we’re using 32-bit versions of Windows 7, Vista, and XP on a basic home network. We are using an HP PSC 1500 printer, but keep in mind every printer is different so finding and installing the correct drivers will vary. Share a Printer from Vista To share the printer on a Vista machine click on Start and enter printers into the search box and hit Enter. Right-click on the printer you want to share and select Sharing from the context menu. Now in Printer Properties, select the Sharing tab, mark the box next to Share this printer, and give the printer a name. Make sure the name is something simple with no spaces then click Ok. Share a Printer from XP To share a printer from XP click on Start then select Printers and Faxes. In the Printers and Faxes window right-click on the printer to share and select Sharing. In the Printer Properties window select the Sharing tab and the radio button next to Share this printer and give it a short name with no spaces then click Ok. Add Printer to Windows 7 Now that we have the printer on Vista or XP set up to be shared, it’s time to add it to Windows 7. Open the Start Menu and click on Devices and Printers. In Devices and Printers click on Add a printer. Next click on Add a network, wireless or Bluetooth printer. Windows 7 will search for the printer on your network and once its been found click Next. The printer has been successfully added…click Next. Now you can set it as the default printer and send a test page to verify everything works. If everything is successful, close out of the add printer screens and you should be good to go.   Alternate Method If the method above doesn’t work, you’ll can try the following for either XP or Vista. In our example, when trying to add the printer connected to our XP machine, it wasn’t recognized automatically. If you’re search pulls up nothing then click on The printer that I want isn’t listed. In the Add Printer window under Find a printer by name or TCP/IP address click the radio button next to Select a shared printer by name. You can either type in the path to the printer or click on Browse to find it. In this instance we decided to browse to it and notice we have 5 computers found on the network. We want to be able to print to the XPMCE computer so we double-click on that. Type in the username and password for that computer… Now we see the printer and can select it. The path to the printer is put into the Select a shared printer by name field. Wait while Windows connects to the printer and installs it… It’s successfully added…click Next. Now you can set it as the default printer or not and print a test page to make sure everything works successfully. Now when we go back to Devices and Printers under Printers and Faxes, we see the HP printer on XPMCE. Conclusion Sharing a printer from one machine to another can sometimes be tricky, but the method we used here in our setup worked well. Since the printer we used is fairly new, there wasn’t a problem with locating any drivers for it. Windows 7 includes a lot of device drivers already so you may be surprised on what it’s able to install. Your results may vary depending on your type of printer, Windows version, and network setup. This should get you started configuring the machines on your network—hopefully with good results.  If you you have two Windows 7 computers, then sharing a printer or files is easy through the Homegroup feature. You can also share a printer between Windows 7 machines on the same network but not Homegroup. Similar Articles Productive Geek Tips Share a Printer Between Windows 7 Machines Not in the Same HomegroupShare Files and Printers between Windows 7 and XPHow To Share Files and Printers Between Windows 7 and VistaEnable Mapping to \HostnameC$ Share on Windows 7 or VistaUse the Homegroup Feature in Windows 7 to Share Printers and Files TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Enable Check Box Selection in Windows 7 OnlineOCR – Free OCR Service Betting on the Blind Side, a Vanity Fair article 30 Minimal Logo Designs that Say More with Less LEGO Digital Designer – Free Create a Personal Website Quickly using Flavors.me

    Read the article

  • Windows services with windows forms in the same process

    - by andrecarlucci
    Hello, I have a c# application that runs as a windows service controlling socket connections and other things. Also, there is another windows forms application to control and configure this service (systray with start, stop, show form with configuration parameters). I'm using .net remoting to do the IPC and that was fine, but now I want to show some real traffic and other reports and remoting will not meet my performance requirements. So I want to combine both applications in one. Here is the problem: When I started the form from the windows service, nothing happened. Googling around I've found that I have to right click the service, go to Log on and check the "Allow service to interact with desktop" option. Since I don't want to ask my users to do that, I got some code googling again to set this option in the user's regedit during installation time. The problem is that even setting this option, it doesn't work. I have to open the Log On options of the service (it is checked), uncheck and check again. So, how to solve that? How is the best way to have a windows service with a systray control in the same process, available to any user logging in? UPDATE: Thanks for the comments so far, guys. I agree it is better to use IPC and I know that it is bad to mix windows services and user interfaces. Even though, I want to know how to do that.

    Read the article

  • why does windows authentication / impersonation fail on asp.net application with iis 7.5 / windows 7

    - by velvet sheen
    hi there; i'm troubleshooting why i cannot get past the login dialog on an asp.net site configured for windows authentication and impersonation. help me before i switch to os x development and objective-c i have an asp.net 2.0 application and i'm trying to deploy it on windows 7 with iis 7.5. i've created a new site, and bound it to localhost and a fully qualified domain name. the fqdn is in my hosts file, and is redirected to 127.0.0.1 the site is also running with an appdomain i created, with integrated pipeline mode, and the process model identity is set to ApplicationPoolIdentity. web.config includes the following: <trust level="High" /> <authentication mode="Windows" /> <authorization> <deny users="?"/> </authorization> <identity impersonate="true"/> acl on the directory for the site is desperation set to everyone full control, the application pool virtual account (windows 7 thing) is set to full control on the physical directory for the site also. iis authentication has asp.net impersonation enabled, and windows authentication enabled. when i connect to the site as localhost, it permits me to get past the login prompt and the application loads without incident. when i connect to the site as the fqdn set in the host headers bindings for this site/ip/port, i cannot get past the login prompt. clicking cancel throws to a http 401.1 error page. why? thanks very much in advance.

    Read the article

  • Windows Phone 7 development: first impressions

    - by DigiMortal
    After hard week in work I got some free time to play with Windows Phone 7 CTP developer tools. Although my first test application is still unfinished I think it is good moment to share my first experiences to you. In this posting I will give you quick overview of Windows Phone 7 developer tools from developer perspective. If you are familiar with Visual Studio 2010 then you will feel comfortable because Windows Phone 7 CTP developer tools base on Visual Studio 2010 Express. Project templates There are five project templates available. Three of them are based on Silverlight and two on XNA Game Studio: Windows Phone Application (Silverlight) Windows Phone List Application (Silverlight) Windows Phone Class Library (Silverlight) Windows Phone Game (XNA Game Studio) Windows Phone Game Library (XNA Game Studio) Currently I am writing to test applications. One of them is based on Windows Phone Application and the other on Windows Phone List Application project template. After creating these projects you see the following views in Visual Studio. Windows Phone Application. Click on image to enlarge. Windows Phone List Application. Click on image to enlarge.  I suggest you to use some of these templates to get started more easily. Windows Phone 7 emulator You can run your Windows Phone 7 applications on Windows Phone 7 emulator that comes with developer tools CTP. If you run your application then emulator is started automatically and you can try out how your application works in phone-like emulator. You can see screenshot of emulator on right. Currently there is opened Windows Phone List Application as it is created by default. Click on image to enlarge it. Emulator is a little bit slow and uncomfortable but it works pretty well. This far I have caused only couple of crashes during my experiments. In these cases emulator works but Visual Studio gets stuck because it cannot communicate with emulator. One important note. Emulator is based on virtual machine although you can see only phone screen and options toolbar. If you want to run emulator you must close all virtual machines running on your machine and run Visual Studio 2010 as administrator. Once you run emulator you can keep it open because you can stop your application in Visual Studio, modify, compile and re-deploy it without restarting emulator. Designing user interfaces You can design user interface of your application in Visual Studio. When you open XAML-files it is displayed in window with two panels. Left panel shows you device screen and works as visual design environment while right panel shows you XAML mark-up and let’s you modify XML if you need it. As it is one of my very first Silverlight applications I felt more comfortable with XAML editor because property names in property boxes of visual designer confused me a little bit. Designer panel is not very good because it is visually hard to follow. It has black background that makes dark borders of controls very hard to see. If you have monitor with very high contrast then it is may be not a real problem. I have usual monitor and I have problem. :) Putting controls on design surface, dragging and resizing them is also pretty painful. Some controls are drawn correctly but for some controls you have to set width and height in XML so they can be resized. After some practicing it is not so annoying anymore. On the right you can see toolbox with some controllers. This is all you get out of the box. But it is sufficient to get started. After getting some experiences you can create your own controls or use existing ones from other vendors or developers. If it is your first time to do stuff with Silverlight then keep Google open – you need it hard. After getting over the first shock you get the point very quickly and start developing at normal speed. :) Writing source code Writing source code is the most familiar part of this action. Good old Visual Studio code editor with all nice features it has. But here you get also some surprises: The anatomy of Silverlight controls is a little bit different than the one of user controls in web and forms projects. Windows Phone 7 doesn’t run on full version of Windows (I bet it is some version of Windows CE or something like this) then there is less system classes you can use. Some familiar classes have less methods that in full version of .NET Framework and in these cases you have to write all the code by yourself or find libraries or source code from somewhere. These problems are really not so much problems than limitations and you get easily over them. Conclusion Windows Phone 7 CTP developer tools help you do a lot of things on Windows Phone 7. Although I expected better performance from tools I think that current performance is not a problem. This far my first test project is going very well and Google has answer for almost every question. Windows Phone 7 is mobile device and therefore it has less hardware resources than desktop computers. This is why toolset is so limited. The more you need memory the more slower is device and as you may guess it needs the more battery. If you are writing apps for mobile devices then make your best to get your application use as few resources as possible and act as fast as possible.

    Read the article

  • SQL Server v.Next (Denali) : OS compatibility & upgrade support

    - by AaronBertrand
    Microsoft's Manageability PPM Dan Jones has asked for our feedback on their proposed list of supported operating systems and upgrade paths for the next version of SQL Server. (See the original post ). This has generated all kinds of spirited debates on twitter, in protected mailing lists, and in private e-mail. If you're going to be involved in moving to Denali, you should be aware of these proposals and stay on top of the discussion until the results are in. (The media are starting to pick up on...(read more)

    Read the article

  • create own svn repository hosting

    - by netmajor
    Hey, Since week I use ToirtoiseSVN and AnkhSVN and GoogleCode and sourceforge.net as my project hosting. For me it's frustrating to fill all this forms before create next project. So I start thinking about mu own repository hosting... Can I use simple file hosting etc. and install there software like use Google or SourceForge to have my own SVN Server ? My point is to have independent repository in internet without all this uselessly UI interface which give me Google and SF to administrate my version control. I don't want to take advantage of already exist hosting like GoogleCode etc - I want to be independent from them! ;) Or maybe it's other way to do my own repository hosting and FREE ;) Please don't tell me that I'm at mercy of commercial hosting... :/ p.s. If I wrote something wrong, sorry ;)

    Read the article

  • Environment Variable to determine the OS type (Windows XP, Windows 7)

    - by Santhosh
    I want to differrntiate between Windows XP and Windows 7 in a XML file. Thought i will use an environment variable for it inside the XML. However I could not find any system environment variable defined in windows that gives this information. I see the %OSTYPE% variable but it is only available in Windows 7. It is not defined in XP. Is there anyway i could do this? Note that i would like a solution which purely depends on system environment variables. I do not want to create new variables based on executing some command, because i want to use this variable in a XML file.

    Read the article

  • Q&amp;A: Can you develop for the Windows Azure Platform using Windows XP?

    - by Eric Nelson
    This question has come up several times recently as we take several hundred UK developers through 6 Weeks of Windows Azure training (sorry – we are full). Short answer: In the main, yes Longer answer: The question is sparked by the requirements as stated on the Windows Azure SDK download page. Namely: Supported Operating Systems: Windows 7; Windows Vista; Windows Vista 64-bit Editions Service Pack 1; Windows Vista Business; Windows Vista Business 64-bit edition; Windows Vista Enterprise; Windows Vista Enterprise 64-bit edition; Windows Vista Home Premium; Windows Vista Home Premium 64-bit edition; Windows Vista Service Pack 1; Windows Vista Service Pack 2; Windows Vista Ultimate; Windows Vista Ultimate 64-bit edition Notice there is no mention of Windows XP. However things are not quite that simple. The Windows Azure Platform consists of three released technologies Windows Azure SQL Azure Windows Azure platform AppFabric The Windows Azure SDK is only for one of the three technologies, Windows Azure. What about SQL Azure and AppFabric? Well it turns out that you can develop for both of these technologies just fine with Windows XP: SQL Azure development is really just SQL Server development with a few gotchas – and for local development you can simply use SQL Server 2008 R2 Express (other versions will also work). AppFabric also has no local simulation environment and the SDK will install fine on Windows XP (SDK download) Actually it is also possible to do Windows Azure development on Windows XP if you are willing to always work directly against the real Azure cloud running in Microsoft datacentres. However in practice this would be painful and time consuming, hence why the Windows Azure SDK installs a local simulation environment. Therefore if you want to develop for Windows Azure I would recommend you either upgrade from Windows XP to Windows 7 or… you use a virtual machine running Windows 7. If this is a temporary requirement, then you could consider building a virtual machine using the Windows 7 Enterprise 90 day eval. Or you could download a pre-configured VHD – but I can’t quite find the link for a Windows 7 VHD. Pointers welcomed. Thanks.

    Read the article

  • Increase the size of Taskbar Preview Thumbnails in Windows 7

    - by Matthew Guay
    Taskbar thumbnail previews are incredibly useful in Windows 7, but for some users they may be too small.  Here’s a tool to help you make your taskbar thumbnail previews just like you want them. A few years ago we featured a tool to increase the size of your thumbnail previews in Windows Vista, but unfortunately this application doesn’t work correctly in Windows 7.  However, there is a new tool for Windows 7 that lets you customize your taskbar thumbnail previews even more in Windows 7.  With it, you can change almost anything about your taskbar thumbnail previews.  The default taskbar thumbnails are nice, but may be too small for users with vision problems or with very high resolution monitors.  Whatever your need, this is a great tool to make the thumbnails looks and work just like you want. Let’s get started Download the Windows 7 Taskbar Thumbnail Customizer (link below), and unzip the files.  Run the Windows 7 Taskbar Thumbnail Customizer when you’re done.  Simply double-click on it; you don’t need to run it as administrator. Now, you change the size, spacing, margin, and delay time of your taskbar thumbnails.  The Delay Time setting is very handy; to speed things up, we set it to 0 so there’s no delay between when you mouse-over a taskbar icon to when you see the thumbnail.  Simply drag the slider to the size (or time in the delay settings) you want, and click Apply settings.  Windows Explorer will automatically restart, and your new taskbar thumbnails will be ready to use. Here is the default Windows 7 thumbnail preview of a video playing in Media player: And here’s the taskbar thumbnail enlarged to 380px.  Now you can really watch a video from your taskbar thumbnail. The larger taskbar thumbnails show up a little different in Internet Explorer.  It shows a larger preview of your active tab, and smaller previews of your other tabs.  Notice also that Aero peek shows the tab you’re hovering over in Internet Explorer, but the tab name in IE’s toolbar doesn’t change to the one you’re previewing.   Here we increased the width between the thumbnails, while keeping the thumbnails at their default size.  This could be useful if you have trouble selecting the correct preview, and we can imagine it would be a very useful modification on touch screens. And, if you ever take your changes too far, and want to revert to your default Windows 7 taskbar thumbnail previews, simply run the Customizer again and select Restore Defaults.  Windows Explorer will restart again, and your taskbar thumbnails will be back to their default settings.   Conclusion This tool makes it safe and easy to change the size, spacing, and more of your taskbar thumbnail previews.  And since you can always revert to the default settings, you can experiment without fear of messing up your computer.  If you’d prefer to change the settings manually without using a dedicated application, here’s a list of the registry changes you can make to accomplish this by hand. Link Download the Windows 7 Taskbar Thumbnail Customizer from The Windows Club Vista Users: Increase Size of Windows Vista Taskbar Previews Similar Articles Productive Geek Tips Bounty(Paid!) for Increasing Windows Vista Taskbar Preview SizeGet Vista Taskbar Thumbnail Previews in Windows XPVista Style Popup Previews for Firefox TabsIncrease Size of Windows Vista Taskbar PreviewsWhat is dwm.exe And Why Is It Running? TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Are You Blocked On Gtalk? Find out Discover Latest Android Apps On AppBrain The Ultimate Guide For YouTube Lovers Will it Blend? iPad Edition Penolo Lets You Share Sketches On Twitter Visit Woolyss.com for Old School Games, Music and Videos

    Read the article

  • Migrating Email to new hosting.

    - by Ben C
    I've made a site for a charity, and now have to move hosting for them. They have 5 or so email addresses on their current hosting account, which will of course need to move too. What's the best way to migrate their email addresses to the new server without too much hassle for them? They use POP3, so should I just create the account on the new server and then get them to update their settings? That won't remove their old emails from Outlook Express, will it?

    Read the article

  • Using uk domain names on us hosting

    - by Steve Cooper
    Hi, all. I'm thinking of transferring my UK websites to a US hosting company, and they assure me they can host UK domains. However, as a bit of a n00b I don't understand the relationship between UK domain registration and US hosting. If anyone can explain this relationship I'd be very grateful. What pitfalls and problems should I be alert to? Many thanks.

    Read the article

  • How can Hosting Providers allow .NET Full Trust?

    - by Alex
    I wondered how certain .NET hosting providers can safely grant full trust to their customers? Doesn't this open up everybody who is hosting with that company to potential safety issues? Or is there a way to safely restrict each customer, despite giving full trust, to "their" space without giving them the abiliy to bring down the system or spy on other customers?

    Read the article

  • Godaddy one page hosting

    - by liv a
    Disclaimer: not sure this is the right place for this kind of question, sorry in advance, just point me to the right place and I'll move it. In godaddy when paying only for domain, without hosting, they state you can get one page hosting for free but that option only opens their web-builder. I want to create a nicely design landing page, where the content is static.Is there a way to make my domain point to a wordpress one page or self created html one page/ landing page?

    Read the article

  • Recommended Free Web Hosting Providers?

    - by Noah Goodrich
    I have been tasked with finding a low budget (translate free) web hosting service for a Facebook group and would like feedback from the professional community as to their experiences with free hosting providers in general, as well as any specific recommendations or evaluations of free (or very inexpensive) providers. Our specific needs for this project include: PHP 5 Support Mysql 5.0 Support Apache 2 Ability to use mod_rewrite in .htaccess files

    Read the article

< Previous Page | 30 31 32 33 34 35 36 37 38 39 40 41  | Next Page >