Search Results

Search found 16410 results on 657 pages for 'game component'.

Page 353/657 | < Previous Page | 349 350 351 352 353 354 355 356 357 358 359 360  | Next Page >

  • exact point oh a rotating sphere

    - by nkint
    I have a sphere that represents the heart textured with real pictures. It's rotating about the x axis, and when user click down it has to show me the exact place he clicked on. For example if he clicked on Singapore and the system should be able to: understand that user clicked on the sphere (OK, I'll do it with unProject) understand where user clicked on the sphere (ray-sphere collision?) and take into account the rotation transform sphere-coordinate to some coordinate system good for some web-api service ask to api (OK, this is the simpler thing for me ;-) some advice?

    Read the article

  • Terrain square loading

    - by AndroidXTr3meN
    Games like Skyrim, Morrowind, and more are using quads or square to divide the terrain if im correct. The player is always at #5 1 | 2 | 3 4 | 5 | 6 7 | 8 | 9 So whenever you cross the border you unload and load the new "areas" But if the user goes just over the edge and then the second after goes back previous area a lot of unnecessary loading and unloading is done. Is there a general approach to this because I dont think games like skyrim have this issue? Cheers!

    Read the article

  • How should I determine direction from a phone's orientation & accelerometer?

    - by Manoj Kumar
    I have an Android application which moves a ball based on the orientation of the phone. I've been using the following code to extract the data - but how do I use it to determine what direction the ball should actually travel in? public void onSensorChanged(int sensor, float[] values) { // TODO Auto-generated method stub synchronized (this) { Log.d("HIIIII :- ", "onSensorChanged: " + sensor + ", x: " + values[0] + ", y: " + values[1] + ", z: " + values[2]); if (sensor == SensorManager.SENSOR_ORIENTATION) { System.out.println("Orientation X: " + values[0]); System.out.println("Orientation Y: " + values[1]); System.out.println("Orientation Z: " + values[2]); } if (sensor == SensorManager.SENSOR_ACCELEROMETER) { System.out.println("Accel X: " + values[0]); System.out.println("Accel Y: " + values[1]); System.out.println("Accel Z: " + values[2]); } } }

    Read the article

  • Scale DIV with tiles

    - by user15350
    I am trying to create a repeating background. I have a main DIV with a grid of small 16x16 DIVs. I am trying to scale the main DIV in CSS; when the small DIVs simply have a red background color everything works great, but when there is a background image in the small DIVs then borders become visible between the tiles. This image explains the problem: http://cl.ly/FpNW/o Check the HTML in these examples: With BG-COLOR: http://jsfiddle.net/pTLXw/ With BG-IMG: http://jsfiddle.net/vkpuY/ Does anyone know what is causing this problem and how to fix it? If it is not possible to fix while using DIV, is there another way to do this? Thanks you so much!

    Read the article

  • Keypress Left is called twice in Update when key is pressed only once

    - by Simran kaur
    I have a piece of code that is changing the position of player when left key is pressed. It is inside of Update() function. I know, Update is called multiple times, but since I have an ifstatement to check if left arrow is pressed, it should update only once. I have tested using print statement that once pressed, it gets called twice. Problem: Position updated twice when key is pressed only once. Below given is the structure of my code: void Update() { if (Input.GetKeyDown (KeyCode.LeftArrow)) { print ("PRESSEEEEEEEEEEEEEEEEEEDDDDDDDDDDDDDD"); } } I looked up on web and what was suggested id this: if (Event.current.type == EventType.KeyDown && Event.current.keyCode == KeyCode.LeftArrow) { print("pressed"); } But, It gives me an error that says: Object reference not set to instance of an object How can I fix this?

    Read the article

  • OpenGL directional light creating black spots

    - by AnonymousDeveloper
    I probably ought to start by saying that I suspect the problem is that one of my vectors is not in the correct "space", but I don't know for sure. I am having a strange problem with a directional light. When I move the camera away from (0.0, 0.0, 0.0) it creates tiny black spots that grow larger as the distance increases. I apologize ahead of time for the length of the code. Vertex shader: #version 410 core in vec3 vf_normal; in vec3 vf_bitangent; in vec3 vf_tangent; in vec2 vf_textureCoordinates; in vec3 vf_vertex; out vec3 tc_normal; out vec3 tc_bitangent; out vec3 tc_tangent; out vec2 tc_textureCoordinates; out vec3 tc_vertex; uniform mat3 vf_m_normal; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform float vf_te_inner; uniform float vf_te_outer; void main() { tc_normal = vf_normal; tc_bitangent = vf_bitangent; tc_tangent = vf_tangent; tc_textureCoordinates = vf_textureCoordinates; tc_vertex = vf_vertex; gl_Position = vf_m_mvp * vec4(vf_vertex, 1.0); } Tessellation Control shader: #version 410 core layout (vertices = 3) out; in vec3 tc_normal[]; in vec3 tc_bitangent[]; in vec3 tc_tangent[]; in vec2 tc_textureCoordinates[]; in vec3 tc_vertex[]; out vec3 te_normal[]; out vec3 te_bitangent[]; out vec3 te_tangent[]; out vec2 te_textureCoordinates[]; out vec3 te_vertex[]; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; #define ID gl_InvocationID float getTessLevelInner(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_inner - avgDistance), 1.0, vf_te_inner); } float getTessLevelOuter(float distance0, float distance1) { float avgDistance = (distance0 + distance1) / 2.0; return clamp((vf_te_outer - avgDistance), 1.0, vf_te_outer); } void main() { te_normal[gl_InvocationID] = tc_normal[gl_InvocationID]; te_bitangent[gl_InvocationID] = tc_bitangent[gl_InvocationID]; te_tangent[gl_InvocationID] = tc_tangent[gl_InvocationID]; te_textureCoordinates[gl_InvocationID] = tc_textureCoordinates[gl_InvocationID]; te_vertex[gl_InvocationID] = tc_vertex[gl_InvocationID]; float eyeToVertexDistance0 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[0], 1.0)).xyz); float eyeToVertexDistance1 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[1], 1.0)).xyz); float eyeToVertexDistance2 = distance(vec3(0.0), vec4(vf_m_view * vec4(tc_vertex[2], 1.0)).xyz); gl_TessLevelOuter[0] = getTessLevelOuter(eyeToVertexDistance1, eyeToVertexDistance2); gl_TessLevelOuter[1] = getTessLevelOuter(eyeToVertexDistance2, eyeToVertexDistance0); gl_TessLevelOuter[2] = getTessLevelOuter(eyeToVertexDistance0, eyeToVertexDistance1); gl_TessLevelInner[0] = getTessLevelInner(eyeToVertexDistance2, eyeToVertexDistance0); } Tessellation Evaluation shader: #version 410 core layout (triangles, equal_spacing, cw) in; in vec3 te_normal[]; in vec3 te_bitangent[]; in vec3 te_tangent[]; in vec2 te_textureCoordinates[]; in vec3 te_vertex[]; out vec3 g_normal; out vec3 g_bitangent; out vec4 g_patchDistance; out vec3 g_tangent; out vec2 g_textureCoordinates; out vec3 g_vertex; uniform float vf_te_inner; uniform float vf_te_outer; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_displace; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 interpolate2D(vec2 v0, vec2 v1, vec2 v2) { return vec2(gl_TessCoord.x) * v0 + vec2(gl_TessCoord.y) * v1 + vec2(gl_TessCoord.z) * v2; } vec3 interpolate3D(vec3 v0, vec3 v1, vec3 v2) { return vec3(gl_TessCoord.x) * v0 + vec3(gl_TessCoord.y) * v1 + vec3(gl_TessCoord.z) * v2; } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2*d*d); return d; } float getDisplacement(vec2 t0, vec2 t1, vec2 t2) { float displacement = 0.0; vec2 textureCoordinates = interpolate2D(t0, t1, t2); vec2 vector = ((t0 + t1 + t2) / 3.0); float sampleDistance = sqrt((vector.x * vector.x) + (vector.y * vector.y)); sampleDistance /= ((vf_te_inner + vf_te_outer) / 2.0); displacement += texture(vf_t_displace, textureCoordinates).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, -sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2(-sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, sampleDistance)).x; displacement += texture(vf_t_displace, textureCoordinates + vec2( sampleDistance, -sampleDistance)).x; return (displacement / 5.0); } void main() { g_normal = normalize(interpolate3D(te_normal[0], te_normal[1], te_normal[2])); g_bitangent = normalize(interpolate3D(te_bitangent[0], te_bitangent[1], te_bitangent[2])); g_patchDistance = vec4(gl_TessCoord, (1.0 - gl_TessCoord.y)); g_tangent = normalize(interpolate3D(te_tangent[0], te_tangent[1], te_tangent[2])); g_textureCoordinates = interpolate2D(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); g_vertex = interpolate3D(te_vertex[0], te_vertex[1], te_vertex[2]); float displacement = getDisplacement(te_textureCoordinates[0], te_textureCoordinates[1], te_textureCoordinates[2]); float d2 = min(min(min(g_patchDistance.x, g_patchDistance.y), g_patchDistance.z), g_patchDistance.w); d2 = amplify(d2, 50, -0.5); g_vertex += g_normal * displacement * 0.1 * d2; gl_Position = vf_m_mvp * vec4(g_vertex, 1.0); } Geometry shader: #version 410 core layout (triangles) in; layout (triangle_strip, max_vertices = 3) out; in vec3 g_normal[3]; in vec3 g_bitangent[3]; in vec4 g_patchDistance[3]; in vec3 g_tangent[3]; in vec2 g_textureCoordinates[3]; in vec3 g_vertex[3]; out vec3 f_tangent; out vec3 f_bitangent; out vec3 f_eyeDirection; out vec3 f_lightDirection; out vec3 f_normal; out vec4 f_patchDistance; out vec4 f_shadowCoordinates; out vec2 f_textureCoordinates; out vec3 f_vertex; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat3 vf_m_normal; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; void main() { int index = 0; while (index < 3) { vec3 vertexNormal_cameraspace = vf_m_normal * normalize(g_normal[index]); vec3 vertexTangent_cameraspace = vf_m_normal * normalize(f_tangent); vec3 vertexBitangent_cameraspace = vf_m_normal * normalize(f_bitangent); mat3 TBN = transpose(mat3( vertexTangent_cameraspace, vertexBitangent_cameraspace, vertexNormal_cameraspace )); vec3 eyeDirection = -(vf_m_view * vf_m_model * vec4(g_vertex[index], 1.0)).xyz; vec3 lightDirection = normalize(-(vf_m_view * vec4(vf_l_position, 1.0)).xyz); f_eyeDirection = TBN * eyeDirection; f_lightDirection = TBN * lightDirection; f_normal = normalize(g_normal[index]); f_patchDistance = g_patchDistance[index]; f_shadowCoordinates = vf_m_depthBias * vec4(g_vertex[index], 1.0); f_textureCoordinates = g_textureCoordinates[index]; f_vertex = (vf_m_model * vec4(g_vertex[index], 1.0)).xyz; gl_Position = gl_in[index].gl_Position; EmitVertex(); index ++; } EndPrimitive(); } Fragment shader: #version 410 core in vec3 f_bitangent; in vec3 f_eyeDirection; in vec3 f_lightDirection; in vec3 f_normal; in vec4 f_patchDistance; in vec4 f_shadowCoordinates; in vec3 f_tangent; in vec2 f_textureCoordinates; in vec3 f_vertex; out vec4 fragColor; uniform vec4 vf_l_color; uniform vec3 vf_l_position; uniform mat4 vf_m_depthBias; uniform mat4 vf_m_model; uniform mat4 vf_m_mvp; uniform mat4 vf_m_projection; uniform mat4 vf_m_view; uniform sampler2D vf_t_diffuse; uniform sampler2D vf_t_normal; uniform sampler2DShadow vf_t_shadow; uniform sampler2D vf_t_specular; vec2 poissonDisk[16] = vec2[]( vec2(-0.94201624, -0.39906216), vec2( 0.94558609, -0.76890725), vec2(-0.09418410, -0.92938870), vec2( 0.34495938, 0.29387760), vec2(-0.91588581, 0.45771432), vec2(-0.81544232, -0.87912464), vec2(-0.38277543, 0.27676845), vec2( 0.97484398, 0.75648379), vec2( 0.44323325, -0.97511554), vec2( 0.53742981, -0.47373420), vec2(-0.26496911, -0.41893023), vec2( 0.79197514, 0.19090188), vec2(-0.24188840, 0.99706507), vec2(-0.81409955, 0.91437590), vec2( 0.19984126, 0.78641367), vec2( 0.14383161, -0.14100790) ); float random(vec3 seed, int i) { vec4 seed4 = vec4(seed,i); float dot_product = dot(seed4, vec4(12.9898, 78.233, 45.164, 94.673)); return fract(sin(dot_product) * 43758.5453); } float amplify(float d, float scale, float offset) { d = scale * d + offset; d = clamp(d, 0, 1); d = 1 - exp2(-2.0 * d * d); return d; } void main() { vec3 lightColor = vf_l_color.xyz; float lightPower = vf_l_color.w; vec3 materialDiffuseColor = texture(vf_t_diffuse, f_textureCoordinates).xyz; vec3 materialAmbientColor = vec3(0.1, 0.1, 0.1) * materialDiffuseColor; vec3 materialSpecularColor = texture(vf_t_specular, f_textureCoordinates).xyz; vec3 n = normalize(texture(vf_t_normal, f_textureCoordinates).rgb * 2.0 - 1.0); vec3 l = normalize(f_lightDirection); float cosTheta = clamp(dot(n, l), 0.0, 1.0); vec3 E = normalize(f_eyeDirection); vec3 R = reflect(-l, n); float cosAlpha = clamp(dot(E, R), 0.0, 1.0); float visibility = 1.0; float bias = 0.005 * tan(acos(cosTheta)); bias = clamp(bias, 0.0, 0.01); for (int i = 0; i < 4; i ++) { float shading = (0.5 / 4.0); int index = i; visibility -= shading * (1.0 - texture(vf_t_shadow, vec3(f_shadowCoordinates.xy + poissonDisk[index] / 3000.0, (f_shadowCoordinates.z - bias) / f_shadowCoordinates.w))); }\n" fragColor.xyz = materialAmbientColor + visibility * materialDiffuseColor * lightColor * lightPower * cosTheta + visibility * materialSpecularColor * lightColor * lightPower * pow(cosAlpha, 5); fragColor.w = texture(vf_t_diffuse, f_textureCoordinates).w; } The following images should be enough to give you an idea of the problem. Before moving the camera: Moving the camera just a little. Moving it to the center of the scene.

    Read the article

  • Sensor based vs. AABB based collision

    - by Hillel
    I'm trying to write a simple collision system, which will probably be primarily used for 2D platformers, and I've been planning out an AABB system for a few weeks now, which will work seamlessly with my grid data structure optimization. I picked AABB because I want a simple system, but I also want it to be perfect. Now, I've been hearing a lot lately about a different method to handle collision, using sensors, which are placed in the important parts of the entity. I understand it's a good way to handle slopes, better than AABB collision. The thing is, I can't find a basic explanation of how it works, let alone a comparison of it and the AABB method. If someone could explain it to me, or point me to a good tutorial, I'd very much appreciate it, and also a comparison of the advantages and disadvantages of the two techniques would be nice.

    Read the article

  • Better way to go up/down slope based on yaw?

    - by CyanPrime
    Alright, so I got a bit of movement code and I'm thinking I'm going to need to manually input when to go up/down a slope. All I got to work with is the slope's normal, and vector, and My current and previous position, and my yaw. Is there a better way to rotate whether I go up or down the slope based on my yaw? Vector3f move = new Vector3f(0,0,0); move.x = (float)-Math.toDegrees(Math.cos(Math.toRadians(yaw))); move.z = (float)-Math.toDegrees(Math.sin(Math.toRadians(yaw))); move.normalise(); if(move.z < 0 && slopeNormal.z > 0 || move.z > 0 && slopeNormal.z < 0){ if(move.x < 0 && slopeNormal.x > 0 || move.x > 0 && slopeNormal.x < 0){ move.y += slopeVec.y; } } if(move.z > 0 && slopeNormal.z > 0 || move.z < 0 && slopeNormal.z < 0){ if(move.x > 0 && slopeNormal.x > 0 || move.x < 0 && slopeNormal.x < 0){ move.y -= slopeVec.y; } } move.scale(movementSpeed * delta); Vector3f.add(pos, move, pos);

    Read the article

  • Bouncing ball isssue

    - by user
    I am currently working on the 2D Bouncing ball physics that bounces the ball up and down. The physics behaviour works fine but at the end the velocity keep +3 then 0 non-stop even the ball has stopped bouncing. How should I modify the code to fix this issue? ballPos = D3DXVECTOR2( 50, 100 ); velocity = 0; accelaration = 3.0f; isBallUp = false; void GameClass::Update() { velocity += accelaration; ballPos.y += velocity; if ( ballPos.y >= 590 ) isBallUp = true; else isBallUp = false; if ( isBallUp ) { ballPos.y = 590; velocity *= -1; } // Graphics Rendering m_Graphics.BeginFrame(); ComposeFrame(); m_Graphics.EndFrame(); }

    Read the article

  • Selection of a mesh with arbitrary region

    - by Tigran
    Considering example: I have a mesh(es) on the OpenGL screen and would like to select a part of it (say for delete purpose). There is a clear way to do the selction via Ray Tracing, or via Selection provided by OpenGL itself. But, for my users, considering that meshes can get wired surfaces, I need to implement a selection via a Arbitrary closed region, so all triangles that appears present inside that region has to be selected. To be more clear, here is screen shot: I want all triangles inside black polygon to be selected, identified, whatever in some way. How can I achieve that ?

    Read the article

  • Engine for 2D Top-Down Physics-Based Skeletal Animation

    - by RylandAlmanza
    I just watched at the Sui Generis video, and was completely amazed. Specifically, the part where the big troll thing is beating up the player with his flail. This got me really excited, and I would like to try implementing something like this in a 2D Top-Down format. Something like this. That atloria example seems simple enough, but it's not exactly what I'm looking to make. I think atloria is using predefined animations, where as I would like to make something more physics-based like the Sui Generis engine does. So, I'm wondering what physics engines might work for something like this, and if I'd need to implement my own skeletal system, or if I could just use "joints" and such from the engine. The only experience I have in terms of physics engines is Box2D, which I've heard shouldn't be used for top-down settings, and I can think of a few reasons it wouldn't work out well. One of those reasons being gravity. In box 2D, gravity pulls towards a side of the screen (usually the bottom.) I wouldn't want my player's forearms constantly being pulled to one side. :) Also should mention that the programming language doesn't matter all that much to me. I'm currently playing with HTML5 stuff, though. :) Thanks in advance!

    Read the article

  • 2D Collision in Canvas - Balls Overlapping When Velocity is High

    - by kushsolitary
    I am doing a simple experiment in canvas using Javascript in which some balls will be thrown on the screen with some initial velocity and then they will bounce on colliding with each other or with the walls. I managed to do the collision with walls perfectly but now the problem is with the collision with other balls. I am using the following code for it: //Check collision between two bodies function collides(b1, b2) { //Find the distance between their mid-points var dx = b1.x - b2.x, dy = b1.y - b2.y, dist = Math.round(Math.sqrt(dx*dx + dy*dy)); //Check if it is a collision if(dist <= (b1.r + b2.r)) { //Calculate the angles var angle = Math.atan2(dy, dx), sin = Math.sin(angle), cos = Math.cos(angle); //Calculate the old velocity components var v1x = b1.vx * cos, v2x = b2.vx * cos, v1y = b1.vy * sin, v2y = b2.vy * sin; //Calculate the new velocity components var vel1x = ((b1.m - b2.m) / (b1.m + b2.m)) * v1x + (2 * b2.m / (b1.m + b2.m)) * v2x, vel2x = (2 * b1.m / (b1.m + b2.m)) * v1x + ((b2.m - b1.m) / (b2.m + b1.m)) * v2x, vel1y = v1y, vel2y = v2y; //Set the new velocities b1.vx = vel1x; b2.vx = vel2x; b1.vy = vel1y; b2.vy = vel2y; } } You can see the experiment here. The problem is, some balls overlap each other and stick together while some of them rebound perfectly. I don't know what is causing this issue. Here's my balls object if that matters: function Ball() { //Random Positions this.x = 50 + Math.random() * W; this.y = 50 + Math.random() * H; //Random radii this.r = 15 + Math.random() * 30; this.m = this.r; //Random velocity components this.vx = 1 + Math.random() * 4; this.vy = 1 + Math.random() * 4; //Random shade of grey color this.c = Math.round(Math.random() * 200); this.draw = function() { ctx.beginPath(); ctx.fillStyle = "rgb(" + this.c + ", " + this.c + ", " + this.c + ")"; ctx.arc(this.x, this.y, this.r, 0, Math.PI*2, false); ctx.fill(); ctx.closePath(); } }

    Read the article

  • How to make my sprite jump properly?

    - by Matthew Morgan
    I'm currently working on a 2D platformer in XNA. I have, however been having some trouble with creating a fully functional jumping algorithm. This is what I have so far: if (keystate.IsKeyDown(Keys.W)) if (onGround = true) //"onground" is true when the collision between the main sprite and the ground is detected { spritePosition.Y = velocity.Y = -5; } So, the problem I am now having is that as soon as the jump starts the variable "onGround" = false and the sprite is brought back the ground by the simple gravity I have implemented. The other problem I have is creating a limit to the height after which the sprite should automatically return to the ground. Any advice or suggestions would be greatly appreciated.

    Read the article

  • most efficient AABB vs Ray collision algorithms

    - by Asher Einhorn
    Is there a known 'most efficient' algorithm for AABB vs Ray collision detection? I recently stumbled accross Arvo's AABB vs Sphere collision algorithm, and I am wondering if there is a similarly noteworthy algorithm for this. One must have condition for this algorithm is that I need to have the option of querying the result for the distance from the ray's origin to the point of collision. having said this, if there is another, faster algorithm which does not return distance, then in addition to posting one that does, also posting that algorithm would be very helpful indeed. Please also state what the function's return argument is, and how you use it to return distance or a 'no-collision' case. For example, does it have an out parameter for the distance as well as a bool return value? or does it simply return a float with the distance, vs a value of -1 for no collision? (For those that don't know: AABB = Axis Aligned Bounding Box)

    Read the article

  • proper way to creation multiple similiar buttons/panels

    - by JayAvon
    I have the below Code which i tried to do, but it only shows(the minus/plus button) on the last GirdLayout (Intelligence stat): JButton plusButton = new JButton("+"); JButton minusButton = new JButton("-"); statStrengthGridPanel = new JPanel(new GridLayout(1,3)); statStrengthGridPanel.add(minusButton); statStrengthGridPanel.add(new JLabel("10")); statStrengthGridPanel.add(plusButton); statConstitutionGridPanel = new JPanel(new GridLayout(1,3)); statConstitutionGridPanel.add(minusButton); statConstitutionGridPanel.add(new JLabel("10")); statConstitutionGridPanel.add(plusButton); statDexterityGridPanel = new JPanel(new GridLayout(1,3)); statDexterityGridPanel.add(minusButton); statDexterityGridPanel.add(new JLabel("10")); statDexterityGridPanel.add(plusButton); statIntelligenceGridPanel = new JPanel(new GridLayout(1,3)); statIntelligenceGridPanel.add(minusButton); statIntelligenceGridPanel.add(new JLabel("10")); statIntelligenceGridPanel.add(plusButton); I know I can do something like I did for the Panel names(have multiple ones), but I did not want to do that for the Panels in the first place. I am trying to use best practice and not have my code be repetitive. Any suggestions?? The goal is to have 4 stats, to assign points to, with decrement and increment buttons(I decided against sliders). Eventually I will have them have upper and lower limits, decrement the "unused" label, and all of that good stuff, but I just want to not be repetitive. Thanks for any help.

    Read the article

  • Whats a good way to do Collision with 2D Rectangles? can someone give me a tip?

    - by Javier
    using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework; namespace BreakOut { class Field { public static Field generateField() { List<Block> blocks = new List<Block>(); for (int j = 0; j < BlockType.BLOCK_TYPES.Length; j++) for (int i = 0; i < (Game1.WIDTH / Block.WIDTH); i++) { Block b = new Block(BlockType.BLOCK_TYPES[j], new Vector2(i * Block.WIDTH, (Block.HEIGHT + 2) * j + 5)); blocks.Add(b); } return new Field(blocks); } List<Block> blocks; public Field(List<Block> blocks) { this.blocks = blocks; } public void Update(GameTime gameTime, Ball b) { List<Block> removals = new List<Block>(); foreach (Block o in blocks) { if (o.BoundingBox.Intersects(new Rectangle((int)b.pos.X, (int)b.pos.Y, Ball.WIDTH, Ball.HEIGHT))) //collision with blocks { removals.Add(o); } } foreach(Block o in removals) blocks.Remove(o); //removes the blocks, but i need help hitting one at a time } public void Draw(GameTime gameTime) { foreach (Block b in blocks) b.Draw(gameTime); } } } My problem is that My collision in this sucks. I'm trying to add collision with a ball and hitting against a block and then one of the blocks dissapear. The problem i'm having is: When the ball hits the block, it removes it all in one instance. Please people don't be mean and say mean answers to me, im just in highschool, still a nooby and trying to learn more c#/XNA..

    Read the article

  • Confusion with floats converted into ints during collision detection

    - by TheBroodian
    So in designing a 2D platformer, I decided that I should be using a Vector2 to track the world location of my world objects to retain some sub-pixel precision for slow-moving objects and other such subtle nuances, yet representing their bodies with Rectangles, because as far as collision detection and resolution is concerned, I don't need sub-pixel precision. I thought that the following line of thought would work smoothly... Vector2 wrldLocation; Point WorldLocation; Rectangle collisionRectangle; public void Update(GameTime gameTime) { Vector2 moveAmount = velocity * (float)gameTime.ElapsedGameTime.TotalSeconds wrldLocation += moveAmount; WorldLocation = new Point((int)wrldLocation.X, (int)wrldLocation.Y); collisionRectangle = new Rectangle(WorldLocation.X, WorldLocation.Y, genericWidth, genericHeight); } and I guess in theory it sort of works, until I try to use it in conjunction with my collision detection, which works by using Rectangle.Offset() to project where collisionRectangle would supposedly end up after applying moveAmount to it, and if a collision is found, finding the intersection and subtracting the difference between the two intersecting sides to the given moveAmount, which would theoretically give a corrected moveAmount to apply to the object's world location that would prevent it from passing through walls and such. The issue here is that Rectangle.Offset() only accepts ints, and so I'm not really receiving an accurate adjustment to moveAmount for a Vector2. If I leave out wrldLocation from my previous example, and just use WorldLocation to keep track of my object's location, everything works smoothly, but then obviously if my object is being given velocities less than 1 pixel per update, then the velocity value may as well be 0, which I feel further down the line I may regret. Does anybody have any suggestions about how I might go about resolving this?

    Read the article

  • Design: How to model / where to store relational data between classes

    - by Walker
    I'm trying to figure out the best design here, and I can see multiple approaches, but none that seems "right." There are three relevant classes here: Base, TradingPost, and Resource. Each Base has a TradingPost which can offer various Resources depending on the Base's tech level. Where is the right place to store the minimum tech level a base must possess to offer any given resource? A database seems like overkill. Putting it in each subclass of Resource seems wrong--that's not an intrinsic property of the Resource. Do I have a mediating class, and if so, how does it work? It's important that I not be duplicating code; that I have one place where I set the required tech level for a given item. Essentially, where does this data belong? P.S. Feel free to change the title; I struggled to come up with one that fits.

    Read the article

  • Separate collision mesh model?

    - by Menno Gouw
    I want to have another go at 3D within XNA. What I have seen from some other games that they just have a separate very low poly model "cage" around the environment model. However I can not find any reference to this. I have not that much experience with XNA 3D either. Is it possible to have this cage within each of my environmental models already? Lets just say I call the mesh within the .FBX wall and col_wall. How would I call to these different meshes within XNA? The player would just have a tight collision cube around. To make it a bit more efficient I will be making divide the map up by cubes and only calculate collision if the player is in it. Question two: I can't find anywhere to do cube vs mesh collision. Is there a method for this? Or perhaps it is possible to build my collision cage out of cubes in the 3D app and on loading of the models in XNA replace them directly by cubes? So I could just do box to box collision which should be very cheap and still give the player the ability to move over ledges on the static models.

    Read the article

  • what is the easiest way to make a hitbox that rotates with it's texture

    - by Matthew Optional Meehan
    In xna when you have a sprite that doesnt rotate it's very easy to get the four corner of a sprite to make a hitbox, but when you do a rotation the points get moved and I assume there is some kind of math that I can use to aquire them. I am using the four points to draw a rectangle that visually represents the hitboxes. I have seen some per-pixel collission examples but I can forsee they would be hard to draw a box/'convex hull' around. I have also seen physics like farseer but I'm not sure if there is a quick tutorial to do what I want. What do you guys think is the best approach becuase I am looking to complete this work by the end of the week.

    Read the article

  • Connecting 2 Vertices in 3DS Max?

    - by Reanimation
    How do you connect two vertices in 3DS Max 2013? I have two vertices which I wish to connect with a line to create an edge. (actually several) I have tried all I can think and done several Google searches but it only comes up with older versions method which say use the "connect" button... But I can't find the connect button on my version (see below) This is what my menu looks like: These are the vertices I'm trying to connect: Basically, I've edited an STL file and deleted some edges and vertices. Now I want to fill the gaps and triangulate what's left. Thanks.

    Read the article

  • Rendering Texture Quad to Screen or FBO (OpenGL ES)

    - by Usman.3D
    I need to render the texture on the iOS device's screen or a render-to-texture frame buffer object. But it does not show any texture. It's all black. (I am loading texture with image myself for testing purpose) //Load texture data UIImage *image=[UIImage imageNamed:@"textureImage.png"]; GLuint width = FRAME_WIDTH; GLuint height = FRAME_HEIGHT; //Create context void *imageData = malloc(height * width * 4); CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB(); CGContextRef context = CGBitmapContextCreate(imageData, width, height, 8, 4 * width, colorSpace, kCGImageAlphaPremultipliedLast | kCGBitmapByteOrder32Big); CGColorSpaceRelease(colorSpace); //Prepare image CGContextClearRect(context, CGRectMake(0, 0, width, height)); CGContextDrawImage(context, CGRectMake(0, 0, width, height), image.CGImage); glGenTextures(1, &texture); glBindTexture(GL_TEXTURE_2D, texture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, imageData); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); Simple Texture Quad drawing code mentioned here //Bind Texture, Bind render-to-texture FBO and then draw the quad const float quadPositions[] = { 1.0, 1.0, 0.0, -1.0, 1.0, 0.0, -1.0, -1.0, 0.0, -1.0, -1.0, 0.0, 1.0, -1.0, 0.0, 1.0, 1.0, 0.0 }; const float quadTexcoords[] = { 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0 }; // stop using VBO glBindBuffer(GL_ARRAY_BUFFER, 0); // setup buffer offsets glVertexAttribPointer(ATTRIB_VERTEX, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), quadPositions); glVertexAttribPointer(ATTRIB_TEXCOORD0, 2, GL_FLOAT, GL_FALSE, 2*sizeof(float), quadTexcoords); // ensure the proper arrays are enabled glEnableVertexAttribArray(ATTRIB_VERTEX); glEnableVertexAttribArray(ATTRIB_TEXCOORD0); //Bind Texture and render-to-texture FBO. glBindTexture(GL_TEXTURE_2D, GLid); //Actually wanted to render it to render-to-texture FBO, but now testing directly on default FBO. //glBindFramebuffer(GL_FRAMEBUFFER, textureFBO[pixelBuffernum]); // draw glDrawArrays(GL_TRIANGLES, 0, 2*3); What am I doing wrong in this code? P.S. I'm not familiar with shaders yet, so it is difficult for me to make use of them right now.

    Read the article

  • How can I simulate a rigid body bounced from a wall in 3D world?

    - by HyperGroups
    How can I simulate a rigid sword bounced from a wall and hit the ground (like in physical world)? I want to use this for a simple animation. I can detect the figure and the size of the sword (maybe needed in doing bounce). Rotation can be controlled by quaternions/matrix/euler angles. It should turn the head and do rotations and fly to the ground. How can I simulate this physical process? Maybe what I need is an equation and some parameters? I need these data, and would combine them into my movie file, I use Mathematica to do the thing that generate the movie file(If I have the data, I can also export it into a 3DSMax script for example).

    Read the article

  • Calculating the rotational force of a 2D sprite

    - by Jon
    I am wondering if someone has an elegant way of calculating the following scenario. I have an object of (n) number of squares, random shapes, but we will pretend they are all rectangles. We are dealing with no gravity, so consider the object in space, from a top down perspective. I am applying a force to the object at a specific square (as illustrated below). How do I calculate the rotational angle, based on the force being applied, at the location being applied. If applied in the center square, it would go straight. How should it behave the further I move from the center? How do I calculate the rotational velocity?

    Read the article

  • Image first loaded, then it isn't? (XNA)

    - by M0rgenstern
    I am very confused at the Moment. I have the following Class: (Just a part of the class): public class GUIWindow { #region Static Fields //The standard image for windows. public static IngameImage StandardBackgroundImage; #endregion } IngameImage is just one of my own classes, but actually it contains a Texture2D (and some other things). In another class I load a list of GUIButtons by deserializing a XML file. public static GUI Initializazion(string pXMLPath, ContentManager pConMan) { GUI myGUI = pConMan.Load<GUI>(pXMLPath); GUIWindow.StandardBackgroundImage = new IngameImage(pConMan.Load<Texture2D>(myGUI.WindowStandardBackgroundImagePath), Vector2.Zero, 1024, 600, 1, 0, Color.White, 1.0f, true, false, false); System.Console.WriteLine("Image loaded? " + (GUIWindow.StandardBackgroundImage.ImageStrip != null)); myGUI.Windows = pConMan.Load<List<GUIWindow>>(myGUI.GUIFormatXMLPath); System.Console.WriteLine("Windows loaded"); return myGUI; } Here this line: System.Console.WriteLine("Image loaded? " + (GUIWindow.StandardBackgroundImage.ImageStrip != null)); Prints "true". To load the GUIWindows I need an "empty" constructor, which looks like that: public GUIWindow() { Name = ""; Buttons = new List<Button>(); ImagePath = ""; System.Console.WriteLine("Image loaded? (In win) " + (GUIWindow.StandardBackgroundImage.ImageStrip != null)); //Image = new IngameImage(StandardBackgroundImage); //System.Console.WriteLine( //Image.IsActive = false; SelectedButton = null; IsActive = false; } As you can see, I commented lines out in the constructor. Because: Otherwise this would crash. Here the line System.Console.WriteLine("Image loaded? (In win) " + (GUIWindow.StandardBackgroundImage.ImageStrip != null)); Doesn't print anything, it just crashes with the following errormessage: Building content threw NullReferenceException: Object reference not set to an object instance. Why does this happen? Before the program wants to load the List, it prints "true". But in the constructor, so in the loading of the list it prints "false". Can anybody please tell me why this happens and how to fix it?

    Read the article

< Previous Page | 349 350 351 352 353 354 355 356 357 358 359 360  | Next Page >