Search Results

Search found 4578 results on 184 pages for 'connections'.

Page 35/184 | < Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >

  • Multiple Simultaneous VPN Connection Limit

    - by stukelly
    Is it possible to have more than two active VPN connections on Windows XP? I have a customer with three VPN client connections on Windows XP Professional. I can connect to any two sites at the same time, but the third connection always fails. Is this a limit within the operating system?

    Read the article

  • SSL totally stopped working in Windows

    - by Dims
    Apparently, on my notebook, I have suddenly lost any ability to use network connections, involving SSL and/or data encryption, provided my MS: 1) remote desktop connections: Because of an error in data encryption, this session will end 2) browse HTTPS sites: Can't browse HTTPS pages. TLS error 3) communicate over WiFi, while wired is ok Is there any possible one central reason for all of these problems in Windows? Third party applications, like Putty, works fine. Is it possible to reset/repair certificate store or something in Windows?

    Read the article

  • Monitoring VPN users on my network

    - by Fen0x
    My company runs filters on contents available for browsing and I have to check if everyone is respecting the browsing policies. Recently I have spotted some users activate OpenVPN on their workstations and i have discovered that they connect on port 443 of an external server and then use a proxy to circumvent the company filters. Is there any method to monitor VPN connections on allowed ports or to avoid the connections?

    Read the article

  • NIC going to sleep on Ubuntu Server 10.04

    - by user43390
    When I leave my server idle for about 10 minutes the network will stop responding to outside connections. If I get on the server and attempt to use the network(ping google for example) there will be a delay for a few seconds and then it works. After this incoming connections work again until I leave it idle again. Why does this happen and how can I fix it?

    Read the article

  • Not able to access the server after changing the password? [closed]

    - by cyrilsebastian
    While accessing the server, the error comes: Multiple connections to a server or shared resource by the same user, using more than one user name, are not allowed. Disconnect all previous connections to the server or shared resource and try again. I am logging in from Administrator in XP machine, able to access server from other machines. Is there any problem with administrator profile??

    Read the article

  • IIS 6.0 Server Too Busy HTTP 503 Connection_Dropped DefaultAppPool

    - by Shiraz Bhaiji
    We have a site which is running on a windows 2003 cluster with 2 64bit machines. The site needs to be able to cope with over 20,000 concurrent users One of the things that the site does is to allow the download of a 2MB file (which is cached in memory). We have low CPU and memory usage. We also have surplus bandwidth. It appears that we are running out of connections due the time it takes the user to download the file (some users have slow internet connections). In the IIS log we get HTTP 503 errors. In the HTTPErr log we get mainly Connection_Dropped DefaultAppPool with some Timer_EntityBody DefaultAppPool. Question is: How can we configure IIS to allow more connections? Or is there something that I am missing here? Thanks Shiraz

    Read the article

  • How to configure maximum number of channels in WCF?

    - by Hemant
    Consider following code which calls a calculator service: static void Main (string[] args) { for (int i = 0; i < 32; i++) { ThreadPool.QueueUserWorkItem (o => { var client = new CalcServiceClient (); client.Open (); while (true) { var sum = client.Add (2, 3); } }); } Console.ReadLine (); } If I use TCP binding then maximum 32 connections are opened but if I use HTTP binding, only 2 TCP connections are opened. How can I configure the maximum number of connections that can be opened using HTTP binding?

    Read the article

  • Transparent Proxy for IPv6 traffic under Linux

    - by Jerub
    When maintaining networks, it is often an expedient thing to do to run a transparent proxy. By transparent proxy I mean a proxy that 'hijacks' outgoing connections and runs them through a local service. Specifically I run a linux firewall with squid configured so that all tcp/ip connections fowarded on port 80 are proxied by squid. This is achived using the iptables 'nat' table, using IPv4. But iptables for IPv6 does not have a 'nat' table, so I cannot use the same implementation. What is a technique I can use to transparently proxy traffic for IPv6 connections? (this question has still not been answered adequately yet, a year on)

    Read the article

  • Web Services vs Persistent Sockets

    - by dsquires
    I plan on doing a little benchmarking around this question, myself. But I thought it would be good to get some initial feedback from "the community". Has anyone out there done any analysis regarding the pros and cons of these two technologies? My thoughts: Opening and closing TCP/IP connections for web service calls is relatively expensive compared to persistent connections. Dealing with intermittent connection errors and state, etc... would be easier with a web service based framework. You don't see World of Warcraft using web services. One question that I can't seem to find much of answer for anywhere (even on here)... are the limits on the # of persistent connections a single network card can support, etc?

    Read the article

  • Grails MySql processList

    - by Masiar Ighani
    Hello, i have a grails application with a webflow. I store my inner flow objects of interest in the converstaion scope. After entering and leaving the flow a few times, i see that the single user connected to the DB (MySql) generates a lot of threads on the MySql Server which are not released. The processlist in mysql show me the threads in sleeping mode and a netstat on the client shows me established connections to the mysql server. I assume the connections are held active and not released. But why is that? What do grails exactly do when entering and leaving a flow? Why are so many connections opened and not closed? Any help would be appreciated. regards, masiar

    Read the article

  • What happens when Npgsql connection pool reaches Max

    - by ClearCarbon
    Both the name of the connection string parameter and this blog post - http://fxjr.blogspot.co.uk/2010/04/npgsql-connection-pool-explained.html - lead me to believe that Npgsql wont exceed the MaxPoolSize value set in the connection string. However the docs (http://npgsql.projects.postgresql.org/docs/manual/UserManual.html) say "Max size of connection pool. Pooled connections will be disposed of when returned to the pool if the pool contains more than this number of connections. Default: 20" This suggests that the pool can actually grow larger than MaxPoolSize and it is in fact just a level at which Npgsql starts to aggressively remove connections from the pool as soon as they are returned. I've been searching to try and find an answer but I can find out exactly what happens when you reach MaxPoolSize. Anyone else know? edit: I should add we are using Npgsql 2.0.6.0 due to another dependency being supported only up to that version.

    Read the article

  • ASP.NET connection pool question

    - by James Evans
    Does the same connection string used on two different physical servers hosting different web applications that talk to the same database draw connections from the same connection pool? Or are pooled connections confined to at the application level? I ask because I inherited a 7 year old .NET 1.1 web application which is riddled with in-line SQL, unclosed and undisposed sql connection and datareader objects. Recently, I was tasked to write a small web app that is hosted on another server and talks to the same database and therefore used the same database connection string. I created a LINQ object to read and write the one table required by the app. Now the original .NET 1.1 app is throwing exceptions like "Timeout expired. The timeout period elapsed prior to obtaining a connection from the pool. This may have occurred because all pooled connections were in use and max pool size was reached." Maybe these are unreleated, but wanted to get your opinions to make sure I cover all my bases. Thanks!

    Read the article

  • Deployment of a .NET application making use of SQL Server 2008

    - by Victor John Saliba
    I have searched the internet thoroughly for this type of issue, there were responses but hasn't really found a concrete solution yet. I have an application which makes use of SQL Server 2008 R2 and thus it makes connections with a database file which I have set up. The application executes successfully, makes connections with the database and retrieves/inserts/updates data to and fro the database. However when I come to create a deployment project i.e. a setup project, I fail to transfer my database files to other computers and make database connections. I have checked the SQL Server 2008 prerequisite in the publish settings of the application and has also included the database files. Can anyone suggest the best way to this type of setup? Thanks

    Read the article

  • db2 jdbc driver does not release table locks

    - by as
    situation: We have a web service running on tomcat accessing DB2 database on AS400, we are using JTOPEN drivers for JNDI connections handled by tomcat. For handling transactions and access to database we are using Spring. For each select system takes JDBC connection from JNDI (i.e. from connection pool), does selection, and in the end it closes ResultSet, Statement and releases Connection in that order. That passes fine, shared lock on table dissappears. When we want to do update the same way as we did with select (exception on ResultSet object, we don't have one in such situation), after releasing Connection to JNDI lock on table stays. If we put maxIdle=0 for number of connections in JNDI configuration, this problem disappears, but this degrades performances, we have cca 100 users online on that service, we need few connections to be alive in pool. What do you suggest?

    Read the article

  • Typed DataSet connection - required to have one in the .xsd file?

    - by Kyralessa
    In the .xsd file for a typed DataSet in .NET, there's a <Connections> section that contains a list of any data connections I've used to set up the DataTables and TableAdapters. There are times when I'd prefer not to have those there. For instance, sometimes I prefer to pass in a connection string to a custom constructor and use that rather than look for one in settings, .config, etc. But it seems like if I remove the connection strings from that section (leaving it empty), or remove the section entirely, the DataSet code-generation tool freaks out. Whereas if I don't remove them, the DataSet gripes when I put it in a different project because it can't find the settings for those connection strings. Is there any way I can tell a typed DataSet not to worry about any connections? (Obviously I'll have to give it a connection if I change any TableAdapter SQL or stored procs, but that should be my problem.)

    Read the article

  • What host do I have to bind a listening socket to?

    - by herrturtur
    I used python's socket module and tried to open a listening socket using import socket import sys def getServerSocket(host, port): for r in socket.getaddrinfo(host, port, socket.AF_UNSPEC, socket.SOCK_STREAM, 0, socket.AI_PASSIVE): af, socktype, proto, canonname, sa = r try: s = socket.socket(af, socktype, proto) except socket.error, msg: s = None continue try: s.bind(sa) s.listen(1) except socket.error, msg: s.close() s = None continue break if s is None: print 'could not open socket' sys.exit(1) return s Where host was None and port was 15000. The program would then accept connections, but only from connections on the same machine. What do I have to do to accept connections from the internet?

    Read the article

  • How do I make a TCP connection between 2 servers if both can start the connection ?

    - by DeeD
    I have a defined number of servers that can locally process data in their own way. But after some time I want to synchronize some states that are common on each server. My idea was that establish a TCP connection from each server to the other servers like a mesh network. My problem is that in what order do I make the connections since there is no "master" server here, so that each server is responsible for creating there own connections to each server. My idea was that make each server connect and if the server that is getting connected already has a connection to the connecting server, then just drop the connection. But how do I handle the fact that 2 servers is trying to connect at the same time? Because then I get 2 TCP connections instead of 1. Any ideas?

    Read the article

  • PHP OCI8 and Oracle 11g DRCP Connection Pooling in Pictures

    - by christopher.jones
    Here is a screen shot from a PHP OCI8 connection pooling demo that I like to run. It graphically shows how little database host memory is needed when using DRCP connection pooling with Oracle Database 11g. Migrating to DRCP can be as simple as starting the pool and changing the connection string in your PHP application. The script that generated the data for this graph was a simple "Parts" query application being run under various simulated user loads. I was running the database on a small Oracle Linux server with just 2G of memory. I used PHP OCI8 1.4. Apache is in pre-fork mode, as needed for PHP. Each graph has time on the horizontal access in arbitrary 'tick' time units. Click the image to see it full sized. Pooled connections Beginning with the top left graph, At tick time 65 I used Apache's 'ab' tool to start 100 concurrent 'users' running the application. These users connected to the database using DRCP: $c = oci_pconnect('phpdemo', 'welcome', 'myhost/orcl:pooled'); A second hundred DRCP users were added to the system at tick 80 and a final hundred users added at tick 100. At about tick 110 I stopped the test and restarted Apache. This closed all the connections. The bottom left graph shows the number of statements being executed by the database per second, with some spikes for background database activity and some variability for this small test. Each extra batch of users adds another 'step' of load to the system. Looking at the top right Server Process graph shows the database server processes doing the query work for each web user. As user load is added, the DRCP server pool increases (in green). The pool is initially at its default size 4 and quickly ramps up to about (I'm guessing) 35. At tick time 100 the pool increases to my configured maximum of 40 processes. Those 40 processes are doing the query work for all 300 web users. When I stopped the test at tick 110, the pooled processes remained open waiting for more users to connect. If I had left the test quiet for the DRCP 'inactivity_timeout' period (300 seconds by default), the pool would have shrunk back to 4 processes. Looking at the bottom right, you can see the amount of memory being consumed by the database. During the initial quiet period about 500M of memory was in use. The absolute number is just an indication of my particular DB configuration. As the number of pooled processes increases, each process needs more memory. You can see the shape of the memory graph echoes the Server Process graph above it. Each of the 300 web users will also need a few kilobytes but this is almost too small to see on the graph. Non-pooled connections Compare the DRCP case with using 'dedicated server' processes. At tick 140 I started 100 web users who did not use pooled connections: $c = oci_pconnect('phpdemo', 'welcome', 'myhost/orcl'); This connection string change is the only difference between the two tests. At ticks 155 and 165 I started two more batches of 100 simulated users each. At about tick 195 I stopped the user load but left Apache running. Apache then gradually returned to its quiescent state, killing idle httpd processes and producing the downward slope at the right of the graphs as the persistent database connection in each Apache process was closed. The Executions per Second graph on the bottom left shows the same step increases as for the earlier DRCP case. The database is handling this load. But look at the number of Server processes on the top right graph. There is now a one-to-one correspondence between Apache/PHP processes and DB server processes. Each PHP processes has one DB server processes dedicated to it. Hence the term 'dedicated server'. The memory required on the database is proportional to all those database server processes started. Almost all my system's memory was consumed. I doubt it would have coped with any more user load. Summary Oracle Database 11g DRCP connection pooling significantly reduces database host memory requirements allow more system memory to be allocated for the SGA and allowing the system to scale to handled thousands of concurrent PHP users. Even for small systems, using DRCP allows more web users to be active. More information about PHP and DRCP can be found in the PHP Scalability and High Availability chapter of The Underground PHP and Oracle Manual.

    Read the article

  • What's up with LDoms: Part 1 - Introduction & Basic Concepts

    - by Stefan Hinker
    LDoms - the correct name is Oracle VM Server for SPARC - have been around for quite a while now.  But to my surprise, I get more and more requests to explain how they work or to give advise on how to make good use of them.  This made me think that writing up a few articles discussing the different features would be a good idea.  Now - I don't intend to rewrite the LDoms Admin Guide or to copy and reformat the (hopefully) well known "Beginners Guide to LDoms" by Tony Shoumack from 2007.  Those documents are very recommendable - especially the Beginners Guide, although based on LDoms 1.0, is still a good place to begin with.  However, LDoms have come a long way since then, and I hope to contribute to their adoption by discussing how they work and what features there are today.  In this and the following posts, I will use the term "LDoms" as a common abbreviation for Oracle VM Server for SPARC, just because it's a lot shorter and easier to type (and presumably, read). So, just to get everyone on the same baseline, lets briefly discuss the basic concepts of virtualization with LDoms.  LDoms make use of a hypervisor as a layer of abstraction between real, physical hardware and virtual hardware.  This virtual hardware is then used to create a number of guest systems which each behave very similar to a system running on bare metal:  Each has its own OBP, each will install its own copy of the Solaris OS and each will see a certain amount of CPU, memory, disk and network resources available to it.  Unlike some other type 1 hypervisors running on x86 hardware, the SPARC hypervisor is embedded in the system firmware and makes use both of supporting functions in the sun4v SPARC instruction set as well as the overall CPU architecture to fulfill its function. The CMT architecture of the supporting CPUs (T1 through T4) provide a large number of cores and threads to the OS.  For example, the current T4 CPU has eight cores, each running 8 threads, for a total of 64 threads per socket.  To the OS, this looks like 64 CPUs.  The SPARC hypervisor, when creating guest systems, simply assigns a certain number of these threads exclusively to one guest, thus avoiding the overhead of having to schedule OS threads to CPUs, as do typical x86 hypervisors.  The hypervisor only assigns CPUs and then steps aside.  It is not involved in the actual work being dispatched from the OS to the CPU, all it does is maintain isolation between different guests. Likewise, memory is assigned exclusively to individual guests.  Here,  the hypervisor provides generic mappings between the physical hardware addresses and the guest's views on memory.  Again, the hypervisor is not involved in the actual memory access, it only maintains isolation between guests. During the inital setup of a system with LDoms, you start with one special domain, called the Control Domain.  Initially, this domain owns all the hardware available in the system, including all CPUs, all RAM and all IO resources.  If you'd be running the system un-virtualized, this would be what you'd be working with.  To allow for guests, you first resize this initial domain (also called a primary domain in LDoms speak), assigning it a small amount of CPU and memory.  This frees up most of the available CPU and memory resources for guest domains.  IO is a little more complex, but very straightforward.  When LDoms 1.0 first came out, the only way to provide IO to guest systems was to create virtual disk and network services and attach guests to these services.  In the meantime, several different ways to connect guest domains to IO have been developed, the most recent one being SR-IOV support for network devices released in version 2.2 of Oracle VM Server for SPARC. I will cover these more advanced features in detail later.  For now, lets have a short look at the initial way IO was virtualized in LDoms: For virtualized IO, you create two services, one "Virtual Disk Service" or vds, and one "Virtual Switch" or vswitch.  You can, of course, also create more of these, but that's more advanced than I want to cover in this introduction.  These IO services now connect real, physical IO resources like a disk LUN or a networt port to the virtual devices that are assigned to guest domains.  For disk IO, the normal case would be to connect a physical LUN (or some other storage option that I'll discuss later) to one specific guest.  That guest would be assigned a virtual disk, which would appear to be just like a real LUN to the guest, while the IO is actually routed through the virtual disk service down to the physical device.  For network, the vswitch acts very much like a real, physical ethernet switch - you connect one physical port to it for outside connectivity and define one or more connections per guest, just like you would plug cables between a real switch and a real system. For completeness, there is another service that provides console access to guest domains which mimics the behavior of serial terminal servers. The connections between the virtual devices on the guest's side and the virtual IO services in the primary domain are created by the hypervisor.  It uses so called "Logical Domain Channels" or LDCs to create point-to-point connections between all of these devices and services.  These LDCs work very similar to high speed serial connections and are configured automatically whenever the Control Domain adds or removes virtual IO. To see all this in action, now lets look at a first example.  I will start with a newly installed machine and configure the control domain so that it's ready to create guest systems. In a first step, after we've installed the software, let's start the virtual console service and downsize the primary domain.  root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-c-- UART 512 261632M 0.3% 2d 13h 58m root@sun # ldm add-vconscon port-range=5000-5100 \ primary-console primary root@sun # svcadm enable vntsd root@sun # svcs vntsd STATE STIME FMRI online 9:53:21 svc:/ldoms/vntsd:default root@sun # ldm set-vcpu 16 primary root@sun # ldm set-mau 1 primary root@sun # ldm start-reconf primary root@sun # ldm set-memory 7680m primary root@sun # ldm add-config initial root@sun # shutdown -y -g0 -i6 So what have I done: I've defined a range of ports (5000-5100) for the virtual network terminal service and then started that service.  The vnts will later provide console connections to guest systems, very much like serial NTS's do in the physical world. Next, I assigned 16 vCPUs (on this platform, a T3-4, that's two cores) to the primary domain, freeing the rest up for future guest systems.  I also assigned one MAU to this domain.  A MAU is a crypto unit in the T3 CPU.  These need to be explicitly assigned to domains, just like CPU or memory.  (This is no longer the case with T4 systems, where crypto is always available everywhere.) Before I reassigned the memory, I started what's called a "delayed reconfiguration" session.  That avoids actually doing the change right away, which would take a considerable amount of time in this case.  Instead, I'll need to reboot once I'm all done.  I've assigned 7680MB of RAM to the primary.  That's 8GB less the 512MB which the hypervisor uses for it's own private purposes.  You can, depending on your needs, work with less.  I'll spend a dedicated article on sizing, discussing the pros and cons in detail. Finally, just before the reboot, I saved my work on the ILOM, to make this configuration available after a powercycle of the box.  (It'll always be available after a simple reboot, but the ILOM needs to know the configuration of the hypervisor after a power-cycle, before the primary domain is booted.) Now, lets create a first disk service and a first virtual switch which is connected to the physical network device igb2. We will later use these to connect virtual disks and virtual network ports of our guest systems to real world storage and network. root@sun # ldm add-vds primary-vds root@sun # ldm add-vswitch net-dev=igb2 switch-primary primary You are free to choose whatever names you like for the virtual disk service and the virtual switch.  I strongly recommend that you choose names that make sense to you and describe the function of each service in the context of your implementation.  For the vswitch, for example, you could choose names like "admin-vswitch" or "production-network" etc. This already concludes the configuration of the control domain.  We've freed up considerable amounts of CPU and RAM for guest systems and created the necessary infrastructure - console, vts and vswitch - so that guests systems can actually interact with the outside world.  The system is now ready to create guests, which I'll describe in the next section. For further reading, here are some recommendable links: The LDoms 2.2 Admin Guide The "Beginners Guide to LDoms" The LDoms Information Center on MOS LDoms on OTN

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #049

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Two Connections Related Global Variables Explained – @@CONNECTIONS and @@MAX_CONNECTIONS @@CONNECTIONS Returns the number of attempted connections, either successful or unsuccessful since SQL Server was last started. @@MAX_CONNECTIONS Returns the maximum number of simultaneous user connections allowed on an instance of SQL Server. The number returned is not necessarily the number currently configured. Query Editor – Microsoft SQL Server Management Studio This post may be very simple for most of the users of SQL Server 2005. Earlier this year, I have received one question many times – Where is Query Analyzer in SQL Server 2005? I wrote small post about it and pointed many users to that post – SQL SERVER – 2005 Query Analyzer – Microsoft SQL SERVER Management Studio. Recently I have been receiving similar question. OUTPUT Clause Example and Explanation with INSERT, UPDATE, DELETE SQL Server 2005 has a new OUTPUT clause, which is quite useful. OUTPUT clause has access to insert and deleted tables (virtual tables) just like triggers. OUTPUT clause can be used to return values to client clause. OUTPUT clause can be used with INSERT, UPDATE, or DELETE to identify the actual rows affected by these statements. OUTPUT clause can generate a table variable, a permanent table, or temporary table. Even though, @@Identity will still work with SQL Server 2005, however I find the OUTPUT clause very easy and powerful to use. Let us understand the OUTPUT clause using an example. Find Name of The SQL Server Instance Based on database server stored procedures has to run different logic. We came up with two different solutions. 1) When database schema is very much changed, we wrote completely new stored procedure and deprecated older version once it was not needed. 2) When logic depended on Server Name we used global variable @@SERVERNAME. It was very convenient while writing migrating script which depended on the server name for the same database. Explanation of TRY…CATCH and ERROR Handling With RAISEERROR Function One of the developers at my company thought that we can not use the RAISEERROR function in new feature of SQL Server 2005 TRY… CATCH. When asked for an explanation he suggested SQL SERVER – 2005 Explanation of TRY… CATCH and ERROR Handling article as excuse suggesting that I did not give example of RAISEERROR with TRY…CATCH. We all thought it was funny. Just to keep records straight, TRY… CATCH can sure use RAISEERROR function. Different Types of Cache Objects Serveral kinds of objects can be stored in the procedure cache: Compiled Plans: When the query optimizer finishes compiling a query plan, the principal output is compiled plan. Execution contexts: While executing a compiled plan, SQL Server has to keep track of information about the state of execution. Cursors: Cursors track the execution state of server-side cursors, including the cursor’s current location within a resultset. Algebrizer trees: The Algebrizer’s job is to produce an algebrizer tree, which represents the logic structure of a query. Open SSMS From Command Prompt – sqlwb.exe Example This article is written by request and suggestion of Sr. Web Developer at my organization. Due to the nature of this article most of the content is referred from Book On-Line. sqlwbcommand prompt utility which opens SQL Server Management Studio. Squib command does not run queries from the command prompt. sqlcmd utility runs queries from command prompt, read for more information. 2008 Puzzle – Solution – Computed Columns Datatype Explanation Just a day before I wrote article SQL SERVER – Puzzle – Computed Columns Datatype Explanation which was inspired by SQL Server MVP Jacob Sebastian. I suggest that before continuing this article read the original puzzle question SQL SERVER – Puzzle – Computed Columns Datatype Explanation.The question was if the computed column was of datatype TINYINT how to create a Computed Column of datatype INT? 2008 – Find If Index is Being Used in Database It is very often I get a query that how to find if any index is being used in the database or not. If any database has many indexes and not all indexes are used it can adversely affect performance. If the number of indices are higher it reduces the INSERT / UPDATE / DELETE operation but increase the SELECT operation. It is recommended to drop any unused indexes from table to improve the performance. 2009 Interesting Observation – Execution Plan and Results of Aggregate Concatenation Queries If you want to see what’s going on here, I think you need to shift your point of view from an implementation-centric view to an ANSI point of view. ANSI does not guarantee processing the order. Figure 2 is interesting, but it will be potentially misleading if you don’t understand the ANSI rule-set SQL Server operates under in most cases. Implementation thinking can certainly be useful at times when you really need that multi-million row query to finish before the backup fire off, but in this case, it’s counterproductive to understanding what is going on. SQL Server Management Studio and Client Statistics Client Statistics are very important. Many a times, people relate queries execution plan to query cost. This is not a good comparison. Both parameters are different, and they are not always related. It is possible that the query cost of any statement is less, but the amount of the data returned is considerably larger, which is causing any query to run slow. How do we know if any query is retrieving a large amount data or very little data? 2010 I encourage all of you to go through complete series and write your own on the subject. If you write an article and send it to me, I will publish it on this blog with due credit to you. If you write on your own blog, I will update this blog post pointing to your blog post. SQL SERVER – ORDER BY Does Not Work – Limitation of the View 1 SQL SERVER – Adding Column is Expensive by Joining Table Outside View – Limitation of the View 2 SQL SERVER – Index Created on View not Used Often – Limitation of the View 3 SQL SERVER – SELECT * and Adding Column Issue in View – Limitation of the View 4 SQL SERVER – COUNT(*) Not Allowed but COUNT_BIG(*) Allowed – Limitation of the View 5 SQL SERVER – UNION Not Allowed but OR Allowed in Index View – Limitation of the View 6 SQL SERVER – Cross Database Queries Not Allowed in Indexed View – Limitation of the View 7 SQL SERVER – Outer Join Not Allowed in Indexed Views – Limitation of the View 8 SQL SERVER – SELF JOIN Not Allowed in Indexed View – Limitation of the View 9 SQL SERVER – Keywords View Definition Must Not Contain for Indexed View – Limitation of the View 10 SQL SERVER – View Over the View Not Possible with Index View – Limitations of the View 11 SQL SERVER – Get Query Running in Session I was recently looking for syntax where I needed a query running in any particular session. I always remembered the syntax and ha d actually written it down before, but somehow it was not coming to mind quickly this time. I searched online and I ended up on my own article written last year SQL SERVER – Get Last Running Query Based on SPID. I felt that I am getting old because I forgot this really simple syntax. Find Total Number of Transaction on Interval In one of my recent Performance Tuning assignments I was asked how do someone know how many transactions are happening on a server during certain interval. I had a handy script for the same. Following script displays transactions happened on the server at the interval of one minute. You can change the WAITFOR DELAY to any other interval and it should work. 2011 Here are two DMV’s which are newly introduced in SQL Server 2012 and provides vital information about SQL Server. DMV – sys.dm_os_volume_stats – Information about operating system volume DMV – sys.dm_os_windows_info – Information about Operating System SQL Backup and FTP – A Quick and Handy Tool I have used this tool extensively since 2009 at numerous occasion and found it to be very impressive. What separates it from the crowd the most – it is it’s apparent simplicity and speed. When I install SQLBackupAndFTP and configure backups – all in 1 or 2 minutes, my clients are always impressed. Quick Note about JOIN – Common Questions and Simple Answers In this blog post we are going to talk about join and lots of things related to the JOIN. I recently started office hours to answer questions and issues of the community. I receive so many questions that are related to JOIN. I will share a few of the same over here. Most of them are basic, but note that the basics are of great importance. 2012 Importance of User Without Login Question: “In recent version of SQL Server we can create user without login. What is the use of it?” Great question indeed. Let me first attempt to answer this question but after reading my answer I need your help. I want you to help him as well with adding more value to it. Preserve Leading Zero While Coping to Excel from SSMS Earlier I wrote two articles about how to efficiently copy data from SSMS to Excel. Since I wrote that post there are plenty of interest generated on this subject. There are a few questions I keep on getting over this subject. One of the question is how to get the leading zero preserved while copying the data from SSMS to Excel. Well it is almost the same way as my earlier post SQL SERVER – Excel Losing Decimal Values When Value Pasted from SSMS ResultSet. The key here is in EXCEL and not in SQL Server. Solution – 2 T-SQL Puzzles – Display Star and Shortest Code to Display 1 Earlier on this blog we had asked two puzzles. The response from all of you is nothing but Amazing. I have received 350+ responses. Many are valid and many were indeed something I had not thought about it. I strongly suggest you read all the puzzles and their answers here - trust me if you start reading the comments you will not stop till you read every single comment. Seriously trust me on it. Personally I have learned a lot from it. Identify Most Resource Intensive Queries – SQL in Sixty Seconds #028 – Video http://www.youtube.com/watch?v=TvlYy-TGaaA Importance of User Without Login – T-SQL Demo Script Earlier I wrote a blog post about SQL SERVER – Importance of User Without Login and my friend and SQL Expert Vinod Kumar has written excellent follow up blog post about Contained Databases inside SQL Server 2012. Now lots of people asked me if I can also explain the same concept again so here is the small demonstration for it. Let me show you how login without user can help. Before we continue on this subject I strongly recommend that you read my earlier blog post here. In following demo I am going to demonstrate following situation. Login using the System Admin account Create a user without login Checking Access Impersonate the user without login Checking Access Revert Impersonation Give Permission to user without login Impersonate the user without login Checking Access Revert Impersonation Clean up Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Manage SQL Server Connectivity through Windows Azure Virtual Machines Remote PowerShell

    - by SQLOS Team
    Manage SQL Server Connectivity through Windows Azure Virtual Machines Remote PowerShell Blog This blog post comes from Khalid Mouss, Senior Program Manager in Microsoft SQL Server. Overview The goal of this blog is to demonstrate how we can automate through PowerShell connecting multiple SQL Server deployments in Windows Azure Virtual Machines. We would configure TCP port that we would open (and close) though Windows firewall from a remote PowerShell session to the Virtual Machine (VM). This will demonstrate how to take the advantage of the remote PowerShell support in Windows Azure Virtual Machines to automate the steps required to connect SQL Server in the same cloud service and in different cloud services.  Scenario 1: VMs connected through the same Cloud Service 2 Virtual machines configured in the same cloud service. Both VMs running different SQL Server instances on them. Both VMs configured with remote PowerShell turned on to be able to run PS and other commands directly into them remotely in order to re-configure them to allow incoming SQL connections from a remote VM or on premise machine(s). Note: RDP (Remote Desktop Protocol) is kept configured in both VMs by default to be able to remote connect to them and check the connections to SQL instances for demo purposes only; but not actually required. Step 1 – Provision VMs and Configure Ports   Provision VM1; named DemoVM1 as follows (see examples screenshots below if using the portal):   Provision VM2 (DemoVM2) with PowerShell Remoting enabled and connected to DemoVM1 above (see examples screenshots below if using the portal): After provisioning of the 2 VMs above, here is the default port configurations for example: Step2 – Verify / Confirm the TCP port used by the database Engine By the default, the port will be configured to be 1433 – this can be changed to a different port number if desired.   1. RDP to each of the VMs created below – this will also ensure the VMs complete SysPrep(ing) and complete configuration 2. Go to SQL Server Configuration Manager -> SQL Server Network Configuration -> Protocols for <SQL instance> -> TCP/IP - > IP Addresses   3. Confirm the port number used by SQL Server Engine; in this case 1433 4. Update from Windows Authentication to Mixed mode   5.       Restart SQL Server service for the change to take effect 6.       Repeat steps 3., 4., and 5. For the second VM: DemoVM2 Step 3 – Remote Powershell to DemoVM1 Enter-PSSession -ComputerName condemo.cloudapp.net -Port 61503 -Credential <username> -UseSSL -SessionOption (New-PSSessionOption -SkipCACheck -SkipCNCheck) Your will then be prompted to enter the password. Step 4 – Open 1433 port in the Windows firewall netsh advfirewall firewall add rule name="DemoVM1Port" dir=in localport=1433 protocol=TCP action=allow Output: netsh advfirewall firewall show rule name=DemoVM1Port Rule Name:                            DemoVM1Port ---------------------------------------------------------------------- Enabled:                              Yes Direction:                            In Profiles:                             Domain,Private,Public Grouping:                             LocalIP:                              Any RemoteIP:                             Any Protocol:                             TCP LocalPort:                            1433 RemotePort:                           Any Edge traversal:                       No Action:                               Allow Ok. Step 5 – Now connect from DemoVM2 to DB instance in DemoVM1 Step 6 – Close port 1433 in the Windows firewall netsh advfirewall firewall delete rule name=DemoVM1Port Output: Deleted 1 rule(s). Ok. netsh advfirewall firewall show  rule name=DemoVM1Port No rules match the specified criteria.   Step 7 – Try to connect from DemoVM2 to DB Instance in DemoVM1  Because port 1433 has been closed (in step 6) in the Windows Firewall in VM1 machine, we can longer connect from VM3 remotely to VM1. Scenario 2: VMs provisioned in different Cloud Services 2 Virtual machines configured in different cloud services. Both VMs running different SQL Server instances on them. Both VMs configured with remote PowerShell turned on to be able to run PS and other commands directly into them remotely in order to re-configure them to allow incoming SQL connections from a remote VM or on on-premise machine(s). Note: RDP (Remote Desktop Protocol) is kept configured in both VMs by default to be able to remote connect to them and check the connections to SQL instances for demo purposes only; but not actually needed. Step 1 – Provision new VM3 Provision VM3; named DemoVM3 as follows (see examples screenshots below if using the portal): After provisioning is complete, here is the default port configurations: Step 2 – Add public port to VM1 connect to from VM3’s DB instance Since VM3 and VM1 are not connected in the same cloud service, we will need to specify the full DNS address while connecting between the machines which includes the public port. We shall add a public port 57000 in this case that is linked to private port 1433 which will be used later to connect to the DB instance. Step 3 – Remote Powershell to DemoVM1 Enter-PSSession -ComputerName condemo.cloudapp.net -Port 61503 -Credential <UserName> -UseSSL -SessionOption (New-PSSessionOption -SkipCACheck -SkipCNCheck) You will then be prompted to enter the password.   Step 4 – Open 1433 port in the Windows firewall netsh advfirewall firewall add rule name="DemoVM1Port" dir=in localport=1433 protocol=TCP action=allow Output: Ok. netsh advfirewall firewall show rule name=DemoVM1Port Rule Name:                            DemoVM1Port ---------------------------------------------------------------------- Enabled:                              Yes Direction:                            In Profiles:                             Domain,Private,Public Grouping:                             LocalIP:                              Any RemoteIP:                             Any Protocol:                             TCP LocalPort:                            1433 RemotePort:                           Any Edge traversal:                       No Action:                               Allow Ok.   Step 5 – Now connect from DemoVM3 to DB instance in DemoVM1 RDP into VM3, launch SSM and Connect to VM1’s DB instance as follows. You must specify the full server name using the DNS address and public port number configured above. Step 6 – Close port 1433 in the Windows firewall netsh advfirewall firewall delete rule name=DemoVM1Port   Output: Deleted 1 rule(s). Ok. netsh advfirewall firewall show  rule name=DemoVM1Port No rules match the specified criteria.  Step 7 – Try to connect from DemoVM2 to DB Instance in DemoVM1  Because port 1433 has been closed (in step 6) in the Windows Firewall in VM1 machine, we can no longer connect from VM3 remotely to VM1. Conclusion Through the new support for remote PowerShell in Windows Azure Virtual Machines, one can script and automate many Virtual Machine and SQL management tasks. In this blog, we have demonstrated, how to start a remote PowerShell session, re-configure Virtual Machine firewall to allow (or disallow) SQL Server connections. References SQL Server in Windows Azure Virtual Machines   Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • netbook alternate installation/update

    - by Dustin
    Ok I have an Asipre One D255E netbook. Installed 9.10 sucessfully, however no internet connections to upgrade to 10.04 or 10.10. have 10.10 alternate (couldnt get 10.04). However it says that no cd-rom present (netbook via live usb), and i direct it to sdb1 but that does not work. could someone guide me to the steps to installation via alternate ubs only (& no internet). the live usb's of 10.04 & 10.10 internet connections worked, but installation hanged (non alternate). Thank you greatly in advance.

    Read the article

  • New Enhancements for InnoDB Memcached

    - by Calvin Sun
    In MySQL 5.6, we continued our development on InnoDB Memcached and completed a few widely desirable features that make InnoDB Memcached a competitive feature in more scenario. Notablely, they are 1) Support multiple table mapping 2) Added background thread to auto-commit long running transactions 3) Enhancement in binlog performance  Let’s go over each of these features one by one. And in the last section, we will go over a couple of internally performed performance tests. Support multiple table mapping In our earlier release, all InnoDB Memcached operations are mapped to a single InnoDB table. In the real life, user might want to use this InnoDB Memcached features on different tables. Thus being able to support access to different table at run time, and having different mapping for different connections becomes a very desirable feature. And in this GA release, we allow user just be able to do both. We will discuss the key concepts and key steps in using this feature. 1) "mapping name" in the "get" and "set" command In order to allow InnoDB Memcached map to a new table, the user (DBA) would still require to "pre-register" table(s) in InnoDB Memcached “containers” table (there is security consideration for this requirement). If you would like to know about “containers” table, please refer to my earlier blogs in blogs.innodb.com. Once registered, the InnoDB Memcached will then be able to look for such table when they are referred. Each of such registered table will have a unique "registration name" (or mapping_name) corresponding to the “name” field in the “containers” table.. To access these tables, user will include such "registration name" in their get or set commands, in the form of "get @@new_mapping_name.key", prefix "@@" is required for signaling a mapped table change. The key and the "mapping name" are separated by a configurable delimiter, by default, it is ".". So the syntax is: get [@@mapping_name.]key_name set [@@mapping_name.]key_name  or  get @@mapping_name set @@mapping_name Here is an example: Let's set up three tables in the "containers" table: The first is a map to InnoDB table "test/demo_test" table with mapping name "setup_1" INSERT INTO containers VALUES ("setup_1", "test", "demo_test", "c1", "c2", "c3", "c4", "c5", "PRIMARY");  Similarly, we set up table mappings for table "test/new_demo" with name "setup_2" and that to table "mydatabase/my_demo" with name "setup_3": INSERT INTO containers VALUES ("setup_2", "test", "new_demo", "c1", "c2", "c3", "c4", "c5", "secondary_index_x"); INSERT INTO containers VALUES ("setup_3", "my_database", "my_demo", "c1", "c2", "c3", "c4", "c5", "idx"); To switch to table "my_database/my_demo", and get the value corresponding to “key_a”, user will do: get @@setup_3.key_a (this will also output the value that corresponding to key "key_a" or simply get @@setup_3 Once this is done, this connection will switch to "my_database/my_demo" table until another table mapping switch is requested. so it can continue issue regular command like: get key_b  set key_c 0 0 7 These DMLs will all be directed to "my_database/my_demo" table. And this also implies that different connections can have different bindings (to different table). 2) Delimiter: For the delimiter "." that separates the "mapping name" and key value, we also added a configure option in the "config_options" system table with name of "table_map_delimiter": INSERT INTO config_options VALUES("table_map_delimiter", "."); So if user wants to change to a different delimiter, they can change it in the config_option table. 3) Default mapping: Once we have multiple table mapping, there should be always a "default" map setting. For this, we decided if there exists a mapping name of "default", then this will be chosen as default mapping. Otherwise, the first row of the containers table will chosen as default setting. Please note, user tables can be repeated in the "containers" table (for example, user wants to access different columns of the table in different settings), as long as they are using different mapping/configure names in the first column, which is enforced by a unique index. 4) bind command In addition, we also extend the protocol and added a bind command, its usage is fairly straightforward. To switch to "setup_3" mapping above, you simply issue: bind setup_3 This will switch this connection's InnoDB table to "my_database/my_demo" In summary, with this feature, you now can direct access to difference tables with difference session. And even a single connection, you can query into difference tables. Background thread to auto-commit long running transactions This is a feature related to the “batch” concept we discussed in earlier blogs. This “batch” feature allows us batch the read and write operations, and commit them only after certain calls. The “batch” size is controlled by the configure parameter “daemon_memcached_w_batch_size” and “daemon_memcached_r_batch_size”. This could significantly boost performance. However, it also comes with some disadvantages, for example, you will not be able to view “uncommitted” operations from SQL end unless you set transaction isolation level to read_uncommitted, and in addition, this will held certain row locks for extend period of time that might reduce the concurrency. To deal with this, we introduce a background thread that “auto-commits” the transaction if they are idle for certain amount of time (default is 5 seconds). The background thread will wake up every second and loop through every “connections” opened by Memcached, and check for idle transactions. And if such transaction is idle longer than certain limit and not being used, it will commit such transactions. This limit is configurable by change “innodb_api_bk_commit_interval”. Its default value is 5 seconds, and minimum is 1 second, and maximum is 1073741824 seconds. With the help of such background thread, you will not need to worry about long running uncommitted transactions when set daemon_memcached_w_batch_size and daemon_memcached_r_batch_size to a large number. This also reduces the number of locks that could be held due to long running transactions, and thus further increase the concurrency. Enhancement in binlog performance As you might all know, binlog operation is not done by InnoDB storage engine, rather it is handled in the MySQL layer. In order to support binlog operation through InnoDB Memcached, we would have to artificially create some MySQL constructs in order to access binlog handler APIs. In previous lab release, for simplicity consideration, we open and destroy these MySQL constructs (such as THD) for each operations. This required us to set the “batch” size always to 1 when binlog is on, no matter what “daemon_memcached_w_batch_size” and “daemon_memcached_r_batch_size” are configured to. This put a big restriction on our capability to scale, and also there are quite a bit overhead in creating destroying such constructs that bogs the performance down. With this release, we made necessary change that would keep MySQL constructs as long as they are valid for a particular connection. So there will not be repeated and redundant open and close (table) calls. And now even with binlog option is enabled (with innodb_api_enable_binlog,), we still can batch the transactions with daemon_memcached_w_batch_size and daemon_memcached_r_batch_size, thus scale the write/read performance. Although there are still overheads that makes InnoDB Memcached cannot perform as fast as when binlog is turned off. It is much better off comparing to previous release. And we are continuing optimize the solution is this area to improve the performance as much as possible. Performance Study: Amerandra of our System QA team have conducted some performance studies on queries through our InnoDB Memcached connection and plain SQL end. And it shows some interesting results. The test is conducted on a “Linux 2.6.32-300.7.1.el6uek.x86_64 ix86 (64)” machine with 16 GB Memory, Intel Xeon 2.0 GHz CPU X86_64 2 CPUs- 4 Core Each, 2 RAID DISKS (1027 GB,733.9GB). Results are described in following tables: Table 1: Performance comparison on Set operations Connections 5.6.7-RC-Memcached-plugin ( TPS / Qps) with memcached-threads=8*** 5.6.7-RC* X faster Set (QPS) Set** 8 30,000 5,600 5.36 32 59,000 13,000 4.54 128 68,000 8,000 8.50 512 63,000 6.800 9.23 * mysql-5.6.7-rc-linux2.6-x86_64 ** The “set” operation when implemented in InnoDB Memcached involves a couple of DMLs: it first query the table to see whether the “key” exists, if it does not, the new key/value pair will be inserted. If it does exist, the “value” field of matching row (by key) will be updated. So when used in above query, it is a precompiled store procedure, and query will just execute such procedures. *** added “–daemon_memcached_option=-t8” (default is 4 threads) So we can see with this “set” query, InnoDB Memcached can run 4.5 to 9 time faster than MySQL server. Table 2: Performance comparison on Get operations Connections 5.6.7-RC-Memcached-plugin ( TPS / Qps) with memcached-threads=8 5.6.7-RC* X faster Get (QPS) Get 8 42,000 27,000 1.56 32 101,000 55.000 1.83 128 117,000 52,000 2.25 512 109,000 52,000 2.10 With the “get” query (or the select query), memcached performs 1.5 to 2 times faster than normal SQL. Summary: In summary, we added several much-desired features to InnoDB Memcached in this release, allowing user to operate on different tables with this Memcached interface. We also now provide a background commit thread to commit long running idle transactions, thus allow user to configure large batch write/read without worrying about large number of rows held or not being able to see (uncommit) data. We also greatly enhanced the performance when Binlog is enabled. We will continue making efforts in both performance enhancement and functionality areas to make InnoDB Memcached a good demo case for our InnoDB APIs. Jimmy Yang, September 29, 2012

    Read the article

  • Timeout Considerations for Solicit Response

    - by Michael Stephenson
    Background One of the clients I work with had been experiencing some issues for a while surrounding web service timeouts.  It's been a little challenging to work through the problems due to limitations in the diagnostic information available from one of the applications, but I learned some interesting things while troubleshooting the problem which don't seem to have been discussed much in the community so I thought I'd share my findings. In the scenario we have BizTalk trying to make calls to a .net web service which was exposed as a WSE 2 endpoint.  In the process BizTalk will try to make a large number of concurrent web service calls to the application, and the backend application has more than enough infrastructure and capability to handle the load. We have configured the <ConnectionManagement> section of the BizTalk configuration file to support up to 100 concurrent connections from each of our 2 BizTalk send servers to the web servers of the application. The problem we were facing was that the BizTalk side was reporting a significant number of timeouts when calling the web service.   One of the biggest issues was the challenge of being able to correlate a message from BizTalk to the IIS log in the .net application and the custom logs in the application especially when there was a fairly large number of servers hosting the web services.  However the key moment came when we were able to identify a specific call which had taken 40 seconds to execute on the server (yes a long time I know but that's a different story!).  Anyway we were able to identify that this had timed out on the BizTalk side.  Based on the normal 2 minute timeout we knew something unexpected was going on. From here I decided to do some experimentation and I wanted to start outside of BizTalk because my hunch was this was not a BizTalk behaviour but something which was being highlighted by BizTalk because of our large load.     Server-side - Sample Web Service To begin with I created a sample web service.  Nothing special just a vanilla asmx web service hosted in IIS6 on Windows 2003 Standard Edition.  The web service is just a hello world style web service as shown in the below picture.  The only key feature is that the server side web method has a 30 second sleep in it and will trace out some information before and after the thread is set to sleep.      In the configuration for this web service there again is nothing special it's pretty much the most plain simple web service you could build. Client-Side To begin looking at what was happening with our example I created a number of different ways to consume the web service. SoapHttpClientProtocol Example I created a small application which would use a normal proxy generated to call the web service.  It would iterate around a loop and make calls using the begin/end methods so I can do this asynchronously.  I would do a loop of 20 calls with the ConnectionManager configuration section supporting only 5 concurrent connections to the server.     <connectionManagement> <remove address="*"/> <add address = "*" maxconnection = "12" /> <add address = "http://<ServerName>" maxconnection = "5" />                         </connectionManagement> </system.net>     The below picture shows an example of the service calling code, key points are: I have configured the timeout of 40 seconds for the proxy I am using the asynchronous methods on the proxy to call the web service         The Test I would run the client and execute 21 calls to the web service.   The Results  Below is the client side trace showing what's happening on the client. In the below diagram is the web service side trace showing what's happening on the server Some observations on the results are: All of the calls were successful from the clients perspective You could see the next call starting on the server as soon as the previous one had completed Calls took significantly longer than 40 seconds from the start of our call to the return. In fact call 20 took 2 minutes and 30 seconds from the perspective of my code to execute even though I had set the timeout to 40 seconds     WSE 2 Sample In the second example I used the exact same code to call the web service again with a single exception that I modified the web service proxy to derive from WebServiceClient protocol which is part of WSE 2 (using SP3).  The below picture shows the basic code and the key points are: I have configured the timeout of 40 seconds for the proxy I am using the asynchronous methods on the proxy to call the web service        The Test This test would execute 21 calls from the client to the web service.   The Results  The below trace is from the client side: The below trace is from the server side:   Some observations on the trace results for this scenario are: With call 4 if you look at the server side trace it did not start executing on the server for a number of seconds after the other 4 initial calls which were accepted by the server. I re-ran the test and this happened a couple of times and not on most others so at this point I'm just putting this down to something unexpected happening on the development machine and we will leave this observation out of scope of this article. You can see that the client side trace statement executed almost immediately in all cases All calls after the initial few calls would timeout On the client side the calls that did timeout; timed out in a longer duration than the 40 seconds we set as the timeout You can see that as calls were completing on the server the next calls were starting to come through The calls that timed out on the client did actually connect to the server and their server side execution completed successfully     Elaboration on the findings Based on the above observations I have drawn the below sequence diagram to illustrate conceptually what is happening.  Everything except the final web service object is on the client side of the call. In the diagram below I've put two notes on the Web Service Proxy to show the two different places where the different base classes seem to start their timeout counters. From the earlier samples we can work out that the timeout counter for the WSE web service proxy starts before the one for the SoapHttpClientProtocol proxy and the WSE one includes the time to get a connection from the pool; whereas the Soap proxy timeout just covers the method execution. One interesting observation is if we rerun the above sample and increase the number of calls from 21 to 100,000 then for the WSE sample we will see a similar pattern where everything after the first few calls will timeout on the client as soon as it makes a connection to the server whereas the soap proxy will happily plug away and process all of the calls without a single timeout. I have actually set the sample running overnight and this did happen. At this point you are probably thinking the same thoughts I was at the time about the differences in behaviour and which is right and why are they different? I'm not sure there is a definitive answer to this in the documentation, or at least not that I could find! I think you just have to consider that they are different and they could have different effects depending on your messaging solution. In lots of situations this is just not an issue as your concurrent requests doesn't get to the situation where you end up throttling the web service calls on the client side, however this is definitely more common with an integration broker such as BizTalk where you often have high throughput requirements.  Some of the considerations you should make Based on this behaviour you should be aware of the following: In a .net application if you are making lots of concurrent web service calls from an application in an asynchronous manner your user may thing they are experiencing poor performance but you think your web service is working well. The problem could be that the client will have a default of 2 connections to remote servers so you should bear this in mind When you are developing a BizTalk solution or a .net solution with the WSE 2 stack you may experience timeouts under load and throttling the number of connections using the max connections element in the configuration file will not help you For an application using WSE2 or SoapHttpClientProtocol an expired timeout will not throw an error until after a connection to the server has been made so you should consider this in your transaction and durability patterns     Our Work Around In the short term for our specific scenario we know that we can handle this by just increasing our timeout value.  There is only a specific small window when we get lots of concurrent traffic that causes this scenario so we should be able to increase the timeout to take into consideration the additional client side wait, and on the odd occasion where we do get a timeout the BizTalk send port retry will handle this. What was causing our original problem was that for that short window we were getting a lot of retries which significantly increased the load on our send servers and highlighted the issue.  Longer Term Solution As a longer term solution this really gives us more ammunition to argue a migration to WCF. The application we are calling has some factors which limit the protocols we can use but with WCF we would have more control on the various timeout options because in WCF you can configure specific parts of the timeout. Summary I've had this blog post on my to do list for ages but hopefully it will be useful to some people to just understand this behaviour and to possibly help you with some performance issues you may have. I do not believe there is too much in the way of documentation particularly around WSE2 and ASMX in this area so again another bit of ammunition for migrating to WCF. I'll try to do a follow up post with the sample for WCF to show how this changes things.

    Read the article

  • chromium-browser --proxy-server debugging

    - by user3678068
    Many places online have pointed out to configure chromium proxy via command can be achieve with the following line chromium-browser --proxy-server=[username]:[password]@[host]:[port] but I got this result on every request. Here's the output in the command line right after executing the previous command. (They do not appear to be relevant. There are no new command line output when I try to visit a page) libGL error: failed to authenticate magic 30 libGL error: failed to load driver: vboxvideo ATTENTION: default value of option force_s3tc_enable overridden by environment. [29551:29551:0606/160459:ERROR:sandbox_linux.cc(268)] InitializeSandbox() called with multiple threads in process gpu-process I have double checked that the proxy credential works with the foxyproxy chrome plugin. What else can I try to figure this out? [Edit] Going to chrome://net-internals/#proxy and reading "Effective proxy settings" if I do chromium-browser with no flags, I get Use DIRECT connections. Source: GSETTINGS if chromium-browser --proxy-server=[host]:[port], I get a message box requesting to login, and under "Effective proxy settings": Proxy server: [host]:[port] if chromium-browser --proxy-server=[user]:[pass]@[host]:[port], "Effective proxy settings" shows: Use DIRECT connections

    Read the article

< Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >