Search Results

Search found 56255 results on 2251 pages for 'json net'.

Page 35/2251 | < Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >

  • Is parsing JSON faster than parsing XML

    - by geme_hendrix
    I'm creating a sophisticated JavaScript library for working with my company's server side framework. The server side framework encodes its data to a simple XML format. There's no fancy namespacing or anything like that. Ideally I'd like to parse all of the data in the browser as JSON. However, if I do this I need to rewrite some of the server side code to also spit out JSON. This is a pain because we have public APIs that I can't easily change. What I'm really concerned about here is performance in the browser of parsing JSON versus XML. Is there really a big difference to be concerned about? Or should I exclusively go for JSON? Does anyone have any experience or benchmarks in the performance difference between the two? I realize that most modern web developers would probably opt for JSON and I can see why. However, I really am just interested in performance. If there's a proven massive difference then I'm prepared to spend the extra effort in generating JSON server side for the client.

    Read the article

  • Ruby JSON.pretty_generate ... is pretty unpretty

    - by Amy
    I can't seem to get JSON.pretty_generate() to actually generate pretty output in Rails. I'm using Rails 2.3.5 and it seems to automatically load the JSON gem. Awesome. While using script/console this does indeed produce JSON: some_data = {'foo' => 1, 'bar' => 20, 'cow' => [1, 2, 3, 4], 'moo' => {'dog' => 'woof', 'cat' => 'meow'}} some_data.to_json => "{\"cow\":[1,2,3,4],\"moo\":{\"cat\":\"meow\",\"dog\":\"woof\"},\"foo\":1,\"bar\":20}" But this doesn't produce pretty output: JSON.pretty_generate(some_data) => "{\"cow\":[1,2,3,4],\"moo\":{\"cat\":\"meow\",\"dog\":\"woof\"},\"foo\":1,\"bar\":20}" The only way I've found to generate it is to use irb and to load the Pure version: require 'rubygems' require 'json/pure' some_data = {'foo' => 1, 'bar' => 20, 'cow' => [1, 2, 3, 4], 'moo' => {'dog' => 'woof', 'cat' => 'meow'}} JSON.pretty_generate(some_data) => "{\n \"cow\": [\n 1,\n 2,\n 3,\n 4\n ],\n \"moo\": {\n \"cat\": \"meow\",\n \"dog\": \"woof\"\n },\n \"foo\": 1,\n \"bar\": 20\n}" BUT, what I really want is Rails to produce this. Does anyone have any tips why I can't get the generator in Rails to work correctly? Thanks! Updated 5:20 PM PST: Corrected the output.

    Read the article

  • Deserializing a complex JSON result (array of dictionaries) with TouchJSON

    - by jpm
    I did a few tests with TouchJSON last night and it worked pretty well in general for simple cases. I'm using the following code to read some JSON content from a file, and deserialize it: NSString *jsonString = [[NSString alloc] initWithContentsOfFile:@"data.json"]; NSData *jsonData = [jsonString dataUsingEncoding:NSUTF32BigEndianStringEncoding]; NSError *error = nil; NSDictionary *items = [[CJSONDeserializer deserializer] deserializeAsDictionary:jsonData error:&error]; NSLog(@"total items: %d", [items count]); NSLog(@"error: %@", [error localizedDescription]); That works fine if I have a very simple JSON object in the file (i.e. a dictionary): {"id": "54354", "name": "boohoo"} This way I was able to get access to the array of values, as I wanted to get the item based on its index within the list: NSArray *items_list = [items allValues]; NSString *name = [items_list objectAtIndex:1]; (I understand that I could have fetched the name with the dictionary API) Now I would like to deserialize a semi-complex JSON string, which represents an array of dictionaries. An example of such a JSON string is below: [{"id": "123456", "name": "touchjson"}, {"id": "3456", "name": "bleh"}] When I try to run the same code above against this new content in the data.json file, I don't get any results back. My NSLog() call says "total items: 0", and no error is coming back in the NSError object. Any clues on what is going on? I'm completely lost on what to do, as there isn't much documentation available for TouchJSON, and much less usage examples.

    Read the article

  • jQuery DataTables: Problems with POST Server Side JSON output

    - by Tim
    Hello Everyone, I am trying to get my datatable to take a POST JSON output from my server. This is my client side code <script> $(document).ready(function() { $('#example').dataTable( { "bProcessing": true, "bServerSide": true, "sAjaxSource": "http://localhost/staff/jobs/my_jobs", "fnServerData": function ( sSource, aoData, fnCallback ) { $.ajax( { "dataType": 'json', "type": "POST", "url": sSource, "data": aoData, "success": fnCallback } ); } } ); } ); </script> Now I have copied and pasted the server side code found in the DataTables examples found here. When I change my sAjaxSource to view this page the table doesn't move beyond 'processing'. When I view the JSON directly I see this output. {"sEcho": 1, "iTotalRecords": 1, "iTotalDisplayRecords": 1, "aaData": [ ["Trident","First Ever Job"]] } Just for fun I went to the POST server-side example and copied some of the JSON they are using for their example and just PHP echoed it straight out of another page. This is the output of that page. {"sEcho": 1, "iTotalRecords": 1, "iTotalDisplayRecords": 1, "aaData": [ ["Trident","Internet Explorer 4.0"]] } Here is where it gets interesting. The JSON that has been processed by the server fails to work yet the JSON simply echo'd by the same server on a different page does work... yet both are almost identical in outputs. I hope someone can shed some light on this because as the tree said to the lumberjack... I'm stumped. Thanks, Tim

    Read the article

  • Custom ASPNetMembership FailureInformation always null, OnValidatingPassword issue

    - by bigb
    As stated here http://msdn.microsoft.com/en-us/library/system.web.security.membershipprovider.onvalidatingpassword.aspx "When the ValidatingPassword event has completed, the properties of the ValidatePasswordEventArgs object supplied as the e parameter can be examined to determine whether the current action should be canceled and if a particular Exception, stored in the FailureInformation property, should be thrown." Here is some details/code which really shows why FailureInformation shouldn't be always null http://forums.asp.net/t/991002.aspx if any password security conditions not matched. According with my Membership settings i should get an exception that password does not match password security conditions, but it is not happened. Then i did try to debug System.Web.ApplicationServices.dll(in .NET 4.0 System.Web.Security located here) Framework Code to see whats really happens there, but i cant step into this assembly, may be because of this [TypeForwardedFrom("System.Web, Version=2.0.0.0, Culture=Neutral, PublicKeyToken=b03f5f7f11d50a3a")] public abstract class MembershipProvider : ProviderBase Easily i may step into any another .NET 4.0 assembly, but in this one not. I did check, symbols for System.Web.ApplicationServices.dll loaded. Now i have only one idea how ti fix it - to override method OnValidatingPassword(ValidatePasswordEventArgs e). Thats my story. May be some one may help: 1) Any ideas why OnValidatingPassword not working? 2) Any ideas how to step into it?

    Read the article

  • JSON and Microformats

    - by Tauren
    I'm looking for opinions on whether microformats should be used to name JSON elements. For instance, there is a microformat for physical addresses, that looks like this: <div class="adr"> <div class="street-address">665 3rd St.</div> <div class="extended-address">Suite 207</div> <span class="locality">San Francisco</span>, <span class="region">CA</span> <span class="postal-code">94107</span> <div class="country-name">U.S.A.</div> </div> There is a document available on using JSON and Microformats. The information above could be represented as JSON data like this: "adr": { "street-address":"665 3rd St.", "extended-address":"Suite 207", "locality":"San Fransicso", "region":"CA", "postal-code":"94107", "country-name":"U.S.A." }, The issue I have with this is that I'd like my JSON data to be as lightweight as possible, but still human readable. While still supporting international addresses, I would prefer something like this: "address": { "street":"665 3rd St.", "extended":"Suite 207", "locality":"San Fransicso", "region":"CA", "code":"94107", "country":"U.S.A." }, If I'm designing a new JSON API right now, does it make sense to use microformats from the start? Or should I not really worry about it? Is there some other standard that is more specific to JSON that I should look at?

    Read the article

  • JSON Twitter List in C#.net

    - by James
    Hi, My code is below. I am not able to extract the 'name' and 'query' lists from the JSON via a DataContracted Class (below) I have spent a long time trying to work this one out, and could really do with some help... My Json string: {"as_of":1266853488,"trends":{"2010-02-22 15:44:48":[{"name":"#nowplaying","query":"#nowplaying"},{"name":"#musicmonday","query":"#musicmonday"},{"name":"#WeGoTogetherLike","query":"#WeGoTogetherLike"},{"name":"#imcurious","query":"#imcurious"},{"name":"#mm","query":"#mm"},{"name":"#HumanoidCityTour","query":"#HumanoidCityTour"},{"name":"#awesomeindianthings","query":"#awesomeindianthings"},{"name":"#officeformac","query":"#officeformac"},{"name":"Justin Bieber","query":"\"Justin Bieber\""},{"name":"National Margarita","query":"\"National Margarita\""}]}} My code: WebClient wc = new WebClient(); wc.Credentials = new NetworkCredential(this.Auth.UserName, this.Auth.Password); string res = wc.DownloadString(new Uri(link)); //the download string gives me the above JSON string - no problems Trends trends = new Trends(); Trends obj = Deserialise<Trends>(res); private T Deserialise<T>(string json) { T obj = Activator.CreateInstance<T>(); using (MemoryStream ms = new MemoryStream(Encoding.Unicode.GetBytes(json))) { DataContractJsonSerializer serialiser = new DataContractJsonSerializer(obj.GetType()); obj = (T)serialiser.ReadObject(ms); ms.Close(); return obj; } } [DataContract] public class Trends { [DataMember(Name = "as_of")] public string AsOf { get; set; } //The As_OF value is returned - But how do I get the //multidimensional array of Names and Queries from the JSON here? }

    Read the article

  • Best and simple way to handle JSON in Django

    - by primal
    Hi, As part of the application we are developing (with android client and Django server) a json object which contains user name and pass word is sent to server from android client as follows HttpPost post = new HttpPost(URL); /*Adding key value pairs */ json.put("username", un); json.put("password", pwd); StringEntity se = new StringEntity(json.toString()); post.setEntity(se); response = client.execute(post); The response is parsed like this result = responsetoString(response.getEntity().getContent()); //Converts response to String jObject = new JSONObject(result); JSONObject post = jObject.getJSONObject("post"); username = post.getString("username"); message = post.getString("message"); Hope upto this everything is fine. The problem comes when parsing or sending JSON responses in Django server. Whats the best way to do this? We tried using SimpleJSON and it turned out not to be so simple as we didn't find any good tutorials or sample code for the same? Are there any python functions similiar to get,put and opt in java for JSON? Any help would be much appreciated..

    Read the article

  • No JSON object could be decoded - RPC POST call

    - by user1307067
    var body = JSON.stringify(params); // Create an XMLHttpRequest 'POST' request w/ an optional callback handler req.open('POST', '/rpc', async); req.setRequestHeader("Content-type", "application/x-www-form-urlencoded"); req.setRequestHeader("Content-length", body.length); req.setRequestHeader("Connection", "close"); if (async) { req.onreadystatechange = function() { if(req.readyState == 4 && req.status == 200) { var response = null; try { response = JSON.parse(req.responseText); } catch (e) { response = req.responseText; } callback(response); } }; } // Make the actual request req.send(body); ---- on the server side ---- class RPCHandler(BaseHandler): '''@user_required''' def post(self): RPCmethods = ("UpdateScenario", "DeleteScenario") logging.info(u'body ' + self.request.body) args = simplejson.loads(self.request.body) ---- Get the following error on the server logs body %5B%22UpdateScenario%22%2C%22c%22%2C%224.5%22%2C%2230frm%22%2C%22Refinance%22%2C%22100000%22%2C%22740%22%2C%2294538%22%2C%2250000%22%2C%22owner%22%2C%22sfr%22%2C%22Fremont%22%2C%22CA%22%5D= No JSON object could be decoded: line 1 column 0 (char 0): Traceback (most recent call last): File "/base/python_runtime/python_lib/versions/1/google/appengine/ext/webapp/_webapp25.py", line 703, in call handler.post(*groups) File "/base/data/home/apps/s~mortgageratealert-staging/1.357912751535215625/main.py", line 418, in post args = json.loads(self.request.body) File "/base/python_runtime/python_lib/versions/1/simplejson/init.py", line 388, in loads return _default_decoder.decode(s) File "/base/python_runtime/python_lib/versions/1/simplejson/decoder.py", line 402, in decode obj, end = self.raw_decode(s, idx=_w(s, 0).end()) File "/base/python_runtime/python_lib/versions/1/simplejson/decoder.py", line 420, in raw_decode raise JSONDecodeError("No JSON object could be decoded", s, idx) JSONDecodeError: No JSON object could be decoded: line 1 column 0 (char 0) --- firebug shows the following --- Parameters application/x-www-form-urlencoded ["UpdateScenario","c","4.... Source ["UpdateScenario","c","4.5","30frm","Refinance","100000","740","94538","50000","owner","sfr","Fremont","CA"] Based on the firebug report and also the logs shows self.request.body as anticipated. However simplejson load doesn't like it. Please help!

    Read the article

  • Weird character at start of json content type

    - by Nek
    Hi, I'm trying to return json content read from MySQL server. This is supposed to be easy but, there is a 'weird' character that keeps appearing at start of the content. I have two pages for returning content: kcb433.sytes.net/as/test.php?json=true&limit=6&input=d this test.php is from a script written by Timothy Groves, which converts an array to json output http://kcb433.sytes.net/k.php?k=4 this one is supposed to do the same I tried to validate it here jsonformatter.curiousconcept.com but just page 1 gets validated, page 2 says that it does not contain JSON data. If accessed directly both pages has no problems. Then what is the difference, why both don't get validated? Then I found this page jsonformat.com and tried the same thing. Page 1 was ok and page 2 wasn't but, surprisingly the data could be read. At a glance, {"a":"b"} may look good but there is a character in front. According to a hex editor online, this is the value of the string above (instead of 9 values, there are 10): -- 7B 22 61 22 3A 22 62 22 7D The code to echo json in page 2 is: header("Content-Type: application/json"); echo "{\"a\":\"b\"}";

    Read the article

  • JSON parse data in javascript from php

    - by Stefania
    I'm trying to retrieve data in a javascript file from a php file using json. $items = array(); while($r = mysql_fetch_array($result)) { $rows = array( "id_locale" => $r['id_locale'], "latitudine" => $r['lat'], "longitudine" => $r['lng'] ); array_push($items, array("item" => $rows)); } ECHO json_encode($items); and in the javascript file I try to recover the data using an ajax call: $.ajax({ type:"POST", url:"Locali.php", success:function(data){ alert("1"); //var obj = jQuery.parseJSON(idata); var json = JSON.parse(data); alert("2"); for (var i=0; i<json.length; i++) { point = new google.maps.LatLng(json[i].item.latitudine,json[i].item.longitudine); alert(point); } } }) The first alert is printed, the latter does not, it gives me error: Unexpected token <.... but I do not understand what it is. Anyone have any idea where am I wrong? I also tried to recover the data with jquery but with no positive results.

    Read the article

  • Append json data to html class name

    - by user2898514
    I have a problem with my json code. I want to append each json value comes from a key to be appended to an html class name which matches the key of json data. here's my Live demo if you see the result in the life demo. it's only appending the last record. is it possible to make it show all records in order? json var json = '[{"castle":"big","commercial":"large","common":"sergio","cultural":"2009"},' + '{"castle":"big2","commercial":"large2","common":"sergio2","cultural":"20092"}]'; html <div class="castle"></div> <div class="commercial"></div> <div class="common"></div> <div class="cultural"></div> javascript var data = $.parseJSON(json); $.each(data, function(l,v) { $.each(v, function(k,o) { $('.'+k).attr('id', k+o); console.log($('#'+k+o).attr('id')); $('#'+k+o).text(o); }); }); for more illustration... I want the result in the live demo to look like this big large sergio 2009, big2 large2 sergio2 20092

    Read the article

  • Reuse security code between WCF and MVC.NET

    - by mrjoltcola
    First the background: I jumped into MVC.NET from the Java MVC world, so my implementation below is possibly cheating, I don't know. I avoided fooling with a custom membership provider and I just implemented the base code needed to authenticate and load roles in my LogOn action. Typically I just need to check roles programatically, and have no use for all of the other membership features, so I didn't originally think I needed a full Membership provider. I have a successful WCF project with a custom authentication and authorization layer that I did at least write per the proper API. I implemented it with custom IPrincipal, UserNamePasswordValidator and IAuthorizationPolicy classes to load from an Oracle database. In my WCF services, I use declarative security: [PrincipalPermission(SecurityAction.Demand, Role="ADMIN")]. The question (on the ASP.NET/MCV.NET side): All my reading indicates I should implement a custom Membership/Roles provider, and use [Authorize(Roles="ADMIN")] on my controller actions. At this point, I don't have a true Membership provider, but I'm using the same User class that implements the IPrincipal interface that works with the WCF security. I plan to share common code between the WCF and ASP.NET modules. So my LogOn action is not using the FormsService (and I assume this is bad). I had commented it out, and just used my "UserService" to access the Oracle db. Note my "TODO" comment below. public ActionResult LogOn(LogOnModel model, string returnUrl) { log.Info("Login attempt by " + model.UserName); if (ModelState.IsValid) { User user = userService.findByUserName(model.UserName); // Commented original MemberShipService code, this is probably bad // if (MembershipService.ValidateUser(model.UserName, model.Password)) if (user != null && user.Authenticate(model.Password) == true) { log.Info("Login success by " + model.UserName); FormsService.SignIn(model.UserName, model.RememberMe); // TODO: Override with Custom identity / roles? user.AddRoles(userService.listRolesByUser(user)); // pull in roles from db if (!String.IsNullOrEmpty(returnUrl)) return Redirect(returnUrl); else return RedirectToAction("Index", "Home"); } else { log.Info("Login failure by " + model.UserName); ModelState.AddModelError("", "The user name or password provided is incorrect."); } } // If we got this far, something failed, redisplay form return View(model); } So can I make the above work? Can I stick the IPrincipal (User) into the CurrentContext or HttpContext? Can I integrate the custom IPrincipal I've already created without writing a full Membership/Roles Provider? I currently stick the User object into the session and access it from all MVC.NET controllers with "CurrentUser" property which grabs it from the session on demand. But this doesn't work with the [Authorize] attribute; I assume that is because it knows nothing about my custom Principal in the session, and is instead using whatever FormsService.SignIn() produces. I also found that session timeouts screw up the login redirect, the user doesn't get forwarded, instead we get a null exception accessing User from the session, and I assume it is related to my "skipping steps" to get a quick implementation. Thanks.

    Read the article

  • equivalent of javascript class using JSON

    - by brz dot net
    See following class: function availItem(xs, s, m, l, xl) { this.xs = xs; this.s = s; this.m = m; this.l = l; this.xl = xl; } How can I declare the above class using JSON? I think It should be in following manner but problem is to pass argument. var availItem = { xs : xs, s : s, m : m, l : l, xl : xl }

    Read the article

  • Parallelism in .NET – Part 5, Partitioning of Work

    - by Reed
    When parallelizing any routine, we start by decomposing the problem.  Once the problem is understood, we need to break our work into separate tasks, so each task can be run on a different processing element.  This process is called partitioning. Partitioning our tasks is a challenging feat.  There are opposing forces at work here: too many partitions adds overhead, too few partitions leaves processors idle.  Trying to work the perfect balance between the two extremes is the goal for which we should aim.  Luckily, the Task Parallel Library automatically handles much of this process.  However, there are situations where the default partitioning may not be appropriate, and knowledge of our routines may allow us to guide the framework to making better decisions. First off, I’d like to say that this is a more advanced topic.  It is perfectly acceptable to use the parallel constructs in the framework without considering the partitioning taking place.  The default behavior in the Task Parallel Library is very well-behaved, even for unusual work loads, and should rarely be adjusted.  I have found few situations where the default partitioning behavior in the TPL is not as good or better than my own hand-written partitioning routines, and recommend using the defaults unless there is a strong, measured, and profiled reason to avoid using them.  However, understanding partitioning, and how the TPL partitions your data, helps in understanding the proper usage of the TPL. I indirectly mentioned partitioning while discussing aggregation.  Typically, our systems will have a limited number of Processing Elements (PE), which is the terminology used for hardware capable of processing a stream of instructions.  For example, in a standard Intel i7 system, there are four processor cores, each of which has two potential hardware threads due to Hyperthreading.  This gives us a total of 8 PEs – theoretically, we can have up to eight operations occurring concurrently within our system. In order to fully exploit this power, we need to partition our work into Tasks.  A task is a simple set of instructions that can be run on a PE.  Ideally, we want to have at least one task per PE in the system, since fewer tasks means that some of our processing power will be sitting idle.  A naive implementation would be to just take our data, and partition it with one element in our collection being treated as one task.  When we loop through our collection in parallel, using this approach, we’d just process one item at a time, then reuse that thread to process the next, etc.  There’s a flaw in this approach, however.  It will tend to be slower than necessary, often slower than processing the data serially. The problem is that there is overhead associated with each task.  When we take a simple foreach loop body and implement it using the TPL, we add overhead.  First, we change the body from a simple statement to a delegate, which must be invoked.  In order to invoke the delegate on a separate thread, the delegate gets added to the ThreadPool’s current work queue, and the ThreadPool must pull this off the queue, assign it to a free thread, then execute it.  If our collection had one million elements, the overhead of trying to spawn one million tasks would destroy our performance. The answer, here, is to partition our collection into groups, and have each group of elements treated as a single task.  By adding a partitioning step, we can break our total work into small enough tasks to keep our processors busy, but large enough tasks to avoid overburdening the ThreadPool.  There are two clear, opposing goals here: Always try to keep each processor working, but also try to keep the individual partitions as large as possible. When using Parallel.For, the partitioning is always handled automatically.  At first, partitioning here seems simple.  A naive implementation would merely split the total element count up by the number of PEs in the system, and assign a chunk of data to each processor.  Many hand-written partitioning schemes work in this exactly manner.  This perfectly balanced, static partitioning scheme works very well if the amount of work is constant for each element.  However, this is rarely the case.  Often, the length of time required to process an element grows as we progress through the collection, especially if we’re doing numerical computations.  In this case, the first PEs will finish early, and sit idle waiting on the last chunks to finish.  Sometimes, work can decrease as we progress, since previous computations may be used to speed up later computations.  In this situation, the first chunks will be working far longer than the last chunks.  In order to balance the workload, many implementations create many small chunks, and reuse threads.  This adds overhead, but does provide better load balancing, which in turn improves performance. The Task Parallel Library handles this more elaborately.  Chunks are determined at runtime, and start small.  They grow slowly over time, getting larger and larger.  This tends to lead to a near optimum load balancing, even in odd cases such as increasing or decreasing workloads.  Parallel.ForEach is a bit more complicated, however. When working with a generic IEnumerable<T>, the number of items required for processing is not known in advance, and must be discovered at runtime.  In addition, since we don’t have direct access to each element, the scheduler must enumerate the collection to process it.  Since IEnumerable<T> is not thread safe, it must lock on elements as it enumerates, create temporary collections for each chunk to process, and schedule this out.  By default, it uses a partitioning method similar to the one described above.  We can see this directly by looking at the Visual Partitioning sample shipped by the Task Parallel Library team, and available as part of the Samples for Parallel Programming.  When we run the sample, with four cores and the default, Load Balancing partitioning scheme, we see this: The colored bands represent each processing core.  You can see that, when we started (at the top), we begin with very small bands of color.  As the routine progresses through the Parallel.ForEach, the chunks get larger and larger (seen by larger and larger stripes). Most of the time, this is fantastic behavior, and most likely will out perform any custom written partitioning.  However, if your routine is not scaling well, it may be due to a failure in the default partitioning to handle your specific case.  With prior knowledge about your work, it may be possible to partition data more meaningfully than the default Partitioner. There is the option to use an overload of Parallel.ForEach which takes a Partitioner<T> instance.  The Partitioner<T> class is an abstract class which allows for both static and dynamic partitioning.  By overriding Partitioner<T>.SupportsDynamicPartitions, you can specify whether a dynamic approach is available.  If not, your custom Partitioner<T> subclass would override GetPartitions(int), which returns a list of IEnumerator<T> instances.  These are then used by the Parallel class to split work up amongst processors.  When dynamic partitioning is available, GetDynamicPartitions() is used, which returns an IEnumerable<T> for each partition.  If you do decide to implement your own Partitioner<T>, keep in mind the goals and tradeoffs of different partitioning strategies, and design appropriately. The Samples for Parallel Programming project includes a ChunkPartitioner class in the ParallelExtensionsExtras project.  This provides example code for implementing your own, custom allocation strategies, including a static allocator of a given chunk size.  Although implementing your own Partitioner<T> is possible, as I mentioned above, this is rarely required or useful in practice.  The default behavior of the TPL is very good, often better than any hand written partitioning strategy.

    Read the article

  • Parallelism in .NET – Part 3, Imperative Data Parallelism: Early Termination

    - by Reed
    Although simple data parallelism allows us to easily parallelize many of our iteration statements, there are cases that it does not handle well.  In my previous discussion, I focused on data parallelism with no shared state, and where every element is being processed exactly the same. Unfortunately, there are many common cases where this does not happen.  If we are dealing with a loop that requires early termination, extra care is required when parallelizing. Often, while processing in a loop, once a certain condition is met, it is no longer necessary to continue processing.  This may be a matter of finding a specific element within the collection, or reaching some error case.  The important distinction here is that, it is often impossible to know until runtime, what set of elements needs to be processed. In my initial discussion of data parallelism, I mentioned that this technique is a candidate when you can decompose the problem based on the data involved, and you wish to apply a single operation concurrently on all of the elements of a collection.  This covers many of the potential cases, but sometimes, after processing some of the elements, we need to stop processing. As an example, lets go back to our previous Parallel.ForEach example with contacting a customer.  However, this time, we’ll change the requirements slightly.  In this case, we’ll add an extra condition – if the store is unable to email the customer, we will exit gracefully.  The thinking here, of course, is that if the store is currently unable to email, the next time this operation runs, it will handle the same situation, so we can just skip our processing entirely.  The original, serial case, with this extra condition, might look something like the following: foreach(var customer in customers) { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) break; customer.LastEmailContact = DateTime.Now; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re processing our loop, but at any point, if we fail to send our email successfully, we just abandon this process, and assume that it will get handled correctly the next time our routine is run.  If we try to parallelize this using Parallel.ForEach, as we did previously, we’ll run into an error almost immediately: the break statement we’re using is only valid when enclosed within an iteration statement, such as foreach.  When we switch to Parallel.ForEach, we’re no longer within an iteration statement – we’re a delegate running in a method. This needs to be handled slightly differently when parallelized.  Instead of using the break statement, we need to utilize a new class in the Task Parallel Library: ParallelLoopState.  The ParallelLoopState class is intended to allow concurrently running loop bodies a way to interact with each other, and provides us with a way to break out of a loop.  In order to use this, we will use a different overload of Parallel.ForEach which takes an IEnumerable<T> and an Action<T, ParallelLoopState> instead of an Action<T>.  Using this, we can parallelize the above operation by doing: Parallel.ForEach(customers, (customer, parallelLoopState) => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { // Exit gracefully if we fail to email, since this // entire process can be repeated later without issue. if (theStore.EmailCustomer(customer) == false) parallelLoopState.Break(); else customer.LastEmailContact = DateTime.Now; } }); There are a couple of important points here.  First, we didn’t actually instantiate the ParallelLoopState instance.  It was provided directly to us via the Parallel class.  All we needed to do was change our lambda expression to reflect that we want to use the loop state, and the Parallel class creates an instance for our use.  We also needed to change our logic slightly when we call Break().  Since Break() doesn’t stop the program flow within our block, we needed to add an else case to only set the property in customer when we succeeded.  This same technique can be used to break out of a Parallel.For loop. That being said, there is a huge difference between using ParallelLoopState to cause early termination and to use break in a standard iteration statement.  When dealing with a loop serially, break will immediately terminate the processing within the closest enclosing loop statement.  Calling ParallelLoopState.Break(), however, has a very different behavior. The issue is that, now, we’re no longer processing one element at a time.  If we break in one of our threads, there are other threads that will likely still be executing.  This leads to an important observation about termination of parallel code: Early termination in parallel routines is not immediate.  Code will continue to run after you request a termination. This may seem problematic at first, but it is something you just need to keep in mind while designing your routine.  ParallelLoopState.Break() should be thought of as a request.  We are telling the runtime that no elements that were in the collection past the element we’re currently processing need to be processed, and leaving it up to the runtime to decide how to handle this as gracefully as possible.  Although this may seem problematic at first, it is a good thing.  If the runtime tried to immediately stop processing, many of our elements would be partially processed.  It would be like putting a return statement in a random location throughout our loop body – which could have horrific consequences to our code’s maintainability. In order to understand and effectively write parallel routines, we, as developers, need a subtle, but profound shift in our thinking.  We can no longer think in terms of sequential processes, but rather need to think in terms of requests to the system that may be handled differently than we’d first expect.  This is more natural to developers who have dealt with asynchronous models previously, but is an important distinction when moving to concurrent programming models. As an example, I’ll discuss the Break() method.  ParallelLoopState.Break() functions in a way that may be unexpected at first.  When you call Break() from a loop body, the runtime will continue to process all elements of the collection that were found prior to the element that was being processed when the Break() method was called.  This is done to keep the behavior of the Break() method as close to the behavior of the break statement as possible. We can see the behavior in this simple code: var collection = Enumerable.Range(0, 20); var pResult = Parallel.ForEach(collection, (element, state) => { if (element > 10) { Console.WriteLine("Breaking on {0}", element); state.Break(); } Console.WriteLine(element); }); If we run this, we get a result that may seem unexpected at first: 0 2 1 5 6 3 4 10 Breaking on 11 11 Breaking on 12 12 9 Breaking on 13 13 7 8 Breaking on 15 15 What is occurring here is that we loop until we find the first element where the element is greater than 10.  In this case, this was found, the first time, when one of our threads reached element 11.  It requested that the loop stop by calling Break() at this point.  However, the loop continued processing until all of the elements less than 11 were completed, then terminated.  This means that it will guarantee that elements 9, 7, and 8 are completed before it stops processing.  You can see our other threads that were running each tried to break as well, but since Break() was called on the element with a value of 11, it decides which elements (0-10) must be processed. If this behavior is not desirable, there is another option.  Instead of calling ParallelLoopState.Break(), you can call ParallelLoopState.Stop().  The Stop() method requests that the runtime terminate as soon as possible , without guaranteeing that any other elements are processed.  Stop() will not stop the processing within an element, so elements already being processed will continue to be processed.  It will prevent new elements, even ones found earlier in the collection, from being processed.  Also, when Stop() is called, the ParallelLoopState’s IsStopped property will return true.  This lets longer running processes poll for this value, and return after performing any necessary cleanup. The basic rule of thumb for choosing between Break() and Stop() is the following. Use ParallelLoopState.Stop() when possible, since it terminates more quickly.  This is particularly useful in situations where you are searching for an element or a condition in the collection.  Once you’ve found it, you do not need to do any other processing, so Stop() is more appropriate. Use ParallelLoopState.Break() if you need to more closely match the behavior of the C# break statement. Both methods behave differently than our C# break statement.  Unfortunately, when parallelizing a routine, more thought and care needs to be put into every aspect of your routine than you may otherwise expect.  This is due to my second observation: Parallelizing a routine will almost always change its behavior. This sounds crazy at first, but it’s a concept that’s so simple its easy to forget.  We’re purposely telling the system to process more than one thing at the same time, which means that the sequence in which things get processed is no longer deterministic.  It is easy to change the behavior of your routine in very subtle ways by introducing parallelism.  Often, the changes are not avoidable, even if they don’t have any adverse side effects.  This leads to my final observation for this post: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Parallelism in .NET – Part 7, Some Differences between PLINQ and LINQ to Objects

    - by Reed
    In my previous post on Declarative Data Parallelism, I mentioned that PLINQ extends LINQ to Objects to support parallel operations.  Although nearly all of the same operations are supported, there are some differences between PLINQ and LINQ to Objects.  By introducing Parallelism to our declarative model, we add some extra complexity.  This, in turn, adds some extra requirements that must be addressed. In order to illustrate the main differences, and why they exist, let’s begin by discussing some differences in how the two technologies operate, and look at the underlying types involved in LINQ to Objects and PLINQ . LINQ to Objects is mainly built upon a single class: Enumerable.  The Enumerable class is a static class that defines a large set of extension methods, nearly all of which work upon an IEnumerable<T>.  Many of these methods return a new IEnumerable<T>, allowing the methods to be chained together into a fluent style interface.  This is what allows us to write statements that chain together, and lead to the nice declarative programming model of LINQ: double min = collection .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Other LINQ variants work in a similar fashion.  For example, most data-oriented LINQ providers are built upon an implementation of IQueryable<T>, which allows the database provider to turn a LINQ statement into an underlying SQL query, to be performed directly on the remote database. PLINQ is similar, but instead of being built upon the Enumerable class, most of PLINQ is built upon a new static class: ParallelEnumerable.  When using PLINQ, you typically begin with any collection which implements IEnumerable<T>, and convert it to a new type using an extension method defined on ParallelEnumerable: AsParallel().  This method takes any IEnumerable<T>, and converts it into a ParallelQuery<T>, the core class for PLINQ.  There is a similar ParallelQuery class for working with non-generic IEnumerable implementations. This brings us to our first subtle, but important difference between PLINQ and LINQ – PLINQ always works upon specific types, which must be explicitly created. Typically, the type you’ll use with PLINQ is ParallelQuery<T>, but it can sometimes be a ParallelQuery or an OrderedParallelQuery<T>.  Instead of dealing with an interface, implemented by an unknown class, we’re dealing with a specific class type.  This works seamlessly from a usage standpoint – ParallelQuery<T> implements IEnumerable<T>, so you can always “switch back” to an IEnumerable<T>.  The difference only arises at the beginning of our parallelization.  When we’re using LINQ, and we want to process a normal collection via PLINQ, we need to explicitly convert the collection into a ParallelQuery<T> by calling AsParallel().  There is an important consideration here – AsParallel() does not need to be called on your specific collection, but rather any IEnumerable<T>.  This allows you to place it anywhere in the chain of methods involved in a LINQ statement, not just at the beginning.  This can be useful if you have an operation which will not parallelize well or is not thread safe.  For example, the following is perfectly valid, and similar to our previous examples: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); However, if SomeOperation() is not thread safe, we could just as easily do: double min = collection .Select(item => item.SomeOperation()) .AsParallel() .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .Min(item => item.PerformComputation()); In this case, we’re using standard LINQ to Objects for the Select(…) method, then converting the results of that map routine to a ParallelQuery<T>, and processing our filter (the Where method) and our aggregation (the Min method) in parallel. PLINQ also provides us with a way to convert a ParallelQuery<T> back into a standard IEnumerable<T>, forcing sequential processing via standard LINQ to Objects.  If SomeOperation() was thread-safe, but PerformComputation() was not thread-safe, we would need to handle this by using the AsEnumerable() method: double min = collection .AsParallel() .Select(item => item.SomeOperation()) .Where(item => item.SomeProperty > 6 && item.SomeProperty < 24) .AsEnumerable() .Min(item => item.PerformComputation()); Here, we’re converting our collection into a ParallelQuery<T>, doing our map operation (the Select(…) method) and our filtering in parallel, then converting the collection back into a standard IEnumerable<T>, which causes our aggregation via Min() to be performed sequentially. This could also be written as two statements, as well, which would allow us to use the language integrated syntax for the first portion: var tempCollection = from item in collection.AsParallel() let e = item.SomeOperation() where (e.SomeProperty > 6 && e.SomeProperty < 24) select e; double min = tempCollection.AsEnumerable().Min(item => item.PerformComputation()); This allows us to use the standard LINQ style language integrated query syntax, but control whether it’s performed in parallel or serial by adding AsParallel() and AsEnumerable() appropriately. The second important difference between PLINQ and LINQ deals with order preservation.  PLINQ, by default, does not preserve the order of of source collection. This is by design.  In order to process a collection in parallel, the system needs to naturally deal with multiple elements at the same time.  Maintaining the original ordering of the sequence adds overhead, which is, in many cases, unnecessary.  Therefore, by default, the system is allowed to completely change the order of your sequence during processing.  If you are doing a standard query operation, this is usually not an issue.  However, there are times when keeping a specific ordering in place is important.  If this is required, you can explicitly request the ordering be preserved throughout all operations done on a ParallelQuery<T> by using the AsOrdered() extension method.  This will cause our sequence ordering to be preserved. For example, suppose we wanted to take a collection, perform an expensive operation which converts it to a new type, and display the first 100 elements.  In LINQ to Objects, our code might look something like: // Using IEnumerable<SourceClass> collection IEnumerable<ResultClass> results = collection .Select(e => e.CreateResult()) .Take(100); If we just converted this to a parallel query naively, like so: IEnumerable<ResultClass> results = collection .AsParallel() .Select(e => e.CreateResult()) .Take(100); We could very easily get a very different, and non-reproducable, set of results, since the ordering of elements in the input collection is not preserved.  To get the same results as our original query, we need to use: IEnumerable<ResultClass> results = collection .AsParallel() .AsOrdered() .Select(e => e.CreateResult()) .Take(100); This requests that PLINQ process our sequence in a way that verifies that our resulting collection is ordered as if it were processed serially.  This will cause our query to run slower, since there is overhead involved in maintaining the ordering.  However, in this case, it is required, since the ordering is required for correctness. PLINQ is incredibly useful.  It allows us to easily take nearly any LINQ to Objects query and run it in parallel, using the same methods and syntax we’ve used previously.  There are some important differences in operation that must be considered, however – it is not a free pass to parallelize everything.  When using PLINQ in order to parallelize your routines declaratively, the same guideline I mentioned before still applies: Parallelization is something that should be handled with care and forethought, added by design, and not just introduced casually.

    Read the article

  • Parallelism in .NET – Part 9, Configuration in PLINQ and TPL

    - by Reed
    Parallel LINQ and the Task Parallel Library contain many options for configuration.  Although the default configuration options are often ideal, there are times when customizing the behavior is desirable.  Both frameworks provide full configuration support. When working with Data Parallelism, there is one primary configuration option we often need to control – the number of threads we want the system to use when parallelizing our routine.  By default, PLINQ and the TPL both use the ThreadPool to schedule tasks.  Given the major improvements in the ThreadPool in CLR 4, this default behavior is often ideal.  However, there are times that the default behavior is not appropriate.  For example, if you are working on multiple threads simultaneously, and want to schedule parallel operations from within both threads, you might want to consider restricting each parallel operation to using a subset of the processing cores of the system.  Not doing this might over-parallelize your routine, which leads to inefficiencies from having too many context switches. In the Task Parallel Library, configuration is handled via the ParallelOptions class.  All of the methods of the Parallel class have an overload which accepts a ParallelOptions argument. We configure the Parallel class by setting the ParallelOptions.MaxDegreeOfParallelism property.  For example, let’s revisit one of the simple data parallel examples from Part 2: Parallel.For(0, pixelData.GetUpperBound(0), row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re looping through an image, and calling a method on each pixel in the image.  If this was being done on a separate thread, and we knew another thread within our system was going to be doing a similar operation, we likely would want to restrict this to using half of the cores on the system.  This could be accomplished easily by doing: var options = new ParallelOptions(); options.MaxDegreeOfParallelism = Math.Max(Environment.ProcessorCount / 2, 1); Parallel.For(0, pixelData.GetUpperBound(0), options, row => { for (int col=0; col < pixelData.GetUpperBound(1); ++col) { pixelData[row, col] = AdjustContrast(pixelData[row, col], minPixel, maxPixel); } }); Now, we’re restricting this routine to using no more than half the cores in our system.  Note that I included a check to prevent a single core system from supplying zero; without this check, we’d potentially cause an exception.  I also did not hard code a specific value for the MaxDegreeOfParallelism property.  One of our goals when parallelizing a routine is allowing it to scale on better hardware.  Specifying a hard-coded value would contradict that goal. Parallel LINQ also supports configuration, and in fact, has quite a few more options for configuring the system.  The main configuration option we most often need is the same as our TPL option: we need to supply the maximum number of processing threads.  In PLINQ, this is done via a new extension method on ParallelQuery<T>: ParallelEnumerable.WithDegreeOfParallelism. Let’s revisit our declarative data parallelism sample from Part 6: double min = collection.AsParallel().Min(item => item.PerformComputation()); Here, we’re performing a computation on each element in the collection, and saving the minimum value of this operation.  If we wanted to restrict this to a limited number of threads, we would add our new extension method: int maxThreads = Math.Max(Environment.ProcessorCount / 2, 1); double min = collection .AsParallel() .WithDegreeOfParallelism(maxThreads) .Min(item => item.PerformComputation()); This automatically restricts the PLINQ query to half of the threads on the system. PLINQ provides some additional configuration options.  By default, PLINQ will occasionally revert to processing a query in parallel.  This occurs because many queries, if parallelized, typically actually cause an overall slowdown compared to a serial processing equivalent.  By analyzing the “shape” of the query, PLINQ often decides to run a query serially instead of in parallel.  This can occur for (taken from MSDN): Queries that contain a Select, indexed Where, indexed SelectMany, or ElementAt clause after an ordering or filtering operator that has removed or rearranged original indices. Queries that contain a Take, TakeWhile, Skip, SkipWhile operator and where indices in the source sequence are not in the original order. Queries that contain Zip or SequenceEquals, unless one of the data sources has an originally ordered index and the other data source is indexable (i.e. an array or IList(T)). Queries that contain Concat, unless it is applied to indexable data sources. Queries that contain Reverse, unless applied to an indexable data source. If the specific query follows these rules, PLINQ will run the query on a single thread.  However, none of these rules look at the specific work being done in the delegates, only at the “shape” of the query.  There are cases where running in parallel may still be beneficial, even if the shape is one where it typically parallelizes poorly.  In these cases, you can override the default behavior by using the WithExecutionMode extension method.  This would be done like so: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .Select(i => i.PerformComputation()) .Reverse(); Here, the default behavior would be to not parallelize the query unless collection implemented IList<T>.  We can force this to run in parallel by adding the WithExecutionMode extension method in the method chain. Finally, PLINQ has the ability to configure how results are returned.  When a query is filtering or selecting an input collection, the results will need to be streamed back into a single IEnumerable<T> result.  For example, the method above returns a new, reversed collection.  In this case, the processing of the collection will be done in parallel, but the results need to be streamed back to the caller serially, so they can be enumerated on a single thread. This streaming introduces overhead.  IEnumerable<T> isn’t designed with thread safety in mind, so the system needs to handle merging the parallel processes back into a single stream, which introduces synchronization issues.  There are two extremes of how this could be accomplished, but both extremes have disadvantages. The system could watch each thread, and whenever a thread produces a result, take that result and send it back to the caller.  This would mean that the calling thread would have access to the data as soon as data is available, which is the benefit of this approach.  However, it also means that every item is introducing synchronization overhead, since each item needs to be merged individually. On the other extreme, the system could wait until all of the results from all of the threads were ready, then push all of the results back to the calling thread in one shot.  The advantage here is that the least amount of synchronization is added to the system, which means the query will, on a whole, run the fastest.  However, the calling thread will have to wait for all elements to be processed, so this could introduce a long delay between when a parallel query begins and when results are returned. The default behavior in PLINQ is actually between these two extremes.  By default, PLINQ maintains an internal buffer, and chooses an optimal buffer size to maintain.  Query results are accumulated into the buffer, then returned in the IEnumerable<T> result in chunks.  This provides reasonably fast access to the results, as well as good overall throughput, in most scenarios. However, if we know the nature of our algorithm, we may decide we would prefer one of the other extremes.  This can be done by using the WithMergeOptions extension method.  For example, if we know that our PerformComputation() routine is very slow, but also variable in runtime, we may want to retrieve results as they are available, with no bufferring.  This can be done by changing our above routine to: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .WithMergeOptions(ParallelMergeOptions.NotBuffered) .Select(i => i.PerformComputation()) .Reverse(); On the other hand, if are already on a background thread, and we want to allow the system to maximize its speed, we might want to allow the system to fully buffer the results: var reversed = collection .AsParallel() .WithExecutionMode(ParallelExecutionMode.ForceParallelism) .WithMergeOptions(ParallelMergeOptions.FullyBuffered) .Select(i => i.PerformComputation()) .Reverse(); Notice, also, that you can specify multiple configuration options in a parallel query.  By chaining these extension methods together, we generate a query that will always run in parallel, and will always complete before making the results available in our IEnumerable<T>.

    Read the article

  • Parallelism in .NET – Part 12, More on Task Decomposition

    - by Reed
    Many tasks can be decomposed using a Data Decomposition approach, but often, this is not appropriate.  Frequently, decomposing the problem into distinctive tasks that must be performed is a more natural abstraction. However, as I mentioned in Part 1, Task Decomposition tends to be a bit more difficult than data decomposition, and can require a bit more effort.  Before we being parallelizing our algorithm based on the tasks being performed, we need to decompose our problem, and take special care of certain considerations such as ordering and grouping of tasks. Up to this point in this series, I’ve focused on parallelization techniques which are most appropriate when a problem space can be decomposed by data.  Using PLINQ and the Parallel class, I’ve shown how problem spaces where there is a collection of data, and each element needs to be processed, can potentially be parallelized. However, there are many other routines where this is not appropriate.  Often, instead of working on a collection of data, there is a single piece of data which must be processed using an algorithm or series of algorithms.  Here, there is no collection of data, but there may still be opportunities for parallelism. As I mentioned before, in cases like this, the approach is to look at your overall routine, and decompose your problem space based on tasks.  The idea here is to look for discrete “tasks,” individual pieces of work which can be conceptually thought of as a single operation. Let’s revisit the example I used in Part 1, an application startup path.  Say we want our program, at startup, to do a bunch of individual actions, or “tasks”.  The following is our list of duties we must perform right at startup: Display a splash screen Request a license from our license manager Check for an update to the software from our web server If an update is available, download it Setup our menu structure based on our current license Open and display our main, welcome Window Hide the splash screen The first step in Task Decomposition is breaking up the problem space into discrete tasks. This, naturally, can be abstracted as seven discrete tasks.  In the serial version of our program, if we were to diagram this, the general process would appear as: These tasks, obviously, provide some opportunities for parallelism.  Before we can parallelize this routine, we need to analyze these tasks, and find any dependencies between tasks.  In this case, our dependencies include: The splash screen must be displayed first, and as quickly as possible. We can’t download an update before we see whether one exists. Our menu structure depends on our license, so we must check for the license before setting up the menus. Since our welcome screen will notify the user of an update, we can’t show it until we’ve downloaded the update. Since our welcome screen includes menus that are customized based off the licensing, we can’t display it until we’ve received a license. We can’t hide the splash until our welcome screen is displayed. By listing our dependencies, we start to see the natural ordering that must occur for the tasks to be processed correctly. The second step in Task Decomposition is determining the dependencies between tasks, and ordering tasks based on their dependencies. Looking at these tasks, and looking at all the dependencies, we quickly see that even a simple decomposition such as this one can get quite complicated.  In order to simplify the problem of defining the dependencies, it’s often a useful practice to group our tasks into larger, discrete tasks.  The goal when grouping tasks is that you want to make each task “group” have as few dependencies as possible to other tasks or groups, and then work out the dependencies within that group.  Typically, this works best when any external dependency is based on the “last” task within the group when it’s ordered, although that is not a firm requirement.  This process is often called Grouping Tasks.  In our case, we can easily group together tasks, effectively turning this into four discrete task groups: 1. Show our splash screen – This needs to be left as its own task.  First, multiple things depend on this task, mainly because we want this to start before any other action, and start as quickly as possible. 2. Check for Update and Download the Update if it Exists - These two tasks logically group together.  We know we only download an update if the update exists, so that naturally follows.  This task has one dependency as an input, and other tasks only rely on the final task within this group. 3. Request a License, and then Setup the Menus – Here, we can group these two tasks together.  Although we mentioned that our welcome screen depends on the license returned, it also depends on setting up the menu, which is the final task here.  Setting up our menus cannot happen until after our license is requested.  By grouping these together, we further reduce our problem space. 4. Display welcome and hide splash - Finally, we can display our welcome window and hide our splash screen.  This task group depends on all three previous task groups – it cannot happen until all three of the previous groups have completed. By grouping the tasks together, we reduce our problem space, and can naturally see a pattern for how this process can be parallelized.  The diagram below shows one approach: The orange boxes show each task group, with each task represented within.  We can, now, effectively take these tasks, and run a large portion of this process in parallel, including the portions which may be the most time consuming.  We’ve now created two parallel paths which our process execution can follow, hopefully speeding up the application startup time dramatically. The main point to remember here is that, when decomposing your problem space by tasks, you need to: Define each discrete action as an individual Task Discover dependencies between your tasks Group tasks based on their dependencies Order the tasks and groups of tasks

    Read the article

  • Parallelism in .NET – Part 4, Imperative Data Parallelism: Aggregation

    - by Reed
    In the article on simple data parallelism, I described how to perform an operation on an entire collection of elements in parallel.  Often, this is not adequate, as the parallel operation is going to be performing some form of aggregation. Simple examples of this might include taking the sum of the results of processing a function on each element in the collection, or finding the minimum of the collection given some criteria.  This can be done using the techniques described in simple data parallelism, however, special care needs to be taken into account to synchronize the shared data appropriately.  The Task Parallel Library has tools to assist in this synchronization. The main issue with aggregation when parallelizing a routine is that you need to handle synchronization of data.  Since multiple threads will need to write to a shared portion of data.  Suppose, for example, that we wanted to parallelize a simple loop that looked for the minimum value within a dataset: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This seems like a good candidate for parallelization, but there is a problem here.  If we just wrap this into a call to Parallel.ForEach, we’ll introduce a critical race condition, and get the wrong answer.  Let’s look at what happens here: // Buggy code! Do not use! double min = double.MaxValue; Parallel.ForEach(collection, item => { double value = item.PerformComputation(); min = System.Math.Min(min, value); }); This code has a fatal flaw: min will be checked, then set, by multiple threads simultaneously.  Two threads may perform the check at the same time, and set the wrong value for min.  Say we get a value of 1 in thread 1, and a value of 2 in thread 2, and these two elements are the first two to run.  If both hit the min check line at the same time, both will determine that min should change, to 1 and 2 respectively.  If element 1 happens to set the variable first, then element 2 sets the min variable, we’ll detect a min value of 2 instead of 1.  This can lead to wrong answers. Unfortunately, fixing this, with the Parallel.ForEach call we’re using, would require adding locking.  We would need to rewrite this like: // Safe, but slow double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach(collection, item => { double value = item.PerformComputation(); lock(syncObject) min = System.Math.Min(min, value); }); This will potentially add a huge amount of overhead to our calculation.  Since we can potentially block while waiting on the lock for every single iteration, we will most likely slow this down to where it is actually quite a bit slower than our serial implementation.  The problem is the lock statement – any time you use lock(object), you’re almost assuring reduced performance in a parallel situation.  This leads to two observations I’ll make: When parallelizing a routine, try to avoid locks. That being said: Always add any and all required synchronization to avoid race conditions. These two observations tend to be opposing forces – we often need to synchronize our algorithms, but we also want to avoid the synchronization when possible.  Looking at our routine, there is no way to directly avoid this lock, since each element is potentially being run on a separate thread, and this lock is necessary in order for our routine to function correctly every time. However, this isn’t the only way to design this routine to implement this algorithm.  Realize that, although our collection may have thousands or even millions of elements, we have a limited number of Processing Elements (PE).  Processing Element is the standard term for a hardware element which can process and execute instructions.  This typically is a core in your processor, but many modern systems have multiple hardware execution threads per core.  The Task Parallel Library will not execute the work for each item in the collection as a separate work item. Instead, when Parallel.ForEach executes, it will partition the collection into larger “chunks” which get processed on different threads via the ThreadPool.  This helps reduce the threading overhead, and help the overall speed.  In general, the Parallel class will only use one thread per PE in the system. Given the fact that there are typically fewer threads than work items, we can rethink our algorithm design.  We can parallelize our algorithm more effectively by approaching it differently.  Because the basic aggregation we are doing here (Min) is communitive, we do not need to perform this in a given order.  We knew this to be true already – otherwise, we wouldn’t have been able to parallelize this routine in the first place.  With this in mind, we can treat each thread’s work independently, allowing each thread to serially process many elements with no locking, then, after all the threads are complete, “merge” together the results. This can be accomplished via a different set of overloads in the Parallel class: Parallel.ForEach<TSource,TLocal>.  The idea behind these overloads is to allow each thread to begin by initializing some local state (TLocal).  The thread will then process an entire set of items in the source collection, providing that state to the delegate which processes an individual item.  Finally, at the end, a separate delegate is run which allows you to handle merging that local state into your final results. To rewriting our routine using Parallel.ForEach<TSource,TLocal>, we need to provide three delegates instead of one.  The most basic version of this function is declared as: public static ParallelLoopResult ForEach<TSource, TLocal>( IEnumerable<TSource> source, Func<TLocal> localInit, Func<TSource, ParallelLoopState, TLocal, TLocal> body, Action<TLocal> localFinally ) The first delegate (the localInit argument) is defined as Func<TLocal>.  This delegate initializes our local state.  It should return some object we can use to track the results of a single thread’s operations. The second delegate (the body argument) is where our main processing occurs, although now, instead of being an Action<T>, we actually provide a Func<TSource, ParallelLoopState, TLocal, TLocal> delegate.  This delegate will receive three arguments: our original element from the collection (TSource), a ParallelLoopState which we can use for early termination, and the instance of our local state we created (TLocal).  It should do whatever processing you wish to occur per element, then return the value of the local state after processing is completed. The third delegate (the localFinally argument) is defined as Action<TLocal>.  This delegate is passed our local state after it’s been processed by all of the elements this thread will handle.  This is where you can merge your final results together.  This may require synchronization, but now, instead of synchronizing once per element (potentially millions of times), you’ll only have to synchronize once per thread, which is an ideal situation. Now that I’ve explained how this works, lets look at the code: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Although this is a bit more complicated than the previous version, it is now both thread-safe, and has minimal locking.  This same approach can be used by Parallel.For, although now, it’s Parallel.For<TLocal>.  When working with Parallel.For<TLocal>, you use the same triplet of delegates, with the same purpose and results. Also, many times, you can completely avoid locking by using a method of the Interlocked class to perform the final aggregation in an atomic operation.  The MSDN example demonstrating this same technique using Parallel.For uses the Interlocked class instead of a lock, since they are doing a sum operation on a long variable, which is possible via Interlocked.Add. By taking advantage of local state, we can use the Parallel class methods to parallelize algorithms such as aggregation, which, at first, may seem like poor candidates for parallelization.  Doing so requires careful consideration, and often requires a slight redesign of the algorithm, but the performance gains can be significant if handled in a way to avoid excessive synchronization.

    Read the article

  • Should a c# dev switch to VB.net when the team language base is mixed?

    - by jjr2527
    I recently joined a new development team where the language preferences are mixed on the .net platform. Dev 1: Knows VB.net, does not know c# Dev 2: Knows VB.net, does not know c# Dev 3: Knows c# and VB.net, prefers c# Dev 4: Knows c# and VB6(VB.net should be pretty easy to pick up), prefers c# It seems to me that the thought leaders in the .net space are c# devs almost universally. I also thought that some 3rd party tools didn't support VB.net but when I started looking into it I didn't find any good examples. I would prefer to get the whole team on c# but if there isn't any good reason to force the issue aside from preference then I don't think that is the right choice. Are there any reasons I should lead folks away from VB.net?

    Read the article

  • .NET Weak Event Handlers – Part II

    - by João Angelo
    On the first part of this article I showed two possible ways to create weak event handlers. One using reflection and the other using a delegate. For this performance analysis we will further differentiate between creating a delegate by providing the type of the listener at compile time (Explicit Delegate) vs creating the delegate with the type of the listener being only obtained at runtime (Implicit Delegate). As expected, the performance between reflection/delegate differ significantly. With the reflection based approach, creating a weak event handler is just storing a MethodInfo reference while with the delegate based approach there is the need to create the delegate which will be invoked later. So, at creating the weak event handler reflection clearly wins, but what about when the handler is invoked. No surprises there, performing a call through reflection every time a handler is invoked is costly. In conclusion, if you want good performance when creating handlers that only sporadically get triggered use reflection, otherwise use the delegate based approach. The explicit delegate approach always wins against the implicit delegate, but I find the syntax for the latter much more intuitive. // Implicit delegate - The listener type is inferred at runtime from the handler parameter public static EventHandler WrapInDelegateCall(EventHandler handler); public static EventHandler<TArgs> WrapInDelegateCall<TArgs>(EventHandler<TArgs> handler) where TArgs : EventArgs; // Explicite delegate - TListener is the type that defines the handler public static EventHandler WrapInDelegateCall<TListener>(EventHandler handler); public static EventHandler<TArgs> WrapInDelegateCall<TArgs, TListener>(EventHandler<TArgs> handler) where TArgs : EventArgs;

    Read the article

  • Parallelism in .NET – Part 19, TaskContinuationOptions

    - by Reed
    My introduction to Task continuations demonstrates continuations on the Task class.  In addition, I’ve shown how continuations allow handling of multiple tasks in a clean, concise manner.  Continuations can also be used to handle exceptional situations using a clean, simple syntax. In addition to standard Task continuations , the Task class provides some options for filtering continuations automatically.  This is handled via the TaskContinationOptions enumeration, which provides hints to the TaskScheduler that it should only continue based on the operation of the antecedent task. This is especially useful when dealing with exceptions.  For example, we can extend the sample from our earlier continuation discussion to include support for handling exceptions thrown by the Factorize method: // Get a copy of the UI-thread task scheduler up front to use later var uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // Start our task var factorize = Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }); // When we succeed, report the results to the UI factorize.ContinueWith(task => textBox1.Text = string.Format("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result), CancellationToken.None, TaskContinuationOptions.NotOnFaulted, uiScheduler); // When we have an exception, report it factorize.ContinueWith(task => textBox1.Text = string.Format("Error: {0}", task.Exception.Message), CancellationToken.None, TaskContinuationOptions.OnlyOnFaulted, uiScheduler); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The above code works by using a combination of features.  First, we schedule our task, the same way as in the previous example.  However, in this case, we use a different overload of Task.ContinueWith which allows us to specify both a specific TaskScheduler (in order to have your continuation run on the UI’s synchronization context) as well as a TaskContinuationOption.  In the first continuation, we tell the continuation that we only want it to run when there was not an exception by specifying TaskContinuationOptions.NotOnFaulted.  When our factorize task completes successfully, this continuation will automatically run on the UI thread, and provide the appropriate feedback. However, if the factorize task has an exception – for example, if the Factorize method throws an exception due to an improper input value, the second continuation will run.  This occurs due to the specification of TaskContinuationOptions.OnlyOnFaulted in the options.  In this case, we’ll report the error received to the user. We can use TaskContinuationOptions to filter our continuations by whether or not an exception occurred and whether or not a task was cancelled.  This allows us to handle many situations, and is especially useful when trying to maintain a valid application state without ever blocking the user interface.  The same concepts can be extended even further, and allow you to chain together many tasks based on the success of the previous ones.  Continuations can even be used to create a state machine with full error handling, all without blocking the user interface thread.

    Read the article

< Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >