Search Results

Search found 1364 results on 55 pages for 'construct'.

Page 35/55 | < Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >

  • How do we keep dependent data structures up to date?

    - by Geo
    Suppose you have a parse tree, an abstract syntax tree, and a control flow graph, each one logically derived from the one before. In principle it is easy to construct each graph given the parse tree, but how can we manage the complexity of updating the graphs when the parse tree is modified? We know exactly how the tree has been modified, but how can the change be propagated to the other trees in a way that doesn't become difficult to manage? Naturally the dependent graph can be updated by simply reconstructing it from scratch every time the first graph changes, but then there would be no way of knowing the details of the changes in the dependent graph. I currently have four ways to attempt to solve this problem, but each one has difficulties. Nodes of the dependent tree each observe the relevant nodes of the original tree, updating themselves and the observer lists of original tree nodes as necessary. The conceptual complexity of this can become daunting. Each node of the original tree has a list of the dependent tree nodes that specifically depend upon it, and when the node changes it sets a flag on the dependent nodes to mark them as dirty, including the parents of the dependent nodes all the way down to the root. After each change we run an algorithm that is much like the algorithm for constructing the dependent graph from scratch, but it skips over any clean node and reconstructs each dirty node, keeping track of whether the reconstructed node is actually different from the dirty node. This can also get tricky. We can represent the logical connection between the original graph and the dependent graph as a data structure, like a list of constraints, perhaps designed using a declarative language. When the original graph changes we need only scan the list to discover which constraints are violated and how the dependent tree needs to change to correct the violation, all encoded as data. We can reconstruct the dependent graph from scratch as though there were no existing dependent graph, and then compare the existing graph and the new graph to discover how it has changed. I'm sure this is the easiest way because I know there are algorithms available for detecting differences, but they are all quite computationally expensive and in principle it seems unnecessary so I'm deliberately avoiding this option. What is the right way to deal with these sorts of problems? Surely there must be a design pattern that makes this whole thing almost easy. It would be nice to have a good solution for every problem of this general description. Does this class of problem have a name?

    Read the article

  • In an Entity-Component-System Engine, How do I deal with groups of dependent entities?

    - by John Daniels
    After going over a few game design patterns, I have settle with Entity-Component-System (ES System) for my game engine. I've reading articles (mainly T=Machine) and review some source code and I think I got enough to get started. There is just one basic idea I am struggling with. How do I deal with groups of entities that are dependent on each other? Let me use an example: Assume I am making a standard overhead shooter (think Jamestown) and I want to construct a "boss entity" with multiple distinct but connected parts. The break down might look like something like this: Ship body: Movement, Rendering Cannon: Position (locked relative to the Ship body), Tracking\Fire at hero, Taking Damage until disabled Core: Position (locked relative to the Ship body), Tracking\Fire at hero, Taking Damage until disabled, Disabling (er...destroying) all other entities in the ship group My goal would be something that would be identified (and manipulated) as a distinct game element without having to rewrite subsystem form the ground up every time I want to build a new aggregate Element. How do I implement this kind of design in ES System? Do I implement some kind of parent-child entity relationship (entities can have children)? This seems to contradict the methodology that Entities are just empty container and makes it feel more OOP. Do I implement them as separate entities, with some kind of connecting Component (BossComponent) and related system (BossSubSystem)? I can't help but think that this will be hard to implement since how components communicate seem to be a big bear trap. Do I implement them as one Entity, with a collection of components (ShipComponent, CannonComponents, CoreComponent)? This one seems to veer way of the ES System intent (components here seem too much like heavy weight entities), but I'm know to this so I figured I would put that out there. Do I implement them as something else I have mentioned? I know that this can be implemented very easily in OOP, but my choosing ES over OOP is one that I will stick with. If I need to break with pure ES theory to implement this design I will (not like I haven't had to compromise pure design before), but I would prefer to do that for performance reason rather than start with bad design. For extra credit, think of the same design but, each of the "boss entities" were actually connected to a larger "BigBoss entity" made of a main body, main core and 3 "Boss Entities". This would let me see a solution for at least 3 dimensions (grandparent-parent-child)...which should be more than enough for me. Links to articles or example code would be appreciated. Thanks for your time.

    Read the article

  • Efficient inline templates and C++

    - by Darryl Gove
    I've talked before about calling inline templates from C++, I've also talked about calling inline templates efficiently. This time I want to talk about efficiently calling inline templates from C++. The obvious starting point is that I need to declare the inline templates as being extern "C": extern "C" { int mytemplate(int); } This enables us to call it, but the call may not be very efficient because the compiler will treat it as a function call, and may produce suboptimal code based on that premise. So we need to add the no_side_effect pragma: extern "C" { int mytemplate(int); #pragma no_side_effect(mytemplate) } However, this may still not produce optimal code. We've discussed how the no_side_effect pragma cannot be combined with exceptions, well we know that the code cannot produce exceptions, but the compiler doesn't know that. If we tell the compiler that information it may be able to produce even better code. We can do this by adding the "throw()" keyword to the template declaration: extern "C" { int mytemplate(int) throw(); #pragma no_side_effect(mytemplate) } The following is an example of how these changes might improve performance. We can take our previous example code and migrate it to C++, adding the use of a try...catch construct: #include <iostream extern "C" { int lzd(int); #pragma no_side_effect(lzd) } int a; int c=0; class myclass { int routine(); }; int myclass::routine() { try { for(a=0; a<1000; a++) { c=lzd(c); } } catch(...) { std::cout << "Something happened" << std::endl; } return 0; } Compiling this produces a slightly suboptimal code sequence in the hot loop: $ CC -O -xtarget=T4 -S t.cpp t.il ... /* 0x0014 23 */ lzd %o0,%o0 /* 0x0018 21 */ add %l6,1,%l6 /* 0x001c */ cmp %l6,1000 /* 0x0020 */ bl,pt %icc,.L77000033 /* 0x0024 23 */ st %o0,[%l7] There's a store in the delay slot of the branch, so we're repeatedly storing data back to memory. If we change the function declaration to include "throw()", we get better code: $ CC -O -xtarget=T4 -S t.cpp t.il ... /* 0x0014 21 */ add %i1,1,%i1 /* 0x0018 23 */ lzd %o0,%o0 /* 0x001c 21 */ cmp %i1,999 /* 0x0020 */ ble,pt %icc,.L77000019 /* 0x0024 */ nop The store has gone, but the code is still suboptimal - there's a nop in the delay slot rather than useful work. However, it's good enough for this example. The point I'm making is that the compiler produces the better code with both the "throw()" and the no side effect pragma.

    Read the article

  • C++11 Tidbits: Decltype (Part 2, trailing return type)

    - by Paolo Carlini
    Following on from last tidbit showing how the decltype operator essentially queries the type of an expression, the second part of this overview discusses how decltype can be syntactically combined with auto (itself the subject of the March 2010 tidbit). This combination can be used to specify trailing return types, also known informally as "late specified return types". Leaving aside the technical jargon, a simple example from section 8.3.5 of the C++11 standard usefully introduces this month's topic. Let's consider a template function like: template <class T, class U> ??? foo(T t, U u) { return t + u; } The question is: what should replace the question marks? The problem is that we are dealing with a template, thus we don't know at the outset the types of T and U. Even if they were restricted to be arithmetic builtin types, non-trivial rules in C++ relate the type of the sum to the types of T and U. In the past - in the GNU C++ runtime library too - programmers used to address these situations by way of rather ugly tricks involving __typeof__ which now, with decltype, could be rewritten as: template <class T, class U> decltype((*(T*)0) + (*(U*)0)) foo(T t, U u) { return t + u; } Of course the latter is guaranteed to work only for builtin arithmetic types, eg, '0' must make sense. In short: it's a hack. On the other hand, in C++11 you can use auto: template <class T, class U> auto foo(T t, U u) -> decltype(t + u) { return t + u; } This is much better. It's generic and a construct fully supported by the language. Finally, let's see a real-life example directly taken from the C++11 runtime library as implemented in GCC: template<typename _IteratorL, typename _IteratorR> inline auto operator-(const reverse_iterator<_IteratorL>& __x, const reverse_iterator<_IteratorR>& __y) -> decltype(__y.base() - __x.base()) { return __y.base() - __x.base(); } By now it should appear be completely straightforward. The availability of trailing return types in C++11 allowed fixing a real bug in the C++98 implementation of this operator (and many similar ones). In GCC, C++98 mode, this operator is: template<typename _IteratorL, typename _IteratorR> inline typename reverse_iterator<_IteratorL>::difference_type operator-(const reverse_iterator<_IteratorL>& __x, const reverse_iterator<_IteratorR>& __y) { return __y.base() - __x.base(); } This was guaranteed to work well with heterogeneous reverse_iterator types only if difference_type was the same for both types.

    Read the article

  • Push-Based Events in a Services Oriented Architecture

    - by Colin Morelli
    I have come to a point, in building a services oriented architecture (on top of Thrift), that I need to expose events and allow listeners. My initial thought was, "create an EventService" to handle publishing and subscribing to events. That EventService can use whatever implementation it desires to actually distribute the events. My client automatically round-robins service requests to available service hosts which are determined using Zookeeper-based service discovery. So, I'd probably use JMS inside of EventService mainly for the purpose of persisting messages (in the event that a service host for EventService goes down before it can distribute the message to all of the available listeners). When I started considering this, I began looking into the differences between Queues and Topics. Topics unfortunately won't work for me, because (at least for now), all listeners must receive the message (even if they were down at the time the event was pushed, or hadn't made a subscription yet because they haven't completed startup (during deployment, for example) - messages should be queued until the service is available). However, I don't want EventService to be responsible for handling all of the events. I don't think it should have the code to react to events inside of it. Each of the services should do what it needs with a given event. This would indicate that each service would need a JMS connection, which questions the value of having EventService at all (as the services could individually publish and subscribe to JMS directly). However, it also couples all of the services to JMS (when I'd rather that there be a single service that's responsible for determining how to distribute events). What I had thought was to publish an event to EventService, which pulls a configuration of listeners from some configuration source (database, flat file, irrelevant for now). It replicates the message and pushes each one back into a queue with information specific to that listener (so, if there are 3 listeners, 1 event would become 3 events in JMS). Then, another thread in EventService (which is replicated, running on multiple hots) would be pulling from the queue, attempting to make the service call to the "listener", and returning the message to the queue (if the service is down), or discarding the message (if the listener completed successfully). tl;dr If I have an EventService that is responsible for receiving events and delegating service calls to "event listeners," (which are really just endpoints on other services), how should it know how to craft the service call? Should I create a generic "Event" object that is shared among all services? Then, the EventService can just construct this object and pass it to the service call. Or is there a better answer to this problem entirely?

    Read the article

  • Embracing Imperfection

    - by Johnm
    The pursuit of perfection is a road on which we often find ourselves traveling. It is an unpaved road filed with pot-holes and ruts that often destroy our stride. The shoulders of this road are lined with the bones and rotting carcasses of well planned projects, solutions and dreams of others who have dared the journey. Often the choice to engage in this travel is a compulsive one. We can't help but to pack our bags and make the trip. We justify it by equating it to the delivery of a quality product or service. We use our past travels as validation of our worthiness and value. Our shared experience, as tortured pilgrims of perfection, reveals that each odyssey that bewitched us resulted in a stark reminder of the very weaknesses and fears that we were attempting to mollify. The voice of the critic that berated us for the lack of craftsmanship was our own. Although, at the end of the journey our own critical voice was joined by the gnashing of teeth of those who could not reap the fruit of your labor due to its lack of timely delivery. There is another road in which to travel. It is the pursuit of embracing imperfection. The cost of traveling this route is your contribution to its eternal construction. Each segment is designed uniquely. At times it has the appearance of a patchwork quilt; while other times it is well organized and highly measured. In all cases, its construction has continually advanced and been utilized as each segment was delivered by its architect. Those who choose to select this spindle of these crossroads crack open the shells of their fears to reveal the vapor that is within. They construct their houses upon these shells. Through their hunger for mastery they wring every drop of nectar from failure and discard its husks to the ditches of this road. Through their efforts the thoroughfare begins to develop a personality of its own, a beautifully human one, rich with the strengths and weaknesses of all of its contributors. Like many of us, the pursuit of perfection has not served me well. In fact, I would say that it has been more damaging than it has been helpful. While the perfectionist in me occasionally makes its presence known, I consider myself a "recovering perfectionist". It is evident to me that there is immense beauty found in imperfection. I choose to embrace it. It is grounding. It is constructive. It is honest.

    Read the article

  • Is code like this a "train wreck" (in violation of Law of Demeter)?

    - by Michael Kjörling
    Browsing through some code I've written, I came across the following construct which got me thinking. At a first glance, it seems clean enough. Yes, in the actual code the getLocation() method has a slightly more specific name which better describes exactly which location it gets. service.setLocation(this.configuration.getLocation().toString()); In this case, service is an instance variable of a known type, declared within the method. this.configuration comes from being passed in to the class constructor, and is an instance of a class implementing a specific interface (which mandates a public getLocation() method). Hence, the return type of the expression this.configuration.getLocation() is known; specifically in this case, it is a java.net.URL, whereas service.setLocation() wants a String. Since the two types String and URL are not directly compatible, some sort of conversion is required to fit the square peg in the round hole. However, according to the Law of Demeter as cited in Clean Code, a method f in class C should only call methods on C, objects created by or passed as arguments to f, and objects held in instance variables of C. Anything beyond that (the final toString() in my particular case above, unless you consider a temporary object created as a result of the method invocation itself, in which case the whole Law seems to be moot) is disallowed. Is there a valid reasoning why a call like the above, given the constraints listed, should be discouraged or even disallowed? Or am I just being overly nitpicky? If I were to implement a method URLToString() which simply calls toString() on a URL object (such as that returned by getLocation()) passed to it as a parameter, and returns the result, I could wrap the getLocation() call in it to achieve exactly the same result; effectively, I would just move the conversion one step outward. Would that somehow make it acceptable? (It seems to me, intuitively, that it should not make any difference either way, since all that does is move things around a little. However, going by the letter of the Law of Demeter as cited, it would be acceptable, since I would then be operating directly on a parameter to a function.) Would it make any difference if this was about something slightly more exotic than calling toString() on a standard type? When answering, do keep in mind that altering the behavior or API of the type that the service variable is of is not practical. Also, for the sake of argument, let's say that altering the return type of getLocation() is also impractical.

    Read the article

  • How to get lookahead symbol when constructing LR(1) NFA for parser?

    - by greenoldman
    I am reading an explanation (awesome "Parsing Techniques" by D.Grune and C.J.H.Jacobs; p.292 in the 2nd edition) about how to construct an LR(1) parser, and I am at the stage of building the initial NFA. What I don't understand is how to get/compute a lookahead symbol. Here is the example from the book, the grammar: S -> E E -> E - T E -> T T -> ( E ) T -> n n is terminal. The "weird" transitions for me are is the sequence: 1) S -> . E eof 2) E -> . E - T eof 3) E -> . E - T - 4) E -> E . - T - 5) E -> E - . T - (Note: In the above table, the state numbers are in front and the lookahead symbol is at the end.) What puzzles me is that transition from (4) to (5) means reading - token, right? So how is it that - is still a lookahead symbol and even more important why is it that eof is no longer a lookahead symbol? After all in an input such as n - n eof there is only one - symbol. My naive thinking tells me (5) should be written as: 5) E -> E - . T - eof And another thing -- n is terminal. Why it is not used at all as a lookahead symbol? I mean -- we expect to see - or (, it is ok, but lack of n means we are sure it won't appear in input? Update: after more reading I am only more confused ;-) I.e. what is really a lookahead? Because I see such state as (p.292, 2nd column, 2nd row): E -> E . - T eof Lookahead says eof but the incoming input says -. Isn't it a contradiction? And it is not only in this book.

    Read the article

  • Are closures with side-effects considered "functional style"?

    - by Giorgio
    Many modern programming languages support some concept of closure, i.e. of a piece of code (a block or a function) that Can be treated as a value, and therefore stored in a variable, passed around to different parts of the code, be defined in one part of a program and invoked in a totally different part of the same program. Can capture variables from the context in which it is defined, and access them when it is later invoked (possibly in a totally different context). Here is an example of a closure written in Scala: def filterList(xs: List[Int], lowerBound: Int): List[Int] = xs.filter(x => x >= lowerBound) The function literal x => x >= lowerBound contains the free variable lowerBound, which is closed (bound) by the argument of the function filterList that has the same name. The closure is passed to the library method filter, which can invoke it repeatedly as a normal function. I have been reading a lot of questions and answers on this site and, as far as I understand, the term closure is often automatically associated with functional programming and functional programming style. The definition of function programming on wikipedia reads: In computer science, functional programming is a programming paradigm that treats computation as the evaluation of mathematical functions and avoids state and mutable data. It emphasizes the application of functions, in contrast to the imperative programming style, which emphasizes changes in state. and further on [...] in functional code, the output value of a function depends only on the arguments that are input to the function [...]. Eliminating side effects can make it much easier to understand and predict the behavior of a program, which is one of the key motivations for the development of functional programming. On the other hand, many closure constructs provided by programming languages allow a closure to capture non-local variables and change them when the closure is invoked, thus producing a side effect on the environment in which they were defined. In this case, closures implement the first idea of functional programming (functions are first-class entities that can be moved around like other values) but neglect the second idea (avoiding side-effects). Is this use of closures with side effects considered functional style or are closures considered a more general construct that can be used both for a functional and a non-functional programming style? Is there any literature on this topic? IMPORTANT NOTE I am not questioning the usefulness of side-effects or of having closures with side effects. Also, I am not interested in a discussion about the advantages / disadvantages of closures with or without side effects. I am only interested to know if using such closures is still considered functional style by the proponent of functional programming or if, on the contrary, their use is discouraged when using a functional style.

    Read the article

  • Checking timeouts made more readable

    - by Markus
    I have several situations where I need to control timeouts in a technical application. Either in a loop or as a simple check. Of course – handling this is really easy, but none of these is looking cute. To clarify, here is some C# (Pseudo) code: private DateTime girlWentIntoBathroom; girlWentIntoBathroom = DateTime.Now; do { // do something } while (girlWentIntoBathroom.AddSeconds(10) > DateTime.Now); or if (girlWentIntoBathroom.AddSeconds(10) > DateTime.Now) MessageBox.Show("Wait a little longer"); else MessageBox.Show("Knock louder"); Now I was inspired by something a saw in Ruby on StackOverflow: Now I’m wondering if this construct can be made more readable using extension methods. My goal is something that can be read like “If girlWentIntoBathroom is more than 10 seconds ago” 1st attempt if (girlWentIntoBathroom > (10).Seconds().Ago()) MessageBox.Show("Wait a little longer"); else MessageBox.Show("Knock louder"); So I wrote an extension for integer that converts the integer into a TimeSpan public static TimeSpan Seconds(this int amount) { return new TimeSpan(0, 0, amount); } After that, I wrote an extension for TimeSpan like this: public static DateTime Ago(this TimeSpan diff) { return DateTime.Now.Add(-diff); } This works fine so far, but has a great disadvantage. The logic is inverted! Since girlWentIntoBathroom is a timestamp in the past, the right side of the equation needs to count backwards: impossible. Just inverting the equation is no solution, because it will invert the read sentence as well. 2nd attempt So I tried something new: if (girlWentIntoBathroom.IsMoreThan(10).SecondsAgo()) MessageBox.Show("Knock louder"); else MessageBox.Show("Wait a little longer"); IsMoreThan() needs to transport the past timestamp as well as the span for the extension SecondsAgo(). It could be: public static DateWithIntegerSpan IsMoreThan(this DateTime baseTime, int span) { return new DateWithIntegerSpan() { Date = baseTime, Span = span }; } Where DateWithIntegerSpan is simply: public class DateWithIntegerSpan { public DateTime Date {get; set;} public int Span { get; set; } } And SecondsAgo() is public static bool SecondsAgo(this DateWithIntegerSpan dateAndSpan) { return dateAndSpan.Date.Add(new TimeSpan(0, 0, dateAndSpan.Span)) < DateTime.Now; } Using this approach, the English sentence matches the expected behavior. But the disadvantage is, that I need a helping class (DateWithIntegerSpan). Has anyone an idea to make checking timeouts look more cute and closer to a readable sentence? Am I a little too insane thinking about something minor like this?

    Read the article

  • Lazy Processing of Streams

    - by Giorgio
    I have the following problem scenario: I have a text file and I have to read it and split it into lines. Some lines might need to be dropped (according to criteria that are not fixed). The lines that are not dropped must be parsed into some predefined records. Records that are not valid must be dropped. Duplicate records may exist and, in such a case, they are consecutive. If duplicate / multiple records exist, only one item should be kept. The remaining records should be grouped according to the value contained in one field; all records belonging to the same group appear one after another (e.g. AAAABBBBCCDEEEFF and so on). The records of each group should be numbered (1, 2, 3, 4, ...). For each group the numbering starts from 1. The records must then be saved somewhere / consumed in the same order as they were produced. I have to implement this in Java or C++. My first idea was to define functions / methods like: One method to get all the lines from the file. One method to filter out the unwanted lines. One method to parse the filtered lines into valid records. One method to remove duplicate records. One method to group records and number them. The problem is that the data I am going to read can be too big and might not fit into main memory: so I cannot just construct all these lists and apply my functions one after the other. On the other hand, I think I do not need to fit all the data in main memory at once because once a record has been consumed all its underlying data (basically the lines of text between the previous record and the current record, and the record itself) can be disposed of. With the little knowledge I have of Haskell I have immediately thought about some kind of lazy evaluation, in which instead of applying functions to lists that have been completely computed, I have different streams of data that are built on top of each other and, at each moment, only the needed portion of each stream is materialized in main memory. But I have to implement this in Java or C++. So my question is which design pattern or other technique can allow me to implement this lazy processing of streams in one of these languages.

    Read the article

  • is a factory pattern to prevent multuple instances for same object (instance that is Equal) good design?

    - by dsollen
    I have a number of objects storing state. There are essentially two types of fields. The ones that uniquly define what the object is (what node, what edge etc), and the oens that store state describing how these things are connected (this node is connected to these edges, this edge is part of these paths) etc. My model is updating the state variables using package methdos, so these objects all act as immutable to anyone not in Model scope. All Objects extend one base type. I've toyed with the idea of a Factory approch which accepts a Builder object and construct the applicable object. However, if an instance of the object already exists (ie would return true if I created the object defined by the builder and passed it to the equal method for the existing instance) the factory returns the current object instead of creating a new instance. Because the Equal method would only compare what uniquly defines the type of object (this is node A nto node B) but won't check the dynamic state stuff (node A is currently connected to nodes C and E) this would be a way of ensuring anyone that wants my Node A automatically knows it's state connections. More importantly it would prevent aliasing nightmares of someone trying to pass an instance of node A with different state then the node A in my model has. I've never heard of this pattern before, and it's a bit odd. I would have to do some overiding of serlization methods to make it work (ensure when I read in a serilized object I add it to my facotry list of known instances, and/or return an existing factory in it's place), as well as using a weakHashMap as if it was a weakHashSet to know rather an instance exists without worrying about a quasi-memory leak occuring. I don't know if this is too confusing or prone to it's own obscure bugs. One thing I know is that plugins interface with lowest level hardware. The plugins have to be able to return state taht is different then my memory; to tell my memory when it's own state is inconsistent. I believe this is possible despit their fetching objects that exist in my memory; we allow building of objects without checking their consistency with the model until the addToModel is called anyways; and the existing plugins design was written before all this extra state existed and worked fine without ever being aware of it. Should I just be using some other design to avoid this crazyness? (I have another question to that affect I'm posting).

    Read the article

  • Do functional generics exist and what is the correct name for them if they do?

    - by voroninp
    Consider the following generic class: public class EntityChangeInfo<EntityType,TEntityKey> { ChangeTypeEnum ChangeType {get;} TEntityKeyType EntityKey {get;} } Here EntityType unambiguously defines TEntityKeyType. So it would be nice to have some kind of types' map: public class EntityChangeInfo<EntityType,TEntityKey> with map < [ EntityType : Person -> TEntityKeyType : int] [ EntityType : Car -> TEntityKeyType : CarIdType ]> { ChangeTypeEnum ChangeType {get;} TEntityKeyType EntityKey {get;} } Another one example is: public class Foo<TIn> with map < [TIn : Person -> TOut1 : string, TOut2 : int, ..., TOutN : double ] [TIn : Car -> TOut1 : int, TOut2 :int, ..., TOutN : Price ] > { TOut1 Prop1 {get;set;} TOut2 Prop2 {get;set;} ... TOutN PropN {get;set;} } The reasonable question: how can this be interpreted by the compiler? Well, for me it is just the shortcut for two structurally similar classes: public sealed class Foo<Person> { string Prop1 {get;set;} int Prop2 {get;set;} ... double PropN {get;set;} } public sealed class Foo<Car> { int Prop1 {get;set;} int Prop2 {get;set;} ... Price PropN {get;set;} } But besides this we could imaging some update of the Foo<>: public class Foo<TIn> with map < [TIn : Person -> TOut1 : string, TOut2 : int, ..., TOutN : double ] [TIn : Car -> TOut1 : int, TOut2 :int, ..., TOutN : Price ] > { TOut1 Prop1 {get;set;} TOut2 Prop2 {get;set;} ... TOutN PropN {get;set;} public override string ToString() { return string.Format("prop1={0}, prop2={1},...propN={N-1}, Prop1, Prop2,...,PropN); } } This all can seem quite superficial but the idea came when I was designing the messages for our system. The very first class. Many messages with the same structure should be discriminated by the EntityType. So the question is whether such construct exists in any programming language?

    Read the article

  • Do functional generics exist or what is the correct name for them if they do?

    - by voroninp
    Consider the following generic class public class EntityChangeInfo<EntityType,TEntityKey> { ChangeTypeEnum ChangeType {get;} TEntityKeyType EntityKey {get;} } Here EntityType unambiguously defines TEntityKeyType. So it would be nice to have some kind of types' map public class EntityChangeInfo<EntityType,TEntityKey> with map < [ EntityType : Person -> TEntityKeyType : int] [ EntityType : Car -> TEntityKeyType : CarIdType ]> { ChangeTypeEnum ChangeType {get;} TEntityKeyType EntityKey {get;} } Another one example is: public class Foo<TIn> with map < [TIn : Person -> TOut1 : string, TOut2 : int, ..., TOutN : double ] [TIn : Car -> TOut1 : int, TOut2 :int, ..., TOutN : Price ] > { TOut1 Prop1 {get;set;} TOut2 Prop2 {get;set;} ... TOutN PropN {get;set;} } The reasonable question how this can be interpreted by the compiler? Well, for me it is just the sortcut for two structurally similar classes: public sealed class Foo<Person> { string Prop1 {get;set;} int Prop2 {get;set;} ... double PropN {get;set;} } public sealed class Foo<Car> { int Prop1 {get;set;} int Prop2 {get;set;} ... Price PropN {get;set;} } But besides this we could imaging some update of the Foo<: public class Foo<TIn> with map < [TIn : Person -> TOut1 : string, TOut2 : int, ..., TOutN : double ] [TIn : Car -> TOut1 : int, TOut2 :int, ..., TOutN : Price ] > { TOut1 Prop1 {get;set;} TOut2 Prop2 {get;set;} ... TOutN PropN {get;set;} public override string ToString() { return string.Format("prop1={0}, prop2={1},...propN={N-1}, Prop1, Prop2,...,PropN); } } This all can seem quite superficial but the idea came when I was designing the messages for our system. The very first class. Many messages with the same structrue should be discriminated by the EntityType. So the question is whether such construct exist in any programming language?

    Read the article

  • How to use Ninject with XNA?

    - by Rosarch
    I'm having difficulty integrating Ninject with XNA. static class Program { /** * The main entry point for the application. */ static void Main(string[] args) { IKernel kernel = new StandardKernel(NinjectModuleManager.GetModules()); CachedContentLoader content = kernel.Get<CachedContentLoader>(); // stack overflow here MasterEngine game = kernel.Get<MasterEngine>(); game.Run(); } } // constructor for the game public MasterEngine(IKernel kernel) : base(kernel) { this.inputReader = kernel.Get<IInputReader>(); graphicsDeviceManager = kernel.Get<GraphicsDeviceManager>(); Components.Add(kernel.Get<GamerServicesComponent>()); // Tell the loader to look for all files relative to the "Content" directory. Assets = kernel.Get<CachedContentLoader>(); //Sets dimensions of the game window graphicsDeviceManager.PreferredBackBufferWidth = 800; graphicsDeviceManager.PreferredBackBufferHeight = 600; graphicsDeviceManager.ApplyChanges(); IsMouseVisible = false; } Ninject.cs: using System; using System.Collections.Generic; using System.Linq; using System.Text; using Ninject.Modules; using HWAlphaRelease.Controller; using Microsoft.Xna.Framework; using Nuclex.DependencyInjection.Demo.Scaffolding; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.Graphics; namespace HWAlphaRelease { public static class NinjectModuleManager { public static NinjectModule[] GetModules() { return new NinjectModule[1] { new GameModule() }; } /// <summary>Dependency injection rules for the main game instance</summary> public class GameModule : NinjectModule { #region class ServiceProviderAdapter /// <summary>Delegates to the game's built-in service provider</summary> /// <remarks> /// <para> /// When a class' constructor requires an IServiceProvider, the dependency /// injector cannot just construct a new one and wouldn't know that it has /// to create an instance of the Game class (or take it from the existing /// Game instance). /// </para> /// <para> /// The solution, then, is this small adapter that takes a Game instance /// and acts as if it was a freely constructable IServiceProvider implementation /// while in reality, it delegates all lookups to the Game's service container. /// </para> /// </remarks> private class ServiceProviderAdapter : IServiceProvider { /// <summary>Initializes a new service provider adapter for the game</summary> /// <param name="game">Game the service provider will be taken from</param> public ServiceProviderAdapter(Game game) { this.gameServices = game.Services; } /// <summary>Retrieves a service from the game service container</summary> /// <param name="serviceType">Type of the service that will be retrieved</param> /// <returns>The service that has been requested</returns> public object GetService(Type serviceType) { return this.gameServices; } /// <summary>Game services container of the Game instance</summary> private GameServiceContainer gameServices; } #endregion // class ServiceProviderAdapter #region class ContentManagerAdapter /// <summary>Delegates to the game's built-in ContentManager</summary> /// <remarks> /// This provides shared access to the game's ContentManager. A dependency /// injected class only needs to require the ISharedContentService in its /// constructor and the dependency injector will automatically resolve it /// to this adapter, which delegates to the Game's built-in content manager. /// </remarks> private class ContentManagerAdapter : ISharedContentService { /// <summary>Initializes a new shared content manager adapter</summary> /// <param name="game">Game the content manager will be taken from</param> public ContentManagerAdapter(Game game) { this.contentManager = game.Content; } /// <summary>Loads or accesses shared game content</summary> /// <typeparam name="AssetType">Type of the asset to be loaded or accessed</typeparam> /// <param name="assetName">Path and name of the requested asset</param> /// <returns>The requested asset from the the shared game content store</returns> public AssetType Load<AssetType>(string assetName) { return this.contentManager.Load<AssetType>(assetName); } /// <summary>The content manager this instance delegates to</summary> private ContentManager contentManager; } #endregion // class ContentManagerAdapter /// <summary>Initializes the dependency configuration</summary> public override void Load() { // Allows access to the game class for any components with a dependency // on the 'Game' or 'DependencyInjectionGame' classes. Bind<MasterEngine>().ToSelf().InSingletonScope(); Bind<NinjectGame>().To<MasterEngine>().InSingletonScope(); Bind<Game>().To<MasterEngine>().InSingletonScope(); // Let the dependency injector construct a graphics device manager for // all components depending on the IGraphicsDeviceService and // IGraphicsDeviceManager interfaces Bind<GraphicsDeviceManager>().ToSelf().InSingletonScope(); Bind<IGraphicsDeviceService>().To<GraphicsDeviceManager>().InSingletonScope(); Bind<IGraphicsDeviceManager>().To<GraphicsDeviceManager>().InSingletonScope(); // Some clever adapters that hand out the Game's IServiceProvider and allow // access to its built-in ContentManager Bind<IServiceProvider>().To<ServiceProviderAdapter>().InSingletonScope(); Bind<ISharedContentService>().To<ContentManagerAdapter>().InSingletonScope(); Bind<IInputReader>().To<UserInputReader>().InSingletonScope().WithConstructorArgument("keyMapping", Constants.DEFAULT_KEY_MAPPING); Bind<CachedContentLoader>().ToSelf().InSingletonScope().WithConstructorArgument("rootDir", "Content"); } } } } NinjectGame.cs /// <summary>Base class for Games making use of Ninject</summary> public class NinjectGame : Game { /// <summary>Initializes a new Ninject game instance</summary> /// <param name="kernel">Kernel the game has been created by</param> public NinjectGame(IKernel kernel) { Type ownType = this.GetType(); if(ownType != typeof(Game)) { kernel.Bind<NinjectGame>().To<MasterEngine>().InSingletonScope(); } kernel.Bind<Game>().To<NinjectGame>().InSingletonScope(); } } } // namespace Nuclex.DependencyInjection.Demo.Scaffolding When I try to get the CachedContentLoader, I get a stack overflow exception. I'm basing this off of this tutorial, but I really have no idea what I'm doing. Help?

    Read the article

  • Confusing Java syntax...

    - by posfan12
    I'm trying to convert the following code (from Wikipedia) from Java to JavaScript: /* * 3 June 2003, [[:en:User:Cyp]]: * Maze, generated by my algorithm * 24 October 2006, [[:en:User:quin]]: * Source edited for clarity * 25 January 2009, [[:en:User:DebateG]]: * Source edited again for clarity and reusability * 1 June 2009, [[:en:User:Nandhp]]: * Source edited to produce SVG file when run from the command-line * * This program was originally written by [[:en:User:Cyp]], who * attached it to the image description page for an image generated by * it on en.wikipedia. The image was licensed under CC-BY-SA-3.0/GFDL. */ import java.awt.*; import java.applet.*; import java.util.Random; /* Define the bit masks */ class Constants { public static final int WALL_ABOVE = 1; public static final int WALL_BELOW = 2; public static final int WALL_LEFT = 4; public static final int WALL_RIGHT = 8; public static final int QUEUED = 16; public static final int IN_MAZE = 32; } public class Maze extends java.applet.Applet { /* The width and height (in cells) of the maze */ private int width; private int height; private int maze[][]; private static final Random rnd = new Random(); /* The width in pixels of each cell */ private int cell_width; /* Construct a Maze with the default width, height, and cell_width */ public Maze() { this(20,20,10); } /* Construct a Maze with specified width, height, and cell_width */ public Maze(int width, int height, int cell_width) { this.width = width; this.height = height; this.cell_width = cell_width; } /* Initialization method that will be called when the program is * run from the command-line. Maze will be written as SVG file. */ public static void main(String[] args) { Maze m = new Maze(); m.createMaze(); m.printSVG(); } /* Initialization method that will be called when the program is * run as an applet. Maze will be displayed on-screen. */ public void init() { createMaze(); } /* The maze generation algorithm. */ private void createMaze(){ int x, y, n, d; int dx[] = { 0, 0, -1, 1 }; int dy[] = { -1, 1, 0, 0 }; int todo[] = new int[height * width], todonum = 0; /* We want to create a maze on a grid. */ maze = new int[width][height]; /* We start with a grid full of walls. */ for (x = 0; x < width; ++x) { for (y = 0; y < height; ++y) { if (x == 0 || x == width - 1 || y == 0 || y == height - 1) { maze[x][y] = Constants.IN_MAZE; } else { maze[x][y] = 63; } } } /* Select any square of the grid, to start with. */ x = 1 + rnd.nextInt (width - 2); y = 1 + rnd.nextInt (height - 2); /* Mark this square as connected to the maze. */ maze[x][y] &= ~48; /* Remember the surrounding squares, as we will */ for (d = 0; d < 4; ++d) { if ((maze[][d][][d] & Constants.QUEUED) != 0) { /* want to connect them to the maze. */ todo[todonum++] = ((x + dx[d]) << Constants.QUEUED) | (y + dy[d]); maze[][d][][d] &= ~Constants.QUEUED; } } /* We won't be finished until all is connected. */ while (todonum > 0) { /* We select one of the squares next to the maze. */ n = rnd.nextInt (todonum); x = todo[n] >> 16; /* the top 2 bytes of the data */ y = todo[n] & 65535; /* the bottom 2 bytes of the data */ /* We will connect it, so remove it from the queue. */ todo[n] = todo[--todonum]; /* Select a direction, which leads to the maze. */ do { d = rnd.nextInt (4); } while ((maze[][d][][d] & Constants.IN_MAZE) != 0); /* Connect this square to the maze. */ maze[x][y] &= ~((1 << d) | Constants.IN_MAZE); maze[][d][][d] &= ~(1 << (d ^ 1)); /* Remember the surrounding squares, which aren't */ for (d = 0; d < 4; ++d) { if ((maze[][d][][d] & Constants.QUEUED) != 0) { /* connected to the maze, and aren't yet queued to be. */ todo[todonum++] = ((x + dx[d]) << Constants.QUEUED) | (y + dy[d]); maze[][d][][d] &= ~Constants.QUEUED; } } /* Repeat until finished. */ } /* Add an entrance and exit. */ maze[1][1] &= ~Constants.WALL_ABOVE; maze[width - 2][height - 2] &= ~Constants.WALL_BELOW; } /* Called by the applet infrastructure to display the maze on-screen. */ public void paint(Graphics g) { drawMaze(g); } /* Called to write the maze to an SVG file. */ public void printSVG() { System.out.format("<svg width=\"%d\" height=\"%d\" version=\"1.1\"" + " xmlns=\"http://www.w3.org/2000/svg\">\n", width*cell_width, height*cell_width); System.out.println(" <g stroke=\"black\" stroke-width=\"1\"" + " stroke-linecap=\"round\">"); drawMaze(null); System.out.println(" </g>\n</svg>"); } /* Main maze-drawing loop. */ public void drawMaze(Graphics g) { int x, y; for (x = 1; x < width - 1; ++x) { for (y = 1; y < height - 1; ++y) { if ((maze[x][y] & Constants.WALL_ABOVE) != 0) drawLine( x * cell_width, y * cell_width, (x + 1) * cell_width, y * cell_width, g); if ((maze[x][y] & Constants.WALL_BELOW) != 0) drawLine( x * cell_width, (y + 1) * cell_width, (x + 1) * cell_width, (y + 1) * cell_width, g); if ((maze[x][y] & Constants.WALL_LEFT) != 0) drawLine( x * cell_width, y * cell_width, x * cell_width, (y + 1) * cell_width, g); if ((maze[x][y] & Constants.WALL_RIGHT) != 0) drawLine((x + 1) * cell_width, y * cell_width, (x + 1) * cell_width, (y + 1) * cell_width, g); } } } /* Draw a line, either in the SVG file or on the screen. */ public void drawLine(int x1, int y1, int x2, int y2, Graphics g) { if ( g != null ) g.drawLine(x1, y1, x2, y2); else System.out.format(" <line x1=\"%d\" y1=\"%d\"" + " x2=\"%d\" y2=\"%d\" />\n", x1, y1, x2, y2); } } Anyway, I was chugging along fairly quickly when I came to a bit that I just don't understand: /* Remember the surrounding squares, as we will */ for (var d = 0; d < 4; ++d) { if ((maze[][d][][d] & Constants.QUEUED) != 0) { /* want to connect them to the maze. */ todo[todonum++] = ((x + dx[d]) << Constants.QUEUED) | (y + dy[d]); maze[][d][][d] &= ~Constants.QUEUED; } } What I don't get is why there are four sets of brackets following the "maze" parameter instead of just two, since "maze" is a two dimensional array, not a four dimensional array. I'm sure there's a good reason for this. Problem is, I just don't get it. Thanks!

    Read the article

  • What is the fastest cyclic synchronization in Java (ExecutorService vs. CyclicBarrier vs. X)?

    - by Alex Dunlop
    Which Java synchronization construct is likely to provide the best performance for a concurrent, iterative processing scenario with a fixed number of threads like the one outlined below? After experimenting on my own for a while (using ExecutorService and CyclicBarrier) and being somewhat surprised by the results, I would be grateful for some expert advice and maybe some new ideas. Existing questions here do not seem to focus primarily on performance, hence this new one. Thanks in advance! The core of the app is a simple iterative data processing algorithm, parallelized to the spread the computational load across 8 cores on a Mac Pro, running OS X 10.6 and Java 1.6.0_07. The data to be processed is split into 8 blocks and each block is fed to a Runnable to be executed by one of a fixed number of threads. Parallelizing the algorithm was fairly straightforward, and it functionally works as desired, but its performance is not yet what I think it could be. The app seems to spend a lot of time in system calls synchronizing, so after some profiling I wonder whether I selected the most appropriate synchronization mechanism(s). A key requirement of the algorithm is that it needs to proceed in stages, so the threads need to sync up at the end of each stage. The main thread prepares the work (very low overhead), passes it to the threads, lets them work on it, then proceeds when all threads are done, rearranges the work (again very low overhead) and repeats the cycle. The machine is dedicated to this task, Garbage Collection is minimized by using per-thread pools of pre-allocated items, and the number of threads can be fixed (no incoming requests or the like, just one thread per CPU core). V1 - ExecutorService My first implementation used an ExecutorService with 8 worker threads. The program creates 8 tasks holding the work and then lets them work on it, roughly like this: // create one thread per CPU executorService = Executors.newFixedThreadPool( 8 ); ... // now process data in cycles while( ...) { // package data into 8 work items ... // create one Callable task per work item ... // submit the Callables to the worker threads executorService.invokeAll( taskList ); } This works well functionally (it does what it should), and for very large work items indeed all 8 CPUs become highly loaded, as much as the processing algorithm would be expected to allow (some work items will finish faster than others, then idle). However, as the work items become smaller (and this is not really under the program's control), the user CPU load shrinks dramatically: blocksize | system | user | cycles/sec 256k 1.8% 85% 1.30 64k 2.5% 77% 5.6 16k 4% 64% 22.5 4096 8% 56% 86 1024 13% 38% 227 256 17% 19% 420 64 19% 17% 948 16 19% 13% 1626 Legend: - block size = size of the work item (= computational steps) - system = system load, as shown in OS X Activity Monitor (red bar) - user = user load, as shown in OS X Activity Monitor (green bar) - cycles/sec = iterations through the main while loop, more is better The primary area of concern here is the high percentage of time spent in the system, which appears to be driven by thread synchronization calls. As expected, for smaller work items, ExecutorService.invokeAll() will require relatively more effort to sync up the threads versus the amount of work being performed in each thread. But since ExecutorService is more generic than it would need to be for this use case (it can queue tasks for threads if there are more tasks than cores), I though maybe there would be a leaner synchronization construct. V2 - CyclicBarrier The next implementation used a CyclicBarrier to sync up the threads before receiving work and after completing it, roughly as follows: main() { // create the barrier barrier = new CyclicBarrier( 8 + 1 ); // create Runable for thread, tell it about the barrier Runnable task = new WorkerThreadRunnable( barrier ); // start the threads for( int i = 0; i < 8; i++ ) { // create one thread per core new Thread( task ).start(); } while( ... ) { // tell threads about the work ... // N threads + this will call await(), then system proceeds barrier.await(); // ... now worker threads work on the work... // wait for worker threads to finish barrier.await(); } } class WorkerThreadRunnable implements Runnable { CyclicBarrier barrier; WorkerThreadRunnable( CyclicBarrier barrier ) { this.barrier = barrier; } public void run() { while( true ) { // wait for work barrier.await(); // do the work ... // wait for everyone else to finish barrier.await(); } } } Again, this works well functionally (it does what it should), and for very large work items indeed all 8 CPUs become highly loaded, as before. However, as the work items become smaller, the load still shrinks dramatically: blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.7% 78% 6.1 16k 5.5% 52% 25 4096 9% 29% 64 1024 11% 15% 117 256 12% 8% 169 64 12% 6.5% 285 16 12% 6% 377 For large work items, synchronization is negligible and the performance is identical to V1. But unexpectedly, the results of the (highly specialized) CyclicBarrier seem MUCH WORSE than those for the (generic) ExecutorService: throughput (cycles/sec) is only about 1/4th of V1. A preliminary conclusion would be that even though this seems to be the advertised ideal use case for CyclicBarrier, it performs much worse than the generic ExecutorService. V3 - Wait/Notify + CyclicBarrier It seemed worth a try to replace the first cyclic barrier await() with a simple wait/notify mechanism: main() { // create the barrier // create Runable for thread, tell it about the barrier // start the threads while( ... ) { // tell threads about the work // for each: workerThreadRunnable.setWorkItem( ... ); // ... now worker threads work on the work... // wait for worker threads to finish barrier.await(); } } class WorkerThreadRunnable implements Runnable { CyclicBarrier barrier; @NotNull volatile private Callable<Integer> workItem; WorkerThreadRunnable( CyclicBarrier barrier ) { this.barrier = barrier; this.workItem = NO_WORK; } final protected void setWorkItem( @NotNull final Callable<Integer> callable ) { synchronized( this ) { workItem = callable; notify(); } } public void run() { while( true ) { // wait for work while( true ) { synchronized( this ) { if( workItem != NO_WORK ) break; try { wait(); } catch( InterruptedException e ) { e.printStackTrace(); } } } // do the work ... // wait for everyone else to finish barrier.await(); } } } Again, this works well functionally (it does what it should). blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.4% 80% 6.3 16k 4.6% 60% 30.1 4096 8.6% 41% 98.5 1024 12% 23% 202 256 14% 11.6% 299 64 14% 10.0% 518 16 14.8% 8.7% 679 The throughput for small work items is still much worse than that of the ExecutorService, but about 2x that of the CyclicBarrier. Eliminating one CyclicBarrier eliminates half of the gap. V4 - Busy wait instead of wait/notify Since this app is the primary one running on the system and the cores idle anyway if they're not busy with a work item, why not try a busy wait for work items in each thread, even if that spins the CPU needlessly. The worker thread code changes as follows: class WorkerThreadRunnable implements Runnable { // as before final protected void setWorkItem( @NotNull final Callable<Integer> callable ) { workItem = callable; } public void run() { while( true ) { // busy-wait for work while( true ) { if( workItem != NO_WORK ) break; } // do the work ... // wait for everyone else to finish barrier.await(); } } } Also works well functionally (it does what it should). blocksize | system | user | cycles/sec 256k 1.9% 85% 1.30 64k 2.2% 81% 6.3 16k 4.2% 62% 33 4096 7.5% 40% 107 1024 10.4% 23% 210 256 12.0% 12.0% 310 64 11.9% 10.2% 550 16 12.2% 8.6% 741 For small work items, this increases throughput by a further 10% over the CyclicBarrier + wait/notify variant, which is not insignificant. But it is still much lower-throughput than V1 with the ExecutorService. V5 - ? So what is the best synchronization mechanism for such a (presumably not uncommon) problem? I am weary of writing my own sync mechanism to completely replace ExecutorService (assuming that it is too generic and there has to be something that can still be taken out to make it more efficient). It is not my area of expertise and I'm concerned that I'd spend a lot of time debugging it (since I'm not even sure my wait/notify and busy wait variants are correct) for uncertain gain. Any advice would be greatly appreciated.

    Read the article

  • mysql mass insert data

    - by user12145
    Edit: I realized that if I construct a large query in memory, the speed has increased almost 10 times of magnitude "insert ignore into xxx(col1, col2) values('a',1), values('b',1), values('c',1)..." Edit: since I have an index on the first column, the insert time creeps up as I insert more. Can I delay the index until the end? Original: I'm using the following to batch insert 10 million rows into mysql db(not all at once, since they don't all fit into memory), it's too slow(taking many hours). should I use load file to improve performance? I would have to create a second file to store all the 10 million rows, then load that into db. are there better ways? PreparedStatement st=con.prepareStatement("insert ignore into xxx (col1, col2) "+ " values (?, 1)"); Iterator d=data.iterator(); while(d.hasNext()){ st.clearParameters(); st.setString(1, (d.next()).toLowerCase()); st.addBatch(); } int[]updateCounts=st.executeBatch();

    Read the article

  • What breaks in a Windows domain if a member has a high time skew?

    - by Ryan Ries
    It's taken for granted by most IT people that in a Windows domain, if a member server's clock is off by more than 5 minutes (or however many minutes you've configured it for) from that of its domain controller - logons and authentications will fail. But that is not necessarily true. At least not for all authentication processes on all versions of Windows. For instance, I can set my time on my Windows 7 client to be skewed all to heck - logoff/logon still works fine. What happens is that my client sends an AS_REQ (with his time stamp) to the domain controller, and the DC responds with KRB_AP_ERR_SKEW. But the magic is that when the DC responds with the aforementioned Kerberos error, the DC also includes his time stamp, which the client in turn uses to adjust his own time and resubmits the AS_REQ, which is then approved. This behavior is not considered a security threat because encryption and secrets are still being used in the communication. This is also not just a Microsoft thing. RFC 4430 describes this behavior. So my question is does anyone know when this changed? And why is it that other things fail? For instance, Office Communicator kicks me off if my clock starts drifting too far out. I really wish to have more detail on this. edit: Here's the bit from RFC 4430 that I'm talking about: If the server clock and the client clock are off by more than the policy-determined clock skew limit (usually 5 minutes), the server MUST return a KRB_AP_ERR_SKEW. The optional client's time in the KRB-ERROR SHOULD be filled out. If the server protects the error by adding the Cksum field and returning the correct client's time, the client SHOULD compute the difference (in seconds) between the two clocks based upon the client and server time contained in the KRB-ERROR message. The client SHOULD store this clock difference and use it to adjust its clock in subsequent messages. If the error is not protected, the client MUST NOT use the difference to adjust subsequent messages, because doing so would allow an attacker to construct authenticators that can be used to mount replay attacks.

    Read the article

  • problem with .Net xml importnode in powershell

    - by Trondh
    Hi, Im trying to construct a powershell script that uses some XML. I have a XML document where I try to add some values with email addresses. The finished xml document should have this format: (I'm only showing the relevant part of the xml here) <emailAddresses> <value>[email protected]</value> <value>[email protected]</value> <value>[email protected]</value> </emailAddresses> SO, in powershell I try to do this as a test, which fails: $newNumber = [xml] '<value>555-1215</value>' $newNode = $Request2.ImportNode($newNumber.value, $true) $emailnode.AppendChild($newNode) After some reading, I have figured out that if I do this, it suceeds: $newNumber = [xml] '<value name="flubber">555-1215</value>' $newNode = $Request2.ImportNode($newNumber.value, $true) $emailnode.AppendChild($newNode) So, I am stuck. I'm starting to wonder if I should use another function instead of importnode when I have several keys with the same name but different values. As you guys probably have figured out by now, i'm not an expert in xml. ANy help appreciated!

    Read the article

  • NETKEY IPsec and ARP

    - by Shawn J. Goff
    I'm wondering if I have the correct routing setup for an IPsec tunnel. I have control over the IPsec endpoints and the hosts connected to one side. These hosts are connecting to the tunnel so that they have access to the network on the other side of what I will call the IPsec server. I don't have control of the network upstream of this server. Normally, the IPsec server will not respond to ARP requests for the hosts on the other side of the tunnel. So when a packet arrives for one of my hosts the server gets ARP requests, but the upstream router gets no response, and cannot construct the ethernet frame to send me the packets. If I was using one of the swan stacks, I would have a separate interface, and I'd probably just need to turn on proxyarp, but I'm using NETKEY, which doesn't use a separate interface for the tunnel. To solve the problem for now, I have added an eth0.5 vlan to the IPsec server, turned on proxyarp for that interface, and added all routes my hosts addresses to that interface so that it will respond to those ARP requests (and will therefore get relevant packets routed to it). This works, but it feels wrong. What is the correct way to get the upstream router to send me the traffic for these hosts?

    Read the article

  • What do I need to consider when buying hardware to meet my needs?

    - by Darth Android
    I'm looking to build a new computer from the ground up. I'm not sure what to look out for and need guidance and help on how to pick the hardware needed to construct my new rig. How do I know what to buy? How do I find out if a given CPU will be enough for a certain game or application that I want to run? How do I find out if a given graphics card will be enough for a certain game or application? What is important when looking at motherboards? How much memory do I need? How do I know how much wattage I need for a power supply? What size case do I need? What relevant standards do I need to read up on and be aware of? PCI, PCIe, SATA, USB 2.0, USB 3.0, etc... What "gotchas" do I need to be on the lookout for? Please keep responses generation-agnostic to ensure they will be helpful to our future users. While Stack Exchange does not permit shopping recommendations, it doesn't provide any general advice to consider when buying hardware. So, instead of just telling those that ask what to buy that it's not allowed, let's tell them how to figure out what they need. This question was Super User Question of the Week #20 Read the June 20, 2011 blog entry for more details or submit your own Question of the Week.

    Read the article

  • Is there a Windows 7 compatible IPSec VPN client that allows protocol and port specific rules?

    - by Sani Huttunen
    As the title says, I need to find a IPSec VPN client for Windows 7. On XP and Vista we've used SafeNet SoftRemote in which you can set up rules for specific protocols and ports. But SoftRemote isn't compatible with Windows 7. 172.xxx.xxx.1 TCP 1433 172.xxx.xxx.2 TCP 1433 172.xxx.xxx.10 ALL ... Since the VPN gateway is configured this way the client must mirror these settings. I've tried TheGreenBow, NCP Secure Entry, Cisco VPN Client and Shrew Soft VPN but none of these allows you to configure by protocol and port. Does anyone have any other suggestions? EDIT: Forgot to mention that agressive mode is also a requirement. --UPDATE-- I've got some news... I've managed to get SoftRemote to work on Windows 7 x64 through Windows XP Mode. After scouring all corners of the Internet for idéas I had enough information to construct a working solution. This solution will probably benefit other clients as well! You'll find a post here with detailed instructions of how I went about.

    Read the article

  • Backup script to FTP with timed subfolders

    - by Frederik Nielsen
    I want to make a backup script, that makes a .tar.gz of a folder I define, say fx /root/tekkit/world This .tar.gz file should then be uploaded to a FTP server, named by the time it was uploaded, for example: 07-10-2012-13-00.tar.gz How should such backup script be written? I already figured out the .tar.gz part - just need the naming and the uploading to FTP. I know that FTP is not the most secure way to do it, but as it is non-sensitive data, and FTP is the only option I have, it will do. Edit: I ended up with this script: #!/bin/bash # have some path predefined for backup unless one is provided as first argument BACKUP_DIR="/root/tekkit/world/" TMP_DIR="/tmp/tekkitbackup/" FINISH_DIR="/tmp/tekkitfinished/" # construct name for our archive TIME=$(date +%d-%m-%Y-%H-%M) if [ $1 ]; then BACKUP_DIR="$1" fi echo "Backing up dir ... $BACKUP_DIR" mkdir $TMP_DIR cp -R $BACKUP_DIR $TMP_DIR cd $FINISH_DIR tar czvfp tekkit-$TIME.tar.gz -C $TMP_DIR . # create upload script for lftp cat <<EOF> lftp.upload.script open server user user password lcd $FINISH_DIR mput tekkit-$TIME.tar.gz exit EOF # start backup using lftp and script we created; if all went well print simple message and clean up lftp -f lftp.upload.script && ( echo Upload successfull ; rm lftp.upload.script )

    Read the article

  • Standards for documenting/designing infrastructure

    - by Paul
    We have a moderately complex solution for which we need to construct a production environment. There are around a dozen components (and here I'm using a definition of "component" which means "can fail independently of other components" - e.g. an Apache server, a Weblogic web app, an ftp server, an ejabberd server, etc). There are a number of weblogic web apps - and one thing we need to decide is how many weblogic containers to run these web apps in. The system needs to be highly available, and communications in and out of the system are typically secured by SSL Our datacentre team will handle things like VLAN design, racking, server specification and build. So the kinds of decisions we still need to make are: How to map components to physical servers (and weblogic containers) Identify all communication paths, ensure all are either resilient or there's an "upstream" comms path that is resilient, and failover of that depends on all single-points of failure "downstream". Decide where to terminate SSL (on load balancers, or on Apache servers, for instance). My question isn't really about how to make the decisions, but whether there are any standards for documenting (especially in diagrams) the design questions and the design decisions. It seems odd, for instance, that Visio doesn't have a template for something like this - it has templates for more physical layout, and for more logical /software architecture diagrams. So right now I'm using a basic Visio diagram to represent each component, the commms between them with plans to augment this with hostnames, ports, whether each comms link is resilient etc, etc. This all feels like something that must been done many times before. Are there standards for documenting this?

    Read the article

< Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >