Search Results

Search found 29235 results on 1170 pages for 'dynamic management objects'.

Page 358/1170 | < Previous Page | 354 355 356 357 358 359 360 361 362 363 364 365  | Next Page >

  • ODI 11g – Insight to the SDK

    - by David Allan
    This post is a useful index into the ODI SDK that cross references the type names from the user interface with the SDK class and also the finder for how to get a handle on the object or objects. The volume of content in the SDK might seem a little ominous, there is a lot there, but there is a general pattern to the SDK that I will describe here. Also I will illustrate some basic CRUD operations so you can see how the SDK usage pattern works. The examples are written in groovy, you can simply run from the groovy console in ODI 11.1.1.6. Entry to the Platform   Object Finder SDK odiInstance odiInstance (groovy variable for console) OdiInstance Topology Objects Object Finder SDK Technology IOdiTechnologyFinder OdiTechnology Context IOdiContextFinder OdiContext Logical Schema IOdiLogicalSchemaFinder OdiLogicalSchema Data Server IOdiDataServerFinder OdiDataServer Physical Schema IOdiPhysicalSchemaFinder OdiPhysicalSchema Logical Schema to Physical Mapping IOdiContextualSchemaMappingFinder OdiContextualSchemaMapping Logical Agent IOdiLogicalAgentFinder OdiLogicalAgent Physical Agent IOdiPhysicalAgentFinder OdiPhysicalAgent Logical Agent to Physical Mapping IOdiContextualAgentMappingFinder OdiContextualAgentMapping Master Repository IOdiMasterRepositoryInfoFinder OdiMasterRepositoryInfo Work Repository IOdiWorkRepositoryInfoFinder OdiWorkRepositoryInfo Project Objects Object Finder SDK Project IOdiProjectFinder OdiProject Folder IOdiFolderFinder OdiFolder Interface IOdiInterfaceFinder OdiInterface Package IOdiPackageFinder OdiPackage Procedure IOdiUserProcedureFinder OdiUserProcedure User Function IOdiUserFunctionFinder OdiUserFunction Variable IOdiVariableFinder OdiVariable Sequence IOdiSequenceFinder OdiSequence KM IOdiKMFinder OdiKM Load Plans and Scenarios   Object Finder SDK Load Plan IOdiLoadPlanFinder OdiLoadPlan Load Plan and Scenario Folder IOdiScenarioFolderFinder OdiScenarioFolder Model Objects Object Finder SDK Model IOdiModelFinder OdiModel Sub Model IOdiSubModel OdiSubModel DataStore IOdiDataStoreFinder OdiDataStore Column IOdiColumnFinder OdiColumn Key IOdiKeyFinder OdiKey Condition IOdiConditionFinder OdiCondition Operator Objects   Object Finder SDK Session Folder IOdiSessionFolderFinder OdiSessionFolder Session IOdiSessionFinder OdiSession Schedule OdiSchedule How to Create an Object? Here is a simple example to create a project, it uses IOdiEntityManager.persist to persist the object. import oracle.odi.domain.project.OdiProject; import oracle.odi.core.persistence.transaction.support.DefaultTransactionDefinition; txnDef = new DefaultTransactionDefinition(); tm = odiInstance.getTransactionManager() txnStatus = tm.getTransaction(txnDef) project = new OdiProject("Project For Demo", "PROJECT_DEMO") odiInstance.getTransactionalEntityManager().persist(project) tm.commit(txnStatus) How to Update an Object? This update example uses the methods on the OdiProject object to change the project’s name that was created above, it is then persisted. import oracle.odi.domain.project.OdiProject; import oracle.odi.domain.project.finder.IOdiProjectFinder; import oracle.odi.core.persistence.transaction.support.DefaultTransactionDefinition; txnDef = new DefaultTransactionDefinition(); tm = odiInstance.getTransactionManager() txnStatus = tm.getTransaction(txnDef) prjFinder = (IOdiProjectFinder)odiInstance.getTransactionalEntityManager().getFinder(OdiProject.class); project = prjFinder.findByCode("PROJECT_DEMO"); project.setName("A Demo Project"); odiInstance.getTransactionalEntityManager().persist(project) tm.commit(txnStatus) How to Delete an Object? Here is a simple example to delete all of the sessions, it uses IOdiEntityManager.remove to delete the object. import oracle.odi.domain.runtime.session.finder.IOdiSessionFinder; import oracle.odi.domain.runtime.session.OdiSession; import oracle.odi.core.persistence.transaction.support.DefaultTransactionDefinition; txnDef = new DefaultTransactionDefinition(); tm = odiInstance.getTransactionManager() txnStatus = tm.getTransaction(txnDef) sessFinder = (IOdiSessionFinder)odiInstance.getTransactionalEntityManager().getFinder(OdiSession.class); sessc = sessFinder.findAll(); sessItr = sessc.iterator() while (sessItr.hasNext()) {   sess = (OdiSession) sessItr.next()   odiInstance.getTransactionalEntityManager().remove(sess) } tm.commit(txnStatus) This isn't an all encompassing summary of the SDK, but covers a lot of the content to give you a good handle on the objects and how they work. For details of how specific complex objects are created via the SDK, its best to look at postings such as the interface builder posting here. Have fun, happy coding!

    Read the article

  • Manage a flexible and elastic Data Center with Oracle VM Manager (By Tarry Singh - PACKT Publishing)

    - by frederic.michiara
    For the ones looking at an easy reading and first good approach to Oracle VM Manager and VM Servers, I would recommend reading the following book even so it was written for 2.1.2 whereas we can use now Oracle VM 2.2 : Oracle VM Manager 2.1.2 Manage a Flexible and Elastic Data Center with Oracle VM Manager Learn quickly to install Oracle VM Manager and Oracle VM Servers Learn to manage your Virtual Data Center using Oracle VM Manager Import VMs from the Web, template, repositories, and other VM formats such as VMware Learn powerful Xen Hypervisor utilities such as xm, xentop, and virsh A practical hands-on book with step-by-step instructions Oracle VM experts might be frustrated, but to me it's not aim to Oracle VM experts, but to the ones who needs an introduction to the subject with a good coverage of all what you need to know. This book is available on https://www.packtpub.com/oracle-vm-manager-2-1-2/book Need to find out about Table of contents : https://www.packtpub.com/article/oracle-vm-manager-2-1-2-table-of-contents Discover a sample chapter : https://www.packtpub.com/sites/default/files/sample_chapters/7122-oracle-virtualization-sample-chapter-4-oracle-vm-management.pdf Read also articles from Tarry Singh on http://www.packtpub.com/ : Oracle VM Management : http://www.packtpub.com/article/oracle-vm-management-1 Extending Oracle VM Management : http://www.packtpub.com/article/oracle-vm-management-2 Hope you'll enjoy this book as a first approach to Oracle VM. For more information on Oracle VM : Oracle VM on n OTN : http://www.oracle.com/technology/products/vm/index.html Oracle VM Wiki : http://wiki.oracle.com/page/Oracle+VM Oracle VM on IBM System x : http://www-03.ibm.com/systems/x/solutions/infrastructure/erpcrm/oracle/virtualization.html

    Read the article

  • Oracle BI Server Modeling, Part 1- Designing a Query Factory

    - by bob.ertl(at)oracle.com
      Welcome to Oracle BI Development's BI Foundation blog, focused on helping you get the most value from your Oracle Business Intelligence Enterprise Edition (BI EE) platform deployments.  In my first series of posts, I plan to show developers the concepts and best practices for modeling in the Common Enterprise Information Model (CEIM), the semantic layer of Oracle BI EE.  In this segment, I will lay the groundwork for the modeling concepts.  First, I will cover the big picture of how the BI Server fits into the system, and how the CEIM controls the query processing. Oracle BI EE Query Cycle The purpose of the Oracle BI Server is to bridge the gap between the presentation services and the data sources.  There are typically a variety of data sources in a variety of technologies: relational, normalized transaction systems; relational star-schema data warehouses and marts; multidimensional analytic cubes and financial applications; flat files, Excel files, XML files, and so on. Business datasets can reside in a single type of source, or, most of the time, are spread across various types of sources. Presentation services users are generally business people who need to be able to query that set of sources without any knowledge of technologies, schemas, or how sources are organized in their company. They think of business analysis in terms of measures with specific calculations, hierarchical dimensions for breaking those measures down, and detailed reports of the business transactions themselves.  Most of them create queries without knowing it, by picking a dashboard page and some filters.  Others create their own analysis by selecting metrics and dimensional attributes, and possibly creating additional calculations. The BI Server bridges that gap from simple business terms to technical physical queries by exposing just the business focused measures and dimensional attributes that business people can use in their analyses and dashboards.   After they make their selections and start the analysis, the BI Server plans the best way to query the data sources, writes the optimized sequence of physical queries to those sources, post-processes the results, and presents them to the client as a single result set suitable for tables, pivots and charts. The CEIM is a model that controls the processing of the BI Server.  It provides the subject areas that presentation services exposes for business users to select simplified metrics and dimensional attributes for their analysis.  It models the mappings to the physical data access, the calculations and logical transformations, and the data access security rules.  The CEIM consists of metadata stored in the repository, authored by developers using the Administration Tool client.     Presentation services and other query clients create their queries in BI EE's SQL-92 language, called Logical SQL or LSQL.  The API simply uses ODBC or JDBC to pass the query to the BI Server.  Presentation services writes the LSQL query in terms of the simplified objects presented to the users.  The BI Server creates a query plan, and rewrites the LSQL into fully-detailed SQL or other languages suitable for querying the physical sources.  For example, the LSQL on the left below was rewritten into the physical SQL for an Oracle 11g database on the right. Logical SQL   Physical SQL SELECT "D0 Time"."T02 Per Name Month" saw_0, "D4 Product"."P01  Product" saw_1, "F2 Units"."2-01  Billed Qty  (Sum All)" saw_2 FROM "Sample Sales" ORDER BY saw_0, saw_1       WITH SAWITH0 AS ( select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,      sum(T835.Units) as c3, T879.Prod_Key as c4 from      Product T879 /* A05 Product */ ,      Time_Mth T986 /* A08 Time Mth */ ,      FactsRev T835 /* A11 Revenue (Billed Time Join) */ where ( T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid) group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month ) select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3 from SAWITH0 order by c1, c2   Probably everybody reading this blog can write SQL or MDX.  However, the trick in designing the CEIM is that you are modeling a query-generation factory.  Rather than hand-crafting individual queries, you model behavior and relationships, thus configuring the BI Server machinery to manufacture millions of different queries in response to random user requests.  This mass production requires a different mindset and approach than when you are designing individual SQL statements in tools such as Oracle SQL Developer, Oracle Hyperion Interactive Reporting (formerly Brio), or Oracle BI Publisher.   The Structure of the Common Enterprise Information Model (CEIM) The CEIM has a unique structure specifically for modeling the relationships and behaviors that fill the gap from logical user requests to physical data source queries and back to the result.  The model divides the functionality into three specialized layers, called Presentation, Business Model and Mapping, and Physical, as shown below. Presentation services clients can generally only see the presentation layer, and the objects in the presentation layer are normally the only ones used in the LSQL request.  When a request comes into the BI Server from presentation services or another client, the relationships and objects in the model allow the BI Server to select the appropriate data sources, create a query plan, and generate the physical queries.  That's the left to right flow in the diagram below.  When the results come back from the data source queries, the right to left relationships in the model show how to transform the results and perform any final calculations and functions that could not be pushed down to the databases.   Business Model Think of the business model as the heart of the CEIM you are designing.  This is where you define the analytic behavior seen by the users, and the superset library of metric and dimension objects available to the user community as a whole.  It also provides the baseline business-friendly names and user-readable dictionary.  For these reasons, it is often called the "logical" model--it is a virtual database schema that persists no data, but can be queried as if it is a database. The business model always has a dimensional shape (more on this in future posts), and its simple shape and terminology hides the complexity of the source data models. Besides hiding complexity and normalizing terminology, this layer adds most of the analytic value, as well.  This is where you define the rich, dimensional behavior of the metrics and complex business calculations, as well as the conformed dimensions and hierarchies.  It contributes to the ease of use for business users, since the dimensional metric definitions apply in any context of filters and drill-downs, and the conformed dimensions enable dashboard-wide filters and guided analysis links that bring context along from one page to the next.  The conformed dimensions also provide a key to hiding the complexity of many sources, including federation of different databases, behind the simple business model. Note that the expression language in this layer is LSQL, so that any expression can be rewritten into any data source's query language at run time.  This is important for federation, where a given logical object can map to several different physical objects in different databases.  It is also important to portability of the CEIM to different database brands, which is a key requirement for Oracle's BI Applications products. Your requirements process with your user community will mostly affect the business model.  This is where you will define most of the things they specifically ask for, such as metric definitions.  For this reason, many of the best-practice methodologies of our consulting partners start with the high-level definition of this layer. Physical Model The physical model connects the business model that meets your users' requirements to the reality of the data sources you have available. In the query factory analogy, think of the physical layer as the bill of materials for generating physical queries.  Every schema, table, column, join, cube, hierarchy, etc., that will appear in any physical query manufactured at run time must be modeled here at design time. Each physical data source will have its own physical model, or "database" object in the CEIM.  The shape of each physical model matches the shape of its physical source.  In other words, if the source is normalized relational, the physical model will mimic that normalized shape.  If it is a hypercube, the physical model will have a hypercube shape.  If it is a flat file, it will have a denormalized tabular shape. To aid in query optimization, the physical layer also tracks the specifics of the database brand and release.  This allows the BI Server to make the most of each physical source's distinct capabilities, writing queries in its syntax, and using its specific functions. This allows the BI Server to push processing work as deep as possible into the physical source, which minimizes data movement and takes full advantage of the database's own optimizer.  For most data sources, native APIs are used to further optimize performance and functionality. The value of having a distinct separation between the logical (business) and physical models is encapsulation of the physical characteristics.  This encapsulation is another enabler of packaged BI applications and federation.  It is also key to hiding the complex shapes and relationships in the physical sources from the end users.  Consider a routine drill-down in the business model: physically, it can require a drill-through where the first query is MDX to a multidimensional cube, followed by the drill-down query in SQL to a normalized relational database.  The only difference from the user's point of view is that the 2nd query added a more detailed dimension level column - everything else was the same. Mappings Within the Business Model and Mapping Layer, the mappings provide the binding from each logical column and join in the dimensional business model, to each of the objects that can provide its data in the physical layer.  When there is more than one option for a physical source, rules in the mappings are applied to the query context to determine which of the data sources should be hit, and how to combine their results if more than one is used.  These rules specify aggregate navigation, vertical partitioning (fragmentation), and horizontal partitioning, any of which can be federated across multiple, heterogeneous sources.  These mappings are usually the most sophisticated part of the CEIM. Presentation You might think of the presentation layer as a set of very simple relational-like views into the business model.  Over ODBC/JDBC, they present a relational catalog consisting of databases, tables and columns.  For business users, presentation services interprets these as subject areas, folders and columns, respectively.  (Note that in 10g, subject areas were called presentation catalogs in the CEIM.  In this blog, I will stick to 11g terminology.)  Generally speaking, presentation services and other clients can query only these objects (there are exceptions for certain clients such as BI Publisher and Essbase Studio). The purpose of the presentation layer is to specialize the business model for different categories of users.  Based on a user's role, they will be restricted to specific subject areas, tables and columns for security.  The breakdown of the model into multiple subject areas organizes the content for users, and subjects superfluous to a particular business role can be hidden from that set of users.  Customized names and descriptions can be used to override the business model names for a specific audience.  Variables in the object names can be used for localization. For these reasons, you are better off thinking of the tables in the presentation layer as folders than as strict relational tables.  The real semantics of tables and how they function is in the business model, and any grouping of columns can be included in any table in the presentation layer.  In 11g, an LSQL query can also span multiple presentation subject areas, as long as they map to the same business model. Other Model Objects There are some objects that apply to multiple layers.  These include security-related objects, such as application roles, users, data filters, and query limits (governors).  There are also variables you can use in parameters and expressions, and initialization blocks for loading their initial values on a static or user session basis.  Finally, there are Multi-User Development (MUD) projects for developers to check out units of work, and objects for the marketing feature used by our packaged customer relationship management (CRM) software.   The Query Factory At this point, you should have a grasp on the query factory concept.  When developing the CEIM model, you are configuring the BI Server to automatically manufacture millions of queries in response to random user requests. You do this by defining the analytic behavior in the business model, mapping that to the physical data sources, and exposing it through the presentation layer's role-based subject areas. While configuring mass production requires a different mindset than when you hand-craft individual SQL or MDX statements, it builds on the modeling and query concepts you already understand. The following posts in this series will walk through the CEIM modeling concepts and best practices in detail.  We will initially review dimensional concepts so you can understand the business model, and then present a pattern-based approach to learning the mappings from a variety of physical schema shapes and deployments to the dimensional model.  Along the way, we will also present the dimensional calculation template, and learn how to configure the many additivity patterns.

    Read the article

  • Oracle Supply Chain builds momentum in the Press

    - by [email protected]
    SCM coverage in early '10 was dominated by major product announcements. The release of Oracle Global Trade Management and Oracle Transportation Management 6.1 garnered ten unique articles. SearchOracle.com and Supply Chain Management Review primarily focused on the compliance aspect of the announcement while Managing Automation concentrated on the new trade management capabilities. Elsewhere, there was a lot of interest around the new 'Green Dashboard' as reported by Modern Materials Handling, Environmental Leader and TMCnet. Other SCM news included the announced integration of Oracle Hyperion Planning and Demantra S&OP as reported by Database Trends and Applications and Treasury & Risk.

    Read the article

  • ETPM/OUAF 2.3.1 Framework Overview - Session 1

    - by MHundal
    A number of sessions are planned to review the ETPM (OUAF) 2.3.1 Framework.  These sessions will include an overview of the Navigation, Portals, Zones, Business Objects, Business Services, Algorithms, Scripts, etc.. Session 1 includes an overview of the standards in ETPM 2.3.1 Navigation and changes in the configuration and options for Portals and Zones.  Session 1 starts to look at the configuration of Business Objects.  The next session will provide an in-depth explanation for the configuration of Business Objects.  Click on the link below for Session 1 (45 minutes) that provides an overview of the changes in Navigation, general standards, changes in Portals/Zones configuration and a high-level overview of Business Objects. To stream the recording:   https://oracletalk.webex.com/oracletalk/ldr.php?AT=pb&SP=MC&rID=70387157&rKey=f791a7285affeb25 To download the recording: https://oracletalk.webex.com/oracletalk/lsr.php?AT=dw&SP=MC&rID=70387157&rKey=0be61590fd72d20e For additional questions, please contact [email protected].

    Read the article

  • Now Available: Visual Studio 2010 Release Candidate Virtual Machines with Sample Data and Hands-on-L

    - by John Alexander
    From a message from Brian Keller: “Back in December we posted a set of virtual machines pre-configured with Visual Studio 2010 Beta 2, Visual Studio Team Foundation Server 2010 Beta 2, and 7 hands-on-labs. I am pleased to announce that today we have shipped an updated virtual machine using the Visual Studio 2010 Release Candidate bits, a brand new sample application, and 9 hands-on-labs. This VM is customer-ready and includes everything you need to learn and/or deliver demonstrations of many of my favorite application lifecycle management (ALM) capabilities in Visual Studio 2010. This VM is available in the virtualization platform of your choice (Hyper-V, Virtual PC 2007 SP1, and Windows [7] Virtual PC). Hyper-V is highly recommended because of the performance benefits and snapshotting capabilities. Tailspin Toys The sample application we are using in this virtual machine is a simple ASP.NET MVC 2 storefront called Tailspin Toys. Tailspin Toys sells model airplanes and relies on the application lifecycle management capabilities of Visual Studio 2010 to help them build, test, and maintain their storefront. Major kudos go to Dan Massey for building out this great application for us. Hands-on-Labs / Demo Scripts The 9 hands-on-labs / demo scripts which accompany this virtual machine cover several of the core capabilities of conducting application lifecycle management with Visual Studio 2010. Each document can be used by an individual in a hands-on-lab capacity, to learn how to perform a given set of tasks, or used by a presenter to deliver a demonstration or classroom-style training. Unlike the beta 2 release, 100% of these labs target Tailspin Toys to help ensure a consistent storytelling experience. Software quality: Authoring and Running Manual Tests using Microsoft Test Manager 2010 Introduction to Test Case Management with Microsoft Test Manager 2010 Introduction to Coded UI Tests with Visual Studio 2010 Ultimate Debugging with IntelliTrace using Visual Studio 2010 Ultimate Software architecture: Code Discovery using the architecture tools in Visual Studio 2010 Ultimate Understanding Class Coupling with Visual Studio 2010 Ultimate Using the Architecture Explore in Visual Studio 2010 Ultimate to Analyze Your Code Software Configuration Management: Planning your Projects with Team Foundation Server 2010 Branching and Merging Visualization with Team Foundation Server 2010 “ Check out Brian’s Post for more info including download instructions…

    Read the article

  • Skechers Leverages Oracle Applications, Business Intelligence and On Demand Offerings to Drive Long-Term Growth

    - by user801960
    This month Oracle Retail in the USA announced that Skechers - a world leading lifestyle footwear retailer - would be adopting several Oracle Retail products as part of their global growth strategy and to maximise business efficiency.  While based primarily in the USA, Skechers is a respected retailer across the world and has been an Oracle customer since 1997.  The key information about the announcement is below.  To find out more about Skechers visit their website: http://www.skechers.com/  Skechers U.S.A. Inc., an award-winning global leader in the lifestyle footwear industry, has upgraded and expanded its Oracle® Applications investment, implemented Oracle Database and moved to Oracle On Demand, Oracle’s premier cloud service to support rapid growth across its retail and wholesale channels. The new business information systems are part of a larger initiative for the billion-dollar-plus footwear company to fuel growth, reduce total cost of ownership and enable the business to respond faster to market opportunities. With more than 3,000 styles of shoes to design, develop and market, Skechers upgraded to Oracle’s PeopleSoft Enterprise Financial Management and PeopleSoft Supply Chain Management to increase operational efficiencies and improve controls by establishing an integrated, industry-specific platform. An Oracle customer since 1997, Skechers implemented PeopleSoft Enterprise Real Estate Management to meet the rapid growth of its retail stores worldwide. The company is the first customer to go live on the Real Estate Management module and worked closely with Oracle to provide development insight. Skechers also implemented Oracle Fusion Governance, Risk, and Compliance applications. This deployment enabled the company to leverage its existing corporate governance and compliance efforts throughout the global enterprise and more effectively manage the audit processes across multiple business units, processes and systems while reducing audit costs. Next, Skechers leveraged Oracle Financial Analytics, a pre-built Oracle Business Intelligence Application and PeopleSoft Enterprise Project Costing and PeopleSoft Enterprise Contracts to develop a custom Royalty Management dashboard, providing managers with better financial visibility to the company’s licensing contracts. The company switched to Oracle Database and moved database hosting and management to Oracle On Demand to reduce maintenance, implementation and system administration costs. As a result, Skechers is also achieving a better response time and is delivering a higher level of 24x7 support. OSI Consulting, a Platinum partner in Oracle PartnerNetwork (OPN), provided implementation and integration services to Skechers.   To view the full announcement please click here

    Read the article

  • Recent Innovations to ILOM

    - by B.Koch
    by Josh Rosen If you are wondering how Oracle can make some of the most advanced, reliable, and fault tolerant servers on the market, look no further than Oracle Integrated Lights Out Manager or ILOM.  We build ILOM into every server we create, from Oracle x86 Systems such as X3-2 to the SPARC T-Series family. Oracle ILOM is an embedded service processor, but it's really more than that.  It's a computer within a computer.  It's smart, it's tightly integrated into all aspects of the server's operation, and it's a big reason why Oracle servers are used for some of the most mission-critical workloads out there. To understand the value of ILOM, there is no better place to start than its fault management capability.  We have taken the sophisticated fault management architecture from Solaris, developed and refined over a decade, and built it into each and every ILOM. ILOM detects a potential issue at its earliest stage, watching low-level sensors.   If the root cause of a problem is not clear from a single error reading, ILOM will look for other clues and combine multiple pieces of information to correctly identify a failing component. ILOM provides peace of mind. We tailor our fault management for each new server platform that we produce.  You can rest assured that it's always actively keeping the server healthy.  And if there is a problem, you can be confident it will let you know by sending you a notification by e-mail or trap. We also heard IT managers tell us they needed a Ph.D. in computer engineering to manage today's servers. It doesn't have to be that way.  Thanks to the latest innovations to Oracle ILOM, we present hardware inventory and status in way that makes sense – to anyone.  Green means everything is healthy and red means something is wrong.  When a component needs to be replaced a clear message indicates where the problem is and points you at a knowledge article about that problem.  It's that simple. Simpler management and simple interfaces mean reduced complexity and lower costs to manage.  And we know that's really important. ILOM does all this while also providing advanced service processor features you depend on for managing enterprise class systems.  You can remotely control the server power, interact with a virtual video console for the server, and mount media on the server remotely.  There is no need to spend money on a KVM switch to get this functionality. And when people hear how advanced ILOM is, they can't believe ILOM is free.  All features are enabled and included with each Oracle server that you buy.  There are no advanced licenses you need to purchase or features to unlock. Configuring ILOM has also never been easier.  It is now possible to configure almost all aspects of the server directly from ILOM.  This includes changing BIOS settings, persistently modifying boot order, and optimizing power settings -- all directly from ILOM. But Oracle's innovation does not stop with ILOM.  Oracle has engineered Oracle Enterprise Manager Ops Center to integrate directly with ILOM, providing centralized management across all of our servers. Ops Center will discover each of your Oracle servers over the network by searching for ILOMs.  When it finds one, it knows how to communicate with ILOM to monitoring and configure that server from application to disk. Since every server that Oracle produces, from x86 Systems to SPARC T-Series up and down the line, comes with Oracle ILOM, you can manage all Oracle servers in the same way.  And while all of our servers may have different components on the inside, each with their specialized functions, the way you integrate them and the way you monitor and manage them is exactly the same. Oracle ILOM is state-of-art.  If you are looking for a server that make systems management simple and is easy to integrate and maintain, check out the latest advances to Oracle ILOM. Josh Rosen is a Principal Product Manager at Oracle and previously spent more than a decade as a developer and architect of system management software. Josh has worked on system management for many of Oracle's hardware products ranging from the earliest blade systems to the latest Oracle x86 servers.

    Read the article

  • JavaScript Class Patterns

    - by Liam McLennan
    To write object-oriented programs we need objects, and likely lots of them. JavaScript makes it easy to create objects: var liam = { name: "Liam", age: Number.MAX_VALUE }; But JavaScript does not provide an easy way to create similar objects. Most object-oriented languages include the idea of a class, which is a template for creating objects of the same type. From one class many similar objects can be instantiated. Many patterns have been proposed to address the absence of a class concept in JavaScript. This post will compare and contrast the most significant of them. Simple Constructor Functions Classes may be missing but JavaScript does support special constructor functions. By prefixing a call to a constructor function with the ‘new’ keyword we can tell the JavaScript runtime that we want the function to behave like a constructor and instantiate a new object containing the members defined by that function. Within a constructor function the ‘this’ keyword references the new object being created -  so a basic constructor function might be: function Person(name, age) { this.name = name; this.age = age; this.toString = function() { return this.name + " is " + age + " years old."; }; } var john = new Person("John Galt", 50); console.log(john.toString()); Note that by convention the name of a constructor function is always written in Pascal Case (the first letter of each word is capital). This is to distinguish between constructor functions and other functions. It is important that constructor functions be called with the ‘new’ keyword and that not constructor functions are not. There are two problems with the pattern constructor function pattern shown above: It makes inheritance difficult The toString() function is redefined for each new object created by the Person constructor. This is sub-optimal because the function should be shared between all of the instances of the Person type. Constructor Functions with a Prototype JavaScript functions have a special property called prototype. When an object is created by calling a JavaScript constructor all of the properties of the constructor’s prototype become available to the new object. In this way many Person objects can be created that can access the same prototype. An improved version of the above example can be written: function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { toString: function() { return this.name + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); In this version a single instance of the toString() function will now be shared between all Person objects. Private Members The short version is: there aren’t any. If a variable is defined, with the var keyword, within the constructor function then its scope is that function. Other functions defined within the constructor function will be able to access the private variable, but anything defined outside the constructor (such as functions on the prototype property) won’t have access to the private variable. Any variables defined on the constructor are automatically public. Some people solve this problem by prefixing properties with an underscore and then not calling those properties by convention. function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { _getName: function() { return this.name; }, toString: function() { return this._getName() + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); Note that the _getName() function is only private by convention – it is in fact a public function. Functional Object Construction Because of the weirdness involved in using constructor functions some JavaScript developers prefer to eschew them completely. They theorize that it is better to work with JavaScript’s functional nature than to try and force it to behave like a traditional class-oriented language. When using the functional approach objects are created by returning them from a factory function. An excellent side effect of this pattern is that variables defined with the factory function are accessible to the new object (due to closure) but are inaccessible from anywhere else. The Person example implemented using the functional object construction pattern is: var personFactory = function(name, age) { var privateVar = 7; return { toString: function() { return name + " is " + age * privateVar / privateVar + " years old."; } }; }; var john2 = personFactory("John Lennon", 40); console.log(john2.toString()); Note that the ‘new’ keyword is not used for this pattern, and that the toString() function has access to the name, age and privateVar variables because of closure. This pattern can be extended to provide inheritance and, unlike the constructor function pattern, it supports private variables. However, when working with JavaScript code bases you will find that the constructor function is more common – probably because it is a better approximation of mainstream class oriented languages like C# and Java. Inheritance Both of the above patterns can support inheritance but for now, favour composition over inheritance. Summary When JavaScript code exceeds simple browser automation object orientation can provide a powerful paradigm for controlling complexity. Both of the patterns presented in this article work – the choice is a matter of style. Only one question still remains; who is John Galt?

    Read the article

  • JavaScript Class Patterns

    - by Liam McLennan
    To write object-oriented programs we need objects, and likely lots of them. JavaScript makes it easy to create objects: var liam = { name: "Liam", age: Number.MAX_VALUE }; But JavaScript does not provide an easy way to create similar objects. Most object-oriented languages include the idea of a class, which is a template for creating objects of the same type. From one class many similar objects can be instantiated. Many patterns have been proposed to address the absence of a class concept in JavaScript. This post will compare and contrast the most significant of them. Simple Constructor Functions Classes may be missing but JavaScript does support special constructor functions. By prefixing a call to a constructor function with the ‘new’ keyword we can tell the JavaScript runtime that we want the function to behave like a constructor and instantiate a new object containing the members defined by that function. Within a constructor function the ‘this’ keyword references the new object being created -  so a basic constructor function might be: function Person(name, age) { this.name = name; this.age = age; this.toString = function() { return this.name + " is " + age + " years old."; }; } var john = new Person("John Galt", 50); console.log(john.toString()); Note that by convention the name of a constructor function is always written in Pascal Case (the first letter of each word is capital). This is to distinguish between constructor functions and other functions. It is important that constructor functions be called with the ‘new’ keyword and that not constructor functions are not. There are two problems with the pattern constructor function pattern shown above: It makes inheritance difficult The toString() function is redefined for each new object created by the Person constructor. This is sub-optimal because the function should be shared between all of the instances of the Person type. Constructor Functions with a Prototype JavaScript functions have a special property called prototype. When an object is created by calling a JavaScript constructor all of the properties of the constructor’s prototype become available to the new object. In this way many Person objects can be created that can access the same prototype. An improved version of the above example can be written: function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { toString: function() { return this.name + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); In this version a single instance of the toString() function will now be shared between all Person objects. Private Members The short version is: there aren’t any. If a variable is defined, with the var keyword, within the constructor function then its scope is that function. Other functions defined within the constructor function will be able to access the private variable, but anything defined outside the constructor (such as functions on the prototype property) won’t have access to the private variable. Any variables defined on the constructor are automatically public. Some people solve this problem by prefixing properties with an underscore and then not calling those properties by convention. function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { _getName: function() { return this.name; }, toString: function() { return this._getName() + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); Note that the _getName() function is only private by convention – it is in fact a public function. Functional Object Construction Because of the weirdness involved in using constructor functions some JavaScript developers prefer to eschew them completely. They theorize that it is better to work with JavaScript’s functional nature than to try and force it to behave like a traditional class-oriented language. When using the functional approach objects are created by returning them from a factory function. An excellent side effect of this pattern is that variables defined with the factory function are accessible to the new object (due to closure) but are inaccessible from anywhere else. The Person example implemented using the functional object construction pattern is: var john = new Person("John Galt", 50); console.log(john.toString()); var personFactory = function(name, age) { var privateVar = 7; return { toString: function() { return name + " is " + age * privateVar / privateVar + " years old."; } }; }; var john2 = personFactory("John Lennon", 40); console.log(john2.toString()); Note that the ‘new’ keyword is not used for this pattern, and that the toString() function has access to the name, age and privateVar variables because of closure. This pattern can be extended to provide inheritance and, unlike the constructor function pattern, it supports private variables. However, when working with JavaScript code bases you will find that the constructor function is more common – probably because it is a better approximation of mainstream class oriented languages like C# and Java. Inheritance Both of the above patterns can support inheritance but for now, favour composition over inheritance. Summary When JavaScript code exceeds simple browser automation object orientation can provide a powerful paradigm for controlling complexity. Both of the patterns presented in this article work – the choice is a matter of style. Only one question still remains; who is John Galt?

    Read the article

  • Oracle GRC in Leader’s Quadrant on Gartner’s Magic Quadrant for Enterprise Governance Risk and Compliance Platforms

    - by Di Seghposs
    Once again Gartner has recognized Oracle as a Leader in their Magic Quadrant for Enterprise Governance Risk and Compliance (EGRC) Platforms report, stating that “Oracle remains in the Leader’s quadrant based on overall corporate viability, proven execution against its road map, and advanced capabilities to integrate risk management and performance management.”  In the report, Gartner cited that Oracle clearly understands the GRC challenges faced by a number of verticals, and also the trends toward the integration of risk management and performance management.  Gartner produces Magic Quadrant reports to provide guidance to their clients on available solutions in specific categories. This Magic Quadrant reports takes a holistic view of EGRC solutions and based on selected criteria, places vendors in one of the four quadrants - leaders, challengers, visionaries and niche. We are proud to be in the leader category! Click here to read the full report. Congratulations to our product development, strategy, and marketing teams for creating a world-class, market-leading GRC solution! Oracle GRC: Designed to manage risk, improve controls and reduce costs

    Read the article

  • NTP configuration in NEXUS Switch

    - by Pandi Durai
    i'm planning to change the NTP peer to 172.29.100.44,but i'm unable to delete the existing and add new peer NTP peer IP in Nexus switch,Please suggest me in removing the existing configuration. i have use the below commands to remove the peer,But still its not getting deleated from running configuration.Even if i add new peer,its not getting reflecting in running configuration. no ntp peer 172.29.100.10 use-vrf management. ntp peer 172.29.100.44 use-vrf management Existing configuration: ntp distribute. ntp peer 172.29.100.10 use-vrf management. ntp source-interface mgmt0. ntp commit. My another nexus is working fine with the below Configuration: ntp peer 172.29.100.10 use-vrf management. ntp peer 172.29.100.44 use-vrf management. ntp source-interface mgmt0.

    Read the article

  • How do I set up MVP for a Winforms solution?

    - by JonWillis
    Question moved from Stackoverflow - http://stackoverflow.com/questions/4971048/how-do-i-set-up-mvp-for-a-winforms-solution I have used MVP and MVC in the past, and I prefer MVP as it controls the flow of execution so much better in my opinion. I have created my infrastructure (datastore/repository classes) and use them without issue when hard coding sample data, so now I am moving onto the GUI and preparing my MVP. Section A I have seen MVP using the view as the entry point, that is in the views constructor method it creates the presenter, which in turn creates the model, wiring up events as needed. I have also seen the presenter as the entry point, where a view, model and presenter are created, this presenter is then given a view and model object in its constructor to wire up the events. As in 2, but the model is not passed to the presenter. Instead the model is a static class where methods are called and responses returned directly. Section B In terms of keeping the view and model in sync I have seen. Whenever a value in the view in changed, i.e. TextChanged event in .Net/C#. This fires a DataChangedEvent which is passed through into the model, to keep it in sync at all times. And where the model changes, i.e. a background event it listens to, then the view is updated via the same idea of raising a DataChangedEvent. When a user wants to commit changes a SaveEvent it fires, passing through into the model to make the save. In this case the model mimics the view's data and processes actions. Similar to #b1, however the view does not sync with the model all the time. Instead when the user wants to commit changes, SaveEvent is fired and the presenter grabs the latest details and passes them into the model. in this case the model does not know about the views data until it is required to act upon it, in which case it is passed all the needed details. Section C Displaying of business objects in the view, i.e. a object (MyClass) not primitive data (int, double) The view has property fields for all its data that it will display as domain/business objects. Such as view.Animals exposes a IEnumerable<IAnimal> property, even though the view processes these into Nodes in a TreeView. Then for the selected animal it would expose SelectedAnimal as IAnimal property. The view has no knowledge of domain objects, it exposes property for primitive/framework (.Net/Java) included objects types only. In this instance the presenter will pass an adapter object the domain object, the adapter will then translate a given business object into the controls visible on the view. In this instance the adapter must have access to the actual controls on the view, not just any view so becomes more tightly coupled. Section D Multiple views used to create a single control. i.e. You have a complex view with a simple model like saving objects of different types. You could have a menu system at the side with each click on an item the appropriate controls are shown. You create one huge view, that contains all of the individual controls which are exposed via the views interface. You have several views. You have one view for the menu and a blank panel. This view creates the other views required but does not display them (visible = false), this view also implements the interface for each view it contains (i.e. child views) so it can expose to one presenter. The blank panel is filled with other views (Controls.Add(myview)) and ((myview.visible = true). The events raised in these "child"-views are handled by the parent view which in turn pass the event to the presenter, and visa versa for supplying events back down to child elements. Each view, be it the main parent or smaller child views are each wired into there own presenter and model. You can literately just drop a view control into an existing form and it will have the functionality ready, just needs wiring into a presenter behind the scenes. Section E Should everything have an interface, now based on how the MVP is done in the above examples will affect this answer as they might not be cross-compatible. Everything has an interface, the View, Presenter and Model. Each of these then obviously has a concrete implementation. Even if you only have one concrete view, model and presenter. The View and Model have an interface. This allows the views and models to differ. The presenter creates/is given view and model objects and it just serves to pass messages between them. Only the View has an interface. The Model has static methods and is not created, thus no need for an interface. If you want a different model, the presenter calls a different set of static class methods. Being static the Model has no link to the presenter. Personal thoughts From all the different variations I have presented (most I have probably used in some form) of which I am sure there are more. I prefer A3 as keeping business logic reusable outside just MVP, B2 for less data duplication and less events being fired. C1 for not adding in another class, sure it puts a small amount of non unit testable logic into a view (how a domain object is visualised) but this could be code reviewed, or simply viewed in the application. If the logic was complex I would agree to an adapter class but not in all cases. For section D, i feel D1 creates a view that is too big atleast for a menu example. I have used D2 and D3 before. Problem with D2 is you end up having to write lots of code to route events to and from the presenter to the correct child view, and its not drag/drop compatible, each new control needs more wiring in to support the single presenter. D3 is my prefered choice but adds in yet more classes as presenters and models to deal with the view, even if the view happens to be very simple or has no need to be reused. i think a mixture of D2 and D3 is best based on circumstances. As to section E, I think everything having an interface could be overkill I already do it for domain/business objects and often see no advantage in the "design" by doing so, but it does help in mocking objects in tests. Personally I would see E2 as a classic solution, although have seen E3 used in 2 projects I have worked on previously. Question Am I implementing MVP correctly? Is there a right way of going about it? I've read Martin Fowler's work that has variations, and I remember when I first started doing MVC, I understood the concept, but could not originally work out where is the entry point, everything has its own function but what controls and creates the original set of MVC objects.

    Read the article

  • Gain Total Control of Systems running Oracle Linux

    - by Anand Akela
    Oracle Linux is the best Linux for enterprise computing needs and Oracle Enterprise Manager enables enterprises to gain total control over systems running Oracle Linux. Linux Management functionality is available as part of Oracle Enterprise Manager 12c and is available to Oracle Linux Basic and Premier Support customers at no cost. The solution provides an integrated and cost-effective solution for complete Linux systems lifecycle management and delivers comprehensive provisioning, patching, monitoring, and administration capabilities via a single, web-based user interface thus significantly reducing the complexity and cost associated with managing Linux operating system environments. Many enterprises are transforming their IT infrastructure from multiple independent datacenters to an Infrastructure-as-a-Service (IaaS) model, in which shared pools of compute and storage are made available to end-users on a self-service basis. While providing significant improvements when implemented properly, this strategy introduces change and complexity at a time when datacenters are already understaffed and overburdened. To aid in this transformation, IT managers need the proper tools to help them provide the array of IT capabilities required throughout the organization without stretching their staff and budget to the limit. Oracle Enterprise Manager 12c offers  the advanced capabilities to enable IT departments and end-users to take advantage of many benefits and cost savings of IaaS. Oracle Enterprise Manager Ops Center 12c addresses this challenge with a converged approach that integrates systems management across the infrastructure stack, helping organizations to streamline operations, increase productivity, and reduce system downtime.  You can see the Linux management functionality in action by watching the latest integrated Linux management demo . Stay Connected with Oracle Enterprise Manager: Twitter |  Face book |  You Tube |  Linked in |  Newsletter

    Read the article

  • You Need BRM When You have EBS – and Even When You Don’t!

    - by bwalstra
    Here is a list of criteria to test your business-systems (Oracle E-Business Suite, EBS) or otherwise to support your lines of digital business - if you score low, you need Oracle Billing and Revenue Management (BRM). Functions Scalability High Availability (99.999%) Performance Extensibility (e.g. APIs, Tools) Upgradability Maintenance Security Standards Compliance Regulatory Compliance (e.g. SOX) User Experience Implementation Complexity Features Customer Management Real-Time Service Authorization Pricing/Promotions Flexibility Subscriptions Usage Rating and Pricing Real-Time Balance Mgmt. Non-Currency Resources Billing & Invoicing A/R & G/L Payments & Collections Revenue Assurance Integration with Key Enterprise Applications Reporting Business Intelligence Order & Service Mgmt (OSM) Siebel CRM E-Business Suite On-/Off-line Mediation Payment Processing Taxation Royalties & Settlements Operations Management Disaster Recovery Overall Evaluation Implementation Configuration Extensibility Maintenance Upgradability Functional Richness Feature Richness Usability OOB Integrations Operations Management Leveraging Oracle Technology Overall Fit for Purpose You need Oracle BRM: Built for high-volume transaction processing Monetizes any service or event based on any metric Supports high-volume usage rating, pricing and promotions Provides real-time charging, service authorization and balance management Supports any account structure (e.g. corporate hierarchies etc.) Scales from low volumes to extremely high volumes of transactions (e.g. billions of trxn per hour) Exposes every single function via APIs (e.g. Java, C/C++, PERL, COM, Web Services, JCA) Immediate Business Benefits of BRM: Improved business agility and performance Supports the flexibility, innovation, and customer-centricity required for current and future business models Faster time to market for new products and services Supports 360 view of the customer in real-time – products can be launched to targeted customers at a record-breaking pace Streamlined deployment and operation Productized integrations, standards-based APIs, and OOB enablement lower deployment and maintenance costs Extensible and scalable solution Minimizes risk – initial phase deployed rapidly; solution extended and scaled seamlessly per business requirements Key Considerations Productized integration with key Oracle applications Lower integration risks and cost Efficient order-to-cash process Engineered solution – certification on Exa platform Exadata tested at PayPal in the re-platforming project Optimal performance of Oracle assets on Oracle hardware Productized solution in Rapid Offer Design and Order Delivery Fast offer design and implementation Significantly shorter order cycle time Productized integration with Oracle Enterprise Manager Visibility to system operability for optimal up time

    Read the article

  • how to pass traffic for port 80 not through openvpn?

    - by moti
    Is there a way to configure OpenVPN clients to route traffic for HTTP port 80 and HTTPS port 443 directly (i.e. not through the VPN), but through the regular default gateway the clients have. All other traffic should go through the VPN. My client is running OpenVPN on Windows and my current configuration looks like this: client dev tun proto tcp remote my-server-2 1194 resolv-retry infinite nobind persist-key persist-tun ca ../keys/ca.crt cert ../keys/client1.crt key ../keys/client1.key ns-cert-type server verb 3 route-metric 1 show-net-up dhcp-renew dhcp-release route-delay 0 120 hand-window 180 management localhost 13010 management-hold management-query-passwords management-forget-disconnect management-signal auth-user-pass

    Read the article

  • Vouchers grátis para exames de implementação (SOA, E2.0, etc)

    - by pfolgado
    Gostaria de receber 'vouchers' grátis para os exames de Implementação? É fácil! Registe-se numa das Comunidades de Parceiros de EMEA. A maioria destas Comunidades oferecem aos seus membros 'vouchers' grátis para os exames dos produtos cobertos por essascomunidades. Por exemplo, os membros da Comunidade Parceiros de SOA podem obter 'vouchers' grátis para os exames de implementação de SOA e BPM. Para mais informação sobre as comunidades de Parceiros Oracle ver: Tópico Contacto Applications & Systems Management Javier Puerta Business Intelligence & Enterprise Performance Management Mike Hallett Communications Paul Thompson CRM On Demand Paul Thompson Enterprise 2.0 (previously "Content Management") Hans Blaas Exadata Javier Puerta Healthcare Paul Thompson Identity Management & Security Wolfgang Ehrenthaler Manufacturing, Retail, Distribution and Life Science (MRD/LS) Paul Thompson Public Sector Paul Thompson SOA / Integration Jürgen Kress

    Read the article

  • Isometric drawing "Not Tile Stuff" on isometric map?

    - by Icebone1000
    So I got my isometric renderer working, it can draw diamond or jagged maps...Then I want to move on...How do I draw characters/objects on it in a optimal way? What Im doing now, as one can imagine, is traversing my grid(map) and drawing the tiles in a order so alpha blending works correctly. So, anything I draw in this map must be drawed at the same time the map is being drawn, with sucks a lot, screws your very modular map drawer, because now everything on the game (but the HUD) must be included on the drawer.. I was thinking whats the best approach to do this, comparing the position of all objects(not tile stuff) on the grid against the current tile being draw seems stupid, would it be better to add an id ON the grid(map)? this also seems terrible, because objects can move freely, not per tile steps (it can occupies 2 tiles if its between them, etc.) Dont know if matters, but my grid is 3D, so its not a plane with objects poping out, its a bunch of pilled cubes.

    Read the article

  • Understanding UML composition better

    - by Prog
    The technical difference between Composition and Aggregation in UML (and sometimes in programming too) is that with Composition, the lifetime of the objects composing the composite (e.g. an engine and a steering wheel in a car) is dependent on the composite object. While with Aggregation, the lifetime of the objects making up the composite is independent of the composite. However I'm not sure about something related to composition in UML. Say ClassA is composed of an object of ClassB: class ClassA{ ClassB bInstance; public ClassA(){ bInstance = new ClassB(); } } This is an example of composition, because bInstance is dependent on the lifetime of it's enclosing object. However, regarding UML notation - I'm not sure if I would notate the relationship between ClassA and ClassB with a filled diamond (composition) or a white diamond (aggregation). This is because while the lifetime of some ClassB instances is dependent of ClassA instances - there could be ClassB instances anywhere else in the program - not only within ClassA instances. The question is: if ClassA objects are composed of ClassB objects - but other ClassB objects are free to be used anywhere else in the program: Should the relationship between ClassA and ClassB be notated as aggregation or as composition?

    Read the article

  • T-SQL in SQL Azure

    - by kaleidoscope
    The following table summarizes the Transact-SQL support provided by SQL Azure Database at PDC 2009: Transact-SQL Features Supported Transact-SQL Features Unsupported Constants Constraints Cursors Index management and rebuilding indexes Local temporary tables Reserved keywords Stored procedures Statistics management Transactions Triggers Tables, joins, and table variables Transact-SQL language elements such as Create/drop databases Create/alter/drop tables Create/alter/drop users and logins User-defined functions Views, including sys.synonyms view Common Language Runtime (CLR) Database file placement Database mirroring Distributed queries Distributed transactions Filegroup management Global temporary tables Spatial data and indexes SQL Server configuration options SQL Server Service Broker System tables Trace Flags   Amit, S

    Read the article

  • Industry perspectives on managing content

    - by aahluwalia
    Earlier this week I was noodling over a topic for my first blog post. My intention for this blog is to bring a practitioner's perspective on ECM to the community; to share and collaborate on best practices and approaches that address today's business problems. Reviewing my past 14 years of experience with web technologies, I wondered what topic would serve as a good "conversation starter". During this time, I received a call from a friend who was seeking insights on how content management applies to specific industries. She approached me because she vaguely remembered that I had worked in the Health Insurance industry in the recent past. She wanted me to tell her about the specific business needs of this industry. She was in for quite a surprise as she found out that I had spent the better part of a decade managing content within the Health Insurance industry and I discovered a great topic for my first blog post! I offer some insights from Health Insurance and invite my fellow practitioners to share their insights from other industries. What does content management mean to these industries? What can solution providers be aware of when offering solutions to these industries? The United States health care system relies heavily on private health insurance, which is the primary source of coverage for approximately 58% Americans. In the late 19th century, "accident insurance" began to be available, which operated much like modern disability insurance. In the late 20th century, traditional disability insurance evolved into modern health insurance programs. The first thing a solution provider must be aware of about the Health Insurance industry is that it tends to be transaction intensive. They are the ones who manage and administer our health plans and process our claims when we visit our health care providers. It helps to keep in mind that they are in the business of delivering health insurance and not technology. You may find the mindset conservative in comparison to the IT industry, however, the Health Insurance industry has benefited and will continue to benefit from the efficiency that technology brings to traditionally paper-driven processes. We are all aware of the impact that Healthcare reform bill has had a significant impact on the Health Insurance industry. They are under a great deal of pressure to explore ways to reduce their administrative costs and increase operational efficiency. Overall, administrative costs of health insurance include the insurer's cost to administer the health plan, the costs borne by employers, health-care providers, governments and individual consumers. Inefficiencies plague health insurance, owing largely to the absence of standardized processes across the industry. To achieve this, industry leaders have come together to establish standards and invest in initiatives to help their healthcare provider partners transition to the next generation of healthcare technology. The move to online services and paperless explanation of benefits are some manifestations of technological advancements in health insurance. Several companies have adopted Toyota's LEAN methodology or Six Sigma principles to improve quality, reduce waste and excessive costs, thereby increasing the value of their plan offerings. A growing number of health insurance companies have transformed their business systems in the past decade alone and adopted some form of content management to reduce the costs involved in administering health plans. The key strategy has been to convert paper documents and forms into electronic formats, automate the content development process and securely distribute content to various audiences via diverse marketing channels, including web and mobile. Enterprise content management solutions can enable document capture of claim forms, manage digital assets, integrate with Enterprise Resource Planning (ERP) and Human Capital Management (HCM) solutions, build Business Process Management (BPM) processes, define retention and disposition instructions to comply with state and federal regulations and allow eBusiness and Marketing departments to develop and deliver web content to multiple websites, mobile devices and portals. Content can be shared securely within and outside the organization using Information Rights Management.  At the end of the day, solution providers who can translate strategic goals into solutions that maximize process automation, increase ease of use and minimize IT overhead are likely to be successful in today's health insurance environment.

    Read the article

  • Amazon how does their remarkable search work?

    - by JonH
    We are working on a fairly large CRM system /knowledge management system in asp.net. The db is SQL server and is growing in size based on all the various relationships. Upper management keeps asking us to implement search much like amazon does. Right from there search you can specify to search certain objects like outdoor equipment, clothing, etc. and you can even select all. I keep mentioning to upper management that we need to define the various fields to search on. Their response is all fields...they probably look at the search and assume that it is so simple. I'm the guy who has to say hold on guys we are talking about amazon here. My question is how can amazon run a search on an "all" category. Also one of the things management here likes is the dynamic filters. For instance, searching robot brings up filters specific to a robot toy. How can I put management in check and at least come up with search functionality that works like amazon. We are using asp.net, SQL server 2008 and jquery.

    Read the article

  • The Business of Winning Innovation: An Exclusive Blog Series

    - by Kerrie Foy
    "The Business of Winning Innovation” is a series of articles authored by Oracle Agile PLM experts on what it takes to make innovation a successful and lucrative competitive advantage. Our customers have proven Agile PLM applications to be enormously flexible and comprehensive, so we’ve launched this article series to showcase some of the most fascinating, value-packed use cases. In this article by Keith Colonna, we kick-off the series by taking a look at the science side of innovation within the Consumer Products industry and how PLM can help companies innovate faster, cheaper, smarter. This article will review how innovation has become the lifeline for growth within consumer products companies and how certain companies are “winning” by creating a competitive advantage for themselves by taking a more enterprise-wide,systematic approach to “innovation”.   Managing the Science of Innovation within the Consumer Products Industry By: Keith Colonna, Value Chain Solution Manager, Oracle The consumer products (CP) industry is very mature and competitive. Most companies within this industry have saturated North America (NA) with their products thus maximizing their NA growth potential. Future growth is expected to come from either expansion outside of North America and/or by way of new ideas and products. Innovation plays an integral role in both of these strategies, whether you’re innovating business processes or the products themselves, and may cause several challenges for the typical CP company, Becoming more innovative is both an art and a science. Most CP companies are very good at the art of coming up with new innovative ideas, but many struggle with perfecting the science aspect that involves the best practice processes that help companies quickly turn ideas into sellable products and services. Symptoms and Causes of Business Pain Struggles associated with the science of innovation show up in a variety of ways, like: · Establishing and storing innovative product ideas and data · Funneling these ideas to the chosen few · Time to market cycle time and on-time launch rates · Success rates, or how often the best idea gets chosen · Imperfect decision making (i.e. the ability to kill projects that are not projected to be winners) · Achieving financial goals · Return on R&D investment · Communicating internally and externally as more outsource partners are added globally · Knowing your new product pipeline and project status These challenges (and others) can be consolidated into three root causes: A lack of visibility Poor data with limited access The inability to truly collaborate enterprise-wide throughout your extended value chain Choose the Right Remedy Product Lifecycle Management (PLM) solutions are uniquely designed to help companies solve these types challenges and their root causes. However, PLM solutions can vary widely in terms of configurability, functionality, time-to-value, etc. Business leaders should evaluate PLM solution in terms of their own business drivers and long-term vision to determine the right fit. Many of these solutions are point solutions that can help you cure only one or two business pains in the short term. Others have been designed to serve other industries with different needs. Then there are those solutions that demo well but are owned by companies that are either unable or unwilling to continuously improve their solution to stay abreast of the ever changing needs of the CP industry to grow through innovation. What the Right PLM Solution Should Do for You Based on more than twenty years working in the CP industry, I recommend investing in a single solution that can help you solve all of the issues associated with the science of innovation in a totally integrated fashion. By integration I mean the (1) integration of the all of the processes associated with the development, maintenance and delivery of your product data, and (2) the integration, or harmonization of this product data with other downstream sources, like ERP, product catalogues and the GS1 Global Data Synchronization Network (or GDSN, which is now a CP industry requirement for doing business with most retailers). The right PLM solution should help you: Increase Revenue. A best practice PLM solution should help a company grow its revenues by consolidating product development cycle-time and helping companies get new and improved products to market sooner. PLM should also eliminate many of the root causes for a product being returned, refused and/or reclaimed (which takes away from top-line growth) by creating an enterprise-wide, collaborative, workflow-driven environment. Reduce Costs. A strong PLM solution should help shave many unnecessary costs that companies typically take for granted. Rationalizing SKU’s, components (ingredients and packaging) and suppliers is a major opportunity at most companies that PLM should help address. A natural outcome of this rationalization is lower direct material spend and a reduction of inventory. Another cost cutting opportunity comes with PLM when it helps companies avoid certain costs associated with process inefficiencies that lead to scrap, rework, excess and obsolete inventory, poor end of life administration, higher cost of quality and regulatory and increased expediting. Mitigate Risk. Risks are the hardest to quantify but can be the most costly to a company. Food safety, recalls, line shutdowns, customer dissatisfaction and, worst of all, the potential tarnishing of your brands are a few of the debilitating risks that CP companies deal with on a daily basis. These risks are so uniquely severe that they require an enterprise PLM solution specifically designed for the CP industry that safeguards product information and processes while still allowing the art of innovation to flourish. Many CP companies have already created a winning advantage by leveraging a single, best practice PLM solution to establish an enterprise-wide, systematic approach to innovation. Oracle’s Answer for the Consumer Products Industry Oracle is dedicated to solving the growth and innovation challenges facing the CP industry. Oracle’s Agile Product Lifecycle Management for Process solution was originally developed with and for CP companies and is driven by a specialized development staff solely focused on maintaining and continuously improving the solution per the latest industry requirements. Agile PLM for Process helps CP companies handle all of the processes associated with managing the science of the innovation process, including: specification management, new product development/project and portfolio management, formulation optimization, supplier management, and quality and regulatory compliance to name a few. And as I mentioned earlier, integration is absolutely critical. Many Oracle CP customers, both with Oracle ERP systems and non-Oracle ERP systems, report benefits from Oracle’s Agile PLM for Process. In future articles we will explain in greater detail how both existing Oracle customers (like Gallo, Smuckers, Land-O-Lakes and Starbucks) and new Oracle customers (like ConAgra, Tyson, McDonalds and Heinz) have all realized the benefits of Agile PLM for Process and its integration to their ERP systems. More to Come Stay tuned for more articles in our blog series “The Business of Winning Innovation.” While we will also feature articles focused on other industries, look forward to more on how Agile PLM for Process addresses innovation challenges facing the CP industry. Additional topics include: Innovation Data Management (IDM), New Product Development (NPD), Product Quality Management (PQM), Menu Management,Private Label Management, and more! . Watch this video for more info about Agile PLM for Process

    Read the article

  • How valuable are you to your organization?

    - by Lance Shaw
    I don't know about you but I find it easy to get bogged down with the daily list of tasks and deliverables.  We all have lots to do and it all seems to be due tomorrow.  If you are reading this blog, than your to-do list is almost certainly filled with tasks related to the management, processing and publishing of information.  As we get mired in the daily routine of making sure that the content management needs of the organizations are met, we can easily lose sight of the value that we bring.  After all, if information and content is the lifeblood of our organizations, then surely maintaining the healthy flow of that information has real value.  But how can you measure that value and bring it forward on your résumé or your list of achievements in time for your next performance review? The AIIM organization has spent a lot of time recently researching the value of certification for "information professionals".  When it comes to enterprise content management (ECM) there are many areas of specialization including records management, content archivist, digital asset manager, content librarian and more.  Specialization can clearly drive up your value but it can also lock you into a narrow niche area of focus.  AIIM has found that what companies also need is someone that can apply their knowledge of how information is managed within the operational scope of the business in order to drive real, measurable strategic value.  When you can showcase the value of a broader, business-wide mindset to your management, you have more opportunity to make professional progress and drive real growth where it counts, your paycheck.   We here on the Oracle WebCenter team partnered with AIIM on the research they performed around the value of an information professional certification program. In a webinar this week, Doug Miles of AIIM and I will be talking about the results of that recent survey and what it is going to mean in the future to be recognized as a "Certified Information Professional" (CIP).  Oracle sponsored this research to help individuals and companies understand the value of enterprise content management and what it means across the entire organization. I hope you will join us. If any of us were stopped in the street and were asked about it, I bet most of us would think of ourselves as an "Information Professional".  Now we have a way to actually prove it!  There's only one downside that I can see...  you will have to get your business cards updated to include the "CIP" acronym after your name.  I think you will agree that is a price worth paying!

    Read the article

< Previous Page | 354 355 356 357 358 359 360 361 362 363 364 365  | Next Page >