Search Results

Search found 16410 results on 657 pages for 'game component'.

Page 350/657 | < Previous Page | 346 347 348 349 350 351 352 353 354 355 356 357  | Next Page >

  • How can I generate signed distance fields in real time, fast?

    - by heishe
    In a previous question, it was suggested that signed distance fields can be precomputed, loaded at runtime and then used from there. For reasons I will explain at the end of this question (for people interested), I need to create the distance fields in real time. There are some papers out there for different methods which are supposed to be viable in real-time environments, such as methods for Chamfer distance transforms and Voronoi diagram-approximation based transforms (as suggested in this presentation by the Pixeljunk Shooter dev guy), but I (and thus can be assumed a lot of other people) have a very hard time actually putting them to use, since they're usually long, largely bloated with math and not very algorithmic in their explanation. What algorithm would you suggest for creating the distance fields in real-time (favourably on the GPU) especially considering the resulting quality of the distance fields? Since I'm looking for an actual explanation/tutorial as opposed to a link to just another paper or slide, this question will receive a bounty once it's eligible for one :-). Here's why I need to do it in real time:

    Read the article

  • How to shift a vector based on the rotation of another vector?

    - by bpierre
    I’m learning 2D programming, so excuse my approximations, and please, don’t hesitate to correct me. I am just trying to fire a bullet from a player. I’m using HTML canvas (top left origin). Here is a representation of my problem: The black vector represent the position of the player (the grey square). The green vector represent its direction. The red disc represents the target. The red vector represents the direction of a bullet, which will move in the direction of the target (red and dotted line). The blue cross represents the point from where I really want to fire the bullet (and the blue and dotted line represents its movement). This is how I draw the player (this is the player object. Position, direction and dimensions are 2D vectors): ctx.save(); ctx.translate(this.position.x, this.position.y); ctx.rotate(this.direction.getAngle()); ctx.drawImage(this.image, Math.round(-this.dimensions.x/2), Math.round(-this.dimensions.y/2), this.dimensions.x, this.dimensions.y); ctx.restore(); This is how I instanciate a new bullet: var bulletPosition = playerPosition.clone(); // Copy of the player position var bulletDirection = Vector2D.substract(targetPosition, playerPosition).normalize(); // Difference between the player and the target, normalized new Bullet(bulletPosition, bulletDirection); This is how I move the bullet (this is the bullet object): var speed = 5; this.position.add(Vector2D.multiply(this.direction, speed)); And this is how I draw the bullet (this is the bullet object): ctx.save(); ctx.translate(this.position.x, this.position.y); ctx.rotate(this.direction.getAngle()); ctx.fillRect(0, 0, 3, 3); ctx.restore(); How can I change the direction and position vectors of the bullet to ensure it is on the blue dotted line? I think I should represent the shift with a vector, but I can’t see how to use it.

    Read the article

  • Coordinate spaces and transformation matrices

    - by Belgin
    I'm trying to get an object from object space, into projected space using these intermediate matrices: The first matrix (I) is the one that transforms from object space into inertial space, but since my object is not rotated or translated in any way inside the object space, this matrix is the 4x4 identity matrix. The second matrix (W) is the one that transforms from inertial space into world space, which is just a scale transform matrix of factor a = 14.1 on all coordinates, since the inertial space origin coincides with the world space origin. /a 0 0 0\ W = |0 a 0 0| |0 0 a 0| \0 0 0 1/ The third matrix (C) is the one that transforms from world space, into camera space. This matrix is a translation matrix with a translation of (0, 0, 10), because I want the camera to be located behind the object, so the object must be positioned 10 units into the z axis. /1 0 0 0\ C = |0 1 0 0| |0 0 1 10| \0 0 0 1/ And finally, the fourth matrix is the projection matrix (P). Bearing in mind that the eye is at the origin of the world space and the projection plane is defined by z = 1, the projection matrix is: /1 0 0 0\ P = |0 1 0 0| |0 0 1 0| \0 0 1/d 0/ where d is the distance from the eye to the projection plane, so d = 1. I'm multiplying them like this: (((P x C) x W) x I) x V, where V is the vertex' coordinates in column vector form: /x\ V = |y| |z| \1/ After I get the result, I divide x and y coordinates by w to get the actual screen coordinates. Apparenly, I'm doing something wrong or missing something completely here, because it's not rendering properly. Here's a picture of what is supposed to be the bottom side of the Stanford Dragon: Also, I should add that this is a software renderer so no DirectX or OpenGL stuff here.

    Read the article

  • Deferred rendering order?

    - by Nick Wiggill
    There are some effects for which I must do multi-pass rendering. I've got the basics set up (FBO rendering etc.), but I'm trying to get my head around the most suitable setup. Here's what I'm thinking... The framebuffer objects: FBO 1 has a color attachment and a depth attachment. FBO 2 has a color attachment. The render passes: Render g-buffer: normals and depth (used by outline & DoF blur shaders); output to FBO no. 1. Render solid geometry, bold outlines (as in toon shader), and fog; output to FBO no. 2. (can all render via a single fragment shader -- I think.) (optional) DoF blur the scene; output to the default frame buffer OR ELSE render FBO2 directly to default frame buffer. (optional) Mesh wireframes; composite over what's already in the default framebuffer. Does this order seem viable? Any obvious mistakes?

    Read the article

  • how to solve ArrayList outOfBoundsExeption?

    - by iQue
    Im getting: 09-02 17:15:39.140: E/AndroidRuntime(533): java.lang.IndexOutOfBoundsException: Invalid index 1, size is 1 09-02 17:15:39.140: E/AndroidRuntime(533): at java.util.ArrayList.throwIndexOutOfBoundsException(ArrayList.java:251) when Im killing enemies using this method: private void checkCollision() { Rect h1 = happy.getBounds(); for (int i = 0; i < enemies.size(); i++) { for (int j = 0; j < bullets.size(); j++) { Rect b1 = bullets.get(j).getBounds(); Rect e1 = enemies.get(i).getBounds(); if (b1.intersect(e1)) { enemies.get(i).damageHP(5); bullets.remove(j); Log.d("TAG", "HERE: LOLTHEYTOUCHED"); } if (h1.intersect(e1)){ happy.damageHP(5); } if(enemies.get(i).getHP() <= 0){ enemies.remove(i); } if(happy.getHP() <= 0){ //end-screen !!!!!!! } } } } using this ArrayList: private ArrayList<Enemy> enemies = new ArrayList<Enemy>(); and adding to array like this: public void createEnemies() { Bitmap bmp = BitmapFactory.decodeResource(getResources(), R.drawable.female); if (enemyCounter < 24) { enemies.add(new Enemy(bmp, this, controls)); } enemyCounter++; } I dont really understand what the problem is, Ive been looking around for a while but cant really find anything that helps me. If you know or if you can link me someplace where they have a solution for a similar problem Ill be a very happy camper! Thanks for ur time.

    Read the article

  • Finding vectors with two points

    - by Christian Careaga
    We're are trying to get the direction of a projectile but we can't find out how For example: [1,1] will go SE [1,-1] will go NE [-1,-1] will go NW and [-1,1] will go SW we need an equation of some sort that will take the player pos and the mouse pos and find which direction the projectile needs to go. Here is where we are plugging in the vectors: def update(self): self.rect.x += self.vector[0] self.rect.y += self.vector[1] Then we are blitting the projectile at the rects coords.

    Read the article

  • How to render a retro-like pixel graphics from 3d models?

    - by momijigari
    I was wondering if there's a possibility to render a retro-pixel-like graphics from 3d model in real time? I'm talking about the Starfarer-like graphics. I know it's hand drawn, and it's 2d. But if I need a 3d objects with the same aesthetics? I'm currently working with Flash. But I don't need any ready-solutions, I just want to understand the principle from any other platform if there is one. So if anybody met anything like this I would appreciate your help. (If it's not possible to do in real time, I could at least pre-render a sequence of sprites. It would be much better than creating hundreds of hand-drawn ones)

    Read the article

  • How do I do random isometric paths?

    - by user406470
    I'm working on an Isometric city generator, and I am looking for a little push in the right direction. I'm looking to randomly generate roads on a isometric plane. I have never done pathfinding before, and I've googled it and didn't find any articles relating to what I am trying to do. Basically, my program generates a random isometric city and, I am hoping to add roads to that. Any help is appreciated!

    Read the article

  • A* how make natural look path?

    - by user11177
    I've been reading this: http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html But there are some things I don't understand, for example the article says to use something like this for pathfinding with diagonal movement: function heuristic(node) = dx = abs(node.x - goal.x) dy = abs(node.y - goal.y) return D * max(dx, dy) I don't know how do set D to get a natural looking path like in the article, I set D to the lowest cost between adjacent squares like it said, and I don't know what they meant by the stuff about the heuristic should be 4*D, that does not seem to change any thing. This is my heuristic function and move function: def heuristic(self, node, goal): D = 10 dx = abs(node.x - goal.x) dy = abs(node.y - goal.y) return D * max(dx, dy) def move_cost(self, current, node): cross = abs(current.x - node.x) == 1 and abs(current.y - node.y) == 1 return 19 if cross else 10 Result: The smooth sailing path we want to happen: The rest of my code: http://pastebin.com/TL2cEkeX

    Read the article

  • How to generate portal zones?

    - by Meow
    I'm developing a portal-based scene manager. Basically all it does is to check the portals against the camera frustum, and render their associated portal zones accordingly. Is there any way my editor can generate portal zones automatically with the user having to set the portals themselves only? For example, the Max Payne 1/2 engine ("Max-FX") only required to set the portal quads, unlike the C4 engine where you also have to explicitly set the portal zones.

    Read the article

  • How to pass one float as four unsigned chars to shader by glVertexPointAttrib?

    - by Kog
    For each vertex I use two floats as position and four unsigned bytes as color. I want to store all of them in one table, so I tried casting those four unsigned bytes to one float, but I am unable to do that correctly... All in all, my tests came to one point: GLfloat vertices[] = { 1.0f, 0.5f, 0, 1.0f, 0, 0 }; glEnableVertexAttribArray(0); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), vertices); // VER1 - draws red triangle // unsigned char colors[] = { 0xff, 0, 0, 0xff, 0xff, 0, 0, 0xff, 0xff, 0, 0, // 0xff }; // glEnableVertexAttribArray(1); // glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, GL_TRUE, 4 * sizeof(GLubyte), // colors); // VER2 - draws greenish triangle (not "pure" green) // float f = 255 << 24 | 255; //Hex:0xff0000ff // float colors2[] = { f, f, f }; // glEnableVertexAttribArray(1); // glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, GL_TRUE, 4 * sizeof(GLubyte), // colors2); // VER3 - draws red triangle int i = 255 << 24 | 255; //Hex:0xff0000ff int colors3[] = { i, i, i }; glEnableVertexAttribArray(1); glVertexAttribPointer(1, 4, GL_UNSIGNED_BYTE, GL_TRUE, 4 * sizeof(GLubyte), colors3); glDrawArrays(GL_TRIANGLES, 0, 3); Above code is used to draw one simple red triangle. My question is - why do versions 1 and 3 work correctly, while version 2 draws some greenish triangle? Hex values are one I read by marking variable during debug. They are equal for version 2 and 3 - so what causes the difference?

    Read the article

  • What forms of non-interactive RPG battle systems exist?

    - by Landstander
    I am interested in systems that allow players to develop a battle plan or setup strategy for the party or characters prior to entering battle. During the battle the player either cannot input commands or can choose not to. Rule Based In this system the player can setup a list of rules in the form of [Condition - Action] that are then ordered by priority. Gambits in Final Fantasy XII Tactics in Dragon Age Origin & II

    Read the article

  • Creating a 2D Line Branch (Part 2)

    - by Danran
    Yesterday i asked this question on how to create a 2D line branch; Creating a 2D Line Branch And thanks to the answered provided, i now have this nice looking main branch; *coloured to show the different segments in the final item. Now is the time now to branch things off as discussed in the article; http://drilian.com/2009/02/25/lightning-bolts/ Again however i am confused as to the meaning of the following pseudo code; splitEnd = Rotate(direction, randomSmallAngle)*lengthScale + midPoint; I'm unsure how to actually rotate this correctly. In all honesty i'm abit unsure what to-do completely at this part, "splitEnd" will be a Vector3, so whatever happens in the rotate function must then return some form of directional rotation which is then * by a scale to create length and then added to the midPoint. I'm not sure. If someone could explain what i'm meant to be doing in this part that would be really grateful.

    Read the article

  • HLSL 5 interpolation issues

    - by metredigm
    I'm having issues with the depth components of my shadowmapping shaders. The shadow map rendering shader is fine, and works very well. The world rendering shader is more problematic. The only value which seems to definitely be off is the pixel's position from the light's perspective, which I pass in parallel to the position. struct Pixel { float4 position : SV_Position; float4 light_pos : TEXCOORD2; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; The reason that I used the semantic 'TEXCOORD2' on the light's pixel position is because I believe that the problem lies with Direct3D's interpolation of values between shaders, and I started trying random semantics and also forcing linear and noperspective interpolations. In the world rendering shader, I observed in the pixel shader that the Z value of light_pos was always extremely close to, but less than the W value. This resulted in a depth result of 0.999 or similar for every pixel. Here is the vertex shader code : struct Vertex { float3 position : POSITION; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; struct Pixel { float4 position : SV_Position; float4 light_pos : TEXCOORD2; float3 normal : NORMAL; float2 texcoord : TEXCOORD; }; cbuffer Camera : register (b0) { matrix world; matrix view; matrix projection; }; cbuffer Light : register (b1) { matrix light_world; matrix light_view; matrix light_projection; }; Pixel RenderVertexShader(Vertex input) { Pixel output; output.position = mul(float4(input.position, 1.0f), world); output.position = mul(output.position, view); output.position = mul(output.position, projection); output.world_pos = mul(float4(input.position, 1.0f), world); output.world_pos = mul(output.world_pos, light_view); output.world_pos = mul(output.world_pos, light_projection); output.texcoord = input.texcoord; output.normal = input.normal; return output; } I suspect interpolation to be the culprit, as I used the camera matrices in place of the light matrices in the vertex shader, and had the same problem. The problem is evident as both of the same vectors were passed to a pixel from the VS, but only one of them showed a change in the PS. I have already thoroughly debugged the matrices' validity, the cbuffers' validity, and the multiplicative validity. I'm very stumped and have been trying to solve this for quite some time. Misc info : The light projection matrix and the camera projection matrix are the same, generated from D3DXMatrixPerspectiveFovLH(), with an FOV of 60.0f * 3.141f / 180.0f, a near clipping plane of 0.1f, and a far clipping plane of 1000.0f. Any ideas on what is happening? (This is a repost from my question on Stack Overflow)

    Read the article

  • why would you use textures that are not a power of 2?

    - by Will
    In the early days of OpenGL and DirectX, it was required that textures were powers of two. This meant that interpolation of float values could be done very quickly using shifting and such. Since OpenGL 2.0, and preceding that via an extension, non-power-of-two texture dimensions has been supported. Are there performance advantages to sticking to power-of-two textures on modern integrated and discrete GPUs? What advantages do non-power-of-two textures have, if any? Are there large populations of desktop users who don't have cards that support non-power-of-two textures?

    Read the article

  • OpenGL + Allegro. Moving from software drawing X Y to openGL is confusing

    - by Aaron
    Having a fair bit of trouble. I'm used to Allegro and drawing sprites on a bitmap buffer at X Y coords. Now I've started a test project with OpenGL and its weird. Basically, as far as I know, theirs many ways to draw stuff in OpenGL. At the moment, I think I'm creating a Quad? Whatever that is, and I think Ive given it a texture of a bitmap and them im drawing that: GLuint gl_image; bitmap = load_bitmap("cat.bmp", NULL); gl_image = allegro_gl_make_texture_ex(AGL_TEXTURE_MASKED, bitmap, GL_RGBA); glBindTexture(GL_TEXTURE_2D, gl_image); glBegin(GL_QUADS); glColor4ub(255, 255, 255, 255); glTexCoord2f(0, 0); glVertex3f(-0.5, 0.5, 0); glTexCoord2f(1, 0); glVertex3f(0.5, 0.5, 0); glTexCoord2f(1, 1); glVertex3f(0.5, -0.5, 0); glTexCoord2f(0, 1); glVertex3f(-0.5, -0.5, 0); glEnd(); So yeah. So I got a few questions: Is this the best way of drawing a sprite? Is it suitable? The big question: Can anyone help / Does anyone know any tutorials on this weird coordinate thing? If it even is that. It's vastly different from XY, but I want to learn it. I was thinking maybe I could learn how this weird positioning stuff works, and then write a function to try and translate it to X and Y coords. Thats about it. I'm still trying to figure it all out on my own but any contributions you guys can make would be greatly appreciated =D Thanks!

    Read the article

  • Strange Flash AS3 xml Socket behavior

    - by Rnd_d
    I have a problem which I can't understand. To understand it I wrote a socket client on AS3 and a server on python/twisted, you can see the code of both applications below. Let's launch two clients at the same time, arrange them so that you can see both windows and press connection button in both windows. Then press and hold any button. What I'm expecting: Client with pressed button sends a message "some data" to the server, then the server sends this message to all the clients(including the original sender) . Then each client moves right the button 'connectButton' and prints a message to the log with time in the following format: "min:secs:milliseconds". What is going wrong: The motion is smooth in the client that sends the message, but in all other clients the motion is jerky. This happens because messages to those clients arrive later than to the original sending client. And if we have three clients (let's name them A,B,C) and we send a message from A, the sending time log of B and C will be the same. Why other clients recieve this messages later than the original sender? By the way, on ubuntu 10.04/chrome all the motion is smooth. Two clients are launched in separated chromes. windows screenshot Can't post linux screenshot, need more than 10 reputation to post more hyperlinks. Listing of log, four clients simultaneously: [16:29:33.280858] 62.140.224.1 >> some data [16:29:33.280912] 87.249.9.98 << some data [16:29:33.280970] 87.249.9.98 << some data [16:29:33.281025] 87.249.9.98 << some data [16:29:33.281079] 62.140.224.1 << some data [16:29:33.323267] 62.140.224.1 >> some data [16:29:33.323326] 87.249.9.98 << some data [16:29:33.323386] 87.249.9.98 << some data [16:29:33.323440] 87.249.9.98 << some data [16:29:33.323493] 62.140.224.1 << some data [16:29:34.123435] 62.140.224.1 >> some data [16:29:34.123525] 87.249.9.98 << some data [16:29:34.123593] 87.249.9.98 << some data [16:29:34.123648] 87.249.9.98 << some data [16:29:34.123702] 62.140.224.1 << some data AS3 client code package { import adobe.utils.CustomActions; import flash.display.Sprite; import flash.events.DataEvent; import flash.events.Event; import flash.events.IOErrorEvent; import flash.events.KeyboardEvent; import flash.events.MouseEvent; import flash.events.SecurityErrorEvent; import flash.net.XMLSocket; import flash.system.Security; import flash.text.TextField; public class Main extends Sprite { private var socket :XMLSocket; private var textField :TextField = new TextField; private var connectButton :TextField = new TextField; public function Main():void { if (stage) init(); else addEventListener(Event.ADDED_TO_STAGE, init); } private function init(event:Event = null):void { socket = new XMLSocket(); socket.addEventListener(Event.CONNECT, connectHandler); socket.addEventListener(DataEvent.DATA, dataHandler); stage.addEventListener(KeyboardEvent.KEY_DOWN, keyDownHandler); addChild(textField); textField.y = 50; textField.width = 780; textField.height = 500; textField.border = true; connectButton.selectable = false; connectButton.border = true; connectButton.addEventListener(MouseEvent.MOUSE_DOWN, connectMouseDownHandler); connectButton.width = 105; connectButton.height = 20; connectButton.text = "click here to connect"; addChild(connectButton); } private function connectHandler(event:Event):void { textField.appendText("Connect\n"); textField.appendText("Press and hold any key\n"); } private function dataHandler(event:DataEvent):void { var now:Date = new Date(); textField.appendText(event.data + " time = " + now.getMinutes() + ":" + now.getSeconds() + ":" + now.getMilliseconds() + "\n"); connectButton.x += 2; } private function keyDownHandler(event:KeyboardEvent):void { socket.send("some data"); } private function connectMouseDownHandler(event:MouseEvent):void { var connectAddress:String = "ep1c.org"; var connectPort:Number = 13250; Security.loadPolicyFile("xmlsocket://" + connectAddress + ":" + String(connectPort)); socket.connect(connectAddress, connectPort); } } } Python server code from twisted.internet import reactor from twisted.internet.protocol import ServerFactory from twisted.protocols.basic import LineOnlyReceiver import datetime class EchoProtocol(LineOnlyReceiver): ##### name = "" id = 0 delimiter = chr(0) ##### def getName(self): return self.transport.getPeer().host def connectionMade(self): self.id = self.factory.getNextId() print "New connection from %s - id:%s" % (self.getName(), self.id) self.factory.clientProtocols[self.id] = self def connectionLost(self, reason): print "Lost connection from "+ self.getName() del self.factory.clientProtocols[self.id] self.factory.sendMessageToAllClients(self.getName() + " has disconnected.") def lineReceived(self, line): print "[%s] %s >> %s" % (datetime.datetime.now().time(), self, line) if line=="<policy-file-request/>": data = """<?xml version="1.0"?> <!DOCTYPE cross-domain-policy SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd"> <!-- Policy file for xmlsocket://ep1c.org --> <cross-domain-policy> <allow-access-from domain="*" to-ports="%s" /> </cross-domain-policy>""" % PORT self.send(data) else: self.factory.sendMessageToAllClients( line ) def send(self, line): print "[%s] %s << %s" % (datetime.datetime.now().time(), self, line) if line: self.transport.write( str(line) + chr(0)) else: print "Nothing to send" def __str__(self): return self.getName() class ChatProtocolFactory(ServerFactory): protocol = EchoProtocol def __init__(self): self.clientProtocols = {} self.nextId = 0 def getNextId(self): id = self.nextId self.nextId += 1 return id def sendMessageToAllClients(self, msg): for client in self.clientProtocols: self.clientProtocols[client].send(msg) def sendMessageToClient(self, id, msg): self.clientProtocols[id].send(msg) PORT = 13250 print "Starting Server" factory = ChatProtocolFactory() reactor.listenTCP(PORT, factory) reactor.run()

    Read the article

  • Coordinate and positioning problem on iOS with cocos2d-x

    - by Vexille
    I'm using cocos2d-x alongside with Marmalade and running some tests and tutorials before starting an actual project with them. So far things are working reasonably well on the windows simulator, Android and even on Blackberry's Playbook, but on iOS devices (iPhone and iPad) the positioning seems to be off. To make things clearer, I put together a scene that just draws an image in the middle of the screen. It worked as expected on everything else, but this is the result I got on an iPhone: To get the coordinates for the center of the screen I'm using the VisibleRect class from the TestCpp sample. It just uses sharedOpenGLView to get the visible size and visible origin, and calculate the center from that. CCSprite* test = CCSprite::create("Ball.png", CCRectMake(0, 0, 80, 80) ); test->setPosition( ccp(VisibleRect::center().x, VisibleRect::center().y) ); this->addChild(test); Also I have a noBorder policy set on AppDelegate: CCEGLView::sharedOpenGLView()->setDesignResolutionSize(designSize.width, designSize.height, kResolutionNoBorder); One funny thing is that I tried to deploy the TestCpp sample project to some iOS devices and it worked reasonably well on the iPhone, but on the iPad the application was only being drawn on a small portion of the screen - just like what happened on the iPhone when I tried using the ShowAll policy.

    Read the article

  • Is there a library that handles hexagon tiled 2D maps?

    - by Pete Mancini
    It would represent a map that is semi-square of arbitrary size. It would have a simple system for representation of the map coordinates such as 0101 (first column, 1st hex). I'd want the map to be able to tell me the distance between two points, and what other hexes lay between those two points as a list or array. I don't care as much about the language but c# or python would be ideal. Does one exist?

    Read the article

  • Ease Rotate RigidBody2D toward arbitrary angle

    - by Plastic Sturgeon
    I'm trying to make a rigidbody2D circle return to an orientation after a collision. But there is a weird behavior I do not expect - it always orients to the same direction. This is what I call in FixedUpdate(): rotationdifference = -halfPI + rigidbody2D.rotation; rigidbody2D.AddTorque (rotationdifference * ease); I would expect this would rotate 90 degrees (1/2 Pi Radians) off of the neutral axis. But it does not. In fact it performs exactly the same as: rotationdifference = rigidbody2D.rotation; rigidbody2D.AddTorque (rotationdifference * ease); What is going on? How would I be able to set an angle I want it to ease towards, and then have it ease towards it when its not colliding with some other force?

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • How does this snippet of code create a ray direction vector?

    - by Isaac Waller
    In the Minecraft source code, this code is used to create a direction vector for a ray from pitch and yaw:' float f1 = MathHelper.cos(-rotationYaw * 0.01745329F - 3.141593F); float f3 = MathHelper.sin(-rotationYaw * 0.01745329F - 3.141593F); float f5 = -MathHelper.cos(-rotationPitch * 0.01745329F); float f7 = MathHelper.sin(-rotationPitch * 0.01745329F); return Vec3D.createVector(f3 * f5, f7, f1 * f5); I was wondering how it worked, and what is the constant 0.01745329F?

    Read the article

  • HUD layer not being added on my scene

    - by Shailesh_ios
    I have a CCScene which already holds my gameLayer and I am trying to add HUD layer on that.But the HUD layer is not getting added in my scene, I can say that because I have set up a CCLabel on HUD layer and when I run my project, I cannot see that label. Here's what I am doing : In my gameLayer: +(id) scene { CCScene *scene = [CCScene node]; GameScreen *layer = [GameScreen node]; [scene addChild: layer]; HUDclass * otherLayer = [HUDclass node]; [scene addChild:otherLayer]; layer.HC = otherLayer;// HC is reference to my HUD layer in @Interface of gameLayer return scene; } And then in my HUD layer I have just added a CCLabelTTF in its init method like this : -(id)init { if ((self = [super init])) { CCLabelTTF * label = [CCLabelTTF labelWithString:@"IN WEAPON CLASS" fontName:@"Arial" fontSize:15]; label.position = ccp(240,160); [self addChild:label]; } return self; } But now when I run my project I dont see that label, What am I doing wrong here ..? Any Ideas.. ? Thanks in advance for your time.

    Read the article

  • Bouncing ball isssue

    - by user
    I am currently working on the 2D Bouncing ball physics that bounces the ball up and down. The physics behaviour works fine but at the end the velocity keep +3 then 0 non-stop even the ball has stopped bouncing. How should I modify the code to fix this issue? ballPos = D3DXVECTOR2( 50, 100 ); velocity = 0; accelaration = 3.0f; isBallUp = false; void GameClass::Update() { velocity += accelaration; ballPos.y += velocity; if ( ballPos.y >= 590 ) isBallUp = true; else isBallUp = false; if ( isBallUp ) { ballPos.y = 590; velocity *= -1; } // Graphics Rendering m_Graphics.BeginFrame(); ComposeFrame(); m_Graphics.EndFrame(); }

    Read the article

  • Set vertex position

    - by user1806687
    Can anyone tell me how to set the positions of model vertices? I want to be able to change the position of some of the vertices of a Model. Is there any way to make that happen? And make the changed visible at that moment. EDIT: Well, the thing is,I have a model, a cube, that is made up of four "thin" cubes(top,bottom,left side, right side), so I get this cube with "hole" in the middle. And I want to scale it on Y axis. If I do Scale(0,2,0) it will scale the whole object meaning, it will double the Y size of left and right side, but also double the size of the top and bottom cube, which I do not want. Same for X axis I want to double the size of top and bottom cubes but not the left and right one. Hope you can help

    Read the article

< Previous Page | 346 347 348 349 350 351 352 353 354 355 356 357  | Next Page >