Search Results

Search found 26993 results on 1080 pages for 'multiple insert'.

Page 357/1080 | < Previous Page | 353 354 355 356 357 358 359 360 361 362 363 364  | Next Page >

  • TSQL Shred XML - Working with namespaces (newbie @ shredding XML)

    - by drachenstern
    Here's a link to my previous question on this same block of code with a working shred example Ok, I'm a C# ASP.NET dev following orders: The orders are to take a given dataset, shred the XML and return columns. I've argued that it's easier to do the shredding on the ASP.NET side where we already have access to things like deserializers, etc, and the entire complex of known types, but no, the boss says "shred it on the server, return a dataset, bind the dataset to the columns of the gridview" so for now, I'm doing what I was told. This is all to head off the folks who will come along and say "bad requirements". Task at hand: Current code that doesn't work: And if we modify the previous post to include namespaces on the XML elements, we lose the functionality that the previous post has... DECLARE @table1 AS TABLE ( ProductID VARCHAR(10) , Name VARCHAR(20) , Color VARCHAR(20) , UserEntered VARCHAR(20) , XmlField XML ) INSERT INTO @table1 SELECT '12345','ball','red','john','<sizes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><size xmlns="http://example.com/ns" name="medium"><price>10</price></size><size xmlns="http://example.com/ns" name="large"><price>20</price></size></sizes>' INSERT INTO @table1 SELECT '12346','ball','blue','adam','<sizes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><size xmlns="http://example.com/ns" name="medium"><price>12</price></size><size xmlns="http://example.com/ns" name="large"><price>25</price></size></sizes>' INSERT INTO @table1 SELECT '12347','ring','red','john','<sizes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><size xmlns="http://example.com/ns" name="medium"><price>5</price></size><size xmlns="http://example.com/ns" name="large"><price>8</price></size></sizes>' INSERT INTO @table1 SELECT '12348','ring','blue','adam','<sizes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><size xmlns="http://example.com/ns" name="medium"><price>8</price></size><size xmlns="http://example.com/ns" name="large"><price>10</price></size></sizes>' INSERT INTO @table1 SELECT '23456','auto','black','ann','<auto xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><type xmlns="http://example.com/ns">car</type><wheels xmlns="http://example.com/ns">4</wheels><doors xmlns="http://example.com/ns">4</doors><cylinders xmlns="http://example.com/ns">3</cylinders></auto>' INSERT INTO @table1 SELECT '23457','auto','black','ann','<auto xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><type xmlns="http://example.com/ns">truck</type><wheels xmlns="http://example.com/ns">4</wheels><doors xmlns="http://example.com/ns">2</doors><cylinders xmlns="http://example.com/ns">8</cylinders></auto><auto xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><type xmlns="http://example.com/ns">car</type><wheels xmlns="http://example.com/ns">4</wheels><doors xmlns="http://example.com/ns">4</doors><cylinders xmlns="http://example.com/ns">6</cylinders></auto>' DECLARE @x XML -- I think I'm supposed to use WITH XMLNAMESPACES(...) here but I don't know how SELECT @x = ( SELECT ProductID , Name , Color , UserEntered , XmlField.query(' for $vehicle in //auto return <auto type = "{$vehicle/type}" wheels = "{$vehicle/wheels}" doors = "{$vehicle/doors}" cylinders = "{$vehicle/cylinders}" />') FROM @table1 table1 WHERE Name = 'auto' FOR XML AUTO ) SELECT @x SELECT ProductID = T.Item.value('../@ProductID', 'varchar(10)') , Name = T.Item.value('../@Name', 'varchar(20)') , Color = T.Item.value('../@Color', 'varchar(20)') , UserEntered = T.Item.value('../@UserEntered', 'varchar(20)') , VType = T.Item.value('@type' , 'varchar(10)') , Wheels = T.Item.value('@wheels', 'varchar(2)') , Doors = T.Item.value('@doors', 'varchar(2)') , Cylinders = T.Item.value('@cylinders', 'varchar(2)') FROM @x.nodes('//table1/auto') AS T(Item) If my previous post shows there's a much better way to do this, then I really need to revise this question as well, but on the off chance this coding-style is good, I can probably go ahead with this as-is... Any takers?

    Read the article

  • Improving the performance of XSL

    - by Rachel
    In the below XSL for the variable "insert-data", I have an input param with the structure, <insert-data> <data compareIndex="4" nodeName="d1e1"> <a/> </data> <data compareIndex="5" nodeName="d1e1"> <b/> </data> <data compareIndex="7" nodeName="d1e2"> <a/> </data> <data compareIndex="9" nodeName="d1e2"> <b/> </data> </insert-data> where "nodeName" is the id of a node and "compareIndex" is the position of the text content relative to the node having id "$nodeName". I am using the below XSL to select all the text nodes(generate-id) that satisfy the above condition and construct a data xml. The below implementation works perfectly but the time taken for the execution is in min. Is there a better way of implementing or is there any in-efficient operation being used. From my observation the code where the preceding text length is calculated consumes the major time. Please share your thoughts to improve the performance of the XSL. I am using Java SAXON XSL transformer. <xsl:variable name="insert-data" as="element()*"> <xsl:for-each select="$insert-file/insert-data/data"> <xsl:sort select="xsd:integer(@index)"/> <xsl:variable name="compareIndex" select="xsd:integer(@compareIndex)" /> <xsl:variable name="nodeName" select="@nodeName" /> <xsl:variable name="nodeContent" as="node()"> <xsl:copy-of select="node()"/> </xsl:variable> <xsl:for-each select="$main-root/*//text()[ancestor::*[@id = $nodeName]]"> <xsl:variable name="preTextLength" as="xsd:integer" select="sum((preceding::text())[. ancestor::*[@id = $nodeName]]/string-length(.))" /> <xsl:variable name="currentTextLength" as="xsd:integer" select="string-length(.)" /> <xsl:variable name="sum" select="$preTextLength + $currentTextLength" as="xsd:integer"></xsl:variable> <xsl:variable name="split-index" select="$compareIndex - $preTextLength" as="xsd:integer"></xsl:variable> <xsl:if test="($sum ge $compareIndex) and ($compareIndex gt $preTextLength)"> <data split-index="{$split-index}" text-id="{generate-id(.)}"> <xsl:copy-of select="$nodeContent"/> </data> </xsl:if> </xsl:for-each> </xsl:for-each> </xsl:variable>

    Read the article

  • TSQL Shred XML - Is this right or is there a better way (newbie @ shredding XML)

    - by drachenstern
    Ok, I'm a C# ASP.NET dev following orders: The orders are to take a given dataset, shred the XML and return columns. I've argued that it's easier to do the shredding on the ASP.NET side where we already have access to things like deserializers, etc, and the entire complex of known types, but no, the boss says "shred it on the server, return a dataset, bind the dataset to the columns of the gridview" so for now, I'm doing what I was told. This is all to head off the folks who will come along and say "bad requirements". Task at hand: Here's my code that works and does what I want it to: DECLARE @table1 AS TABLE ( ProductID VARCHAR(10) , Name VARCHAR(20) , Color VARCHAR(20) , UserEntered VARCHAR(20) , XmlField XML ) INSERT INTO @table1 SELECT '12345','ball','red','john','<sizes><size name="medium"><price>10</price></size><size name="large"><price>20</price></size></sizes>' INSERT INTO @table1 SELECT '12346','ball','blue','adam','<sizes><size name="medium"><price>12</price></size><size name="large"><price>25</price></size></sizes>' INSERT INTO @table1 SELECT '12347','ring','red','john','<sizes><size name="medium"><price>5</price></size><size name="large"><price>8</price></size></sizes>' INSERT INTO @table1 SELECT '12348','ring','blue','adam','<sizes><size name="medium"><price>8</price></size><size name="large"><price>10</price></size></sizes>' INSERT INTO @table1 SELECT '23456','auto','black','ann','<auto><type>car</type><wheels>4</wheels><doors>4</doors><cylinders>3</cylinders></auto>' INSERT INTO @table1 SELECT '23457','auto','black','ann','<auto><type>truck</type><wheels>4</wheels><doors>2</doors><cylinders>8</cylinders></auto><auto><type>car</type><wheels>4</wheels><doors>4</doors><cylinders>6</cylinders></auto>' DECLARE @x XML SELECT @x = ( SELECT ProductID , Name , Color , UserEntered , XmlField.query(' for $vehicle in //auto return <auto type = "{$vehicle/type}" wheels = "{$vehicle/wheels}" doors = "{$vehicle/doors}" cylinders = "{$vehicle/cylinders}" />') FROM @table1 table1 WHERE Name = 'auto' FOR XML AUTO ) SELECT @x SELECT ProductID = T.Item.value('../@ProductID', 'varchar(10)') , Name = T.Item.value('../@Name', 'varchar(20)') , Color = T.Item.value('../@Color', 'varchar(20)') , UserEntered = T.Item.value('../@UserEntered', 'varchar(20)') , VType = T.Item.value('@type' , 'varchar(10)') , Wheels = T.Item.value('@wheels', 'varchar(2)') , Doors = T.Item.value('@doors', 'varchar(2)') , Cylinders = T.Item.value('@cylinders', 'varchar(2)') FROM @x.nodes('//table1/auto') AS T(Item) SELECT @x = ( SELECT ProductID , Name , Color , UserEntered , XmlField.query(' for $object in //sizes/size return <size name = "{$object/@name}" price = "{$object/price}" />') FROM @table1 table1 WHERE Name IN ('ring', 'ball') FOR XML AUTO ) SELECT @x SELECT ProductID = T.Item.value('../@ProductID', 'varchar(10)') , Name = T.Item.value('../@Name', 'varchar(20)') , Color = T.Item.value('../@Color', 'varchar(20)') , UserEntered = T.Item.value('../@UserEntered', 'varchar(20)') , SubName = T.Item.value('@name' , 'varchar(10)') , Price = T.Item.value('@price', 'varchar(2)') FROM @x.nodes('//table1/size') AS T(Item) So for now, I'm trying to figure out if there's a better way to write the code than what I'm doing now... (I have a part 2 I'm about to go key in)

    Read the article

  • Facelet components layouts and javascript

    - by Java Drinker
    Hi all, I have a question regarding the placement of javascript within facelet components. This is more regarding best practice/style than a programming issue, but I feel like all the solutions I have thought of have been hacks at best. Ok here is my scenario: I have a facelet template like so (my faces, and apache Trinidad)... <ui:composition> <f:view locale="#{myLocale}"> <ui:insert name="messageBundles" /><!--Here we add load bundle tags--> <tr:document mode="strict" styleClass="coolStyleDoc"> <f:facet name="metaContainer"> <!--This trinidad defined facet is added to HTML head--> <tr:group> <!-- blah bal my own styles and js common to all --> <ui:insert name="metaData" /> </tr:group> </f:facet> <tr:form usesUpload="#{empty usesUpload ? 'false' : usesUpload}"> <div id="formTemplateHeader"> <ui:insert name="contentHeader" /> </div> <div id="formTemplateContentContainer"> <div id="formTemplateContent"> <ui:insert name="contentBody" /> </div> </div> <div id="formTemplateFooter"> <ui:insert name="contentFooter"> </ui:insert> </div> </tr:form> <!-- etc...---> Now, a facelet that wants to use this template would look like the following: <ui:composition template="/path/to/my/template.jspx"> <ui:define name="bundles"> <custom:loadBundle basename="messagesStuff" var="bundle" /> </ui:define> <ui:define name="metaData"> <script> <!-- cool javascript stuff goes here--> </script> </ui:define> <ui:define name="contentHeader"> <!-- MY HEADING!--> </ui:define> <ui:define name="contentBody"> <!-- MY Body!--> </ui:define> <ui:define name="contentFooter"> <!-- Copyright/footer stuff!--> </ui:define> </ui:composition> All this works quite well, but the problem I have is when I want to use a facelet component inside this page. If the facelet component has its own javascript code (jQuery stuff etc), how can I make it so that that javascript code is included in the header section of the generated html? Any help would be appreciated. Please let me know if this is not clear or something... thanks in advance

    Read the article

  • Add Keyboard Input Language to Ubuntu

    - by Matthew Guay
    Want to type in multiple languages in Ubuntu?  Here we’ll show you how you can easily add and switch between multiple keyboard layouts in Ubuntu. Add a Keyboard Language To add a keyboard language, open the System menu, select Preferences, and then select Keyboard. In the Keyboard Preferences dialog, select the Layouts tab, and click Add.   You can select a country and then choose an language and keyboard variant.  Note that some countries, such as the United States, may show several languages.  Once you’ve made your selection, you can preview it on the sample keyboard displayed below the menu. Alternately, on the second tab, select a language and then choose a variant.  Click Add when you’ve made your selection. Now you’ll notice that there are two languages listed in the Keyboard Preferences, and they’re both ready to use immediately.  You can add more if you wish, or close the dialog. Switch Between Languages When you have multiple input languages installed, you’ll notice a new icon in your system tray on the top right.  It will show the abbreviation of the country and/or language name that is currently selected.  Click the icon to change the language. Right-click the dialog to view available languages (listed under Groups), open the Keyboard Preferences dialog again, or show the current layout. If you select Show Current Layout you’ll see a window with the keyboard preview we saw previously when setting the keyboard layout.  You can even print this layout preview out to help you remember a layout if you wish. Change Keyboard Shortcuts to Switch Languages By default, you can switch input languages in Ubuntu from the keyboard by pressing both Alt keys together.  Many users are already used to the default Alt+Switch combination to switch input languages in Windows, and we can add that in Ubuntu.  Open the keyboard preferences dialog, select the Layout tab, and click Options. Click the plus sign beside Key(s) to change layout, and select Alt+Shift.  Click Close, and you can now use this familiar shortcut to switch input languages. The layout options dialog offers many more neat keyboard shortcuts and options.  One especially neat option was the option to use a keyboard led to show when we’re using the alternate keyboard layout.  We selected the ScrollLock light since it’s hardly used today, and now it lights up when we’re using our other input language.   Conclusion Whether you regularly type in multiple languages or only need to enter an occasional character from an alternate keyboard layout, Ubuntu’s keyboard settings make it easy to make your keyboard work the way you want.  And since you can even preview and print a keyboard layout, you can even remember an alternate keyboard’s layout if it’s not printed on your keyboard. Windows users, you’re not left behind, either.  Check out our tutorial on how to Add keyboard languages to XP, Vista, and Windows 7. Similar Articles Productive Geek Tips Add keyboard languages to XP, Vista, and Windows 7Assign a Hotkey to Open a Terminal Window in UbuntuWhat is ctfmon.exe And Why Is It Running?Keyboard Shortcuts for VMware WorkstationInput Director Controls Multiple Windows Machines with One Keyboard and Mouse TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips VMware Workstation 7 Acronis Online Backup DVDFab 6 Revo Uninstaller Pro MELTUP – "The Beginning Of US Currency Crisis And Hyperinflation" Enable or Disable the Task Manager Using TaskMgrED Explorer++ is a Worthy Windows Explorer Alternative Error Goblin Explains Windows Error Codes Twelve must-have Google Chrome plugins Cool Looking Skins for Windows Media Player 12

    Read the article

  • RegexClean Transformation

    Use the power of regular expressions to cleanse your data right there inside the Data Flow. This transformation includes a full user interface for simple configuration, as well as advanced features such as error output configuration. Two regular expressions are used, a match expression and a replace expression. The transformation is designed around the named capture groups or match groups, and even supports multiple expressions. This allows for rich and complex expressions to be built, all through an easy to reuse transformation where a bespoke Script Component was previously the only alternative. Some simple properties are available for each column selected – Behaviour The two behaviour modes offer similar functionality but with a difference. Replace, replaces tokens with the input, and Emit overwrites the whole string. Cascade Cascade allows you to define multiple expressions, each on a new line. The match expression will be processed into one operation per line, which are then processed in order at run-time. Multiple replace expressions can also be specified, again each on a new line. If there is no corresponding replace expression for a match expression line, then the last replace expression will be used instead. It is common to have multiple match expressions, but only a single replace expression. Match Expression The expression used to define the named capture groups. This is where you can analyse the data, and tag or name elements within it as found by the match expression. Replace Expression The replace determines the final output. It will reference the named groups from the match expression and assembles them into the final output. If you want to use regular expressions to validate data then try the Regular Expression Transformation. Quick Start Guide Select a column. A new output column is created for each selected column; there is no option for in-place replacement of column values. One input column can be used to populate multiple output columns, just select the column again in the lower grid, using the Input Columns drop-down selector. Amend the output column name and size as required. They default to the same as the input column selected. Amend the behaviour as required, the default is Replace. Amend the cascade option as required, the default is true. Finally enter your match and replace regular expressions Quick Sample #1 Parse an email address and extract the user and domain portions. Format as a web address passing the user portion as a URL parameter. This uses two match groups, user and host, which correspond to the text before the @ and after it respectively. Behaviour is Emit, and cascade of false, we only have a single match expression. Match Expression ^(?<user>[^@]+)@(?<host>.+)$ Replace Expression - http://www.${host}?user=${user} Results Sample Input Sample Output [email protected] http://www.adventure-works.com?user=zheng0 The component is provided as an MSI file, however to complete the installation, you will have to add the transformation to the Visual Studio toolbox manually. Right-click the toolbox, and select Choose Items.... Select the SSIS Data Flow Items tab, and then check the RegexClean Transformation from the list. Downloads The RegexClean Transformation is available for both SQL Server 2005 and SQL Server 2008. Please choose the version to match your SQL Server version, or you can install both versions and use them side by side if you have both SQL Server 2005 and SQL Server 2008 installed. RegexClean Transformation for SQL Server 2005 RegexClean Transformation for SQL Server 2008 Version History SQL Server 2005 Version 1.0.0.105 - Public Release (28 Jan 2008) SQL Server 2005 Version 1.0.0.105 - Public Release (28 Jan 2008) Screenshot

    Read the article

  • Smart Help with UPK

    - by [email protected]
    A short lesson on how awesome Smart Help is. In Oracle UPK speak, there are targeted and non-targeted applications. Targeted applications are Oracle EBS, PeopleSoft, Siebel, JD Edwards, SAP and a few others. Non-targeted applications are either custom built or other third party off the shelf applications. For most targeted applications you'll see better object recognition (during recording) and also Help Integration for that application. Help integration means that someone technical modifies the help link in your application to call up the UPK content that has been created. If you have seen this presented before, this is usually where the term context sensitive help is mentioned and the Do It mode shows off. The fact that UPK builds context sensitive help for its targeted applications automatically is awesome enough, but there is a whole new world out there and it's called "custom and\or third party apps." For the purposes of Smart Help and this discussion, I'm talking about the browser based applications. How does UPK support these apps? It used to be that you had to have your vendor try to modify the Help link to point to UPK or if your company had control over the applications configuration menus, then you get someone on your team to modify this for you. But as you start to use UPK for more than one, two or three applications, the administration of this starts to become daunting. Multiple administrators, multiple player packages, multiple call points, multiple break points, help doesn't always work the same way for every application (picture the black white infomercial with an IT person trying to configure a bunch of wires or something funny like that). Introducing Smart Help! (in color of course, new IT person, probably wearing a blue shirt and smiling). Smart help eliminates the need to configure multiple browser help integration points, and adds a icon to the users browser itself. You're using your browser to read this now correct? Look up at the icons on your browser, you have the home link icon, print icon, maybe an RSS feed icon. Smart Help is icon that gets added to the users browser just like the others. When you click it, it first recognizes which application you're in and then finds the UPK created material for you and returns the best possible match, for (hold on to your seat now) both targeted and non-targeted applications (browser based applications). But wait, there's more. It does this automatically! You don't have to do anything! All you have to do is record content, UPK and Smart Help do the rest! This technology is not new. There are customers out there today that use this for as many as six applications! The real hero here is SMART MATCH. Smart match is the technology that's used to determine which application you're in and where you are when you click on Smart Help. We'll save that for a one-on-one conversation. Like most other awesome features of UPK, it ships with the product. All you have to do is turn it on. To learn more about Smart Help, Smart Match, Targeted and Non-Targeted applications, contact your UPK Sales Consultant or me directly at [email protected]

    Read the article

  • Change Data Capture

    - by Ricardo Peres
    There's an hidden gem in SQL Server 2008: Change Data Capture (CDC). Using CDC we get full audit capabilities with absolutely no implementation code: we can see all changes made to a specific table, including the old and new values! You can only use CDC in SQL Server 2008 Standard or Enterprise, Express edition is not supported. Here are the steps you need to take, just remember SQL Agent must be running: use SomeDatabase; -- first create a table CREATE TABLE Author ( ID INT NOT NULL PRIMARY KEY IDENTITY(1, 1), Name NVARCHAR(20) NOT NULL, EMail NVARCHAR(50) NOT NULL, Birthday DATE NOT NULL ) -- enable CDC at the DB level EXEC sys.sp_cdc_enable_db -- check CDC is enabled for the current DB SELECT name, is_cdc_enabled FROM sys.databases WHERE name = 'SomeDatabase' -- enable CDC for table Author, all columns exec sys.sp_cdc_enable_table @source_schema = 'dbo', @source_name = 'Author', @role_name = null -- insert values into table Author insert into Author (Name, EMail, Birthday, Username) values ('Bla', 'bla@bla', 1990-10-10, 'bla') -- check CDC data for table Author -- __$operation: 1 = DELETE, 2 = INSERT, 3 = BEFORE UPDATE 4 = AFTER UPDATE -- __$start_lsn: operation timestamp select * from cdc.dbo_author_CT -- update table Author update Author set EMail = '[email protected]' where Name = 'Bla' -- check CDC data for table Author select * from cdc.dbo_author_CT -- delete from table Author delete from Author -- check CDC data for table Author select * from cdc.dbo_author_CT -- disable CDC for table Author -- this removes all CDC data, so be carefull exec sys.sp_cdc_disable_table @source_schema = 'dbo', @source_name = 'Author', @capture_instance = 'dbo_Author' -- disable CDC for the entire DB -- this removes all CDC data, so be carefull exec sys.sp_cdc_disable_db SyntaxHighlighter.config.clipboardSwf = 'http://alexgorbatchev.com/pub/sh/2.0.320/scripts/clipboard.swf'; SyntaxHighlighter.all();

    Read the article

  • SQL SERVER – Get Directory Structure using Extended Stored Procedure xp_dirtree

    - by pinaldave
    Many years ago I wrote article SQL SERVER – Get a List of Fixed Hard Drive and Free Space on Server where I demonstrated using undocumented Stored Procedure to find the drive letter in local system and available free space. I received question in email from reader asking if there any way he can list directory structure within the T-SQL. When I inquired more he suggested that he needs this because he wanted set up backup of the data in certain structure. Well, there is one undocumented stored procedure exists which can do the same. However, please be vary to use any undocumented procedures. xp_dirtree 'C:\Windows' Execution of the above stored procedure will give following result. If you prefer you can insert the data in the temptable and use the same for further use. Here is the quick script which will insert the data into the temptable and retrieve from the same. CREATE TABLE #TempTable (Subdirectory VARCHAR(512), Depth INT); INSERT INTO #TempTable (Subdirectory, Depth) EXEC xp_dirtree 'C:\Windows' SELECT Subdirectory, Depth FROM #TempTable; DROP TABLE #TempTable; Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Stored Procedure, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • SQL SERVER – Select Columns from Stored Procedure Resultset

    - by Pinal Dave
    It is fun to go back to basics often. Here is the one classic question: “How to select columns from Stored Procedure Resultset?” Though Stored Procedure has been introduced many years ago, the question about retrieving columns from Stored Procedure is still very popular with beginners. Let us see the solution in quick steps. First we will create a sample stored procedure. CREATE PROCEDURE SampleSP AS SELECT 1 AS Col1, 2 AS Col2 UNION SELECT 11, 22 GO Now we will create a table where we will temporarily store the result set of stored procedures. We will be using INSERT INTO and EXEC command to retrieve the values and insert into temporary table. CREATE TABLE #TempTable (Col1 INT, Col2 INT) GO INSERT INTO #TempTable EXEC SampleSP GO Next we will retrieve our data from stored procedure. SELECT * FROM #TempTable GO Finally we will clean up all the objects which we have created. DROP TABLE #TempTable DROP PROCEDURE SampleSP GO Let me know if you want me to share such back to basic tips. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Stored Procedure, SQL Tips and Tricks, T SQL

    Read the article

  • Question No 207630 replied by Marco Braida

    - by kishor
    Question No 207630 replied by Marco Braid After your reply I could install Synaptic,then AptonCD,Gdebi and some other applications. I had made APTONCD. I was convienced that Ubuntu 12.04 LTS is working well. I had removed everything ( Ubuntu 12.04,Fuduntu,Linix mint 13) from my hard disk and reinstalled Ubuntu 12.04 LTS. Your sugestion which worked well earlier does not work now. I get following msg on terminal. Reading package lists... Done Building dependency tree Reading state information... Done The following extra packages will be installed: gdebi-core The following NEW packages will be installed: gdebi gdebi-core 0 upgraded, 2 newly installed, 0 to remove and 411 not upgraded. Need to get 0 B/185 kB of archives. After this operation, 1,398 kB of additional disk space will be used. Do you want to continue [Y/n]? y Media change: please insert the disc labeled 'APTonCD for ubuntu precise - amd64 (2012-10-14 10:27) DVD1' in the drive '/media/cdrom/' and press enter Media change: please insert the disc labeled 'APTonCD for ubuntu precise - amd64 (2012-10-14 10:27) DVD1' in the drive '/media/cdrom/' and press enter Media change: please insert the disc labeled 'APTonCD for ubuntu precise - amd64 (2012-10-14 10:27) DVD1' in the drive '/media/cdrom/' and press enter This is for gdebi similar msg is on terminal when I tried for Synaptic and AptonCD. I had downloaded files for Synaptic and treid but without susscess. Kishor

    Read the article

  • E-Business Suite : Role of CHUNK_SIZE in Oracle Payroll

    - by Giri Mandalika
    Different batch processes in Oracle Payroll flow have the ability to spawn multiple child processes (or threads) to complete the work in hand. The number of child processes to fork is controlled by the THREADS parameter in APPS.PAY_ACTION_PARAMETERS view. THREADS parameter The default value for THREADS parameter is 1, which is fine for a single-processor system but not optimal for the modern multi-core multi-processor systems. Setting the THREADS parameter to a value equal to or less than the total number of [virtual] processors available on the system may improve the performance of payroll processing. However on the down side, since multiple child processes operate against the same set of payroll tables in HR schema, database may experience undesired consequences such as buffer busy waits and index contention, which results in giving up some of the gains achieved by using multiple child processes/threads to process the work. Couple of other action parameters, CHUNK_SIZE and CHUNK_SHUFFLE, help alleviate the database contention. eg., Set a value for THREADS parameter as shown below. CONNECT APPS/APPS_PASSWORD UPDATE PAY_ACTION_PARAMETERS SET PARAMETER_VALUE = DESIRED_VALUE WHERE PARAMETER_NAME = 'THREADS'; COMMIT; (I am not aware of any maximum value for THREADS parameter) CHUNK_SIZE parameter The size of each commit unit for the batch process is controlled by the CHUNK_SIZE action parameter. In other words, chunking is the act of splitting the assignment actions into commit groups of desired size represented by the CHUNK_SIZE parameter. The default value is 20, and each thread processes one chunk at a time -- which means each child process inserts or processes 20 assignment actions at any time. When multiple threads are configured, each thread picks up a chunk to process, completes the assignment actions and then picks up another chunk. This is repeated until all the chunks are exhausted. It is possible to use different chunk sizes in different batch processes. During the initial phase of processing, CHUNK_SIZE number of assignment actions are inserted into relevant table(s). When multiple child processes are inserting data at the same time into the same set of tables, as explained earlier, database may experience contention. The default value of 20 is mostly optimal in such a case. Experiment with different values for the initial phase by +/-10 for CHUNK_SIZE parameter and observe the performance impact. A larger value may make sense during the main processing phase. Again experimentation is the key in finding the suitable value for your environment. Start with a large value such as 2000 for the chunk size, then increment or decrement the size by 500 at a time until an optimal value is found. eg., Set a value for CHUNK_SIZE parameter as shown below. CONNECT APPS/APPS_PASSWORD UPDATE PAY_ACTION_PARAMETERS SET PARAMETER_VALUE = DESIRED_VALUE WHERE PARAMETER_NAME = 'CHUNK_SIZE'; COMMIT; CHUNK_SIZE action parameter accepts a value that is as low as 1 or as high as 16000. CHUNK SHUFFLE parameter By default, chunks of assignment actions are processed sequentially by all threads - which may not be a good thing especially given that all child processes/threads performing similar actions against the same set of tables almost at the same time. By saying not a good thing, I mean to say that the default behavior leads to contention in the database (in data blocks, for example). It is possible to relieve some of that database contention by randomizing the processing order of chunks of assignment actions. This behavior is controlled by the CHUNK SHUFFLE action parameter. Chunk processing is not randomized unless explicitly configured. eg., Set chunk shuffling as shown below. CONNECT APPS/APPS_PASSWORD UPDATE PAY_ACTION_PARAMETERS SET PARAMETER_VALUE = 'Y' WHERE PARAMETER_NAME = 'CHUNK SHUFFLE'; COMMIT; Finally I recommend checking the following document out for additional details and additional pay action tunable parameters that may speed up the processing of Oracle Payroll.     My Oracle Support Doc ID: 226987.1 Oracle 11i & R12 Human Resources (HRMS) & Benefits (BEN) Tuning & System Health Checks Also experiment with different combinations of parameters and values until the right set of action parameters and values are found for your deployment.

    Read the article

  • Need help for array when no checkbox is selected [closed]

    - by darlene
    Hi guys I have created a form that has checkboxes, the code works great when a checkbox is selcted however when no checkboxes are selected I get errors such as "Undefined index: onemon in and Warning: Invalid argument supplied for foreach()" Please help:) FORM 1. Had a cold, fever or headache? input type="checkbox" name="onemon[]" value="q1" if(isset($_GET['onemon']) && $_GET['onemon']= "q1") 2. Had dental extractions or teeth cleaning? input type="checkbox" name="onemon[]" value="q2" if(isset($_GET['onemon']) && $_GET['onemon']= "q2") 3. Had minor outpatient sugery? input type="checkbox" name="onemon[]" value="q3" if(isset($_GET['onemon']) && $_GET['onemon']= "q3") 4. Had any vaccines? input type="checkbox" name="onemon[]" value="q4" if(isset($_GET['onemon']) && $_GET['onemon']= "q4") PHP $date = date('Y-m-d'); $onemon = $_POST ['onemon']; { $con = mysql_connect("localhost","root","") or die ("Could not connect to DB Server"); $db_selected = mysql_select_db("nbtsdb", $con) or die("Could not locate the DB"); // You have to loop through the array of checked box values ... $ques=""; foreach($onemon as $entry){ $ques .= $entry.","; } //$addPersonalSql holds the insert SQL query string $query = "INSERT INTO defferal(defid, intdate, onemonth) VALUES('','$date','$ques')"; $addMemberSql = $query or die ("Unable to Insert Data into defferal Table"); mysql_query($addMemberSql); }

    Read the article

  • NoSQL with RavenDB and ASP.NET MVC - Part 1

    - by shiju
     A while back, I have blogged NoSQL with MongoDB, NoRM and ASP.NET MVC Part 1 and Part 2 on how to use MongoDB with an ASP.NET MVC application. The NoSQL movement is getting big attention and RavenDB is the latest addition to the NoSQL and document database world. RavenDB is an Open Source (with a commercial option) document database for the .NET/Windows platform developed  by Ayende Rahien.  Raven stores schema-less JSON documents, allow you to define indexes using Linq queries and focus on low latency and high performance. RavenDB is .NET focused document database which comes with a fully functional .NET client API  and supports LINQ. RavenDB comes with two components, a server and a client API. RavenDB is a REST based system, so you can write your own HTTP cleint API. As a .NET developer, RavenDB is becoming my favorite document database. Unlike other document databases, RavenDB is supports transactions using System.Transactions. Also it's supports both embedded and server mode of database. You can access RavenDB site at http://ravendb.netA demo App with ASP.NET MVCLet's create a simple demo app with RavenDB and ASP.NET MVC. To work with RavenDB, do the following steps. Go to http://ravendb.net/download and download the latest build.Unzip the downloaded file.Go to the /Server directory and run the RavenDB.exe. This will start the RavenDB server listening on localhost:8080You can change the port of RavenDB  by modifying the "Raven/Port" appSetting value in the RavenDB.exe.config file.When running the RavenDB, it will automatically create a database in the /Data directory. You can change the directory name data by modifying "Raven/DataDirt" appSetting value in the RavenDB.exe.config file.RavenDB provides a browser based admin tool. When the Raven server is running, You can be access the browser based admin tool and view and edit documents and index using your browser admin tool. The web admin tool available at http://localhost:8080The below is the some screen shots of web admin tool     Working with ASP.NET MVC  To working with RavenDB in our demo ASP.NET MVC application, do the following steps Step 1 - Add reference to Raven Cleint API In our ASP.NET MVC application, Add a reference to the Raven.Client.Lightweight.dll from the Client directory. Step 2 - Create DocumentStoreThe document store would be created once per application. Let's create a DocumentStore on application start-up in the Global.asax.cs. documentStore = new DocumentStore { Url = "http://localhost:8080/" }; documentStore.Initialise(); The above code will create a Raven DB document store and will be listening the server locahost at port 8080    Step 3 - Create DocumentSession on BeginRequest   Let's create a DocumentSession on BeginRequest event in the Global.asax.cs. We are using the document session for every unit of work. In our demo app, every HTTP request would be a single Unit of Work (UoW). BeginRequest += (sender, args) =>   HttpContext.Current.Items[RavenSessionKey] = documentStore.OpenSession(); Step 4 - Destroy the DocumentSession on EndRequest  EndRequest += (o, eventArgs) => {     var disposable = HttpContext.Current.Items[RavenSessionKey] as IDisposable;     if (disposable != null)         disposable.Dispose(); };  At the end of HTTP request, we are destroying the DocumentSession  object.The below  code block shown all the code in the Global.asax.cs  private const string RavenSessionKey = "RavenMVC.Session"; private static DocumentStore documentStore;   protected void Application_Start() { //Create a DocumentStore in Application_Start //DocumentStore should be created once per application and stored as a singleton. documentStore = new DocumentStore { Url = "http://localhost:8080/" }; documentStore.Initialise(); AreaRegistration.RegisterAllAreas(); RegisterRoutes(RouteTable.Routes); //DI using Unity 2.0 ConfigureUnity(); }   public MvcApplication() { //Create a DocumentSession on BeginRequest   //create a document session for every unit of work BeginRequest += (sender, args) =>     HttpContext.Current.Items[RavenSessionKey] = documentStore.OpenSession(); //Destroy the DocumentSession on EndRequest EndRequest += (o, eventArgs) => { var disposable = HttpContext.Current.Items[RavenSessionKey] as IDisposable; if (disposable != null) disposable.Dispose(); }; }   //Getting the current DocumentSession public static IDocumentSession CurrentSession {   get { return (IDocumentSession)HttpContext.Current.Items[RavenSessionKey]; } }  We have setup all necessary code in the Global.asax.cs for working with RavenDB. For our demo app, Let’s write a domain class  public class Category {       public string Id { get; set; }       [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }   } We have created simple domain entity Category. Let's create repository class for performing CRUD operations against our domain entity Category.  public interface ICategoryRepository {     Category Load(string id);     IEnumerable<Category> GetCategories();     void Save(Category category);     void Delete(string id);       }    public class CategoryRepository : ICategoryRepository {     private IDocumentSession session;     public CategoryRepository()     {             session = MvcApplication.CurrentSession;     }     //Load category based on Id     public Category Load(string id)     {         return session.Load<Category>(id);     }     //Get all categories     public IEnumerable<Category> GetCategories()     {         var categories= session.LuceneQuery<Category>()                 .WaitForNonStaleResults()             .ToArray();         return categories;       }     //Insert/Update category     public void Save(Category category)     {         if (string.IsNullOrEmpty(category.Id))         {             //insert new record             session.Store(category);         }         else         {             //edit record             var categoryToEdit = Load(category.Id);             categoryToEdit.Name = category.Name;             categoryToEdit.Description = category.Description;         }         //save the document session         session.SaveChanges();     }     //delete a category     public void Delete(string id)     {         var category = Load(id);         session.Delete<Category>(category);         session.SaveChanges();     }        } For every CRUD operations, we are taking the current document session object from HttpContext object. session = MvcApplication.CurrentSession; We are calling the static method CurrentSession from the Global.asax.cs public static IDocumentSession CurrentSession {     get { return (IDocumentSession)HttpContext.Current.Items[RavenSessionKey]; } }  Retrieve Entities  The Load method get the single Category object based on the Id. RavenDB is working based on the REST principles and the Id would be like categories/1. The Id would be created by automatically when a new object is inserted to the document store. The REST uri categories/1 represents a single category object with Id representation of 1.   public Category Load(string id) {    return session.Load<Category>(id); } The GetCategories method returns all the categories calling the session.LuceneQuery method. RavenDB is using a lucen query syntax for querying. I will explain more details about querying and indexing in my future posts.   public IEnumerable<Category> GetCategories() {     var categories= session.LuceneQuery<Category>()             .WaitForNonStaleResults()         .ToArray();     return categories;   } Insert/Update entityFor insert/Update a Category entity, we have created Save method in repository class. If  the Id property of Category is null, we call Store method of Documentsession for insert a new record. For editing a existing record, we load the Category object and assign the values to the loaded Category object. The session.SaveChanges() will save the changes to document store.  //Insert/Update category public void Save(Category category) {     if (string.IsNullOrEmpty(category.Id))     {         //insert new record         session.Store(category);     }     else     {         //edit record         var categoryToEdit = Load(category.Id);         categoryToEdit.Name = category.Name;         categoryToEdit.Description = category.Description;     }     //save the document session     session.SaveChanges(); }  Delete Entity  In the Delete method, we call the document session's delete method and call the SaveChanges method to reflect changes in the document store.  public void Delete(string id) {     var category = Load(id);     session.Delete<Category>(category);     session.SaveChanges(); }  Let’s create ASP.NET MVC controller and controller actions for handling CRUD operations for the domain class Category  public class CategoryController : Controller { private ICategoryRepository categoyRepository; //DI enabled constructor public CategoryController(ICategoryRepository categoyRepository) {     this.categoyRepository = categoyRepository; } public ActionResult Index() {         var categories = categoyRepository.GetCategories();     if (categories == null)         return RedirectToAction("Create");     return View(categories); }   [HttpGet] public ActionResult Edit(string id) {     var category = categoyRepository.Load(id);         return View("Save",category); } // GET: /Category/Create [HttpGet] public ActionResult Create() {     var category = new Category();     return View("Save", category); } [HttpPost] public ActionResult Save(Category category) {     if (!ModelState.IsValid)     {         return View("Save", category);     }           categoyRepository.Save(category);         return RedirectToAction("Index");     }        [HttpPost] public ActionResult Delete(string id) {     categoyRepository.Delete(id);     var categories = categoyRepository.GetCategories();     return PartialView("CategoryList", categories);      }        }  RavenDB is an awesome document database and I hope that it will be the winner in .NET space of document database world.  The source code of demo application available at http://ravenmvc.codeplex.com/

    Read the article

  • Mapping UrlEncoded POST Values in ASP.NET Web API

    - by Rick Strahl
    If there's one thing that's a bit unexpected in ASP.NET Web API, it's the limited support for mapping url encoded POST data values to simple parameters of ApiController methods. When I first looked at this I thought I was doing something wrong, because it seems mighty odd that you can bind query string values to parameters by name, but can't bind POST values to parameters in the same way. To demonstrate here's a simple example. If you have a Web API method like this:[HttpGet] public HttpResponseMessage Authenticate(string username, string password) { …} and then hit with a URL like this: http://localhost:88/samples/authenticate?Username=ricks&Password=sekrit it works just fine. The query string values are mapped to the username and password parameters of our API method. But if you now change the method to work with [HttpPost] instead like this:[HttpPost] public HttpResponseMessage Authenticate(string username, string password) { …} and hit it with a POST HTTP Request like this: POST http://localhost:88/samples/authenticate HTTP/1.1 Host: localhost:88 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Content-type: application/x-www-form-urlencoded Content-Length: 30 Username=ricks&Password=sekrit you'll find that while the request works, it doesn't actually receive the two string parameters. The username and password parameters are null and so the method is definitely going to fail. When I mentioned this over Twitter a few days ago I got a lot of responses back of why I'd want to do this in the first place - after all HTML Form submissions are the domain of MVC and not WebAPI which is a valid point. However, the more common use case is using POST Variables with AJAX calls. The following is quite common for passing simple values:$.post(url,{ Username: "Rick", Password: "sekrit" },function(result) {…}); but alas that doesn't work. How ASP.NET Web API handles Content Bodies Web API supports parsing content data in a variety of ways, but it does not deal with multiple posted content values. In effect you can only post a single content value to a Web API Action method. That one parameter can be very complex and you can bind it in a variety of ways, but ultimately you're tied to a single POST content value in your parameter definition. While it's possible to support multiple parameters on a POST/PUT operation, only one parameter can be mapped to the actual content - the rest have to be mapped to route values or the query string. Web API treats the whole request body as one big chunk of data that is sent to a Media Type Formatter that's responsible for de-serializing the content into whatever value the method requires. The restriction comes from async nature of Web API where the request data is read only once inside of the formatter that retrieves and deserializes it. Because it's read once, checking for content (like individual POST variables) first is not possible. However, Web API does provide a couple of ways to access the form POST data: Model Binding - object property mapping to bind POST values FormDataCollection - collection of POST keys/values ModelBinding POST Values - Binding POST data to Object Properties The recommended way to handle POST values in Web API is to use Model Binding, which maps individual urlencoded POST values to properties of a model object provided as the parameter. Model binding requires a single object as input to be bound to the POST data, with each POST key that matches a property name (including nested properties like Address.Street) being mapped and updated including automatic type conversion of simple types. This is a very nice feature - and a familiar one from MVC - that makes it very easy to have model objects mapped directly from inbound data. The obvious drawback with Model Binding is that you need a model for it to work: You have to provide a strongly typed object that can receive the data and this object has to map the inbound data. To rewrite the example above to use ModelBinding I have to create a class maps the properties that I need as parameters:public class LoginData { public string Username { get; set; } public string Password { get; set; } } and then accept the data like this in the API method:[HttpPost] public HttpResponseMessage Authenticate(LoginData login) { string username = login.Username; string password = login.Password; … } This works fine mapping the POST values to the properties of the login object. As a side benefit of this method definition, the method now also allows posting of JSON or XML to the same endpoint. If I change my request to send JSON like this: POST http://localhost:88/samples/authenticate HTTP/1.1 Host: localhost:88 Accept: application/jsonContent-type: application/json Content-Length: 40 {"Username":"ricks","Password":"sekrit"} it works as well and transparently, courtesy of the nice Content Negotiation features of Web API. There's nothing wrong with using Model binding and in fact it's a common practice to use (view) model object for inputs coming back from the client and mapping them into these models. But it can be  kind of a hassle if you have AJAX applications with a ton of backend hits, especially if many methods are very atomic and focused and don't effectively require a model or view. Not always do you have to pass structured data, but sometimes there are just a couple of simple response values that need to be sent back. If all you need is to pass a couple operational parameters, creating a view model object just for parameter purposes seems like overkill. Maybe you can use the query string instead (if that makes sense), but if you can't then you can often end up with a plethora of 'message objects' that serve no further  purpose than to make Model Binding work. Note that you can accept multiple parameters with ModelBinding so the following would still work:[HttpPost] public HttpResponseMessage Authenticate(LoginData login, string loginDomain) but only the object will be bound to POST data. As long as loginDomain comes from the querystring or route data this will work. Collecting POST values with FormDataCollection Another more dynamic approach to handle POST values is to collect POST data into a FormDataCollection. FormDataCollection is a very basic key/value collection (like FormCollection in MVC and Request.Form in ASP.NET in general) and then read the values out individually by querying each. [HttpPost] public HttpResponseMessage Authenticate(FormDataCollection form) { var username = form.Get("Username"); var password = form.Get("Password"); …} The downside to this approach is that it's not strongly typed, you have to handle type conversions on non-string parameters, and it gets a bit more complicated to test such as setup as you have to seed a FormDataCollection with data. On the other hand it's flexible and easy to use and especially with string parameters is easy to deal with. It's also dynamic, so if the client sends you a variety of combinations of values on which you make operating decisions, this is much easier to work with than a strongly typed object that would have to account for all possible values up front. The downside is that the code looks old school and isn't as self-documenting as a parameter list or object parameter would be. Nevertheless it's totally functionality and a viable choice for collecting POST values. What about [FromBody]? Web API also has a [FromBody] attribute that can be assigned to parameters. If you have multiple parameters on a Web API method signature you can use [FromBody] to specify which one will be parsed from the POST content. Unfortunately it's not terribly useful as it only returns content in raw format and requires a totally non-standard format ("=content") to specify your content. For more info in how FromBody works and several related issues to how POST data is mapped, you can check out Mike Stalls post: How WebAPI does Parameter Binding Not really sure where the Web API team thought [FromBody] would really be a good fit other than a down and dirty way to send a full string buffer. Extending Web API to make multiple POST Vars work? Don't think so Clearly there's no native support for multiple POST variables being mapped to parameters, which is a bit of a bummer. I know in my own work on one project my customer actually found this to be a real sticking point in their AJAX backend work, and we ended up not using Web API and using MVC JSON features instead. That's kind of sad because Web API is supposed to be the proper solution for AJAX backends. With all of ASP.NET Web API's extensibility you'd think there would be some way to build this functionality on our own, but after spending a bit of time digging and asking some of the experts from the team and Web API community I didn't hear anything that even suggests that this is possible. From what I could find I'd say it's not possible primarily because Web API's Routing engine does not account for the POST variable mapping. This means [HttpPost] methods with url encoded POST buffers are not mapped to the parameters of the endpoint, and so the routes would never even trigger a request that could be intercepted. Once the routing doesn't work there's not much that can be done. If somebody has an idea how this could be accomplished I would love to hear about it. Do we really need multi-value POST mapping? I think that that POST value mapping is a feature that one would expect of any API tool to have. If you look at common APIs out there like Flicker and Google Maps etc. they all work with POST data. POST data is very prominent much more so than JSON inputs and so supporting as many options that enable would seem to be crucial. All that aside, Web API does provide very nice features with Model Binding that allows you to capture many POST variables easily enough, and logistically this will let you build whatever you need with POST data of all shapes as long as you map objects. But having to have an object for every operation that receives a data input is going to take its toll in heavy AJAX applications, with a lot of types created that do nothing more than act as parameter containers. I also think that POST variable mapping is an expected behavior and Web APIs non-support will likely result in many, many questions like this one: How do I bind a simple POST value in ASP.NET WebAPI RC? with no clear answer to this question. I hope for V.next of WebAPI Microsoft will consider this a feature that's worth adding. Related Articles Passing multiple POST parameters to Web API Controller Methods Mike Stall's post: How Web API does Parameter Binding Where does ASP.NET Web API Fit?© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Queued Loadtest to remove Concurrency issues using Shared Data Service in OpenScript

    - by stefan.thieme(at)oracle.com
    Queued Processing to remove Concurrency issues in Loadtest ScriptsSome scripts act on information returned by the server, e.g. act on first item in the returned list of pending tasks/actions. This may lead to concurrency issues if the virtual users simulated in a load test scenario are not synchronized in some way.As the load test cases should be carried out in a comparable and straight forward manner simply cancel a transaction in case a collision occurs is clearly not an option. In case you increase the number of virtual users this approach would lead to a high number of requests for the early steps in your transaction (e.g. login, retrieve list of action points, assign an action point to the virtual user) but later steps would be rarely visited successfully or at all, depending on the application logic.A way to tackle this problem is to enqueue the virtual users in a Shared Data Service queue. Only the first virtual user in this queue will be allowed to carry out the critical steps (retrieve list of action points, assign an action point to the virtual user) in your transaction at any one time.Once a virtual user has passed the critical path it will dequeue himself from the head of the queue and continue with his actions. This does theoretically allow virtual users to run in parallel all steps of the transaction which are not part of the critical path.In practice it has been seen this is rarely the case, though it does not allow adding more than N users to perform a transaction without causing delays due to virtual users waiting in the queue. N being the time of the total transaction divided by the sum of the time of all critical steps in this transaction.While this problem can be circumvented by allowing multiple queues to act on individual segments of the list of actions, e.g. per country filter, ends with 0..9 filter, etc.This would require additional handling of these additional queues of slots for the virtual users at the head of the queue in order to maintain the mutually exclusive access to the first element in the list returned by the server at any one time of the load test. Such an improved handling of multiple queues and/or multiple slots is above the subject of this paper.Shared Data Services Pre-RequisitesStart WebLogic Server to host Shared Data ServicesYou will have to make sure that your WebLogic server is installed and started. Shared Data Services may not work if you installed only the minimal installation package for OpenScript. If however you installed the default package including OLT and OTM, you may follow the instructions below to start and verify WebLogic installation.To start the WebLogic Server deployed underneath of Oracle Load Testing and/or Oracle Test Manager you can go to your Start menu, Oracle Application Testing Suite and select the Restart Oracle Application Testing Suite Application Service entry from the Tools submenu.To verify the service has been started you can run the Microsoft Management Console for Services by Selecting Run from the Start Menu and entering services.msc. Look for the entry that reads Oracle Application Testing Suite Application Service, once it has changed it status from Starting to Started you can proceed to verify the login. Please note that this may take several minutes, I would say up to 10 minutes depending on the strength of your CPU horse-power.Verify WebLogic Server user credentialsYou will have to make sure that your WebLogic Server is installed and started. Next open the Oracle WebLogic Server Adminstration Console on http://localhost:8088/console.It may take a while until the application is deployed and started. It may display the following until the Administration Console has been deployed on the fly.Afterwards you can login using the username oats and the password that you selected during install time for your Application Testing Suite administrative purposes.This will bring up the Home page of you WebLogic Server. You have actually verified that you are able to login with these credentials already. However if you want to check the details, navigate to Security Realms, myrealm, Users and Groups tab.Here you could add users to your WebLogic Server which could be used in the later steps. Details on the Groups required for such a custom user to work are exceeding this quick overview and have to be selected with the WebLogic Server Adminstration Guide in mind.Shared Data Services pre-requisites for Load testingOpenScript Preferences have to be set to enable Encryption and provide a default Shared Data Service Connection for Playback.These are pre-requisites you want to use for load testing with Shared Data Services.Please note that the usage of the Connection Parameters (individual directive in the script) for Shared Data Services did not playback reliably in the current version 9.20.0370 of Oracle Load Testing (OLT) and encryption of credentials still seemed to be mandatory as well.General Encryption settingsSelect OpenScript Preferences from the View menu and navigate to the General, Encryption entry in the tree on the left. Select the Encrypt script data option from the list and enter the same password that you used for securing your WebLogic Server Administration Console.Enable global shared data access credentialsSelect OpenScript Preferences from the View menu and navigate to the Playback, Shared Data entry in the tree on the left. Enable the global shared data access credentials and enter the Address, User name and Password determined for your WebLogic Server to host Shared Data Services.Please note, that you may want to replace the localhost in Address with the hosts realname in case you plan to run load tests with Loadtest Agents running on remote systems.Queued Processing of TransactionsEnable Shared Data Services Module in Script PropertiesThe Shared Data Services Module has to be enabled for each Script that wants to employ the Shared Data Service Queue functionality in OpenScript. It can be enabled under the Script menu selecting Script Properties. On the Script Properties Dialog select the Modules section and check Shared Data to enable Shared Data Service Module for your script. Checking the Shared Data Services option will effectively add a line to your script code that adds the sharedData ScriptService to your script class of IteratingVUserScript.@ScriptService oracle.oats.scripting.modules.sharedData.api.SharedDataService sharedData;Record your scriptRecord your script as usual and then add the following things for Queue handling in the Initialize code block, before the first step and after the last step of your critical path and in the Finalize code block.The java code to be added at individual locations is explained in the following sections in full detail.Create a Shared Data Queue in InitializeTo create a Shared Data Queue go to the Java view of your script and enter the following statements to the initialize() code block.info("Create queueA with life time of 120 minutes");sharedData.createQueue("queueA", 120);This will create an instantiation of the Shared Data Queue object named queueA which is maintained for upto 120 minutes.If you want to use the code for multiple scripts, make sure to use a different queue name for each one here and in the subsequent steps. You may even consider to use a dynamic queueName based on filters of your result list being concurrently accessed.Prepare a unique id for each IterationIn order to keep track of individual virtual users in our queue we need to create a unique identifier from the virtual user id and the used username right after retrieving the next record from our databank file.getDatabank("Usernames").getNextDatabankRecord();getVariables().set("usernameValue1","VU_{{@vuid}}_{{@iterationnum}}_{{db.Usernames.Username}}_{{@timestamp}}_{{@random(10000)}}");String usernameValue = getVariables().get("usernameValue1");info("Now running virtual user " + usernameValue);As you can see from the above code block, we have set the OpenScript variable usernameValue1 to VU_{{@vuid}}_{{@iterationnum}}_{{db.Usernames.Username}}_{{@timestamp}}_{{@random(10000)}} which is a concatenation of the virtual user id and the iterationnumber for general uniqueness; as well as the username from our databank, the timestamp and a random number for making it further unique and ease spotting of errors.Not all of these fields are actually required to make it really unique, but adding the queue name may also be considered to help troubleshoot multiple queues.The value is then retrieved with the getVariables.get() method call and assigned to the usernameValue String used throughout the script.Please note that moving the getDatabank("Usernames").getNextDatabankRecord(); call to the initialize block was later considered to remove concurrency of multiple virtual users running with the same userid and therefor accessing the same "My Inbox" in step 6. This will effectively give each virtual user a userid from the databank file. Make sure you have enough userids to remove this second hurdle.Enqueue and attend Queue before Critical PathTo maintain the right order of virtual users being allowed into the critical path of the transaction the following pseudo step has to be added in front of the first critical step. In the case of this example this is right in front of the step where we retrieve the list of actions from which we select the first to be assigned to us.beginStep("[0] Waiting in the Queue", 0);{info("Enqueued virtual user " + usernameValue + " at the end of queueA");sharedData.offerLast("queueA", usernameValue);info("Wait until the user is the first in queueA");String queueValue1 = null;do {// we wait for at least 0.7 seconds before we check the head of the// queue. This is the time it takes one user to move through the// critical path, i.e. pass steps [5] Enter country and [6] Assign// to meThread.sleep(700);queueValue1 = (String) sharedData.peekFirst("queueA");info("The first user in queueA is currently: '" + queueValue1 + "' " + queueValue1.getClass() + " length " + queueValue1.length() );info("The current user is '"+ usernameValue + "' " + usernameValue.getClass() + " length " + usernameValue.length() + ": indexOf " + usernameValue.indexOf(queueValue1) + " equals " + usernameValue.equals(queueValue1) );} while ( queueValue1.indexOf(usernameValue) < 0 );info("Now the user is the first in queueA");}endStep();This will enqueue the username to the tail of our Queue. It will will wait for at least 700 milliseconds, the time it takes for one user to exit the critical path and then compare the head of our queue with it's username. This last step will be repeated while the two are not equal (indexOf less than zero). If they are equal the indexOf will yield a value of zero or larger and we will perform the critical steps.Dequeue after Critical PathAfter the virtual user has left the critical path and complete its last step the following code block needs to dequeue the virtual user. In the case of our example this is right after the action has been actually assigned to the virtual user. This will allow the next virtual user to retrieve the list of actions still available and in turn let him make his selection/assignment.info("Get and remove the current user from the head of queueA");String pollValue1 = (String) sharedData.pollFirst("queueA");The current user is removed from the head of the queue. The next one will now be able to match his username against the head of the queue.Clear and Destroy Queue for FinishWhen the script has completed, it should clear and destroy the queue. This code block can be put in the finish block of your script and/or in a separate script in order to clear and remove the queue in case you have spotted an error or want to reset the queue for some reason.info("Clear queueA");sharedData.clearQueue("queueA");info("Destroy queueA");sharedData.destroyQueue("queueA");The users waiting in queueA are cleared and the queue is destroyed. If you have scripts still executing they will be caught in a loop.I found it better to maintain a separate Reset Queue script which contained only the following code in the initialize() block. I use to call this script to make sure the queue is cleared in between multiple Loadtest runs. This script could also even be added as the first in a larger scenario, which would execute it only once at very start of the Loadtest and make sure the queues do not contain any stale entries.info("Create queueA with life time of 120 minutes");sharedData.createQueue("queueA", 120);info("Clear queueA");sharedData.clearQueue("queueA");This will create a Shared Data Queue instance of queueA and clear all entries from this queue.Monitoring QueueWhile creating the scripts it was useful to monitor the contents, i.e. the current first user in the Queue. The following code block will make sure the Shared Data Queue is accessible in the initialize() block.info("Create queueA with life time of 120 minutes");sharedData.createQueue("queueA", 120);In the run() block the following code will continuously monitor the first element of the Queue and write an informational message with the current username Value to the Result window.info("Monitor the first users in queueA");String queueValue1 = null;do {queueValue1 = (String) sharedData.peekFirst("queueA");if (queueValue1 != null)info("The first user in queueA is currently: '" + queueValue1 + "' " + queueValue1.getClass() + " length " + queueValue1.length() );} while ( true );This script can be run from OpenScript parallel to a loadtest performed by the Oracle Load Test.However it is not recommend to run this in a production loadtest as the performance impact is unknown. Accessing the Queue's head with the peekFirst() method has been reported with about 2 seconds response time by both OpenScript and OTL. It is advised to log a Service Request to see if this could be lowered in future releases of Application Testing Suite, as the pollFirst() and even offerLast() writing to the tail of the Queue usually returned after an average 0.1 seconds.Debugging QueueWhile debugging the scripts the following was useful to remove single entries from its head, i.e. the current first user in the Queue. The following code block will make sure the Shared Data Queue is accessible in the initialize() block.info("Create queueA with life time of 120 minutes");sharedData.createQueue("queueA", 120);In the run() block the following code will remove the first element of the Queue and write an informational message with the current username Value to the Result window.info("Get and remove the current user from the head of queueA");String pollValue1 = (String) sharedData.pollFirst("queueA");info("The first user in queueA was currently: '" + pollValue1 + "' " + pollValue1.getClass() + " length " + pollValue1.length() );ReferencesOracle Functional Testing OpenScript User's Guide Version 9.20 [E15488-05]Chapter 17 Using the Shared Data Modulehttp://download.oracle.com/otn/nt/apptesting/oats-docs-9.21.0030.zipOracle Fusion Middleware Oracle WebLogic Server Administration Console Online Help 11g Release 1 (10.3.4) [E13952-04]Administration Console Online Help - Manage users and groupshttp://download.oracle.com/docs/cd/E17904_01/apirefs.1111/e13952/taskhelp/security/ManageUsersAndGroups.htm

    Read the article

  • BizTalk 2009 - Naming Guidelines

    - by StuartBrierley
    The following is effectively a repost of the BizTalk 2004 naming guidlines that I have previously detailed.  I have posted these again for completeness under BizTalk 2009 and to allow an element of separation in case I find some reason to amend these for BizTalk 2009. These guidlines should be universal across any version of BizTalk you may wish to apply them to. General Rules All names should be named with a Pascal convention. Project Namespaces For message schemas: [CompanyName].XML.Schemas.[FunctionalName]* Examples:  ABC.XML.Schemas.Underwriting DEF.XML.Schemas.MarshmellowTradingExchange * Donates potential for multiple levels of functional name, such as Underwriting.Dictionary.Valuation For web services: [CompanyName].Web.Services.[FunctionalName] Examples: ABC.Web.Services.OrderJellyBeans For the main BizTalk Projects: [CompanyName].BizTalk.[AssemblyType].[FunctionalName]* Examples: ABC.BizTalk.Mappings.Underwriting ABC.BizTalk.Orchestrations.Underwriting * Donates potential for multiple levels of functional name, such as Mappings.Underwriting.Valuations Assemblies BizTalk Assembly names should match the associated Project Namespace, such as ABC.BizTalk.Mappings.Underwriting. This pertains to the formal assembly name and the DLL name. The Solution name should take the name of the main project within the solution, and also therefore the namespace for that project. Although long names such as this can be unwieldy to work with, the benefits of having the full scope available when the assemblies are installed on the target server are generally judged to outweigh this inconvenience. Messaging Artifacts Artifact Standard Notes Example Schema <DescriptiveName>.xsd   .NET Type name should match, without file extension.    .NET Namespace will likely match assembly name. PurchaseOrderAcknowledge_FF.xsd  or FNMA100330_FF.xsd Property Schema <DescriptiveName>.xsd Should be named to reflect possible common usage across multiple schemas  IspecMessagePropertySchema.xsd UnderwritingOrchestrationKeys.xsd Map <SourceSchema>2<DestinationSchema>.btm Exceptions to this may be made where the source and destination schemas share the majority of the name, such as in mainframe web service maps InstructionResponse2CustomEmailRequest.btm (exception example) AccountCustomerAddressSummaryRequest2MainframeRequest.btm Orchestration <DescriptiveName>.odx   GetValuationReports.odx SendMTEDecisionResponse.odx Send/Receive Pipeline <DescriptiveName>.btp   ValidatingXMLReceivePipeline.btp FlatFileAssembler.btp Receive Port A plainly worded phrase that will clearly explain the function.    FraudPreventionServices LetterProcessing   Receive Location A plainly worded phrase that will clearly explain the function.  ? Do we want to include the transport type here ? Arrears Web Service Send Port Group A plainly worded phrase that will clearly explain the function.   Customer Updates Send Port A plainly worded phrase that will clearly explain the function.    ABCProductUpdater LogLendingPolicyOutput Parties A meaningful name for a Trading Partner. If dealing with multiple entities within a Trading Partner organization, the Organization name could be used as a prefix.   Roles A meaningful name for the role that a Trading Partner plays.     Orchestration Workflow Shapes Shape Standard Notes Example Scopes <DescriptionOfContainedWork> or <DescOfcontainedWork><TxType>   Including info about transaction type may be appropriate in some situations where it adds significant documentation value to the diagram. HandleReportResponse         Receive Receive<MessageName> Typically, MessageName will be the same as the name of the message variable that is being received “into”. ReceiveReportResponse Send Send<MessageName> Typically, MessageName will be the same as the name of the message variable that is being sent. SendValuationDetailsRequest Expression <DescriptionOfEffect> Expression shapes should be named to describe the net effect of the expression, similar to naming a method.  The exception to this is the case where the expression is interacting with an external .NET component to perform a function that overlaps with existing BizTalk functionality – use closest BizTalk shape for this case. CreatePrintXML Decide <DescriptionOfDecision> A description of what will be decided in the “if” branch Report Type? Perform MF Save? If-Branch <DescriptionOfDecision> A (potentially abbreviated) description of what is being decided Mortgage Valuation Yes Else-Branch Else Else-branch shapes should always be named “Else” Else Construct Message (Assign) Create<Message> (for Construct)     <ExpressionDescription> (for expression) If a Construct shape contains a message assignment, it should be prefixed with “Create” followed by an abbreviated name of the message being assigned.    The actual message assignment shape contained should be named to describe the expression that is contained. CreateReportDataMV   which contains expression: ExtractReportData Construct Message (Transform) Create<Message> (for Construct)   <SourceSchema>2<DestSchema> (for transform) If a Construct shape contains a message transform, it should be prefixed with “Create” followed by an abbreviated name of the message being assigned.   The actual message transform shape contained should generally be named the same as the called map.  CreateReportDataMV   which contains transform: ReportDataMV2ReportDataMV                 Construct Message (containing multiple shapes)   If a Construct Message shape uses multiple assignments or transforms, the overall shape should be named to communicate the net effect, using no prefix.     Call/Start Orchestration Call<OrchestrationName>   Start<OrchestrationName>     Throw Throw<ExceptionType> The corresponding variable name for the exception type should (often) be the same name as the exception type, only camel-cased. ThrowRuleException, which references the “ruleException” variable.     Parallel <DescriptionOfParallelWork> Parallel shapes should be named by a description of what work will be done in parallel   Delay <DescriptionOfWhatWaitingFor> Delay shapes should be named by a description of what is being waited for.  POAcknowledgeTimeout Listen <DescriptionOfOutcomes> Listen shapes should be named by a description that captures (to the degree possible) all the branches of the Listen shape POAckOrTimeout FirstShippingBid Loop <DescriptionOfLoop> A (potentially abbreviated) description of what the loop is. ForEachValuationReport WhileErrorFlagTrue Role Link   See “Roles” in messaging naming conventions above.   Suspend <ReasonDescription> Describe what action an administrator must take to resume the orchestration.  More detail can be passed to error property – and should include what should be done by the administrator before resuming the orchestration. ReEstablishCreditLink Terminate <ReasonDescription> Describe why the orchestration terminated.  More detail can be passed to error property. TimeoutsExpired Call Rules Call<PolicyName> The policy name may need to be abbreviated. CallLendingPolicy Compensate Compensate or Compensate<TxName> If the shape compensates nested transactions, names should be suffixed with the name of the nested transaction – otherwise it should simple be Compensate. CompensateTransferFunds Orchestration Types Type Standard Notes Example Multi-Part Message Types <LogicalDocumentType>   Multi-part types encapsulate multiple parts.  The WSDL spec indicates “parts are a flexible mechanism for describing the logical abstract content of a message.”  The name of the multi-part type should correspond to the “logical” document type, i.e. what the sum of the parts describes. InvoiceReceipt   (which might encapsulate an invoice acknowledgement and a payment voucher.) Multi-Part Messsage Part <SchemaNameOfPart> Should be named (most often) simply for the schema (or simple type) associated with the part. InvoiceHeader Messages <SchemaName> or <MuliPartMessageTypeName> Should be named based on the corresponding schema type or multi-part message type.  If there is more than one variable of a type, name for its use within the orchestration. ReportDataMV UpdatedReportDataMV Variables <DescriptiveName>   TargetFilePath StringProcessor Port Types <FunctionDescription>PortType Should be named to suggest the nature of an endpoint, with pascal casing and suffixed with “PortType”.   If there will be more than one Port for a Port Type, the Port Type should be named according to the abstract service supplied.   The WSDL spec indicates port types are “a named set of abstract operations and the abstract messages involved” that also encapsulates the message pattern (i.e. one-way, request-response, solicit-response) that all operations on the port type adhere to. ReceiveReportResponsePortType  or CallEAEPortType (This is a two way port, so Receove or Send alone would not be appropriate.  Could have been ProcessEAERequestPortType etc....) Ports <FunctionDescription>Port Should be named to suggest a grouping of functionality, with pascal casing and suffixed with “Port.”  ReceiveReportResponsePort CallEAEPort Correlation types <DescriptiveName> Should be named based on the logical name of what is being used to correlate.  PurchaseOrderNumber Correlation sets <DescriptiveName> Should be named based on the corresponding correlation type.  If there is more than one, it should be named to reflect its specific purpose within the orchestration.   PurchaseOrderNumber Orchestration parameters <DescriptiveName> Should be named to match the caller’s names for the corresponding variables where appropriate.

    Read the article

  • qftp mput rawcommand

    - by krishna
    Hello, I have a doubt regarding multiple file transfer with qftp. There is no direct way to transfer multiple files with qftp class. Well, I tried it using arbitrary ftp command "mput" with "rawCommand" in QFTP. But it doesnt work for me. Please let me know how I could do a multiple file transfer with qftp. Thanks,

    Read the article

  • Fluent NHibernate - How to map a non nullable foreign key that exists in two joined tables

    - by vakman
    I'm mapping a set of membership classes for my application using Fluent NHibernate. I'm mapping the classes to the asp.net membership database structure. The database schema relevant to the problem looks like this: ASPNET_USERS UserId PK ApplicationId FK NOT NULL other user columns ... ASPNET_MEMBERSHIP UserId PK,FK ApplicationID FK NOT NULL other membership columns... There is a one to one relationship between these two tables. I'm attempting to join the two tables together and map data from both tables to a single 'User' entity which looks like this: public class User { public virtual Guid Id { get; set; } public virtual Guid ApplicationId { get; set; } // other properties to be mapped from aspnetuser/membership tables ... My mapping file is as follows: public class UserMap : ClassMap<User> { public UserMap() { Table("aspnet_Users"); Id(user => user.Id).Column("UserId").GeneratedBy.GuidComb(); Map(user => user.ApplicationId); // other user mappings Join("aspnet_Membership", join => { join.KeyColumn("UserId"); join.Map(user => user.ApplicationId); // Map other things from membership to 'User' class } } } If I try to run with the code above I get a FluentConfiguration exception Tried to add property 'ApplicationId' when already added. If I remove the line "Map(user = user.ApplicationId);" or change it to "Map(user = user.ApplicationId).Not.Update().Not.Insert();" then the application runs but I get the following exception when trying to insert a new user: Cannot insert the value NULL into column 'ApplicationId', table 'ASPNETUsers_Dev.dbo.aspnet_Users'; column does not allow nulls. INSERT fails. The statement has been terminated. And if I leave the .Map(user = user.ApplicationId) as it originally was and make either of those changes to the join.Map(user = user.ApplicationId) then I get the same exception above except of course the exception is related to an insert into the aspnet_Membership table So... how do I do this kind of mapping assuming I can't change my database schema?

    Read the article

  • Haskell newbie on types

    - by garulfo
    I'm completely new to Haskell (and more generally to functional programming), so forgive me if this is really basic stuff. To get more than a taste, I try to implement in Haskell some algorithmic stuff I'm working on. I have a simple module Interval that implements intervals on the line. It contains the type data Interval t = Interval t t the helper function makeInterval :: (Ord t) => t -> t -> Interval t makeInterval l r | l <= r = Interval l r | otherwise = error "bad interval" and some utility functions about intervals. Here, my interest lies in multidimensional intervals (d-intervals), those objects that are composed of d intervals. I want to separately consider d-intervals that are the union of d disjoint intervals on the line (multiple interval) from those that are the union of d interval on d separate lines (track interval). With distinct algorithmic treatments in mind, I think it would be nice to have two distinct types (even if both are lists of intervals here) such as import qualified Interval as I -- Multilple interval newtype MInterval t = MInterval [I.Interval t] -- Track interval newtype TInterval t = TInterval [I.Interval t] to allow for distinct sanity checks, e.g. makeMInterval :: (Ord t) => [I.Interval t] -> MInterval t makeMInterval is = if foldr (&&) True [I.precedes i i' | (i, i') <- zip is (tail is)] then (MInterval is) else error "bad multiple interval" makeTInterval :: (Ord t) => [I.Interval t] -> TInterval t makeTInterval = TInterval I now get to the point, at last! But some functions are naturally concerned with both multiple intervals and track intervals. For example, a function order would return the number of intervals in a multiple interval or a track interval. What can I do? Adding -- Dimensional interval data DInterval t = MIntervalStuff (MInterval t) | TIntervalStuff (TInterval t) does not help much, since, if I understand well (correct me if I'm wrong), I would have to write order :: DInterval t -> Int order (MIntervalStuff (MInterval is)) = length is order (TIntervalStuff (TInterval is)) = length is and call order as order (MIntervalStuff is) or order (TIntervalStuff is) when is is a MInterval or a TInterval. Not that great, it looks odd. Neither I want to duplicate the function (I have many functions that are concerned with both multiple and track intevals, and some other d-interval definitions such as equal length multiple and track intervals). I'm left with the feeling that I'm completely wrong and have missed some important point about types in Haskell (and/or can't forget enough here about OO programming). So, quite a newbie question, what would be the best way in Haskell to deal with such a situation? Do I have to forget about introducing MInterval and TInterval and go with one type only? Thanks a lot for your help, Garulfo

    Read the article

  • Accommodating hierarchical data in SQL Server 2005 database design

    - by Remnant
    Context I am fairly new to database design (=know the basics) and am grappling with how best to design my database for a project I am currently working on. In short, my database will keep a log of which employees have attended certain health and safety courses throughout the year. There are multiple types of course e.g. moving objects, fire safety, hygiene etc. In terms of my database design I need to accommodate the following: Each location can have multiple divisions Each division can have multiple departments Each department can have multiple functions Each function can have multiple job roles Each job role can have different course requirements Also note that the structure at each location may not be the same e.g. the departments within divisions are not the same across locations and the functions within departments may also differ. Edit - updated to better articulate problem Let's assume I am just looking at Location, Division and Department and I have my database as follows: LocationTable DivisionTable DepartmentTable LocationID(PK) DivisionID(PK) DepartmentID(PK) LocationName DivisionName DepartmentName There is a many-to-many relationship between Locations and Divisions and also between Departments and Divisions. Suppose I set up a 'Junction Table' as follows: Location_Division LocationID(FK) DivisionID(FK) Using Location_Division I could easily pull back the Divisions for any Location. However, suppose I want to pull back all departments for a given Division in a given Location. If I set up another 'Junction Table' for Division and Department then I can't see how I would differentiate Division by Location? Division_Department DivisionID(FK) DepartmentID(FK) Location_Division Division_Department LocationID DivisionID DivisionID DepartmentID 1 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2 Do I need to expand the number of columns in my 'Junction Table' e.g. Location_Division_Department LocationID(FK) DivisionID(FK) DepartmentID(FK) Location_Division_Department LocationID DivisionID DepartmentID 1 1 1 1 1 2 1 1 3 2 1 1 2 1 2 2 1 3

    Read the article

  • LINQ InsertOnSubmit Required Fields needed for debugging

    - by Derek Hunziker
    Hi All, I've been using the ADO.NET Strogly-Typed DataSet model for about 2 years now for handling CRUD and stored procedure executions. This past year I built my first MVC app and I really enjoyed the ease and flexibility of LINQ. Perhaps the biggest selling point for me was that with LINQ I didn't have to create "Insert" stored procedures that would return the SCOPE_IDENTITY anymore (The auto-generated insert statements in the DataSet model were not capable of this without modification). Currently, I'm using LINQ with ASP.NET 3.5 WebForms. My inserts are looking like this: ProductsDataContext dc = new ProductsDataContext(); product p = new product { Title = "New Product", Price = 59.99, Archived = false }; dc.products.InsertOnSubmit(p); dc.SubmitChanges(); int productId = p.Id; So, this product example is pretty basic, right, and in the future, I'll probably be adding more fields to the database such as "InStock", "Quantity", etc... The way I understand it, I will need to add those fields to the database table and then delete and re-add the tables to the LINQ to SQL Class design view in order to refresh the DataContext. Does that sound right? The problem is that any new fields that are non-null are NOT caught by the ASP.NET build processes. For example, if I added a non-null field of "Quantity" to the database, the code above would still build. In the DataSet model, the stored procedure method would accept a certain amount of parameters and would warn me that my Insert would fail if I didn't include a quantity value. The same goes for LINQ stored procedure methods, however, to my knowledge, LINQ doesn't offer a way to auto generate the insert statements and that means I'm back to where I started. The bottom line is if I used insert statements like the one above and I add a non-null field to my database, it would break my app in about 10-20 places and there would be no way for me to detect it. Is my only option to do a solution-side search for the keyword "products.InsertOnSubmit" and make sure the new field is getting assigned? Is there a better way? Thanks!

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • List to CSV in Python

    - by Steve
    Hi, I am creating a CSV from a list of values. CSV File gets created but the csv is formed as a single column. Actually it should be multiple rows with multiple columns, instead it forms as a multiple rows with a single column. I am using the following code from random import choice import csv fileObject = csv.writer(open('Insurance.csv','w'),dialect='excel',delimiter=' ') for i in range(0,175): current_list = list(choice(master_list)) fileObject.writerows(current_list) current_list = [] Thanks

    Read the article

  • Proper way of utilizing gearman with my php application.

    - by luckytaxi
    For now I just want to use Gearman for background processing. For example, I need to email a recipient that they have a private message waiting for them once the sender submits their message into the DB. I assume I can run the worker/client and server on my primary server but I have no problems offloading some of the tasks to a different web server. Anyways, my question is how do I handle multiple "functions?" Let's say I need a job that handles the email portion and a job to handle image manipulation. Can I have multiple functions in the worker? I've followed a couple of examples I found online but each example only shows one function being initialized. Do I have to start up multiple "workers" to handle multiple functions?

    Read the article

< Previous Page | 353 354 355 356 357 358 359 360 361 362 363 364  | Next Page >