Search Results

Search found 74153 results on 2967 pages for 'test and set'.

Page 359/2967 | < Previous Page | 355 356 357 358 359 360 361 362 363 364 365 366  | Next Page >

  • MySQL Config File for Large System

    - by Jonathon
    We are running MySQL on a Windows 2003 Server Enterpise Edition box. MySQL is about the only program running on the box. We have approx. 8 slaves replicated to it, but my understanding is that having multiple slaves connecting to the same master does not significantly slow down performance, if at all. The master server has 16G RAM, 10 Terabyte drives in RAID 10, and four dual-core processors. From what I have seen from other sites, we have a really robust machine as our master db server. We just upgraded from a machine with only 4G RAM, but with similar hard drives, RAID, etc. It also ran Apache on it, so it was our db server and our application server. It was getting a little slow, so we split the db server onto this new machine and kept the application server on the first machine. We also distributed the application load amongst a few of our other slave servers, which also run the application. The problem is the new db server has mysqld.exe consuming 95-100% of CPU almost all the time and is really causing the app to run slowly. I know we have several queries and table structures that could be better optimized, but since they worked okay on the older, smaller server, I assume that our my.ini (MySQL config) file is not properly configured. Most of what I see on the net is for setting config files on small machines, so can anyone help me get the my.ini file correct for a large dedicated machine like ours? I just don't see how mysqld could get so bogged down! FYI: We have about 100 queries per second. We only use MyISAM tables, so skip-innodb is set in the ini file. And yes, I know it is reading the ini file correctly because I can change some settings (like the server-id and it will kill the server at startup). Here is the my.ini file: #MySQL Server Instance Configuration File # ---------------------------------------------------------------------- # Generated by the MySQL Server Instance Configuration Wizard # # # Installation Instructions # ---------------------------------------------------------------------- # # On Linux you can copy this file to /etc/my.cnf to set global options, # mysql-data-dir/my.cnf to set server-specific options # (@localstatedir@ for this installation) or to # ~/.my.cnf to set user-specific options. # # On Windows you should keep this file in the installation directory # of your server (e.g. C:\Program Files\MySQL\MySQL Server X.Y). To # make sure the server reads the config file use the startup option # "--defaults-file". # # To run run the server from the command line, execute this in a # command line shell, e.g. # mysqld --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" # # To install the server as a Windows service manually, execute this in a # command line shell, e.g. # mysqld --install MySQLXY --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" # # And then execute this in a command line shell to start the server, e.g. # net start MySQLXY # # # Guildlines for editing this file # ---------------------------------------------------------------------- # # In this file, you can use all long options that the program supports. # If you want to know the options a program supports, start the program # with the "--help" option. # # More detailed information about the individual options can also be # found in the manual. # # # CLIENT SECTION # ---------------------------------------------------------------------- # # The following options will be read by MySQL client applications. # Note that only client applications shipped by MySQL are guaranteed # to read this section. If you want your own MySQL client program to # honor these values, you need to specify it as an option during the # MySQL client library initialization. # [client] port=3306 [mysql] default-character-set=latin1 # SERVER SECTION # ---------------------------------------------------------------------- # # The following options will be read by the MySQL Server. Make sure that # you have installed the server correctly (see above) so it reads this # file. # [mysqld] # The TCP/IP Port the MySQL Server will listen on port=3306 #Path to installation directory. All paths are usually resolved relative to this. basedir="D:/MySQL/" #Path to the database root datadir="D:/MySQL/data" # The default character set that will be used when a new schema or table is # created and no character set is defined default-character-set=latin1 # The default storage engine that will be used when create new tables when default-storage-engine=MYISAM # Set the SQL mode to strict #sql-mode="STRICT_TRANS_TABLES,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION" # we changed this because there are a couple of queries that can get blocked otherwise sql-mode="" #performance configs skip-locking max_allowed_packet = 1M table_open_cache = 512 # The maximum amount of concurrent sessions the MySQL server will # allow. One of these connections will be reserved for a user with # SUPER privileges to allow the administrator to login even if the # connection limit has been reached. max_connections=1510 # Query cache is used to cache SELECT results and later return them # without actual executing the same query once again. Having the query # cache enabled may result in significant speed improvements, if your # have a lot of identical queries and rarely changing tables. See the # "Qcache_lowmem_prunes" status variable to check if the current value # is high enough for your load. # Note: In case your tables change very often or if your queries are # textually different every time, the query cache may result in a # slowdown instead of a performance improvement. query_cache_size=168M # The number of open tables for all threads. Increasing this value # increases the number of file descriptors that mysqld requires. # Therefore you have to make sure to set the amount of open files # allowed to at least 4096 in the variable "open-files-limit" in # section [mysqld_safe] table_cache=3020 # Maximum size for internal (in-memory) temporary tables. If a table # grows larger than this value, it is automatically converted to disk # based table This limitation is for a single table. There can be many # of them. tmp_table_size=30M # How many threads we should keep in a cache for reuse. When a client # disconnects, the client's threads are put in the cache if there aren't # more than thread_cache_size threads from before. This greatly reduces # the amount of thread creations needed if you have a lot of new # connections. (Normally this doesn't give a notable performance # improvement if you have a good thread implementation.) thread_cache_size=64 #*** MyISAM Specific options # The maximum size of the temporary file MySQL is allowed to use while # recreating the index (during REPAIR, ALTER TABLE or LOAD DATA INFILE. # If the file-size would be bigger than this, the index will be created # through the key cache (which is slower). myisam_max_sort_file_size=100G # If the temporary file used for fast index creation would be bigger # than using the key cache by the amount specified here, then prefer the # key cache method. This is mainly used to force long character keys in # large tables to use the slower key cache method to create the index. myisam_sort_buffer_size=64M # Size of the Key Buffer, used to cache index blocks for MyISAM tables. # Do not set it larger than 30% of your available memory, as some memory # is also required by the OS to cache rows. Even if you're not using # MyISAM tables, you should still set it to 8-64M as it will also be # used for internal temporary disk tables. key_buffer_size=3072M # Size of the buffer used for doing full table scans of MyISAM tables. # Allocated per thread, if a full scan is needed. read_buffer_size=2M read_rnd_buffer_size=8M # This buffer is allocated when MySQL needs to rebuild the index in # REPAIR, OPTIMZE, ALTER table statements as well as in LOAD DATA INFILE # into an empty table. It is allocated per thread so be careful with # large settings. sort_buffer_size=2M #*** INNODB Specific options *** innodb_data_home_dir="D:/MySQL InnoDB Datafiles/" # Use this option if you have a MySQL server with InnoDB support enabled # but you do not plan to use it. This will save memory and disk space # and speed up some things. skip-innodb # Additional memory pool that is used by InnoDB to store metadata # information. If InnoDB requires more memory for this purpose it will # start to allocate it from the OS. As this is fast enough on most # recent operating systems, you normally do not need to change this # value. SHOW INNODB STATUS will display the current amount used. innodb_additional_mem_pool_size=11M # If set to 1, InnoDB will flush (fsync) the transaction logs to the # disk at each commit, which offers full ACID behavior. If you are # willing to compromise this safety, and you are running small # transactions, you may set this to 0 or 2 to reduce disk I/O to the # logs. Value 0 means that the log is only written to the log file and # the log file flushed to disk approximately once per second. Value 2 # means the log is written to the log file at each commit, but the log # file is only flushed to disk approximately once per second. innodb_flush_log_at_trx_commit=1 # The size of the buffer InnoDB uses for buffering log data. As soon as # it is full, InnoDB will have to flush it to disk. As it is flushed # once per second anyway, it does not make sense to have it very large # (even with long transactions). innodb_log_buffer_size=6M # InnoDB, unlike MyISAM, uses a buffer pool to cache both indexes and # row data. The bigger you set this the less disk I/O is needed to # access data in tables. On a dedicated database server you may set this # parameter up to 80% of the machine physical memory size. Do not set it # too large, though, because competition of the physical memory may # cause paging in the operating system. Note that on 32bit systems you # might be limited to 2-3.5G of user level memory per process, so do not # set it too high. innodb_buffer_pool_size=500M # Size of each log file in a log group. You should set the combined size # of log files to about 25%-100% of your buffer pool size to avoid # unneeded buffer pool flush activity on log file overwrite. However, # note that a larger logfile size will increase the time needed for the # recovery process. innodb_log_file_size=100M # Number of threads allowed inside the InnoDB kernel. The optimal value # depends highly on the application, hardware as well as the OS # scheduler properties. A too high value may lead to thread thrashing. innodb_thread_concurrency=10 #replication settings (this is the master) log-bin=log server-id = 1 Thanks for all the help. It is greatly appreciated.

    Read the article

  • Mixed-mode C++/CLI crashing: heap corruption in atexit (static destructor registration)

    - by thaimin
    I am working on deploying a program and the codebase is a mixture of C++/CLI and C#. The C++/CLI comes in all flavors: native, mixed (/clr), and safe (/clr:safe). In my development environment I create a DLL of all the C++/CLI code and reference that from the C# code (EXE). This method works flawlessly. For my releases that I want to release a single executable (simply stating that "why not just have a DLL and EXE separate?" is not acceptable). So far I have succeeded in compiling the EXE with all the different sources. However, when I run it I get the "XXXX has stopped working" dialog with options to Check online, Close and Debug. The problem details are as follows: Problem Event Name: APPCRASH Fault Module Name: StackHash_8d25 Fault Module Version: 6.1.7600.16559 Fault Module Timestamp: 4ba9b29c Exception Code: c0000374 Exception Offset: 000cdc9b OS Version: 6.1.7600.2.0.0.256.48 Locale ID: 1033 Additional Information 1: 8d25 Additional Information 2: 8d25552d834e8c143c43cf1d7f83abb8 Additional Information 3: 7450 Additional Information 4: 74509ce510cd821216ce477edd86119c If I debug and send it to Visual Studio, it reports: Unhandled exception at 0x77d2dc9b in XXX.exe: A heap has been corrupted Choosing break results in it stopping at ntdll.dll!77d2dc9b() with no additional information. If I tell Visual Studio to continue, the program starts up fine and seems to work without incident, probably since a debugger is now attached. What do you make of this? How do I avoid this heap corruption? The program seems to work fine except for this. My abridged compilation script is as follows (I have omitted my error checking for brevity): @set TARGET=x86 @set TARGETX=x86 @set OUT=%TARGETX% @call "%VS90COMNTOOLS%\..\..\VC\vcvarsall.bat" %TARGET% @set WIMGAPI=C:\Program Files\Windows AIK\SDKs\WIMGAPI\%TARGET% set CL=/Zi /nologo /W4 /O2 /GS /EHa /MD /MP /D NDEBUG /D _UNICODE /D UNICODE /D INTEGRATED /Fd%OUT%\ /Fo%OUT%\ set INCLUDE=%WIMGAPI%;%INCLUDE% set LINK=/nologo /LTCG /CLRIMAGETYPE:IJW /MANIFEST:NO /MACHINE:%TARGETX% /SUBSYSTEM:WINDOWS,6.0 /OPT:REF /OPT:ICF /DEFAULTLIB:msvcmrt.lib set LIB=%WIMGAPI%;%LIB% set CSC=/nologo /w:4 /d:INTEGRATED /o+ /target:module :: Compiling resources omitted @set CL_NATIVE=/c /FI"stdafx-native.h" @set CL_MIXED=/c /clr /LN /FI"stdafx-mixed.h" @set CL_PURE=/c /clr:safe /LN /GL /FI"stdafx-pure.h" @set NATIVE=... @set MIXED=... @set PURE=... cl %CL_NATIVE% %NATIVE% cl %CL_MIXED% %MIXED% cl %CL_PURE% %PURE% link /LTCG /NOASSEMBLY /DLL /OUT:%OUT%\core.netmodule %OUT%\*.obj csc %CSC% /addmodule:%OUT%\core.netmodule /out:%OUT%\GUI.netmodule /recurse:*.cs link /FIXED /ENTRY:GUI.Program.Main /OUT:%OUT%\XXX.exe ^ /ASSEMBLYRESOURCE:%OUT%\core.resources,XXX.resources,PRIVATE /ASSEMBLYRESOURCE:%OUT%\GUI.resources,GUI.resources,PRIVATE ^ /ASSEMBLYMODULE:%OUT%\core.netmodule %OUT%\gui.res %OUT%\*.obj %OUT%\GUI.netmodule Update 1 Upon compiling this with debug symbols and trying again, I do in fact get more information. The call stack is: msvcr90d.dll!_msize_dbg(void * pUserData, int nBlockUse) Line 1511 + 0x30 bytes msvcr90d.dll!_dllonexit_nolock(int (void)* func, void (void)* * * pbegin, void (void)* * * pend) Line 295 + 0xd bytes msvcr90d.dll!__dllonexit(int (void)* func, void (void)* * * pbegin, void (void)* * * pend) Line 273 + 0x11 bytes XXX.exe!_onexit(int (void)* func) Line 110 + 0x1b bytes XXX.exe!atexit(void (void)* func) Line 127 + 0x9 bytes XXX.exe!`dynamic initializer for 'Bytes::Null''() Line 7 + 0xa bytes mscorwks.dll!6cbd1b5c() [Frames below may be incorrect and/or missing, no symbols loaded for mscorwks.dll] ... The line of my code that 'causes' this (dynamic initializer for Bytes::Null) is: Bytes Bytes::Null; In the header that is declared as: class Bytes { public: static Bytes Null; } I also tried doing a global extern in the header like so: extern Bytes Null; // header Bytes Null; // cpp file Which failed in the same way. It seems that the CRT atexit function is responsible, being inadvertently required due to the static initializer. Fix As Ben Voigt pointed out the use of any CRT functions (including native static initializers) requires proper initialization of the CRT (which happens in mainCRTStartup, WinMainCRTStartup, or _DllMainCRTStartup). I have added a mixed C++/CLI file that has a C++ main or WinMain: using namespace System; [STAThread] // required if using an STA COM objects (such as drag-n-drop or file dialogs) int main() { // or "int __stdcall WinMain(void*, void*, wchar_t**, int)" for GUI applications array<String^> ^args_orig = Environment::GetCommandLineArgs(); int l = args_orig->Length - 1; // required to remove first argument (program name) array<String^> ^args = gcnew array<String^>(l); if (l > 0) Array::Copy(args_orig, 1, args, 0, l); return XXX::CUI::Program::Main(args); // return XXX::GUI::Program::Main(args); } After doing this, the program now gets a little further, but still has issues (which will be addressed elsewhere): When the program is solely in C# it works fine, along with whenever it is just calling C++/CLI methods, getting C++/CLI properties, and creating managed C++/CLI objects Events added by C# into the C++/CLI code never fire (even though they should) One other weird error is that an exception happens is a InvalidCastException saying can't cast from X to X (where X is the same as X...) However since the heap corruption is fixed (by getting the CRT initialized) the question is done.

    Read the article

  • Handling TclErrors in Python

    - by anteater7171
    In the following code I'll get the following error if I right click the window that pops up. Then go down to the very bottom entry widget then delete it's contents. It seems to be giving me a TclError. How do I go about handeling such an error? The Error Exception in Tkinter callback Traceback (most recent call last): File "C:\Python26\Lib\lib-tk\Tkinter.py", line 1410, in __call__ return self.func(*args) File "C:\Python26\CPUDEMO.py", line 503, in I TL.sclS.set(S1) File "C:\Python26\Lib\lib-tk\Tkinter.py", line 2765, in set self.tk.call(self._w, 'set', value) TclError: expected floating-point number but got "" The Code #F #PIthon.py # Import/Setup import Tkinter import psutil,time import re from PIL import Image, ImageTk from time import sleep class simpleapp_tk(Tkinter.Tk): def __init__(self,parent): Tkinter.Tk.__init__(self,parent) self.parent = parent self.initialize() def initialize(self): Widgets self.menu = Tkinter.Menu(self, tearoff = 0 ) M = [ "Options...", "Exit"] self.selectedM = Tkinter.StringVar() self.menu.add_radiobutton( label = 'Hide', variable = self.selectedM, command = self.E ) self.menu.add_radiobutton( label = 'Bump', variable = self.selectedM, command = self.E ) self.menu.add_separator() self.menu.add_radiobutton( label = 'Options...', variable = self.selectedM, command = self.E ) self.menu.add_separator() self.menu.add_radiobutton( label = 'Exit', variable = self.selectedM, command = self.E ) self.frame1 = Tkinter.Frame(self,bg='grey15',relief='ridge',borderwidth=4,width=185, height=39) self.frame1.grid() self.frame1.grid_propagate(0) self.frame1.bind( "<Button-3><ButtonRelease-3>", self.D ) self.frame1.bind( "<Button-2><ButtonRelease-2>", self.C ) self.frame1.bind( "<Double-Button-1>", self.C ) self.labelVariable = Tkinter.StringVar() self.label = Tkinter.Label(self.frame1,textvariable=self.labelVariable,fg="lightgreen",bg="grey15",borderwidth=1,font=('arial', 10, 'bold')) self.label.grid(column=1,row=0,columnspan=1,sticky='nsew') self.label.bind( "<Button-3><ButtonRelease-3>", self.D ) self.label.bind( "<Button-2><ButtonRelease-2>", self.C ) self.label.bind( "<Double-Button-1>", self.C ) self.F() self.overrideredirect(1) self.wm_attributes("-topmost", 1) global TL1 TL1 = Tkinter.Toplevel(self) TL1.wm_geometry("+0+5000") TL1.overrideredirect(1) TL1.button = Tkinter.Button(TL1,text="? CPU",fg="lightgreen",bg="grey15",activeforeground="lightgreen", activebackground='grey15',borderwidth=4,font=('Arial', 8, 'bold'),command=self.J) TL1.button.pack(ipadx=1) Events def Reset(self): self.label.configure(font=('arial', 10, 'bold'),fg='Lightgreen',bg='grey15',borderwidth=0) self.labela.configure(font=('arial', 8, 'bold'),fg='Lightgreen',bg='grey15',borderwidth=0) self.frame1.configure(bg='grey15',relief='ridge',borderwidth=4,width=224, height=50) self.label.pack(ipadx=38) def helpmenu(self): t2 = Tkinter.Toplevel(self) Tkinter.Label(t2, text='This is a help menu', anchor="w",justify="left",fg="darkgreen",bg="grey90",relief="ridge",borderwidth=5,font=('Arial', 10)).pack(fill='both', expand=1) t2.resizable(False,False) t2.title('Help') menu = Tkinter.Menu(self) t2.config(menu=menu) filemenu = Tkinter.Menu(menu) menu.add_cascade(label="| Exit |", menu=filemenu) filemenu.add_command(label="Exit", command=t2.destroy) def aboutmenu(self): t1 = Tkinter.Toplevel(self) Tkinter.Label(t1, text=' About:\n\n CPU Usage v1.0\n\n Publisher: Drew French\n Date: 05/09/10\n Email: [email protected] \n\n\n\n\n\n\n Written in Python 2.6.4', anchor="w",justify="left",fg="darkgreen",bg="grey90",relief="sunken",borderwidth=5,font=('Arial', 10)).pack(fill='both', expand=1) t1.resizable(False,False) t1.title('About') menu = Tkinter.Menu(self) t1.config(menu=menu) filemenu = Tkinter.Menu(menu) menu.add_cascade(label="| Exit |", menu=filemenu) filemenu.add_command(label="Exit", command=t1.destroy) def A (self,event): TL.entryVariable1.set(TL.sclY.get()) TL.entryVariable2.set(TL.sclX.get()) Y = TL.sclY.get() X = TL.sclX.get() self.wm_geometry("+" + str(X) + "+" + str(Y)) def B(self,event): Y1 = TL.entryVariable1.get() X1 = TL.entryVariable2.get() self.wm_geometry("+" + str(X1) + "+" + str(Y1)) TL.sclY.set(Y1) TL.sclX.set(X1) def C(self,event): s = self.wm_geometry() geomPatt = re.compile(r"(\d+)?x?(\d+)?([+-])(\d+)([+-])(\d+)") m = geomPatt.search(s) X3 = m.group(4) Y3 = m.group(6) M = int(Y3) - 150 P = M + 150 while Y3 > M: sleep(0.0009) Y3 = int(Y3) - 1 self.update_idletasks() self.wm_geometry("+" + str(X3) + "+" + str(Y3)) sleep(2.00) while Y3 < P: sleep(0.0009) Y3 = int(Y3) + 1 self.update_idletasks() self.wm_geometry("+" + str(X3) + "+" + str(Y3)) def D(self, event=None): self.menu.post( event.x_root, event.y_root ) def E(self): if self.selectedM.get() =='Options...': Setup global TL TL = Tkinter.Toplevel(self) menu = Tkinter.Menu(TL) TL.config(menu=menu) filemenu = Tkinter.Menu(menu) menu.add_cascade(label="| Menu |", menu=filemenu) filemenu.add_command(label="Instruction Manual...", command=self.helpmenu) filemenu.add_command(label="About...", command=self.aboutmenu) filemenu.add_separator() filemenu.add_command(label="Exit Options", command=TL.destroy) filemenu.add_command(label="Exit", command=self.destroy) helpmenu = Tkinter.Menu(menu) menu.add_cascade(label="| Help |", menu=helpmenu) helpmenu.add_command(label="Instruction Manual...", command=self.helpmenu) helpmenu.add_separator() helpmenu.add_command(label="Quick Help...", command=self.helpmenu) Title TL.label5 = Tkinter.Label(TL,text="CPU Usage: Options",anchor="center",fg="black",bg="lightgreen",relief="ridge",borderwidth=5,font=('Arial', 18, 'bold')) TL.label5.pack(padx=15,ipadx=5) X Y scale TL.separator = Tkinter.Frame(TL,height=7, bd=1, relief='ridge', bg='grey95') TL.separator.pack(pady=5,padx=5) # TL.sclX = Tkinter.Scale(TL.separator, from_=0, to=1500, orient='horizontal', resolution=1, command=self.A) TL.sclX.grid(column=1,row=0,ipadx=27, sticky='w') TL.label1 = Tkinter.Label(TL.separator,text="X",anchor="s",fg="black",bg="grey95",font=('Arial', 8 ,'bold')) TL.label1.grid(column=0,row=0, pady=1, sticky='S') TL.sclY = Tkinter.Scale(TL.separator, from_=0, to=1500, resolution=1, command=self.A) TL.sclY.grid(column=2,row=1,rowspan=2,sticky='e', padx=4) TL.label3 = Tkinter.Label(TL.separator,text="Y",fg="black",bg="grey95",font=('Arial', 8 ,'bold')) TL.label3.grid(column=2,row=0, padx=10, sticky='e') TL.entryVariable2 = Tkinter.StringVar() TL.entry2 = Tkinter.Entry(TL.separator,textvariable=TL.entryVariable2, fg="grey15",bg="grey90",relief="sunken",insertbackground="black",borderwidth=5,font=('Arial', 10)) TL.entry2.grid(column=1,row=1,ipadx=20, pady=10,sticky='EW') TL.entry2.bind("<Return>", self.B) TL.label2 = Tkinter.Label(TL.separator,text="X:",fg="black",bg="grey95",font=('Arial', 8 ,'bold')) TL.label2.grid(column=0,row=1, ipadx=4, sticky='W') TL.entryVariable1 = Tkinter.StringVar() TL.entry1 = Tkinter.Entry(TL.separator,textvariable=TL.entryVariable1, fg="grey15",bg="grey90",relief="sunken",insertbackground="black",borderwidth=5,font=('Arial', 10)) TL.entry1.grid(column=1,row=2,sticky='EW') TL.entry1.bind("<Return>", self.B) TL.label4 = Tkinter.Label(TL.separator,text="Y:", anchor="center",fg="black",bg="grey95",font=('Arial', 8 ,'bold')) TL.label4.grid(column=0,row=2, ipadx=4, sticky='W') TL.label7 = Tkinter.Label(TL.separator,text="Text Colour:",fg="black",bg="grey95",font=('Arial', 8 ,'bold')) TL.label7.grid(column=1,row=3,stick="W",ipady=10) TL.selectedP = Tkinter.StringVar() TL.opt1 = Tkinter.OptionMenu(TL.separator, TL.selectedP,'Normal', 'White','Black', 'Blue', 'Steel Blue','Green','Light Green','Yellow','Orange' ,'Red',command=self.G) TL.opt1.config(fg="black",bg="grey90",activebackground="grey90",activeforeground="black", anchor="center",relief="raised",direction='right',font=('Arial', 10)) TL.opt1.grid(column=1,row=4,sticky='EW',padx=20,ipadx=20) TL.selectedP.set('Normal') TL.label7 = Tkinter.Label(TL.separator,text="Refresh Rate:",fg="black",bg="grey95",font=('Arial', 8 ,'bold')) TL.label7.grid(column=1,row=5,stick="W",ipady=10) TL.sclS = Tkinter.Scale(TL.separator, from_=10, to=2000, orient='horizontal', resolution=10, command=self.H) TL.sclS.grid(column=1,row=6,ipadx=27, sticky='w') TL.sclS.set(650) TL.entryVariableS = Tkinter.StringVar() TL.entryS = Tkinter.Entry(TL.separator,textvariable=TL.entryVariableS, fg="grey15",bg="grey90",relief="sunken",insertbackground="black",borderwidth=5,font=('Arial', 10)) TL.entryS.grid(column=1,row=7,ipadx=20, pady=10,sticky='EW') TL.entryS.bind("<Return>", self.I) TL.entryVariableS.set(650) # TL.resizable(False,False) TL.title('Options') geomPatt = re.compile(r"(\d+)?x?(\d+)?([+-])(\d+)([+-])(\d+)") s = self.wm_geometry() m = geomPatt.search(s) X = m.group(4) Y = m.group(6) TL.sclY.set(Y) TL.sclX.set(X) if self.selectedM.get() == 'Exit': self.destroy() if self.selectedM.get() == 'Bump': s = self.wm_geometry() geomPatt = re.compile(r"(\d+)?x?(\d+)?([+-])(\d+)([+-])(\d+)") m = geomPatt.search(s) X3 = m.group(4) Y3 = m.group(6) M = int(Y3) - 150 P = M + 150 while Y3 > M: sleep(0.0009) Y3 = int(Y3) - 1 self.update_idletasks() self.wm_geometry("+" + str(X3) + "+" + str(Y3)) sleep(2.00) while Y3 < P: sleep(0.0009) Y3 = int(Y3) + 1 self.update_idletasks() self.wm_geometry("+" + str(X3) + "+" + str(Y3)) if self.selectedM.get() == 'Hide': s = self.wm_geometry() geomPatt = re.compile(r"(\d+)?x?(\d+)?([+-])(\d+)([+-])(\d+)") m = geomPatt.search(s) X3 = m.group(4) Y3 = m.group(6) M = int(Y3) + 5000 self.update_idletasks() self.wm_geometry("+" + str(X3) + "+" + str(M)) TL1.wm_geometry("+0+190") def F (self): G = round(psutil.cpu_percent(), 1) G1 = str(G) + '%' self.labelVariable.set(G1) try: S2 = TL.entryVariableS.get() except ValueError, e: S2 = 650 except NameError: S2 = 650 self.after(int(S2), self.F) def G (self,event): if TL.selectedP.get() =='Normal': self.label.config( fg = 'lightgreen' ) TL1.button.config( fg = 'lightgreen',activeforeground='lightgreen') if TL.selectedP.get() =='Red': self.label.config( fg = 'red' ) TL1.button.config( fg = 'red',activeforeground='red') if TL.selectedP.get() =='Orange': self.label.config( fg = 'orange') TL1.button.config( fg = 'orange',activeforeground='orange') if TL.selectedP.get() =='Yellow': self.label.config( fg = 'yellow') TL1.button.config( fg = 'yellow',activeforeground='yellow') if TL.selectedP.get() =='Light Green': self.label.config( fg = 'lightgreen' ) TL1.button.config( fg = 'lightgreen',activeforeground='lightgreen') if TL.selectedP.get() =='Normal': self.label.config( fg = 'lightgreen' ) TL1.button.config( fg = 'lightgreen',activeforeground='lightgreen') if TL.selectedP.get() =='Steel Blue': self.label.config( fg = 'steelblue1' ) TL1.button.config( fg = 'steelblue1',activeforeground='steelblue1') if TL.selectedP.get() =='Blue': self.label.config( fg = 'blue') TL1.button.config( fg = 'blue',activeforeground='blue') if TL.selectedP.get() =='Green': self.label.config( fg = 'darkgreen' ) TL1.button.config( fg = 'darkgreen',activeforeground='darkgreen') if TL.selectedP.get() =='White': self.label.config( fg = 'white' ) TL1.button.config( fg = 'white',activeforeground='white') if TL.selectedP.get() =='Black': self.label.config( fg = 'black') TL1.button.config( fg = 'black',activeforeground='black') def H (self,event): TL.entryVariableS.set(TL.sclS.get()) S = TL.sclS.get() def I (self,event): S1 = TL.entryVariableS.get() TL.sclS.set(S1) TL.sclS.set(TL.sclS.get()) S1 = TL.entryVariableS.get() TL.sclS.set(S1) def J (self): s = self.wm_geometry() geomPatt = re.compile(r"(\d+)?x?(\d+)?([+-])(\d+)([+-])(\d+)") m = geomPatt.search(s) X3 = m.group(4) Y3 = m.group(6) M = int(Y3) - 5000 self.update_idletasks() self.wm_geometry("+" + str(X3) + "+" + str(M)) TL1.wm_geometry("+0+5000") Loop if name == "main": app = simpleapp_tk(None) app.mainloop()

    Read the article

  • Multiple schema validation in Java

    - by user279554
    Hi, I am trying to do multiple schema validation in Java. I don't understand where I am doing wrong. Any help will be appreciated. abc.xsd <?xml version="1.0" encoding="UTF-8"?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xn="project-xml-r4j_another.xsd"> <xsd:import namespace="project-xml-r4j_another.xsd"/> <xsd:element name="abc" type="abc"> </xsd:element> <xsd:complexType name="abc"> <xsd:sequence> <xsd:element name="test" type="test" minOccurs="0" maxOccurs="1"> </xsd:element> <!--<xsd:element name="proj" type="xn:proj"/>--> </xsd:sequence> <xsd:attribute name="id" type="xsd:ID" use="required"/> </xsd:complexType> <xsd:complexType name="test"> <xsd:attribute name="id" type="xsd:ID" use="required"></xsd:attribute> <xsd:attribute name="value" use="required"> <xsd:simpleType> <xsd:restriction base="xsd:string"> <xsd:maxLength value="100" /> </xsd:restriction> </xsd:simpleType> </xsd:attribute> </xsd:complexType> </xsd:schema> project-xml-r4j_another.xsd <?xml version="1.0" encoding="UTF-8"?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="project-xml-r4j_another.xsd" xmlns="project-xml-r4j_another.xsd" elementFormDefault="qualified" attributeFormDefault="unqualified"> <xsd:element name="proj" type="proj"> <xsd:annotation> <xsd:documentation> The project is the root tag of a project-xml. </xsd:documentation> </xsd:annotation> </xsd:element> <xsd:complexType name="proj"> <xsd:attribute name="id" type="xsd:ID" use="required"/> </xsd:complexType> </xsd:schema> Test case package test; import java.io.File; import java.io.IOException; import javax.xml.XMLConstants; import javax.xml.transform.Source; import javax.xml.transform.stream.StreamSource; import javax.xml.validation.Schema; import javax.xml.validation.SchemaFactory; import javax.xml.validation.Validator; import org.apache.log4j.Logger; import org.junit.Test; import org.xml.sax.SAXException; import org.xml.sax.SAXParseException; import org.xml.sax.helpers.DefaultHandler; import com.ericsson.ccrtool.core.project.projectxml.InvalidProjectXmlException; public class TestSchema { private static final Logger logger = Logger.getLogger(TestSchema.class); static final String W3C_XML_SCHEMA = XMLConstants.W3C_XML_SCHEMA_NS_URI; @Test public void test() { System.out.println("TestSchema.test()"); try { SchemaFactory schemaFactory = SchemaFactory.newInstance(W3C_XML_SCHEMA); // create a grammar object. Source [] source = { new StreamSource(new File("C:\\jaydeep\\Ericsson\\R5B\\abc.xsd")), new StreamSource(new File("C:\\jaydeep\\Ericsson\\R5B\\project-xml-r4j.xsd"))}; Schema schemaGrammar = schemaFactory.newSchema(source); Validator schemaValidator = schemaGrammar.newValidator(); schemaValidator.setErrorHandler(new MessageHandler()); // validate xml instance against the grammar. schemaValidator.validate(new StreamSource("C:\\jaydeep\\Ericsson\\R5B\\project_tmmk17cells_xnaveen_project-xml.xml")); } catch (SAXException e) { throw new InvalidProjectXmlException("Project-xml validation failed, Exception: " + e.getMessage(), e); } catch (IOException e) { throw new InvalidProjectXmlException("Project-xml validation failed, Exception: " + e.getMessage(), e); } } class MessageHandler extends DefaultHandler { private String errMessage = ""; @Override public void warning(SAXParseException e) { logger.info("Warning Line " + e.getLineNumber() + ": " + e.getMessage()); } @Override public void error(SAXParseException e) { errMessage = new String("Error Line " + e.getLineNumber() + ": " + e.getMessage()); logger.info(errMessage); throw new InvalidProjectXmlException("Project-xml validation failed, Exception: " + errMessage); } @Override public void fatalError(SAXParseException e) { errMessage = new String("Error Line " + e.getLineNumber() + ": " + e.getMessage()); logger.info(errMessage); throw new InvalidProjectXmlException("Project-xml validation failed, Exception: " + errMessage); } } } Thanks, Jaydeep

    Read the article

  • Policy based design and defaults.

    - by Noah Roberts
    Hard to come up with a good title for this question. What I really need is to be able to provide template parameters with different number of arguments in place of a single parameter. Doesn't make a lot of sense so I'll go over the reason: template < typename T, template <typename,typename> class Policy = default_policy > struct policy_based : Policy<T, policy_based<T,Policy> > { // inherits R Policy::fun(arg0, arg1, arg2,...,argn) }; // normal use: policy_base<type_a> instance; // abnormal use: template < typename PolicyBased > // No T since T is always the same when you use this struct custom_policy {}; policy_base<type_b,custom_policy> instance; The deal is that for many abnormal uses the Policy will be based on one single type T, and can't really be parameterized on T so it makes no sense to take T as a parameter. For other uses, including the default, a Policy can make sense with any T. I have a couple ideas but none of them are really favorites. I thought that I had a better answer--using composition instead of policies--but then I realized I have this case where fun() actually needs extra information that the class itself won't have. This is like the third time I've refactored this silly construct and I've got quite a few custom versions of it around that I'm trying to consolidate. I'd like to get something nailed down this time rather than just fish around and hope it works this time. So I'm just fishing for ideas right now hoping that someone has something I'll be so impressed by that I'll switch deities. Anyone have a good idea? Edit: You might be asking yourself why I don't just retrieve T from the definition of policy based in the template for default_policy. The reason is that default_policy is actually specialized for some types T. Since asking the question I have come up with something that may be what I need, which will follow, but I could still use some other ideas. template < typename T > struct default_policy; template < typename T, template < typename > class Policy = default_policy > struct test : Policy<test<T,Policy>> {}; template < typename T > struct default_policy< test<T, default_policy> > { void f() {} }; template < > struct default_policy< test<int, default_policy> > { void f(int) {} }; Edit: Still messing with it. I wasn't too fond of the above since it makes default_policy permanently coupled with "test" and so couldn't be reused in some other method, such as with multiple templates as suggested below. It also doesn't scale at all and requires a list of parameters at least as long as "test" has. Tried a few different approaches that failed until I found another that seems to work so far: template < typename T > struct default_policy; template < typename T, template < typename > class Policy = default_policy > struct test : Policy<test<T,Policy>> {}; template < typename PolicyBased > struct fetch_t; template < typename PolicyBased, typename T > struct default_policy_base; template < typename PolicyBased > struct default_policy : default_policy_base<PolicyBased, typename fetch_t<PolicyBased>::type> {}; template < typename T, template < typename > class Policy > struct fetch_t< test<T,Policy> > { typedef T type; }; template < typename PolicyBased, typename T > struct default_policy_base { void f() {} }; template < typename PolicyBased > struct default_policy_base<PolicyBased,int> { void f(int) {} };

    Read the article

  • Can you set the default button of a panel with a button that is not in that panel but in another content placeholder in a master page?

    - by Geezuz
    Can you set the default button of a panel with a button that is not in that panel but in another content placeholder within a master page? I have tried this but I get the following error: The DefaultButton of 'pnlTmp' must be the ID of a control of type IButtonControl. I have also tried setting the panels DefaultButton this way : pnlTmp.DefaultButton = btnContinue.UniqueID This gave me the same error. Any help would be great.

    Read the article

  • N-tier Repository POCOs - Aggregates?

    - by Sam
    Assume the following simple POCOs, Country and State: public partial class Country { public Country() { States = new List<State>(); } public virtual int CountryId { get; set; } public virtual string Name { get; set; } public virtual string CountryCode { get; set; } public virtual ICollection<State> States { get; set; } } public partial class State { public virtual int StateId { get; set; } public virtual int CountryId { get; set; } public virtual Country Country { get; set; } public virtual string Name { get; set; } public virtual string Abbreviation { get; set; } } Now assume I have a simple respository that looks something like this: public partial class CountryRepository : IDisposable { protected internal IDatabase _db; public CountryRepository() { _db = new Database(System.Configuration.ConfigurationManager.AppSettings["DbConnName"]); } public IEnumerable<Country> GetAll() { return _db.Query<Country>("SELECT * FROM Countries ORDER BY Name", null); } public Country Get(object id) { return _db.SingleById(id); } public void Add(Country c) { _db.Insert(c); } /* ...And So On... */ } Typically in my UI I do not display all of the children (states), but I do display an aggregate count. So my country list view model might look like this: public partial class CountryListVM { [Key] public int CountryId { get; set; } public string Name { get; set; } public string CountryCode { get; set; } public int StateCount { get; set; } } When I'm using the underlying data provider (Entity Framework, NHibernate, PetaPoco, etc) directly in my UI layer, I can easily do something like this: IList<CountryListVM> list = db.Countries .OrderBy(c => c.Name) .Select(c => new CountryListVM() { CountryId = c.CountryId, Name = c.Name, CountryCode = c.CountryCode, StateCount = c.States.Count }) .ToList(); But when I'm using a repository or service pattern, I abstract away direct access to the data layer. It seems as though my options are to: Return the Country with a populated States collection, then map over in the UI layer. The downside to this approach is that I'm returning a lot more data than is actually needed. -or- Put all my view models into my Common dll library (as opposed to having them in the Models directory in my MVC app) and expand my repository to return specific view models instead of just the domain pocos. The downside to this approach is that I'm leaking UI specific stuff (MVC data validation annotations) into my previously clean POCOs. -or- Are there other options? How are you handling these types of things?

    Read the article

  • C++: Trouble with templates (C2064)

    - by Rosarch
    I'm having compiler errors, and I'm not sure why. What am I doing wrong here: Hangman.cpp: set<char> Hangman::incorrectGuesses() { // Hangman line 103 return Utils::findAll_if<char>(guesses.begin(), guesses.end(), &Hangman::isIncorrectGuess); } bool Hangman::isIncorrectGuess(char c) { return correctAnswer.find(c) == string::npos; } Utils.h: namespace Utils { void PrintLine(const string& line, int tabLevel = 0); string getTabs(int tabLevel); template<class result_t, class Predicate> std::set<result_t> findAll_if(typename std::set<result_t>::iterator begin, typename std::set<result_t>::iterator end, Predicate pred) { std::set<result_t> result; // utils line 16 return detail::findAll_if_rec<result_t>(begin, end, pred, result); } } namespace detail { template<class result_t, class Predicate> std::set<result_t> findAll_if_rec(typename std::set<result_t>::iterator begin, typename std::set<result_t>::iterator end, Predicate pred, std::set<result_t> result) { // utils line 25 typename std::set<result_t>::iterator nextResultElem = find_if(begin, end, pred); if (nextResultElem == end) { return result; } result.insert(*nextResultElem); return findAll_if_rec(++nextResultElem, end, pred, result); } } This produces the following compiler errors: algorithm(83): error C2064: term does not evaluate to a function taking 1 arguments algorithm(95) : see reference to function template instantiation '_InIt std::_Find_if<std::_Tree_unchecked_const_iterator<_Mytree>,_Pr>(_InIt,_InIt,_Pr)' being compiled 1> with 1> [ 1> _InIt=std::_Tree_unchecked_const_iterator<std::_Tree_val<std::_Tset_traits<char,std::less<char>,std::allocator<char>,false>>>, 1> _Mytree=std::_Tree_val<std::_Tset_traits<char,std::less<char>,std::allocator<char>,false>>, 1> _Pr=bool (__thiscall Hangman::* )(char) 1> ] utils.h(25) : see reference to function template instantiation '_InIt std::find_if<std::_Tree_const_iterator<_Mytree>,Predicate>(_InIt,_InIt,_Pr)' being compiled 1> with 1> [ 1> _InIt=std::_Tree_const_iterator<std::_Tree_val<std::_Tset_traits<char,std::less<char>,std::allocator<char>,false>>>, 1> _Mytree=std::_Tree_val<std::_Tset_traits<char,std::less<char>,std::allocator<char>,false>>, 1> Predicate=bool (__thiscall Hangman::* )(char), 1> _Pr=bool (__thiscall Hangman::* )(char) 1> ] utils.h(16) : see reference to function template instantiation 'std::set<_Kty> detail::findAll_if_rec<result_t,Predicate>(std::_Tree_const_iterator<_Mytree>,std::_Tree_const_iterator<_Mytree>,Predicate,std::set<_Kty>)' being compiled 1> with 1> [ 1> _Kty=char, 1> result_t=char, 1> Predicate=bool (__thiscall Hangman::* )(char), 1> _Mytree=std::_Tree_val<std::_Tset_traits<char,std::less<char>,std::allocator<char>,false>> 1> ] hangman.cpp(103) : see reference to function template instantiation 'std::set<_Kty> Utils::findAll_if<char,bool(__thiscall Hangman::* )(char)>(std::_Tree_const_iterator<_Mytree>,std::_Tree_const_iterator<_Mytree>,Predicate)' being compiled 1> with 1> [ 1> _Kty=char, 1> _Mytree=std::_Tree_val<std::_Tset_traits<char,std::less<char>,std::allocator<char>,false>>, 1> Predicate=bool (__thiscall Hangman::* )(char) 1> ]

    Read the article

  • NHibernate: How is identity Id updated when saving a transient instance?

    - by bretddog
    If I use session-per-transaction and call: session.SaveOrUpdate(entity) corrected: session.SaveOrUpdateCopy(entity) ..and entity is a transient instance with identity-Id=0. Shall the above line automatically update the Id of the entity, and make the instance persistent? Or should it do so on transaction.Commit? Or do I have to somehow code that explicitly? Obviously the Id of the database row (new, since transient) is autogenerated and saved as some number, but I'm talking about the actual parameter instance here. Which is the business logic instance. EDIT Mappings: public class StoreMap : ClassMap<Store> { public StoreMap() { Id(x => x.Id).GeneratedBy.Identity(); Map(x => x.Name); HasMany(x => x.Staff) // 1:m .Cascade.All(); HasManyToMany(x => x.Products) // m:m .Cascade.All() .Table("StoreProduct"); } } public class EmployeeMap : ClassMap<Employee> { public EmployeeMap() { Id(x => x.Id).GeneratedBy.Identity(); Map(x => x.FirstName); Map(x => x.LastName); References(x => x.Store); // m:1 } } public class ProductMap : ClassMap<Product> { public ProductMap() { Id(x => x.Id).GeneratedBy.Identity(); Map(x => x.Name).Length(20); Map(x => x.Price).CustomSqlType("decimal").Precision(9).Scale(2); HasManyToMany(x => x.StoresStockedIn) .Cascade.All() .Inverse() .Table("StoreProduct"); } } EDIT2 Class definitions: public class Store { public int Id { get; private set; } public string Name { get; set; } public IList<Product> Products { get; set; } public IList<Employee> Staff { get; set; } public Store() { Products = new List<Product>(); Staff = new List<Employee>(); } // AddProduct & AddEmployee is required. "NH needs you to set both sides before // it will save correctly" public void AddProduct(Product product) { product.StoresStockedIn.Add(this); Products.Add(product); } public void AddEmployee(Employee employee) { employee.Store = this; Staff.Add(employee); } } public class Employee { public int Id { get; private set; } public string FirstName { get; set; } public string LastName { get; set; } public Store Store { get; set; } } public class Product { public int Id { get; private set; } public string Name { get; set; } public decimal Price { get; set; } public IList<Store> StoresStockedIn { get; private set; } }

    Read the article

  • Many to many self join through junction table

    - by Peter
    I have an EF model that can self-reference through an intermediary class to define a parent/child relationship. I know how to do a pure many-to-many relationship using the Map command, but for some reason going through this intermediary class is causing problems with my mappings. The intermediary class provides additional properties for the relationship. See the classes, modelBinder logic and error below: public class Equipment { [Key] public int EquipmentId { get; set; } public virtual List<ChildRecord> Parents { get; set; } public virtual List<ChildRecord> Children { get; set; } } public class ChildRecord { [Key] public int ChildId { get; set; } [Required] public int Quantity { get; set; } [Required] public Equipment Parent { get; set; } [Required] public Equipment Child { get; set; } } I've tried building the mappings in both directions, though I only keep one set in at a time: modelBuilder.Entity<ChildRecord>() .HasRequired(x => x.Parent) .WithMany(x => x.Children ) .WillCascadeOnDelete(false); modelBuilder.Entity<ChildRecord>() .HasRequired(x => x.Child) .WithMany(x => x.Parents) .WillCascadeOnDelete(false); OR modelBuilder.Entity<Equipment>() .HasMany(x => x.Parents) .WithRequired(x => x.Child) .WillCascadeOnDelete(false); modelBuilder.Entity<Equipment>() .HasMany(x => x.Children) .WithRequired(x => x.Parent) .WillCascadeOnDelete(false); Regardless of which set I use, I get the error: The foreign key component 'Child' is not a declared property on type 'ChildRecord'. Verify that it has not been explicitly excluded from the model and that it is a valid primitive property. when I try do deploy my ef model to the database. If I build it without the modelBinder logic in place then I get two ID columns for Child and two ID columns for Parent in my ChildRecord table. This makes sense since it tries to auto create the navigation properties from Equipment and doesn't know that there are already properties in ChildRecord to fulfill this need. I tried using Data Annotations on the class, and no modelBuilder code, this failed with the same error as above: [Required] [ForeignKey("EquipmentId")] public Equipment Parent { get; set; } [Required] [ForeignKey("EquipmentId")] public Equipment Child { get; set; } AND [InverseProperty("Child")] public virtual List<ChildRecord> Parents { get; set; } [InverseProperty("Parent")] public virtual List<ChildRecord> Children { get; set; } I've looked at various other answers around the internet/SO, and the common difference seems to be that I am self joining where as all the answers I can find are for two different types. Entity Framework Code First Many to Many Setup For Existing Tables Many to many relationship with junction table in Entity Framework? Creating many to many junction table in Entity Framework

    Read the article

  • Building applications with WPF, MVVM and Prism(aka CAG)

    - by skjagini
    In this article I am going to walk through an application using WPF and Prism (aka composite application guidance, CAG) which simulates engaging a taxi (cab).  The rules are simple, the app would have3 screens A login screen to authenticate the user An information screen. A screen to engage the cab and roam around and calculating the total fare Metered Rate of Fare The meter is required to be engaged when a cab is occupied by anyone $3.00 upon entry $0.35 for each additional unit The unit fare is: one-fifth of a mile, when the cab is traveling at 6 miles an hour or more; or 60 seconds when not in motion or traveling at less than 12 miles per hour. Night surcharge of $.50 after 8:00 PM & before 6:00 AM Peak hour Weekday Surcharge of $1.00 Monday - Friday after 4:00 PM & before 8:00 PM New York State Tax Surcharge of $.50 per ride. Example: Friday (2010-10-08) 5:30pm Start at Lexington Ave & E 57th St End at Irving Pl & E 15th St Start = $3.00 Travels 2 miles at less than 6 mph for 15 minutes = $3.50 Travels at more than 12 mph for 5 minutes = $1.75 Peak hour Weekday Surcharge = $1.00 (ride started at 5:30 pm) New York State Tax Surcharge = $0.50 Before we dive into the app, I would like to give brief description about the framework.  If you want to jump on to the source code, scroll all the way to the end of the post. MVVM MVVM pattern is in no way related to the usage of PRISM in your application and should be considered if you are using WPF irrespective of PRISM or not. Lets say you are not familiar with MVVM, your typical UI would involve adding some UI controls like text boxes, a button, double clicking on the button,  generating event handler, calling a method from business layer and updating the user interface, it works most of the time for developing small scale applications. The problem with this approach is that there is some amount of code specific to business logic wrapped in UI specific code which is hard to unit test it, mock it and MVVM helps to solve the exact problem. MVVM stands for Model(M) – View(V) – ViewModel(VM),  based on the interactions with in the three parties it should be called VVMM,  MVVM sounds more like MVC (Model-View-Controller) so the name. Why it should be called VVMM: View – View Model - Model WPF allows to create user interfaces using XAML and MVVM takes it to the next level by allowing complete separation of user interface and business logic. In WPF each view will have a property, DataContext when set to an instance of a class (which happens to be your view model) provides the data the view is interested in, i.e., view interacts with view model and at the same time view model interacts with view through DataContext. Sujith, if view and view model are interacting directly with each other how does MVVM is helping me separation of concerns? Well, the catch is DataContext is of type Object, since it is of type object view doesn’t know exact type of view model allowing views and views models to be loosely coupled. View models aggregate data from models (data access layer, services, etc) and make it available for views through properties, methods etc, i.e., View Models interact with Models. PRISM Prism is provided by Microsoft Patterns and Practices team and it can be downloaded from codeplex for source code,  samples and documentation on msdn.  The name composite implies, to compose user interface from different modules (views) without direct dependencies on each other, again allowing  loosely coupled development. Well Sujith, I can already do that with user controls, why shall I learn another framework?  That’s correct, you can decouple using user controls, but you still have to manage some amount of coupling, like how to do you communicate between the controls, how do you subscribe/unsubscribe, loading/unloading views dynamically. Prism is not a replacement for user controls, provides the following features which greatly help in designing the composite applications. Dependency Injection (DI)/ Inversion of Control (IoC) Modules Regions Event Aggregator  Commands Simply put, MVVM helps building a single view and Prism helps building an application using the views There are other open source alternatives to Prism, like MVVMLight, Cinch, take a look at them as well. Lets dig into the source code.  1. Solution The solution is made of the following projects Framework: Holds the common functionality in building applications using WPF and Prism TaxiClient: Start up project, boot strapping and app styling TaxiCommon: Helps with the business logic TaxiModules: Holds the meat of the application with views and view models TaxiTests: To test the application 2. DI / IoC Dependency Injection (DI) as the name implies refers to injecting dependencies and Inversion of Control (IoC) means the calling code has no direct control on the dependencies, opposite of normal way of programming where dependencies are passed by caller, i.e inversion; aside from some differences in terminology the concept is same in both the cases. The idea behind DI/IoC pattern is to reduce the amount of direct coupling between different components of the application, the higher the dependency the more tightly coupled the application resulting in code which is hard to modify, unit test and mock.  Initializing Dependency Injection through BootStrapper TaxiClient is the starting project of the solution and App (App.xaml)  is the starting class that gets called when you run the application. From the App’s OnStartup method we will invoke BootStrapper.   namespace TaxiClient { /// <summary> /// Interaction logic for App.xaml /// </summary> public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { base.OnStartup(e);   (new BootStrapper()).Run(); } } } BootStrapper is your contact point for initializing the application including dependency injection, creating Shell and other frameworks. We are going to use Unity for DI and there are lot of open source DI frameworks like Spring.Net, StructureMap etc with different feature set  and you can choose a framework based on your preferences. Note that Prism comes with in built support for Unity, for example we are deriving from UnityBootStrapper in our case and for any other DI framework you have to extend the Prism appropriately   namespace TaxiClient { public class BootStrapper: UnityBootstrapper { protected override IModuleCatalog CreateModuleCatalog() { return new ConfigurationModuleCatalog(); } protected override DependencyObject CreateShell() { Framework.FrameworkBootStrapper.Run(Container, Application.Current.Dispatcher);   Shell shell = new Shell(); shell.ResizeMode = ResizeMode.NoResize; shell.Show();   return shell; } } } Lets take a look into  FrameworkBootStrapper to check out how to register with unity container. namespace Framework { public class FrameworkBootStrapper { public static void Run(IUnityContainer container, Dispatcher dispatcher) { UIDispatcher uiDispatcher = new UIDispatcher(dispatcher); container.RegisterInstance<IDispatcherService>(uiDispatcher);   container.RegisterType<IInjectSingleViewService, InjectSingleViewService>( new ContainerControlledLifetimeManager());   . . . } } } In the above code we are registering two components with unity container. You shall observe that we are following two different approaches, RegisterInstance and RegisterType.  With RegisterInstance we are registering an existing instance and the same instance will be returned for every request made for IDispatcherService   and with RegisterType we are requesting unity container to create an instance for us when required, i.e., when I request for an instance for IInjectSingleViewService, unity will create/return an instance of InjectSingleViewService class and with RegisterType we can configure the life time of the instance being created. With ContaienrControllerLifetimeManager, the unity container caches the instance and reuses for any subsequent requests, without recreating a new instance. Lets take a look into FareViewModel.cs and it’s constructor. The constructor takes one parameter IEventAggregator and if you try to find all references in your solution for IEventAggregator, you will not find a single location where an instance of EventAggregator is passed directly to the constructor. The compiler still finds an instance and works fine because Prism is already configured when used with Unity container to return an instance of EventAggregator when requested for IEventAggregator and in this particular case it is called constructor injection. public class FareViewModel:ObservableBase, IDataErrorInfo { ... private IEventAggregator _eventAggregator;   public FareViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; InitializePropertyNames(); InitializeModel(); PropertyChanged += OnPropertyChanged; } ... 3. Shell Shells are very similar in operation to Master Pages in asp.net or MDI in Windows Forms. And shells contain regions which display the views, you can have as many regions as you wish in a given view. You can also nest regions. i.e, one region can load a view which in itself may contain other regions. We have to create a shell at the start of the application and are doing it by overriding CreateShell method from BootStrapper From the following Shell.xaml you shall notice that we have two content controls with Region names as ‘MenuRegion’ and ‘MainRegion’.  The idea here is that you can inject any user controls into the regions dynamically, i.e., a Menu User Control for MenuRegion and based on the user action you can load appropriate view into MainRegion.    <Window x:Class="TaxiClient.Shell" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Regions="clr-namespace:Microsoft.Practices.Prism.Regions;assembly=Microsoft.Practices.Prism" Title="Taxi" Height="370" Width="800"> <Grid Margin="2"> <ContentControl Regions:RegionManager.RegionName="MenuRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" />   <ContentControl Grid.Row="1" Regions:RegionManager.RegionName="MainRegion" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" HorizontalContentAlignment="Stretch" VerticalContentAlignment="Stretch" /> <!--<Border Grid.ColumnSpan="2" BorderThickness="2" CornerRadius="3" BorderBrush="LightBlue" />-->   </Grid> </Window> 4. Modules Prism provides the ability to build composite applications and modules play an important role in it. For example if you are building a Mortgage Loan Processor application with 3 components, i.e. customer’s credit history,  existing mortgages, new home/loan information; and consider that the customer’s credit history component involves gathering data about his/her address, background information, job details etc. The idea here using Prism modules is to separate the implementation of these 3 components into their own visual studio projects allowing to build components with no dependency on each other and independently. If we need to add another component to the application, the component can be developed by in house team or some other team in the organization by starting with a new Visual Studio project and adding to the solution at the run time with very little knowledge about the application. Prism modules are defined by implementing the IModule interface and each visual studio project to be considered as a module should implement the IModule interface.  From the BootStrapper.cs you shall observe that we are overriding the method by returning a ConfiguratingModuleCatalog which returns the modules that are registered for the application using the app.config file  and you can also add module using code. Lets take a look into configuration file.   <?xml version="1.0"?> <configuration> <configSections> <section name="modules" type="Microsoft.Practices.Prism.Modularity.ModulesConfigurationSection, Microsoft.Practices.Prism"/> </configSections> <modules> <module assemblyFile="TaxiModules.dll" moduleType="TaxiModules.ModuleInitializer, TaxiModules" moduleName="TaxiModules"/> </modules> </configuration> Here we are adding TaxiModules project to our solution and TaxiModules.ModuleInitializer implements IModule interface   5. Module Mapper With Prism modules you can dynamically add or remove modules from the regions, apart from that Prism also provides API to control adding/removing the views from a region within the same module. Taxi Information Screen: Engage the Taxi Screen: The sample application has two screens, ‘Taxi Information’ and ‘Engage the Taxi’ and they both reside in same module, TaxiModules. ‘Engage the Taxi’ is again made of two user controls, FareView on the left and TotalView on the right. We have created a Shell with two regions, MenuRegion and MainRegion with menu loaded into MenuRegion. We can create a wrapper user control called EngageTheTaxi made of FareView and TotalView and load either TaxiInfo or EngageTheTaxi into MainRegion based on the user action. Though it will work it tightly binds the user controls and for every combination of user controls, we need to create a dummy wrapper control to contain them. Instead we can apply the principles we learned so far from Shell/regions and introduce another template (LeftAndRightRegionView.xaml) made of two regions Region1 (left) and Region2 (right) and load  FareView and TotalView dynamically.  To help with loading of the views dynamically I have introduce an helper an interface, IInjectSingleViewService,  idea suggested by Mike Taulty, a must read blog for .Net developers. using System; using System.Collections.Generic; using System.ComponentModel;   namespace Framework.PresentationUtility.Navigation {   public interface IInjectSingleViewService : INotifyPropertyChanged { IEnumerable<CommandViewDefinition> Commands { get; } IEnumerable<ModuleViewDefinition> Modules { get; }   void RegisterViewForRegion(string commandName, string viewName, string regionName, Type viewType); void ClearViewFromRegion(string viewName, string regionName); void RegisterModule(string moduleName, IList<ModuleMapper> moduleMappers); } } The Interface declares three methods to work with views: RegisterViewForRegion: Registers a view with a particular region. You can register multiple views and their regions under one command.  When this particular command is invoked all the views registered under it will be loaded into their regions. ClearViewFromRegion: To unload a specific view from a region. RegisterModule: The idea is when a command is invoked you can load the UI with set of controls in their default position and based on the user interaction, you can load different contols in to different regions on the fly.  And it is supported ModuleViewDefinition and ModuleMappers as shown below. namespace Framework.PresentationUtility.Navigation { public class ModuleViewDefinition { public string ModuleName { get; set; } public IList<ModuleMapper> ModuleMappers; public ICommand Command { get; set; } }   public class ModuleMapper { public string ViewName { get; set; } public string RegionName { get; set; } public Type ViewType { get; set; } } } 6. Event Aggregator Prism event aggregator enables messaging between components as in Observable pattern, Notifier notifies the Observer which receives notification it is interested in. When it comes to Observable pattern, Observer has to unsubscribes for notifications when it no longer interested in notifications, which allows the Notifier to remove the Observer’s reference from it’s local cache. Though .Net has managed garbage collection it cannot remove inactive the instances referenced by an active instance resulting in memory leak, keeping the Observers in memory as long as Notifier stays in memory.  Developers have to be very careful to unsubscribe when necessary and it often gets overlooked, to overcome these problems Prism Event Aggregator uses weak references to cache the reference (Observer in this case)  and releases the reference (memory) once the instance goes out of scope. Using event aggregator is very simple, declare a generic type of CompositePresenationEvent by inheriting from it. using Microsoft.Practices.Prism.Events; using TaxiCommon.BAO;   namespace TaxiCommon.CompositeEvents { public class TaxiOnMoveEvent:CompositePresentationEvent<TaxiOnMove> { } }   TaxiOnMove.cs includes the properties which we want to exchange between the parties, FareView and TotalView. using System;   namespace TaxiCommon.BAO { public class TaxiOnMove { public TimeSpan MinutesAtTweleveMPH { get; set; } public double MilesAtSixMPH { get; set; } } }   Lets take a look into FareViewodel (Notifier) and how it raises the event.  Here we are raising the event by getting the event through GetEvent<..>() and publishing it with the payload private void OnAddMinutes(object obj) { TaxiOnMove payload = new TaxiOnMove(); if(MilesAtSixMPH != null) payload.MilesAtSixMPH = MilesAtSixMPH.Value; if(MinutesAtTweleveMPH != null) payload.MinutesAtTweleveMPH = new TimeSpan(0,0,MinutesAtTweleveMPH.Value,0);   _eventAggregator.GetEvent<TaxiOnMoveEvent>().Publish(payload); ResetMinutesAndMiles(); } And TotalViewModel(Observer) subscribes to notifications by getting the event through GetEvent<..>() namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { .... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator; ... }   private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>() .Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>() .Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>() .Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   ... private void OnTaxiMove(TaxiOnMove taxiOnMove) { OnMoveFare fare = new OnMoveFare(taxiOnMove); Fares.Add(fare); SetTotalFare(new []{fare}); }   .... 7. MVVM through example In this section we are going to look into MVVM implementation through example.  I have all the modules declared in a single project, TaxiModules, again it is not necessary to have them into one project. Once the user logs into the application, will be greeted with the ‘Engage the Taxi’ screen which is made of two user controls, FareView.xaml and TotalView.Xaml. As you can see from the solution explorer, each of them have their own code behind files and  ViewModel classes, FareViewMode.cs, TotalViewModel.cs Lets take a look in to the FareView and how it interacts with FareViewModel using MVVM implementation. FareView.xaml acts as a view and FareViewMode.cs is it’s view model. The FareView code behind class   namespace TaxiModules.Views { /// <summary> /// Interaction logic for FareView.xaml /// </summary> public partial class FareView : UserControl { public FareView(FareViewModel viewModel) { InitializeComponent(); this.Loaded += (s, e) => { this.DataContext = viewModel; }; } } } The FareView is bound to FareViewModel through the data context  and you shall observe that DataContext is of type Object, i.e. the FareView doesn’t really know the type of ViewModel (FareViewModel). This helps separation of View and ViewModel as View and ViewModel are independent of each other, you can bind FareView to FareViewModel2 as well and the application compiles just fine. Lets take a look into FareView xaml file  <UserControl x:Class="TaxiModules.Views.FareView" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:Toolkit="clr-namespace:Microsoft.Windows.Controls;assembly=WPFToolkit" xmlns:Commands="clr-namespace:Microsoft.Practices.Prism.Commands;assembly=Microsoft.Practices.Prism"> <Grid Margin="10" > ....   <Border Style="{DynamicResource innerBorder}" Grid.Row="0" Grid.Column="0" Grid.RowSpan="11" Grid.ColumnSpan="2" Panel.ZIndex="1"/>   <Label Grid.Row="0" Content="Engage the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="1" Content="Select the State"/> <ComboBox Grid.Row="1" Grid.Column="1" ItemsSource="{Binding States}" Height="auto"> <ComboBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Name}"/> </DataTemplate> </ComboBox.ItemTemplate> <ComboBox.SelectedItem> <Binding Path="SelectedState" Mode="TwoWay"/> </ComboBox.SelectedItem> </ComboBox> <Label Grid.Row="2" Content="Select the Date of Entry"/> <Toolkit:DatePicker Grid.Row="2" Grid.Column="1" SelectedDate="{Binding DateOfEntry, ValidatesOnDataErrors=true}" /> <Label Grid.Row="3" Content="Enter time 24hr format"/> <TextBox Grid.Row="3" Grid.Column="1" Text="{Binding TimeOfEntry, TargetNullValue=''}"/> <Button Grid.Row="4" Grid.Column="1" Content="Start the Meter" Commands:Click.Command="{Binding StartMeterCommand}" />   <Label Grid.Row="5" Content="Run the Taxi" Style="{DynamicResource innerHeader}"/> <Label Grid.Row="6" Content="Number of Miles &lt;@6mph"/> <TextBox Grid.Row="6" Grid.Column="1" Text="{Binding MilesAtSixMPH, TargetNullValue='', ValidatesOnDataErrors=true}"/> <Label Grid.Row="7" Content="Number of Minutes @12mph"/> <TextBox Grid.Row="7" Grid.Column="1" Text="{Binding MinutesAtTweleveMPH, TargetNullValue=''}"/> <Button Grid.Row="8" Grid.Column="1" Content="Add Minutes and Miles " Commands:Click.Command="{Binding AddMinutesCommand}"/> <Label Grid.Row="9" Content="Other Operations" Style="{DynamicResource innerHeader}"/> <Button Grid.Row="10" Grid.Column="1" Content="Reset the Meter" Commands:Click.Command="{Binding ResetCommand}"/>   </Grid> </UserControl> The highlighted code from the above code shows data binding, for example ComboBox which displays list of states has it’s ItemsSource bound to States property, with DataTemplate bound to Name and SelectedItem  to SelectedState. You might be wondering what are all these properties and how it is able to bind to them.  The answer lies in data context, i.e., when you bound a control, WPF looks for data context on the root object (Grid in this case) and if it can’t find data context it will look into root’s root, i.e. FareView UserControl and it is bound to FareViewModel.  Each of those properties have be declared on the ViewModel for the View to bind correctly. To put simply, View is bound to ViewModel through data context of type object and every control that is bound on the View actually binds to the public property on the ViewModel. Lets look into the ViewModel code (the following code is not an exact copy of FareViewMode.cs, pasted relevant code for this section)   namespace TaxiModules.ViewModels { public class FareViewModel:ObservableBase, IDataErrorInfo { public List<USState> States { get { return USStates.StateList; } }   public USState SelectedState { get { return _selectedState; } set { _selectedState = value; RaisePropertyChanged(_selectedStatePropertyName); } }   public DateTime? DateOfEntry { get { return _dateOfEntry; } set { _dateOfEntry = value; RaisePropertyChanged(_dateOfEntryPropertyName); } }   public TimeSpan? TimeOfEntry { get { return _timeOfEntry; } set { _timeOfEntry = value; RaisePropertyChanged(_timeOfEntryPropertyName); } }   public double? MilesAtSixMPH { get { return _milesAtSixMPH; } set { _milesAtSixMPH = value; RaisePropertyChanged(_distanceAtSixMPHPropertyName); } }   public int? MinutesAtTweleveMPH { get { return _minutesAtTweleveMPH; } set { _minutesAtTweleveMPH = value; RaisePropertyChanged(_minutesAtTweleveMPHPropertyName); } }   public ICommand StartMeterCommand { get { if(_startMeterCommand == null) { _startMeterCommand = new DelegateCommand<object>(OnStartMeter, CanStartMeter); } return _startMeterCommand; } }   public ICommand AddMinutesCommand { get { if(_addMinutesCommand == null) { _addMinutesCommand = new DelegateCommand<object>(OnAddMinutes, CanAddMinutes); } return _addMinutesCommand; } }   public ICommand ResetCommand { get { if(_resetCommand == null) { _resetCommand = new DelegateCommand<object>(OnResetCommand); } return _resetCommand; } }   } private void OnStartMeter(object obj) { _eventAggregator.GetEvent<TaxiStartedEvent>().Publish( new TaxiStarted() { EngagedOn = DateOfEntry.Value.Date + TimeOfEntry.Value, EngagedState = SelectedState.Value });   _isMeterStarted = true; OnPropertyChanged(this,null); } And views communicate user actions like button clicks, tree view item selections, etc using commands. When user clicks on ‘Start the Meter’ button it invokes the method StartMeterCommand, which calls the method OnStartMeter which publishes the event to TotalViewModel using event aggregator  and TaxiStartedEvent. namespace TaxiModules.ViewModels { public class TotalViewModel:ObservableBase { ... private IEventAggregator _eventAggregator;   public TotalViewModel(IEventAggregator eventAggregator) { _eventAggregator = eventAggregator;   InitializePropertyNames(); InitializeModel(); SubscribeToEvents(); }   public decimal? TotalFare { get { return _totalFare; } set { _totalFare = value; RaisePropertyChanged(_totalFarePropertyName); } } .... private void SubscribeToEvents() { _eventAggregator.GetEvent<TaxiStartedEvent>().Subscribe(OnTaxiStarted, ThreadOption.UIThread,false,(filter) => true); _eventAggregator.GetEvent<TaxiOnMoveEvent>().Subscribe(OnTaxiMove, ThreadOption.UIThread, false, (filter) => true); _eventAggregator.GetEvent<TaxiResetEvent>().Subscribe(OnTaxiReset, ThreadOption.UIThread, false, (filter) => true); }   private void OnTaxiStarted(TaxiStarted taxiStarted) { Fares.Add(new EntryFare()); Fares.Add(new StateTaxFare(taxiStarted)); Fares.Add(new NightSurchargeFare(taxiStarted)); Fares.Add(new PeakHourWeekdayFare(taxiStarted));   SetTotalFare(Fares); }   private void SetTotalFare(IEnumerable<IFare> fares) { TotalFare = (_totalFare ?? 0) + TaxiFareHelper.GetTotalFare(fares); } ....   } }   TotalViewModel subscribes to events, TaxiStartedEvent and rest. When TaxiStartedEvent gets invoked it calls the OnTaxiStarted method which sets the total fare which includes entry fee, state tax, nightly surcharge, peak hour weekday fare.   Note that TotalViewModel derives from ObservableBase which implements the method RaisePropertyChanged which we are invoking in Set of TotalFare property, i.e, once we update the TotalFare property it raises an the event that  allows the TotalFare text box to fetch the new value through the data context. ViewModel is communicating with View through data context and it has no knowledge about View, helping in loose coupling of ViewModel and View.   I have attached the source code (.Net 4.0, Prism 4.0, VS 2010) , download and play with it and don’t forget to leave your comments.  

    Read the article

  • ASP.NET MVC Paging/Sorting/Filtering a list using ModelMetadata

    - by rajbk
    This post looks at how to control paging, sorting and filtering when displaying a list of data by specifying attributes in your Model using the ASP.NET MVC framework and the excellent MVCContrib library. It also shows how to hide/show columns and control the formatting of data using attributes.  This uses the Northwind database. A sample project is attached at the end of this post. Let’s start by looking at a class called ProductViewModel. The properties in the class are decorated with attributes. The OrderBy attribute tells the system that the Model can be sorted using that property. The SearchFilter attribute tells the system that filtering is allowed on that property. Filtering type is set by the  FilterType enum which currently supports Equals and Contains. The ScaffoldColumn property specifies if a column is hidden or not The DisplayFormat specifies how the data is formatted. public class ProductViewModel { [OrderBy(IsDefault = true)] [ScaffoldColumn(false)] public int? ProductID { get; set; }   [SearchFilter(FilterType.Contains)] [OrderBy] [DisplayName("Product Name")] public string ProductName { get; set; }   [OrderBy] [DisplayName("Unit Price")] [DisplayFormat(DataFormatString = "{0:c}")] public System.Nullable<decimal> UnitPrice { get; set; }   [DisplayName("Category Name")] public string CategoryName { get; set; }   [SearchFilter] [ScaffoldColumn(false)] public int? CategoryID { get; set; }   [SearchFilter] [ScaffoldColumn(false)] public int? SupplierID { get; set; }   [OrderBy] public bool Discontinued { get; set; } } Before we explore the code further, lets look at the UI.  The UI has a section for filtering the data. The column headers with links are sortable. Paging is also supported with the help of a pager row. The pager is rendered using the MVCContrib Pager component. The data is displayed using a customized version of the MVCContrib Grid component. The customization was done in order for the Grid to be aware of the attributes mentioned above. Now, let’s look at what happens when we perform actions on this page. The diagram below shows the process: The form on the page has its method set to “GET” therefore we see all the parameters in the query string. The query string is shown in blue above. This query gets routed to an action called Index with parameters of type ProductViewModel and PageSortOptions. The parameters in the query string get mapped to the input parameters using model binding. The ProductView object created has the information needed to filter data while the PageAndSorting object is used for paging and sorting the data. The last block in the figure above shows how the filtered and paged list is created. We receive a product list from our product repository (which is of type IQueryable) and first filter it by calliing the AsFiltered extension method passing in the productFilters object and then call the AsPagination extension method passing in the pageSort object. The AsFiltered extension method looks at the type of the filter instance passed in. It skips properties in the instance that do not have the SearchFilter attribute. For properties that have the SearchFilter attribute, it adds filter expression trees to filter against the IQueryable data. The AsPagination extension method looks at the type of the IQueryable and ensures that the column being sorted on has the OrderBy attribute. If it does not find one, it looks for the default sort field [OrderBy(IsDefault = true)]. It is required that at least one attribute in your model has the [OrderBy(IsDefault = true)]. This because a person could be performing paging without specifying an order by column. As you may recall the LINQ Skip method now requires that you call an OrderBy method before it. Therefore we need a default order by column to perform paging. The extension method adds a order expressoin tree to the IQueryable and calls the MVCContrib AsPagination extension method to page the data. Implementation Notes Auto Postback The search filter region auto performs a get request anytime the dropdown selection is changed. This is implemented using the following jQuery snippet $(document).ready(function () { $("#productSearch").change(function () { this.submit(); }); }); Strongly Typed View The code used in the Action method is shown below: public ActionResult Index(ProductViewModel productFilters, PageSortOptions pageSortOptions) { var productPagedList = productRepository.GetProductsProjected().AsFiltered(productFilters).AsPagination(pageSortOptions);   var productViewFilterContainer = new ProductViewFilterContainer(); productViewFilterContainer.Fill(productFilters.CategoryID, productFilters.SupplierID, productFilters.ProductName);   var gridSortOptions = new GridSortOptions { Column = pageSortOptions.Column, Direction = pageSortOptions.Direction };   var productListContainer = new ProductListContainerModel { ProductPagedList = productPagedList, ProductViewFilterContainer = productViewFilterContainer, GridSortOptions = gridSortOptions };   return View(productListContainer); } As you see above, the object that is returned to the view is of type ProductListContainerModel. This contains all the information need for the view to render the Search filter section (including dropdowns),  the Html.Pager (MVCContrib) and the Html.Grid (from MVCContrib). It also stores the state of the search filters so that they can recreate themselves when the page reloads (Viewstate, I miss you! :0)  The class diagram for the container class is shown below.   Custom MVCContrib Grid The MVCContrib grid default behavior was overridden so that it would auto generate the columns and format the columns based on the metadata and also make it aware of our custom attributes (see MetaDataGridModel in the sample code). The Grid ensures that the ShowForDisplay on the column is set to true This can also be set by the ScaffoldColumn attribute ref: http://bradwilson.typepad.com/blog/2009/10/aspnet-mvc-2-templates-part-2-modelmetadata.html) Column headers are set using the DisplayName attribute Column sorting is set using the OrderBy attribute. The data is formatted using the DisplayFormat attribute. Generic Extension methods for Sorting and Filtering The extension method AsFiltered takes in an IQueryable<T> and uses expression trees to query against the IQueryable data. The query is constructed using the Model metadata and the properties of the T filter (productFilters in our case). Properties in the Model that do not have the SearchFilter attribute are skipped when creating the filter expression tree.  It returns an IQueryable<T>. The extension method AsPagination takes in an IQuerable<T> and first ensures that the column being sorted on has the OrderBy attribute. If not, we look for the default OrderBy column ([OrderBy(IsDefault = true)]). We then build an expression tree to sort on this column. We finally hand off the call to the MVCContrib AsPagination which returns an IPagination<T>. This type as you can see in the class diagram above is passed to the view and used by the MVCContrib Grid and Pager components. Custom Provider To get the system to recognize our custom attributes, we create our MetadataProvider as mentioned in this article (http://bradwilson.typepad.com/blog/2010/01/why-you-dont-need-modelmetadataattributes.html) protected override ModelMetadata CreateMetadata(IEnumerable<Attribute> attributes, Type containerType, Func<object> modelAccessor, Type modelType, string propertyName) { ModelMetadata metadata = base.CreateMetadata(attributes, containerType, modelAccessor, modelType, propertyName);   SearchFilterAttribute searchFilterAttribute = attributes.OfType<SearchFilterAttribute>().FirstOrDefault(); if (searchFilterAttribute != null) { metadata.AdditionalValues.Add(Globals.SearchFilterAttributeKey, searchFilterAttribute); }   OrderByAttribute orderByAttribute = attributes.OfType<OrderByAttribute>().FirstOrDefault(); if (orderByAttribute != null) { metadata.AdditionalValues.Add(Globals.OrderByAttributeKey, orderByAttribute); }   return metadata; } We register our MetadataProvider in Global.asax.cs. protected void Application_Start() { AreaRegistration.RegisterAllAreas();   RegisterRoutes(RouteTable.Routes);   ModelMetadataProviders.Current = new MvcFlan.QueryModelMetaDataProvider(); } Bugs, Comments and Suggestions are welcome! You can download the sample code below. This code is purely experimental. Use at your own risk. Download Sample Code (VS 2010 RTM) MVCNorthwindSales.zip

    Read the article

  • How to deal with a poor team leader and a tester manager from hell? [closed]

    - by Google
    Let me begin by explaining my situation and give a little context to the situation. My company has around 15 developers but we're split up on two different areas. We have a fresh product team and the old product team. The old product team does mostly bug fixes/maintenance and a feature here and there. The fresh product had never been released and was new from the ground up. I am on the fresh product team. The team consists of three developers (myself, another developer and a senior developer). The senior is also our team leader. Our roles are as follows: Myself: building the administration client as well as build/release stuff Other dev: building the primary client Team lead: building the server In addition to the dev team, we interact with the test manager often. By "we" I mean me since I do the build stuff and give him the builds to test. Trial 1: The other developer on my team and I have both tried to talk to our manager about our team leader. About two weeks before release we went in his office and had a closed door meeting before our team lead got to work. We expressed our concerns about the product, its release date and our team leader. We expressed our team leader had a "rosey" image of the product's state. Our manager seemed to listen to what we said and thanked us for taking the initiative to speak with him about it. He got us an extra two weeks before release. The situation with the leader didn't change. In fact, it got a little worse. While we were using the two weeks to fix issues he was slacking off quite a bit. Just to name a few things, he installed Windows 8 on his dev machine during this time (claimed him machine was broke), he wrote a plugin for our office messenger that turned turned messages into speech, and one time when I went in his office he was making a 3D model in Blender (for "fun"). He felt the product was "pretty good" and ready for release. During this time I dealt with the test manager on a daily basis. Every bug or issue that popped up he would pretty much attack me personally (regardless of which component the bug was in). The test manager would often push his "views" of what needed to be done with the product. He virtually ordered me to change text on our installer and to add features to the installer and administration client. I tried to express how his suggestions were "valid ideas" but it was too close to release to do those kinds of things and to make matters worse, our technical writer had already finished documentation and such a change would not only affect the dev team but would affect the technical writer and marketing as well. I expressed I wasn't going to make those changes without marketing's consent as well as the technical writer and my manager's. He pretty much said I don't care about the product and said I don't do my job. I would like to take a moment to say I take my job seriously and I do my best. I am the kind of person that goes to work 30-40 mins early and usually leaves 30 minutes later than everyone else. Saying I don't care or do my job is just insulting. His "attacks" on me grew from day to day. Every bug that popped up he would usually comment on in some manner that jabbed me and the other developer. "Oh that bug! Yeah that should have been fixed by now, figures! If someone would do their job!" and other similar kinds of comments. Keep in mind 8 out of 10 bugs were in the server and had nothing to do with me and the other developer. That didn't seem to matter.. On one occasion they got pretty bad and we almost got into a yelling match so I decided to stop talking to him all together. I carried all communication through office email (with my manager cc'd). He never attacked me via email. He still attempted to get aggressive with me in person but I completely ignore him and my only response to any question is, "Ask my team leader." or "Ask a product manager." The product launched after our two week extension. Trial 2: The day after the product launch our team leader went on vacation (thanks....). At this time we got a lot of questions from the tech support... major issues with the product. All of these issues were bugs marked "resolved" by our lovely team leader (a typical situation that often popped up). This is where we currently are. The other developer has been with the company for about three years (I've been there only five months) and told me he was going to speak with our manager alone and hoped it would help get our concerns across a little better in a one-on-one. He spoke with the manager and directly addressed all of our concerns regarding our team leader and the test manager giving us (mostly me) hell. Our manager basically said he understood how hard we work and said he noticed it and there's no doubt about it. He said he spoke with the test manager about his temper. Regarding the team leader, he didn't say a whole lot. He suggested we sit down with the team leader and address our concerns (isn't that the manager's job?). We're still waiting to see if anything has changed but we doubt it. What can we do next? 1) Talk to the team leader (may stress relationship and make work awkward) I admit the team leader is generally a nice guy. He is just a horrible leader and working closely with him is painful. I still don't believe bringing this directly to the team leader would help at all and may negatively impact the situation. 2) I could quit. Other than this situation the job is pretty fantastic. I really like my other coworkers and we have quite a bit of freedom. 3) I could take the situation with the team leader to one of the owners. I would then be throwing my manager under the bus. 4) I could take the situation with the test manager to HR. Any suggestions? Comments?

    Read the article

  • NHibernate Conventions

    - by Ricardo Peres
    Introduction It seems that nowadays everyone loves conventions! Not the ones that you go to, but the ones that you use, that is! It just happens that NHibernate also supports conventions, and we’ll see exactly how. Conventions in NHibernate are supported in two ways: Naming of tables and columns when not explicitly indicated in the mappings; Full domain mapping. Naming of Tables and Columns Since always NHibernate has supported the concept of a naming strategy. A naming strategy in NHibernate converts class and property names to table and column names and vice-versa, when a name is not explicitly supplied. In concrete, it must be a realization of the NHibernate.Cfg.INamingStrategy interface, of which NHibernate includes two implementations: DefaultNamingStrategy: the default implementation, where each column and table are mapped to identically named properties and classes, for example, “MyEntity” will translate to “MyEntity”; ImprovedNamingStrategy: underscores (_) are used to separate Pascal-cased fragments, for example, entity “MyEntity” will be mapped to a “my_entity” table. The naming strategy can be defined at configuration level (the Configuration instance) by calling the SetNamingStrategy method: 1: cfg.SetNamingStrategy(ImprovedNamingStrategy.Instance); Both the DefaultNamingStrategy and the ImprovedNamingStrategy classes offer singleton instances in the form of Instance static fields. DefaultNamingStrategy is the one NHibernate uses, if you don’t specify one. Domain Mapping In mapping by code, we have the choice of relying on conventions to do the mapping automatically. This means a class will inspect our classes and decide how they will relate to the database objects. The class that handles conventions is NHibernate.Mapping.ByCode.ConventionModelMapper, a specialization of the base by code mapper, NHibernate.Mapping.ByCode.ModelMapper. The ModelMapper relies on an internal SimpleModelInspector to help it decide what and how to map, but the mapper lets you override its decisions.  You apply code conventions like this: 1: //pick the types that you want to map 2: IEnumerable<Type> types = Assembly.GetExecutingAssembly().GetExportedTypes(); 3:  4: //conventions based mapper 5: ConventionModelMapper mapper = new ConventionModelMapper(); 6:  7: HbmMapping mapping = mapper.CompileMappingFor(types); 8:  9: //the one and only configuration instance 10: Configuration cfg = ...; 11: cfg.AddMapping(mapping); This is a very simple example, it lacks, at least, the id generation strategy, which you can add by adding an event handler like this: 1: mapper.BeforeMapClass += (IModelInspector modelInspector, Type type, IClassAttributesMapper classCustomizer) => 2: { 3: classCustomizer.Id(x => 4: { 5: //set the hilo generator 6: x.Generator(Generators.HighLow); 7: }); 8: }; The mapper will fire events like this whenever it needs to get information about what to do. And basically this is all it takes to automatically map your domain! It will correctly configure many-to-one and one-to-many relations, choosing bags or sets depending on your collections, will get the table and column names from the naming strategy we saw earlier and will apply the usual defaults to all properties, such as laziness and fetch mode. However, there is at least one thing missing: many-to-many relations. The conventional mapper doesn’t know how to find and configure them, which is a pity, but, alas, not difficult to overcome. To start, for my projects, I have this rule: each entity exposes a public property of type ISet<T> where T is, of course, the type of the other endpoint entity. Extensible as it is, NHibernate lets me implement this very easily: 1: mapper.IsOneToMany((MemberInfo member, Boolean isLikely) => 2: { 3: Type sourceType = member.DeclaringType; 4: Type destinationType = member.GetMemberFromDeclaringType().GetPropertyOrFieldType(); 5:  6: //check if the property is of a generic collection type 7: if ((destinationType.IsGenericCollection() == true) && (destinationType.GetGenericArguments().Length == 1)) 8: { 9: Type destinationEntityType = destinationType.GetGenericArguments().Single(); 10:  11: //check if the type of the generic collection property is an entity 12: if (mapper.ModelInspector.IsEntity(destinationEntityType) == true) 13: { 14: //check if there is an equivalent property on the target type that is also a generic collection and points to this entity 15: PropertyInfo collectionInDestinationType = destinationEntityType.GetProperties().Where(x => (x.PropertyType.IsGenericCollection() == true) && (x.PropertyType.GetGenericArguments().Length == 1) && (x.PropertyType.GetGenericArguments().Single() == sourceType)).SingleOrDefault(); 16:  17: if (collectionInDestinationType != null) 18: { 19: return (false); 20: } 21: } 22: } 23:  24: return (true); 25: }); 26:  27: mapper.IsManyToMany((MemberInfo member, Boolean isLikely) => 28: { 29: //a relation is many to many if it isn't one to many 30: Boolean isOneToMany = mapper.ModelInspector.IsOneToMany(member); 31: return (!isOneToMany); 32: }); 33:  34: mapper.BeforeMapManyToMany += (IModelInspector modelInspector, PropertyPath member, IManyToManyMapper collectionRelationManyToManyCustomizer) => 35: { 36: Type destinationEntityType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 37: //set the mapping table column names from each source entity name plus the _Id sufix 38: collectionRelationManyToManyCustomizer.Column(destinationEntityType.Name + "_Id"); 39: }; 40:  41: mapper.BeforeMapSet += (IModelInspector modelInspector, PropertyPath member, ISetPropertiesMapper propertyCustomizer) => 42: { 43: if (modelInspector.IsManyToMany(member.LocalMember) == true) 44: { 45: propertyCustomizer.Key(x => x.Column(member.LocalMember.DeclaringType.Name + "_Id")); 46:  47: Type sourceType = member.LocalMember.DeclaringType; 48: Type destinationType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 49: IEnumerable<String> names = new Type[] { sourceType, destinationType }.Select(x => x.Name).OrderBy(x => x); 50:  51: //set inverse on the relation of the alphabetically first entity name 52: propertyCustomizer.Inverse(sourceType.Name == names.First()); 53: //set mapping table name from the entity names in alphabetical order 54: propertyCustomizer.Table(String.Join("_", names)); 55: } 56: }; We have to understand how the conventions mapper thinks: For each collection of entities found, it will ask the mapper if it is a one-to-many; in our case, if the collection is a generic one that has an entity as its generic parameter, and the generic parameter type has a similar collection, then it is not a one-to-many; Next, the mapper will ask if the collection that it now knows is not a one-to-many is a many-to-many; Before a set is mapped, if it corresponds to a many-to-many, we set its mapping table. Now, this is tricky: because we have no way to maintain state, we sort the names of the two endpoint entities and we combine them with a “_”; for the first alphabetical entity, we set its relation to inverse – remember, on a many-to-many relation, only one endpoint must be marked as inverse; finally, we set the column name as the name of the entity with an “_Id” suffix; Before the many-to-many relation is processed, we set the column name as the name of the other endpoint entity with the “_Id” suffix, as we did for the set. And that’s it. With these rules, NHibernate will now happily find and configure many-to-many relations, as well as all the others. You can wrap this in a new conventions mapper class, so that it is more easily reusable: 1: public class ManyToManyConventionModelMapper : ConventionModelMapper 2: { 3: public ManyToManyConventionModelMapper() 4: { 5: base.IsOneToMany((MemberInfo member, Boolean isLikely) => 6: { 7: return (this.IsOneToMany(member, isLikely)); 8: }); 9:  10: base.IsManyToMany((MemberInfo member, Boolean isLikely) => 11: { 12: return (this.IsManyToMany(member, isLikely)); 13: }); 14:  15: base.BeforeMapManyToMany += this.BeforeMapManyToMany; 16: base.BeforeMapSet += this.BeforeMapSet; 17: } 18:  19: protected virtual Boolean IsManyToMany(MemberInfo member, Boolean isLikely) 20: { 21: //a relation is many to many if it isn't one to many 22: Boolean isOneToMany = this.ModelInspector.IsOneToMany(member); 23: return (!isOneToMany); 24: } 25:  26: protected virtual Boolean IsOneToMany(MemberInfo member, Boolean isLikely) 27: { 28: Type sourceType = member.DeclaringType; 29: Type destinationType = member.GetMemberFromDeclaringType().GetPropertyOrFieldType(); 30:  31: //check if the property is of a generic collection type 32: if ((destinationType.IsGenericCollection() == true) && (destinationType.GetGenericArguments().Length == 1)) 33: { 34: Type destinationEntityType = destinationType.GetGenericArguments().Single(); 35:  36: //check if the type of the generic collection property is an entity 37: if (this.ModelInspector.IsEntity(destinationEntityType) == true) 38: { 39: //check if there is an equivalent property on the target type that is also a generic collection and points to this entity 40: PropertyInfo collectionInDestinationType = destinationEntityType.GetProperties().Where(x => (x.PropertyType.IsGenericCollection() == true) && (x.PropertyType.GetGenericArguments().Length == 1) && (x.PropertyType.GetGenericArguments().Single() == sourceType)).SingleOrDefault(); 41:  42: if (collectionInDestinationType != null) 43: { 44: return (false); 45: } 46: } 47: } 48:  49: return (true); 50: } 51:  52: protected virtual new void BeforeMapManyToMany(IModelInspector modelInspector, PropertyPath member, IManyToManyMapper collectionRelationManyToManyCustomizer) 53: { 54: Type destinationEntityType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 55: //set the mapping table column names from each source entity name plus the _Id sufix 56: collectionRelationManyToManyCustomizer.Column(destinationEntityType.Name + "_Id"); 57: } 58:  59: protected virtual new void BeforeMapSet(IModelInspector modelInspector, PropertyPath member, ISetPropertiesMapper propertyCustomizer) 60: { 61: if (modelInspector.IsManyToMany(member.LocalMember) == true) 62: { 63: propertyCustomizer.Key(x => x.Column(member.LocalMember.DeclaringType.Name + "_Id")); 64:  65: Type sourceType = member.LocalMember.DeclaringType; 66: Type destinationType = member.LocalMember.GetPropertyOrFieldType().GetGenericArguments().First(); 67: IEnumerable<String> names = new Type[] { sourceType, destinationType }.Select(x => x.Name).OrderBy(x => x); 68:  69: //set inverse on the relation of the alphabetically first entity name 70: propertyCustomizer.Inverse(sourceType.Name == names.First()); 71: //set mapping table name from the entity names in alphabetical order 72: propertyCustomizer.Table(String.Join("_", names)); 73: } 74: } 75: } Conclusion Of course, there is much more to mapping than this, I suggest you look at all the events and functions offered by the ModelMapper to see where you can hook for making it behave the way you want. If you need any help, just let me know!

    Read the article

  • Waterfall Model (SDLC) vs. Prototyping Model

    The characters in the fable of the Tortoise and the Hare can easily be used to demonstrate the similarities and differences between the Waterfall and Prototyping software development models. This children fable is about a race between a consistently slow moving but steadfast turtle and an extremely fast but unreliable rabbit. After closely comparing each character’s attributes in correlation with both software development models, a trend seems to appear in that the Waterfall closely resembles the Tortoise in that Waterfall Model is typically a slow moving process that is broken up in to multiple sequential steps that must be executed in a standard linear pattern. The Tortoise can be quoted several times in the story saying “Slow and steady wins the race.” This is the perfect mantra for the Waterfall Model in that this model is seen as a cumbersome and slow moving. Waterfall Model Phases Requirement Analysis & Definition This phase focuses on defining requirements for a project that is to be developed and determining if the project is even feasible. Requirements are collected by analyzing existing systems and functionality in correlation with the needs of the business and the desires of the end users. The desired output for this phase is a list of specific requirements from the business that are to be designed and implemented in the subsequent steps. In addition this phase is used to determine if any value will be gained by completing the project. System Design This phase focuses primarily on the actual architectural design of a system, and how it will interact within itself and with other existing applications. Projects at this level should be viewed at a high level so that actual implementation details are decided in the implementation phase. However major environmental decision like hardware and platform decision are typically decided in this phase. Furthermore the basic goal of this phase is to design an application at the system level in those classes, interfaces, and interactions are defined. Additionally decisions about scalability, distribution and reliability should also be considered for all decisions. The desired output for this phase is a functional  design document that states all of the architectural decisions that have been made in regards to the project as well as a diagrams like a sequence and class diagrams. Software Design This phase focuses primarily on the refining of the decisions found in the functional design document. Classes and interfaces are further broken down in to logical modules based on the interfaces and interactions previously indicated. The output of this phase is a formal design document. Implementation / Coding This phase focuses primarily on implementing the previously defined modules in to units of code. These units are developed independently are intergraded as the system is put together as part of a whole system. Software Integration & Verification This phase primarily focuses on testing each of the units of code developed as well as testing the system as a whole. There are basic types of testing at this phase and they include: Unit Test and Integration Test. Unit Test are built to test the functionality of a code unit to ensure that it preforms its desired task. Integration testing test the system as a whole because it focuses on results of combining specific units of code and validating it against expected results. The output of this phase is a test plan that includes test with expected results and actual results. System Verification This phase primarily focuses on testing the system as a whole in regards to the list of project requirements and desired operating environment. Operation & Maintenance his phase primarily focuses on handing off the competed project over to the customer so that they can verify that all of their requirements have been met based on their original requirements. This phase will also validate the correctness of their requirements and if any changed need to be made. In addition, any problems not resolved in the previous phase will be handled in this section. The Waterfall Model’s linear and sequential methodology does offer a project certain advantages and disadvantages. Advantages of the Waterfall Model Simplistic to implement and execute for projects and/or company wide Limited demand on resources Large emphasis on documentation Disadvantages of the Waterfall Model Completed phases cannot be revisited regardless if issues arise within a project Accurate requirement are never gather prior to the completion of the requirement phase due to the lack of clarification in regards to client’s desires. Small changes or errors that arise in applications may cause additional problems The client cannot change any requirements once the requirements phase has been completed leaving them no options for changes as they see their requirements changes as the customers desires change. Excess documentation Phases are cumbersome and slow moving Learn more about the Major Process in the Sofware Development Life Cycle and Waterfall Model. Conversely, the Hare shares similar traits with the prototyping software development model in that ideas are rapidly converted to basic working examples and subsequent changes are made to quickly align the project with customers desires as they are formulated and as software strays from the customers vision. The basic concept of prototyping is to eliminate the use of well-defined project requirements. Projects are allowed to grow as the customer needs and request grow. Projects are initially designed according to basic requirements and are refined as requirement become more refined. This process allows customer to feel their way around the application to ensure that they are developing exactly what they want in the application This model also works well for determining the feasibility of certain approaches in regards to an application. Prototypes allow for quickly developing examples of implementing specific functionality based on certain techniques. Advantages of Prototyping Active participation from users and customers Allows customers to change their mind in specifying requirements Customers get a better understanding of the system as it is developed Earlier bug/error detection Promotes communication with customers Prototype could be used as final production Reduced time needed to develop applications compared to the Waterfall method Disadvantages of Prototyping Promotes constantly redefining project requirements that cause major system rewrites Potential for increased complexity of a system as scope of the system expands Customer could believe the prototype as the working version. Implementation compromises could increase the complexity when applying updates and or application fixes When companies trying to decide between the Waterfall model and Prototype model they need to evaluate the benefits and disadvantages for both models. Typically smaller companies or projects that have major time constraints typically head for more of a Prototype model approach because it can reduce the time needed to complete the project because there is more of a focus on building a project and less on defining requirements and scope prior to the start of a project. On the other hand, Companies with well-defined requirements and time allowed to generate proper documentation should steer towards more of a waterfall model because they are in a position to obtain clarified requirements and have to design and optimal solution prior to the start of coding on a project.

    Read the article

  • I see no LOBs!

    - by Paul White
    Is it possible to see LOB (large object) logical reads from STATISTICS IO output on a table with no LOB columns? I was asked this question today by someone who had spent a good fraction of their afternoon trying to work out why this was occurring – even going so far as to re-run DBCC CHECKDB to see if any corruption had taken place.  The table in question wasn’t particularly pretty – it had grown somewhat organically over time, with new columns being added every so often as the need arose.  Nevertheless, it remained a simple structure with no LOB columns – no TEXT or IMAGE, no XML, no MAX types – nothing aside from ordinary INT, MONEY, VARCHAR, and DATETIME types.  To add to the air of mystery, not every query that ran against the table would report LOB logical reads – just sometimes – but when it did, the query often took much longer to execute. Ok, enough of the pre-amble.  I can’t reproduce the exact structure here, but the following script creates a table that will serve to demonstrate the effect: IF OBJECT_ID(N'dbo.Test', N'U') IS NOT NULL DROP TABLE dbo.Test GO CREATE TABLE dbo.Test ( row_id NUMERIC IDENTITY NOT NULL,   col01 NVARCHAR(450) NOT NULL, col02 NVARCHAR(450) NOT NULL, col03 NVARCHAR(450) NOT NULL, col04 NVARCHAR(450) NOT NULL, col05 NVARCHAR(450) NOT NULL, col06 NVARCHAR(450) NOT NULL, col07 NVARCHAR(450) NOT NULL, col08 NVARCHAR(450) NOT NULL, col09 NVARCHAR(450) NOT NULL, col10 NVARCHAR(450) NOT NULL, CONSTRAINT [PK dbo.Test row_id] PRIMARY KEY CLUSTERED (row_id) ) ; The next script loads the ten variable-length character columns with one-character strings in the first row, two-character strings in the second row, and so on down to the 450th row: WITH Numbers AS ( -- Generates numbers 1 - 450 inclusive SELECT TOP (450) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) INSERT dbo.Test WITH (TABLOCKX) SELECT REPLICATE(N'A', N.n), REPLICATE(N'B', N.n), REPLICATE(N'C', N.n), REPLICATE(N'D', N.n), REPLICATE(N'E', N.n), REPLICATE(N'F', N.n), REPLICATE(N'G', N.n), REPLICATE(N'H', N.n), REPLICATE(N'I', N.n), REPLICATE(N'J', N.n) FROM Numbers AS N ORDER BY N.n ASC ; Once those two scripts have run, the table contains 450 rows and 10 columns of data like this: Most of the time, when we query data from this table, we don’t see any LOB logical reads, for example: -- Find the maximum length of the data in -- column 5 for a range of rows SELECT result = MAX(DATALENGTH(T.col05)) FROM dbo.Test AS T WHERE row_id BETWEEN 50 AND 100 ; But with a different query… -- Read all the data in column 1 SELECT result = MAX(DATALENGTH(T.col01)) FROM dbo.Test AS T ; …suddenly we have 49 LOB logical reads, as well as the ‘normal’ logical reads we would expect. The Explanation If we had tried to create this table in SQL Server 2000, we would have received a warning message to say that future INSERT or UPDATE operations on the table might fail if the resulting row exceeded the in-row storage limit of 8060 bytes.  If we needed to store more data than would fit in an 8060 byte row (including internal overhead) we had to use a LOB column – TEXT, NTEXT, or IMAGE.  These special data types store the large data values in a separate structure, with just a small pointer left in the original row. Row Overflow SQL Server 2005 introduced a feature called row overflow, which allows one or more variable-length columns in a row to move to off-row storage if the data in a particular row would otherwise exceed 8060 bytes.  You no longer receive a warning when creating (or altering) a table that might need more than 8060 bytes of in-row storage; if SQL Server finds that it can no longer fit a variable-length column in a particular row, it will silently move one or more of these columns off the row into a separate allocation unit. Only variable-length columns can be moved in this way (for example the (N)VARCHAR, VARBINARY, and SQL_VARIANT types).  Fixed-length columns (like INTEGER and DATETIME for example) never move into ‘row overflow’ storage.  The decision to move a column off-row is done on a row-by-row basis – so data in a particular column might be stored in-row for some table records, and off-row for others. In general, if SQL Server finds that it needs to move a column into row-overflow storage, it moves the largest variable-length column record for that row.  Note that in the case of an UPDATE statement that results in the 8060 byte limit being exceeded, it might not be the column that grew that is moved! Sneaky LOBs Anyway, that’s all very interesting but I don’t want to get too carried away with the intricacies of row-overflow storage internals.  The point is that it is now possible to define a table with non-LOB columns that will silently exceed the old row-size limit and result in ordinary variable-length columns being moved to off-row storage.  Adding new columns to a table, expanding an existing column definition, or simply storing more data in a column than you used to – all these things can result in one or more variable-length columns being moved off the row. Note that row-overflow storage is logically quite different from old-style LOB and new-style MAX data type storage – individual variable-length columns are still limited to 8000 bytes each – you can just have more of them now.  Having said that, the physical mechanisms involved are very similar to full LOB storage – a column moved to row-overflow leaves a 24-byte pointer record in the row, and the ‘separate storage’ I have been talking about is structured very similarly to both old-style LOBs and new-style MAX types.  The disadvantages are also the same: when SQL Server needs a row-overflow column value it needs to follow the in-row pointer a navigate another chain of pages, just like retrieving a traditional LOB. And Finally… In the example script presented above, the rows with row_id values from 402 to 450 inclusive all exceed the total in-row storage limit of 8060 bytes.  A SELECT that references a column in one of those rows that has moved to off-row storage will incur one or more lob logical reads as the storage engine locates the data.  The results on your system might vary slightly depending on your settings, of course; but in my tests only column 1 in rows 402-450 moved off-row.  You might like to play around with the script – updating columns, changing data type lengths, and so on – to see the effect on lob logical reads and which columns get moved when.  You might even see row-overflow columns moving back in-row if they are updated to be smaller (hint: reduce the size of a column entry by at least 1000 bytes if you hope to see this). Be aware that SQL Server will not warn you when it moves ‘ordinary’ variable-length columns into overflow storage, and it can have dramatic effects on performance.  It makes more sense than ever to choose column data types sensibly.  If you make every column a VARCHAR(8000) or NVARCHAR(4000), and someone stores data that results in a row needing more than 8060 bytes, SQL Server might turn some of your column data into pseudo-LOBs – all without saying a word. Finally, some people make a distinction between ordinary LOBs (those that can hold up to 2GB of data) and the LOB-like structures created by row-overflow (where columns are still limited to 8000 bytes) by referring to row-overflow LOBs as SLOBs.  I find that quite appealing, but the ‘S’ stands for ‘small’, which makes expanding the whole acronym a little daft-sounding…small large objects anyone? © Paul White 2011 email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Oracle B2B - Synchronous Request Reply

    - by cdwright
    Introduction So first off, let me say I didn't create this demo (although I did modify it some). I got it from a member of the B2B development technical staff. Since it came with only a simple readme file, I thought I would take some time and write a more detailed explanation about how it works. Beginning with Oracle SOA Suite PS5 (11.1.1.6), B2B supports synchronous request reply over http using the b2b/syncreceiver servlet. I’m attaching the demo to this blog which includes a SOA composite archive that needs to be deployed using JDeveloper, a B2B repository with two agreements that need to be deployed using the B2B console, and a test xml file that gets sent to the b2b/syncreceiver servlet using your favorite SOAP test tool (I'm using Firefox Poster here). You can download the zip file containing the demo here. The demo works by sending the sample xml request file (req.xml) to http://<b2bhost>:8001/b2b/syncreceiver using the SOAP test tool.  The syncreceiver servlet keeps the socket connection open between itself and the test tool so that it can synchronously send the reply message back. When B2B receives the inbound request message, it is passed to the SOA composite through the default B2B Fabric binding. A simple reply is created in BPEL and returned to B2B which then sends the message back to the test tool using that same socket connection. I’ll show you the B2B configuration first, then we’ll look at the soa composite. Configuring B2B No additional configuration necessary in order to use the syncreceiver servlet. It is already running when you start SOA. After importing the GC_SyncReqRep.zip repository file into B2B, you’ll have the typical GlobalChips host trading partner and the Acme remote trading partner. Document Management The repository contains two very simple custom XML document definitions called Orders and OrdersResponse. In order to determine the trading partner agreement needed to process the inbound Orders document, you need to know two things about it; what is it and where it came from. So let’s look at how B2B identifies the appropriate document definition for the message. The XSD’s for these two document definitions themselves are not particularly interesting. Whenever you're dealing with custom XML documents, B2B identifies the appropriate document definition for each XML message using an XPath Identification Expression. The expression is entered for each of these document definitions under the document administration tab in the B2B console. The full XPATH expression for the Orders document is  //*[local-name()='shiporder']/*[local-name()='shipto']/*[local-name()='name']/text(). You can see this path in the XSD diagram below and how it uniquely identifies this message. The OrdersReponse document is identified in the same way. The XPath expression for it is //*[local-name()='Response']/*[local-name()='Status']/text(). You can see how it’s path differs uniquely identifying the reply from the request. Trading Partner Profile The trading partner profiles are very simple too. For GlobalChips, a generic identifier is being used to identify the sender of the response document using the host trading partner name. For Acme, a generic identifier is also being used to identify the sender of the inbound request using the remote trading partner name. The document types are added for the remote trading partner as usual. So the remote trading partner Acme is the sender of the Orders document, and it is the receiver of the OrdersResponse document. For the remote trading partner only, there needs to be a dummy channel which gets used in the outbound response agreement. The channel is not actually used. It is just a necessary place holder that needs to be there when creating the agreement. Trading Partner Agreement The agreements are equally simple. There is no validation and translation is not an option for a custom XML document type. For the InboundAgreement (request) the document definition is set to OrdersDef. In the Agreement Parameters section the generic identifiers have been added for the host and remote trading partners. That’s all that is needed for the inbound transaction. For the OutboundAgreement (response), the document definition is set to OrdersResponseDef and the generic identifiers for the two trading partners are added. The remote trading partner dummy delivery channel is also added to the agreement. SOA Composite Import the SOA composite archive into JDeveloper as an EJB JAR file. Open the composite and you should have a project that looks like this. In the composite, open the b2bInboundSyncSvc exposed service and advance through the setup wizard. Select your Application Server Connection and advance to the Operations window. Notice here that the B2B binding is set to Receive. It is not set for Synchronous Request Reply. Continue advancing through the wizard as you normally would and select finish at the end. Now open BPELProcess1 in the composite. The BPEL process is set as a Synchronous Request Reply as you can see below. The while loop is there just to give the process something to do. The actual reply message is prepared in the assignResponseValues assignment followed by an Invoke of the B2B binding. Open the replyResponse Invoke and go to the properties tab. You’ll see that the fromTradingPartnerId, toTradingPartner, documentTypeName, and documentProtocolRevision properties have been set. Testing the Configuration To test the configuration, I used Firefox Poster. Enter the URL for the b2b/syncreceiver servlet and browse for the req.xml file that contains the test request message. In the Headers tab, add the property ‘from’ and give it the value ‘Acme’. This is how B2B will know where the message is coming from and it will use that information along with the document type name to find the right trading partner agreement. Now post the message. You should get back a response with a status of ‘200 OK’. That’s all there is to it.

    Read the article

  • WMI/VBS/HTML System Information Script

    - by Methical
    Hey guys; havin' a problem with this code here; can't seem to work out whats goin' wrong with it. All other variables seem to print fine in the HTML ouput; but I get an error that relates to the cputype variable. I get the following error C:\Users\Methical\Desktop\sysinfo.vbs(235,1) Microsoft VBScript runtime error: Invalid procedure call or argument I think it has somethin' to do with this line here fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>CPU</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & cputype & "</i></td></tr>" If i delete this line; the script compiles and outputs with no errors. Here is the full code below Dim strComputer, objWMIService, propValue, objItem Dim strUserName, strPassword, colItems, SWBemlocator ' This section querries for the workstation to be scanned. UserName = "" Password = "" strComputer = "127.1.1.1" ImgDir = "C:\Scripts\images\" 'Sets up the connections and opjects to be used throughout the script. Set SWBemlocator = CreateObject("WbemScripting.SWbemLocator") Set objWMIService = SWBemlocator.ConnectServer(,"root\CIMV2",strUserName,strPassword) 'This determines the current date and time of the PC being scanned. Set colItems = objWMIService.ExecQuery("SELECT * FROM Win32_LocalTime", "WQL", wbemFlagReturnImmediately + wbemFlagForwardOnly) For Each objItem in colItems If objItem.Minute < 10 Then theMinutes = "0" & objItem.Minute Else theMinutes = objItem.Minute End If If objItem.Second < 10 Then theSeconds = "0" & objItem.Second Else theSeconds = objItem.Second End If DateTime = objItem.Month & "/" & objItem.Day & "/" & objItem.Year & " - " & objItem.Hour & ":" & theMinutes & ":" & theSeconds Next 'Gets some ingomation about the Operating System including Service Pack level. Set colItems = objWMIService.ExecQuery("Select * from Win32_OperatingSystem",,48) For Each objItem in colItems WKID = objItem.CSName WKOS = objItem.Caption CSD = objItem.CSDVersion Architecture = objItem.OSArchitecture SysDir = objItem.SystemDirectory SysDrive = objItem.SystemDrive WinDir = objItem.WindowsDirectory ServicePack = objItem.ServicePackMajorVersion & "." & objItem.ServicePackMinorVersion Next 'This section returns the Time Zone Set colItems = objWMIService.ExecQuery("Select * from Win32_TimeZone") For Each objItem in colItems Zone = objItem.Description Next 'This section displays the Shadow Storage information Set colItems = objWMIService.ExecQuery("Select * from Win32_ShadowStorage") For Each objItem in colItems Allocated = int((objItem.AllocatedSpace/1024)/1024+1) UsedSpace = int((objItem.UsedSpace/1024)/1024+1) MaxSpace = int((objItem.MaxSpace/1024)/1024+1) Next 'This section returns the InstallDate of the OS Set objSWbemDateTime = _ CreateObject("WbemScripting.SWbemDateTime") Set colOperatingSystems = _ objWMIService.ExecQuery _ ("Select * from Win32_OperatingSystem") For Each objOperatingSystem _ in colOperatingSystems objSWbemDateTime.Value = _ objOperatingSystem.InstallDate InstallDate = _ objSWbemDateTime.GetVarDate(False) Next 'This section returns the Video card and current resolution. Set colItems = objWMIService.ExecQuery("Select * from Win32_DisplayConfiguration",,48) For Each objItem in colItems VideoCard = objItem.DeviceName Resolution = objItem.PelsWidth & " x " & objItem.PelsHeight & " x " & objItem.BitsPerPel & " bits" Next 'This section returns the Video card memory. Set objWMIService = GetObject("winmgmts:root\cimv2") Set colItems = objWMIService.ExecQuery ("Select * from Win32_VideoController") For Each objItem in colItems VideoMemory = objItem.AdapterRAM/1024/1024 Next 'This returns various system information including current logged on user, domain, memory, manufacture and model. Set colItems = objWMIService.ExecQuery("Select * from Win32_ComputerSystem",,48) For Each objItem in colItems UserName = objItem.UserName Domain = objItem.Domain TotalMemory = int((objItem.TotalPhysicalMemory/1024)/1024+1) Manufacturer = objItem.Manufacturer Model = objItem.Model SysType = objItem.SystemType Next 'This determines the total hard drive space and free hard drive space. Set colItems = objWMIService.ExecQuery("Select * from Win32_LogicalDisk Where Name='C:'",,48) For Each objItem in colItems FreeHDSpace = Fix(((objItem.FreeSpace/1024)/1024)/1024) TotalHDSpace = Fix(((objItem.Size/1024)/1024)/1024) Next 'This section returns the default printer and printer port. Set colItems = objWMIService.ExecQuery("SELECT * FROM Win32_Printer where Default=True", "WQL", wbemFlagReturnImmediately + wbemFlagForwardOnly) For Each objItem in colItems Printer = objItem.Name PortName = objItem.PortName Next 'This returns the CPU information. Set colItems = objWMIService.ExecQuery("SELECT * FROM Win32_Processor", "WQL", wbemFlagReturnImmediately + wbemFlagForwardOnly) For Each objItem in colItems CPUDesc = LTrim(objItem.Name) Next '// CPU Info For each objCPU in GetObject("winmgmts:{impersonationLevel=impersonate}\\" & strComputer & "\root\cimv2").InstancesOf("Win32_Processor") Select Case objCPU.Family Case 2 cputype = "Unknown" Case 11 cputype = "Pentium brand" Case 12 cputype = "Pentium Pro" Case 13 cputype = "Pentium II" Case 14 cputype = "Pentium processor with MMX technology" Case 15 cputype = "Celeron " Case 16 cputype = "Pentium II Xeon" Case 17 cputype = "Pentium III" Case 28 cputype = "AMD Athlon Processor Family" Case 29 cputype = "AMD Duron Processor" Case 30 cputype = "AMD2900 Family" Case 31 cputype = "K6-2+" Case 130 cputype = "Itanium Processor" Case 176 cputype = "Pentium III Xeon" Case 177 cputype = "Pentium III Processor with Intel SpeedStep Technology" Case 178 cputype = "Pentium 4" Case 179 cputype = "Intel Xeon" Case 181 cputype = "Intel Xeon processor MP" Case 182 cputype = "AMD AthlonXP Family" Case 183 cputype = "AMD AthlonMP Family" Case 184 cputype = "Intel Itanium 2" Case 185 cputype = "AMD Opteron? Family" End Select Next 'This returns the current uptime (time since last reboot) of the system. Set colOperatingSystems = objWMIService.ExecQuery ("Select * from Win32_OperatingSystem") For Each objOS in colOperatingSystems dtmBootup = objOS.LastBootUpTime dtmLastBootupTime = WMIDateStringToDate(dtmBootup) dtmSystemUptime = DateDiff("h", dtmLastBootUpTime, Now) Uptime = dtmSystemUptime Next Function WMIDateStringToDate(dtmBootup) WMIDateStringToDate = CDate(Mid(dtmBootup, 5, 2) & "/" & Mid(dtmBootup, 7, 2) & "/" & Left(dtmBootup, 4) & " " & Mid (dtmBootup, 9, 2) & ":" & Mid(dtmBootup, 11, 2) & ":" & Mid(dtmBootup,13, 2)) End Function dim objFSO Set objFSO = CreateObject("Scripting.FileSystemObject") ' -- The heart of the create file script ----------------------- ' -- Creates the file using the value of strFile on Line 11 ' -------------------------------------------------------------- Set fileOutput = objFSO.CreateTextFile( "x.html", true ) 'Set fileOutput = objExplorer.Document 'This is the code for the web page to be displayed. fileOutput.WriteLine "<html>" fileOutput.WriteLine " <head>" fileOutput.WriteLine " <title>System Information for '" & WKID & "' </title>" fileOutput.WriteLine " </head>" fileOutput.WriteLine " <body bgcolor='#FFFFFF' text='#000000' link='#0000FF' vlink='000099' alink='#00FF00'>" fileOutput.WriteLine " <center>" fileOutput.WriteLine " <h1>System Information for " & WKID & "</h1>" fileOutput.WriteLine " <table border='0' cellspacing='1' cellpadding='1' width='95%'>" fileOutput.WriteLine " <tr><td background='" & ImgDir & "blue_spacer.gif'>" fileOutput.WriteLine " <table border='0' cellspacing='0' cellpadding='0' width='100%'>" fileOutput.WriteLine " <tr><td>" fileOutput.WriteLine " <table border='0' cellspacing='0' cellpadding='0' width='100%'>" fileOutput.WriteLine " <tr>" fileOutput.WriteLine " <td width='5%' align='left' valign='middle' background='" & ImgDir & "blue_spacer.gif'><img src='" & ImgDir & "write.gif'></td>" fileOutput.WriteLine " <td width='95%' align='left' valign='middle' background='" & ImgDir & "blue_spacer.gif'> <font color='#FFFFFF' size='5'>WKInfo - </font><font color='#FFFFFF' size='3'>General information on the Workstation.</font></td>" fileOutput.WriteLine " </tr>" fileOutput.WriteLine " <tr><td colspan='2' bgcolor='#FFFFFF'>" fileOutput.WriteLine " <TABLE width='100%' cellspacing='0' cellpadding='2' border='1' bordercolor='#c0c0c0' bordercolordark='#ffffff' bordercolorlight='#c0c0c0'>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>Date and Time</h3></b></TD></TR>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Date/Time</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & DateTime & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>System Uptime</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Uptime & " hours</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Time Zone</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Zone & " </i></td></tr>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>General Computer Information</h3></b></TD></TR>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Manufacturer</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Manufacturer & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Model</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Model & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>System Based</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & SysType & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Operating System</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & WKOS & " " & CSD & " " & Architecture & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Operating System Install Date</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & InstallDate & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>UserName</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & UserName & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Workstation Name</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & WKID & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Domain</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Domain & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>System Drive</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & SysDrive & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>System Directory</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & SysDir & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Windows Directory</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & WinDir & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>ShadowStorage Allocated Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Allocated & " MB</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>ShadowStorage Used Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & UsedSpace & " MB</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>ShadowStorage Max Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & MaxSpace & " MB</i></td></tr>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>General Hardware Information</h3></b></TD></TR>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>CPU</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & cputype & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Memory</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & TotalMemory & " MB</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Total HDD Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & TotalHDSpace & " GB</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Free HDD Space</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & FreeHDSpace & " GB</i></td></tr>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>General Video Card Information</h3></b></TD></TR>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Video Card</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & VideoCard & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Resolution</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & Resolution & "</i></td></tr>" fileOutput.WriteLine " <TR><TD width='30%' align='left' bgcolor='#e0e0e0'>Memory</TD><td width='70%' bgcolor=#f0f0f0 align=left><i>" & VideoMemory & " MB</i></td></tr>" 'This section lists all the current services and their status. fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>Current Service Information</h3></b></TD></TR>" fileOutput.WriteLine " <tr><td colspan='2' bgcolor='#f0f0f0'>" fileOutput.WriteLine " <TABLE width='100%' cellspacing='0' cellpadding='2' border='1' bordercolor='#c0c0c0' bordercolordark='#ffffff' bordercolorlight='#c0c0c0'>" fileOutput.WriteLine " <TR><TD width='70%' align='center' bgcolor='#e0e0e0'><b>Service Name</b></td><TD width='30%' align='center' bgcolor='#e0e0e0'><b>Service State</b></td><tr>" Set colRunningServices = objWMIService.ExecQuery("Select * from Win32_Service") For Each objService in colRunningServices fileOutput.WriteLine " <TR><TD align='left' bgcolor='#f0f0f0'>" & objService.DisplayName & "</TD><td bgcolor=#f0f0f0 align=center><i>" & objService.State & "</i></td></tr>" wscript.echo " <TR><TD align='left' bgcolor='#f0f0f0'>" & objService.DisplayName & "</TD><td bgcolor=#f0f0f0 align=center><i>" & objService.State & "</i></td></tr>" Next fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" 'This section lists all the current running processes and some information. fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><h3>Current Process Information</h3></b></TD></TR>" fileOutput.WriteLine " <tr><td colspan='2' bgcolor='#f0f0f0'>" fileOutput.WriteLine " <TABLE width='100%' cellspacing='0' cellpadding='2' border='1' bordercolor='#c0c0c0' bordercolordark='#ffffff' bordercolorlight='#c0c0c0'>" fileOutput.WriteLine " <TR><TD width='10%' align='center' bgcolor='#e0e0e0'><b>PID</b></td><TD width='35%' align='center' bgcolor='#e0e0e0'><b>Process Name</b></td><TD width='40%' align='center' bgcolor='#e0e0e0'><b>Owner</b></td><TD width='15%' align='center' bgcolor='#e0e0e0'><b>Memory</b></td></tr>" Set colProcessList = objWMIService.ExecQuery("Select * from Win32_Process") For Each objProcess in colProcessList colProperties = objProcess.GetOwner(strNameOfUser,strUserDomain) fileOutput.WriteLine " <TR><TD align='center' bgcolor='#f0f0f0'>" & objProcess.Handle & "</td><TD align='center' bgcolor='#f0f0f0'>" & objProcess.Name & "</td><TD align='center' bgcolor='#f0f0f0'>" & strUserDomain & "\" & strNameOfUser & "</td><TD align='center' bgcolor='#f0f0f0'>" & objProcess.WorkingSetSize/1024 & " kb</td><tr>" Next fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" 'This section lists all the currently installed software on the machine. fileOutput.WriteLine " <TR><TD align='center' bgcolor='#d0d0d0' colspan='2'><b><i>Installed Software</i></b></TD></TR>" fileOutput.WriteLine " <tr><td colspan='2' bgcolor='#f0f0f0'>" Set colSoftware = objWMIService.ExecQuery ("Select * from Win32_Product") For Each objSoftware in colSoftware fileOutput.WriteLine" <TABLE width='100%' cellspacing='0' cellpadding='2' border='1' bordercolor='#c0c0c0' bordercolordark='#ffffff' bordercolorlight='#c0c0c0'>" fileOutput.WriteLine" <tr><td width=30% align=center bgcolor='#e0e0e0'><b>Name</b></td><td width=30% align=center bgcolor='#e0e0e0'><b>Vendor</b></td><td width=30% align=center bgcolor='#e0e0e0'><b>Version</b></td></tr>" fileOutput.WriteLine" <tr><td align=center bgcolor=#f0f0f0>" & objSoftware.Name & "</td><td align=center bgcolor=#f0f0f0>" & objSoftware.Vendor & "</td><td align=center bgcolor=#f0f0f0>" & objSoftware.Version & "</td></tr>" fileOutput.WriteLine" <tr height=2><td height=10 align=center bgcolor=midnightblue colspan=3></td></tr>" fileOutput.WriteLine" </table>" Next fileOutput.WriteLine " </td></tr>" fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" fileOutput.WriteLine " </table>" fileOutput.WriteLine " </td></tr>" fileOutput.WriteLine " </table>" fileOutput.WriteLine " <p><small></small></p>" fileOutput.WriteLine " </center>" fileOutput.WriteLine " </body>" fileOutput.WriteLine "<html>" fileOutput.close WScript.Quit

    Read the article

  • Enable 2-way databinding on nested listview

    - by Lars Pedersen
    I have a ASP.NET FormView, that - via an ObjectDataSource - is bound to my EventOrder-object: [Serializable] public class EventOrder { [Serializable] public class OrderTicket { public int Qty { get; set; } public int Id { get { return this.Ticket.Id; } } public Ticket Ticket { get; set; } public double TicketPrice { get; set; } } [Serializable] public class OrderExtra { public int Qty { get; set; } public int Id { get { return this.Extra.Id; } } public Extra Extra { get; set; } } public Event Event { get; set; } public List<OrderTicket> OrderTickets { get; set; } public List<OrderExtra> OrderExtras { get; set; } public UserProfile UserProfile { get; set; } public List<Fee> Fees { get; set; } public List<Discount> Discounts { get; set; } public EventOrder() { this.OrderExtras = new List<OrderExtra>(); this.OrderTickets = new List<OrderTicket>(); this.Fees = new List<Fee>(); this.Discounts = new List<Discount>(); } } In my FormView, I have a bindingexpression on an inner listview for my collection of OrderTickets: <asp:ListView Visible="false" runat="server" DataKeyNames="Id" ID="lvTickets" DataSource='<%# Bind("OrderTickets") %>'> <ItemTemplate> <asp:TextBox ID="TextBox5" Text='<%# Bind("Qty") %>' runat="server"></asp:TextBox> <asp:Label ID="Label1" runat="server" Text='<%# Eval("Ticket.Title") %>'></asp:Label> <asp:Label ID="Label2" runat="server" Text='<%# Eval("TicketPrice") %>'></asp:Label><br /> </ItemTemplate> My problem is that the Qty-property isn't databound to the object when the parent container is updated. Is it possible to have this kind of parent-child relation with 2-way databinding? Can I force the child listview to update it's bound dataobject when I submit the form?

    Read the article

  • The Clocks on USACO

    - by philip
    I submitted my code for a question on USACO titled "The Clocks". This is the link to the question: http://ace.delos.com/usacoprob2?a=wj7UqN4l7zk&S=clocks This is the output: Compiling... Compile: OK Executing... Test 1: TEST OK [0.173 secs, 13928 KB] Test 2: TEST OK [0.130 secs, 13928 KB] Test 3: TEST OK [0.583 secs, 13928 KB] Test 4: TEST OK [0.965 secs, 13928 KB] Run 5: Execution error: Your program (`clocks') used more than the allotted runtime of 1 seconds (it ended or was stopped at 1.584 seconds) when presented with test case 5. It used 13928 KB of memory. ------ Data for Run 5 ------ 6 12 12 12 12 12 12 12 12 ---------------------------- Your program printed data to stdout. Here is the data: ------------------- time:_0.40928452 ------------------- Test 5: RUNTIME 1.5841 (13928 KB) I wrote my program so that it will print out the time taken (in seconds) for the program to complete before it exits. As can be seen, it took 0.40928452 seconds before exiting. So how the heck did the runtime end up to be 1.584 seconds? What should I do about it? This is the code if it helps: import java.io.; import java.util.; class clocks { public static void main(String[] args) throws IOException { long start = System.nanoTime(); // Use BufferedReader rather than RandomAccessFile; it's much faster BufferedReader f = new BufferedReader(new FileReader("clocks.in")); // input file name goes above PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("clocks.out"))); // Use StringTokenizer vs. readLine/split -- lots faster int[] clock = new int[9]; for (int i = 0; i < 3; i++) { StringTokenizer st = new StringTokenizer(f.readLine()); // Get line, break into tokens clock[i * 3] = Integer.parseInt(st.nextToken()); clock[i * 3 + 1] = Integer.parseInt(st.nextToken()); clock[i * 3 + 2] = Integer.parseInt(st.nextToken()); } ArrayList validCombination = new ArrayList();; for (int i = 1; true; i++) { ArrayList combination = getPossibleCombinations(i); for (int j = 0; j < combination.size(); j++) { if (tryCombination(clock, (int[]) combination.get(j))) { validCombination.add(combination.get(j)); } } if (validCombination.size() > 0) { break; } } int [] min = (int[])validCombination.get(0); if (validCombination.size() > 1){ String minS = ""; for (int i=0; i<min.length; i++) minS += min[i]; for (int i=1; i<validCombination.size(); i++){ String tempS = ""; int [] temp = (int[])validCombination.get(i); for (int j=0; j<temp.length; j++) tempS += temp[j]; if (tempS.compareTo(minS) < 0){ minS = tempS; min = temp; } } } for (int i=0; i<min.length-1; i++) out.print(min[i] + " "); out.println(min[min.length-1]); out.close(); // close the output file long end = System.nanoTime(); System.out.println("time: " + (end-start)/1000000000.0); System.exit(0); // don't omit this! } static boolean tryCombination(int[] clock, int[] steps) { int[] temp = Arrays.copyOf(clock, clock.length); for (int i = 0; i < steps.length; i++) transform(temp, steps[i]); for (int i=0; i<temp.length; i++) if (temp[i] != 12) return false; return true; } static void transform(int[] clock, int n) { if (n == 1) { int[] clocksToChange = {0, 1, 3, 4}; add3(clock, clocksToChange); } else if (n == 2) { int[] clocksToChange = {0, 1, 2}; add3(clock, clocksToChange); } else if (n == 3) { int[] clocksToChange = {1, 2, 4, 5}; add3(clock, clocksToChange); } else if (n == 4) { int[] clocksToChange = {0, 3, 6}; add3(clock, clocksToChange); } else if (n == 5) { int[] clocksToChange = {1, 3, 4, 5, 7}; add3(clock, clocksToChange); } else if (n == 6) { int[] clocksToChange = {2, 5, 8}; add3(clock, clocksToChange); } else if (n == 7) { int[] clocksToChange = {3, 4, 6, 7}; add3(clock, clocksToChange); } else if (n == 8) { int[] clocksToChange = {6, 7, 8}; add3(clock, clocksToChange); } else if (n == 9) { int[] clocksToChange = {4, 5, 7, 8}; add3(clock, clocksToChange); } } static void add3(int[] clock, int[] position) { for (int i = 0; i < position.length; i++) { if (clock[position[i]] != 12) { clock[position[i]] += 3; } else { clock[position[i]] = 3; } } } static ArrayList getPossibleCombinations(int size) { ArrayList l = new ArrayList(); int[] current = new int[size]; for (int i = 0; i < current.length; i++) { current[i] = 1; } int[] end = new int[size]; for (int i = 0; i < end.length; i++) { end[i] = 9; } l.add(Arrays.copyOf(current, size)); while (!Arrays.equals(current, end)) { incrementWithoutRepetition(current, current.length - 1); l.add(Arrays.copyOf(current, size)); } int [][] combination = new int[l.size()][size]; for (int i=0; i<l.size(); i++) combination[i] = (int[])l.get(i); return l; } static int incrementWithoutRepetition(int[] n, int index) { if (n[index] != 9) { n[index]++; return n[index]; } else { n[index] = incrementWithoutRepetition(n, index - 1); return n[index]; } } static void p(int[] n) { for (int i = 0; i < n.length; i++) { System.out.print(n[i] + " "); } System.out.println(""); } }

    Read the article

  • NHibernate - I have many, but I only want one!

    - by MartinF
    Hello, I have a User which can have many Emails. This is mapped through a List collection (exposed by IEnumerable Emails on the User). For each User one of the Emails will be the Primary one ("Boolean IsPrimary" property on Email). How can I get the primary Email from User without NHibernate loads every email for the User ? I have the following two entities, with a corresponding table for each public class User { public virtual int Id { get; set; } public virtual IEnumerable<Email> Emails { get; set; } // public virtual Email PrimaryEmail { get; set; } - Possible somehow ? } public class Email { public virtual int Id { get; set; } public virtual String Address { get; set; } public virtual Boolean IsPrimary { get; set; } public virtual User User { get; set; } } Can I map a "Email PrimaryEmail" property etc. on the User to the Email which have "IsPrimary=1" set somehow ? Maybe using a Sql Formula ? a View ? a One-To-One relationship ? or another way ? It should be possible to change the primary email to be one of the other emails, so i would like to keep them all in 1 table and just change the IsPrimary property. Using a Sql Formula, is it be possible to keep the "PrimaryEmail" property on the User up-to-date, if I set the IsPrimary property on the current primary email to false, and then afterwards set the PrimaryEmail property to the email which should be the new primary email and set IsPrimary to true ? Will NHibernate track changes on the "old/current" primary Email loaded by the Sql Formula ? What about the 1 level cache and the 2 level cache when using SqlFormula ? I dont know if it could work by using a View ? Then i guess the Email could be mapped like a Component ? Will it work when updating the Email data when loaded from the View ? Is there a better way ? As I have a bi-directional relationship between User and Email I could in many cases of course query the primary Email and then use the "User" property on the Email to get the User (instead of the other way around - going from User to the primary Email) Hope someone can help ?

    Read the article

  • Castle ActiveRecord - schema generation without enforcing referential integrity?

    - by Simon
    Hi all, I've just started playing with Castle active record as it seems like a gentle way into NHibernate. I really like the idea of the database schema being generate from my classes during development. I want to do something similar to the following: [ActiveRecord] public class Camera : ActiveRecordBase<Camera> { [PrimaryKey] public int CameraId {get; set;} [Property] public int CamKitId {get; set;} [Property] public string serialNo {get; set;} } [ActiveRecord] public class Tripod : ActiveRecordBase<Tripod> { [PrimaryKey] public int TripodId {get; set;} [Property] public int CamKitId {get; set;} [Property] public string serialNo {get; set;} } [ActiveRecord] public class CameraKit : ActiveRecordBase<CameraKit> { [PrimaryKey] public int CamKitId {get; set;} [Property] public string description {get; set;} [HasMany(Inverse=true, Table="Cameras", ColumnKey="CamKitId")] public IList<Camera> Cameras {get; set;} [HasMany(Inverse=true, Table="Tripods", ColumnKey="CamKitId")] public IList<Camera> Tripods {get; set;} } A camerakit should contain any number of tripods and cameras. Camera kits exist independently of cameras and tripods, but are sometimes related. The problem is, if I use createschema, this will put foreign key constraints on the Camera and Tripod tables. I don't want this, I want to be able to to set CamKitId to null on the tripod and camera tables to indicate that it is not part of a CameraKit. Is there a way to tell activerecord/nhibernate to still see it as related, without enforcing the integrity? I was thinking I could have a cameraKit record in there to indicate "no camera kit", but it seems like oeverkill. Or is my schema wrong? Am I doing something I shouldn't with an ORM? (I've not really used ORMs much) Thanks!

    Read the article

  • Traditional IO vs memory-mapped

    - by Senne
    I'm trying to illustrate the difference in performance between traditional IO and memory mapped files in java to students. I found an example somewhere on internet but not everything is clear to me, I don't even think all steps are nececery. I read a lot about it here and there but I'm not convinced about a correct implementation of neither of them. The code I try to understand is: public class FileCopy{ public static void main(String args[]){ if (args.length < 1){ System.out.println(" Wrong usage!"); System.out.println(" Correct usage is : java FileCopy <large file with full path>"); System.exit(0); } String inFileName = args[0]; File inFile = new File(inFileName); if (inFile.exists() != true){ System.out.println(inFileName + " does not exist!"); System.exit(0); } try{ new FileCopy().memoryMappedCopy(inFileName, inFileName+".new" ); new FileCopy().customBufferedCopy(inFileName, inFileName+".new1"); }catch(FileNotFoundException fne){ fne.printStackTrace(); }catch(IOException ioe){ ioe.printStackTrace(); }catch (Exception e){ e.printStackTrace(); } } public void memoryMappedCopy(String fromFile, String toFile ) throws Exception{ long timeIn = new Date().getTime(); // read input file RandomAccessFile rafIn = new RandomAccessFile(fromFile, "rw"); FileChannel fcIn = rafIn.getChannel(); ByteBuffer byteBuffIn = fcIn.map(FileChannel.MapMode.READ_WRITE, 0,(int) fcIn.size()); fcIn.read(byteBuffIn); byteBuffIn.flip(); RandomAccessFile rafOut = new RandomAccessFile(toFile, "rw"); FileChannel fcOut = rafOut.getChannel(); ByteBuffer writeMap = fcOut.map(FileChannel.MapMode.READ_WRITE,0,(int) fcIn.size()); writeMap.put(byteBuffIn); long timeOut = new Date().getTime(); System.out.println("Memory mapped copy Time for a file of size :" + (int) fcIn.size() +" is "+(timeOut-timeIn)); fcOut.close(); fcIn.close(); } static final int CHUNK_SIZE = 100000; static final char[] inChars = new char[CHUNK_SIZE]; public static void customBufferedCopy(String fromFile, String toFile) throws IOException{ long timeIn = new Date().getTime(); Reader in = new FileReader(fromFile); Writer out = new FileWriter(toFile); while (true) { synchronized (inChars) { int amountRead = in.read(inChars); if (amountRead == -1) { break; } out.write(inChars, 0, amountRead); } } long timeOut = new Date().getTime(); System.out.println("Custom buffered copy Time for a file of size :" + (int) new File(fromFile).length() +" is "+(timeOut-timeIn)); in.close(); out.close(); } } When exactly is it nececary to use RandomAccessFile? Here it is used to read and write in the memoryMappedCopy, is it actually nececary just to copy a file at all? Or is it a part of memorry mapping? In customBufferedCopy, why is synchronized used here? I also found a different example that -should- test the performance between the 2: public class MappedIO { private static int numOfInts = 4000000; private static int numOfUbuffInts = 200000; private abstract static class Tester { private String name; public Tester(String name) { this.name = name; } public long runTest() { System.out.print(name + ": "); try { long startTime = System.currentTimeMillis(); test(); long endTime = System.currentTimeMillis(); return (endTime - startTime); } catch (IOException e) { throw new RuntimeException(e); } } public abstract void test() throws IOException; } private static Tester[] tests = { new Tester("Stream Write") { public void test() throws IOException { DataOutputStream dos = new DataOutputStream( new BufferedOutputStream( new FileOutputStream(new File("temp.tmp")))); for(int i = 0; i < numOfInts; i++) dos.writeInt(i); dos.close(); } }, new Tester("Mapped Write") { public void test() throws IOException { FileChannel fc = new RandomAccessFile("temp.tmp", "rw") .getChannel(); IntBuffer ib = fc.map( FileChannel.MapMode.READ_WRITE, 0, fc.size()) .asIntBuffer(); for(int i = 0; i < numOfInts; i++) ib.put(i); fc.close(); } }, new Tester("Stream Read") { public void test() throws IOException { DataInputStream dis = new DataInputStream( new BufferedInputStream( new FileInputStream("temp.tmp"))); for(int i = 0; i < numOfInts; i++) dis.readInt(); dis.close(); } }, new Tester("Mapped Read") { public void test() throws IOException { FileChannel fc = new FileInputStream( new File("temp.tmp")).getChannel(); IntBuffer ib = fc.map( FileChannel.MapMode.READ_ONLY, 0, fc.size()) .asIntBuffer(); while(ib.hasRemaining()) ib.get(); fc.close(); } }, new Tester("Stream Read/Write") { public void test() throws IOException { RandomAccessFile raf = new RandomAccessFile( new File("temp.tmp"), "rw"); raf.writeInt(1); for(int i = 0; i < numOfUbuffInts; i++) { raf.seek(raf.length() - 4); raf.writeInt(raf.readInt()); } raf.close(); } }, new Tester("Mapped Read/Write") { public void test() throws IOException { FileChannel fc = new RandomAccessFile( new File("temp.tmp"), "rw").getChannel(); IntBuffer ib = fc.map( FileChannel.MapMode.READ_WRITE, 0, fc.size()) .asIntBuffer(); ib.put(0); for(int i = 1; i < numOfUbuffInts; i++) ib.put(ib.get(i - 1)); fc.close(); } } }; public static void main(String[] args) { for(int i = 0; i < tests.length; i++) System.out.println(tests[i].runTest()); } } I more or less see whats going on, my output looks like this: Stream Write: 653 Mapped Write: 51 Stream Read: 651 Mapped Read: 40 Stream Read/Write: 14481 Mapped Read/Write: 6 What is makeing the Stream Read/Write so unbelievably long? And as a read/write test, to me it looks a bit pointless to read the same integer over and over (if I understand well what's going on in the Stream Read/Write) Wouldn't it be better to read int's from the previously written file and just read and write ints on the same place? Is there a better way to illustrate it? I've been breaking my head about a lot of these things for a while and I just can't get the whole picture..

    Read the article

  • Restoring multiple database backups in a transaction

    - by Raghu Dodda
    I wrote a stored procedure that restores as set of the database backups. It takes two parameters - a source directory and a restore directory. The procedure looks for all .bak files in the source directory (recursively) and restores all the databases. The stored procedure works as expected, but it has one issue - if I uncomment the try-catch statements, the procedure terminates with the following error: error_number = 3013 error_severity = 16 error_state = 1 error_message = DATABASE is terminating abnormally. The weird part is sometimes (it is not consistent) the restore is done even if the error occurs. The procedure: create proc usp_restore_databases ( @source_directory varchar(1000), @restore_directory varchar(1000) ) as begin declare @number_of_backup_files int -- begin transaction -- begin try -- step 0: Initial validation if(right(@source_directory, 1) <> '\') set @source_directory = @source_directory + '\' if(right(@restore_directory, 1) <> '\') set @restore_directory = @restore_directory + '\' -- step 1: Put all the backup files in the specified directory in a table -- declare @backup_files table ( file_path varchar(1000)) declare @dos_command varchar(1000) set @dos_command = 'dir ' + '"' + @source_directory + '*.bak" /s/b' /* DEBUG */ print @dos_command insert into @backup_files(file_path) exec xp_cmdshell @dos_command delete from @backup_files where file_path IS NULL select @number_of_backup_files = count(1) from @backup_files /* DEBUG */ select * from @backup_files /* DEBUG */ print @number_of_backup_files -- step 2: restore each backup file -- declare backup_file_cursor cursor for select file_path from @backup_files open backup_file_cursor declare @index int; set @index = 0 while(@index < @number_of_backup_files) begin declare @backup_file_path varchar(1000) fetch next from backup_file_cursor into @backup_file_path /* DEBUG */ print @backup_file_path -- step 2a: parse the full backup file name to get the DB file name. declare @db_name varchar(100) set @db_name = right(@backup_file_path, charindex('\', reverse(@backup_file_path)) -1) -- still has the .bak extension /* DEBUG */ print @db_name set @db_name = left(@db_name, charindex('.', @db_name) -1) /* DEBUG */ print @db_name set @db_name = lower(@db_name) /* DEBUG */ print @db_name -- step 2b: find out the logical names of the mdf and ldf files declare @mdf_logical_name varchar(100), @ldf_logical_name varchar(100) declare @backup_file_contents table ( LogicalName nvarchar(128), PhysicalName nvarchar(260), [Type] char(1), FileGroupName nvarchar(128), [Size] numeric(20,0), [MaxSize] numeric(20,0), FileID bigint, CreateLSN numeric(25,0), DropLSN numeric(25,0) NULL, UniqueID uniqueidentifier, ReadOnlyLSN numeric(25,0) NULL, ReadWriteLSN numeric(25,0) NULL, BackupSizeInBytes bigint, SourceBlockSize int, FileGroupID int, LogGroupGUID uniqueidentifier NULL, DifferentialBaseLSN numeric(25,0) NULL, DifferentialBaseGUID uniqueidentifier, IsReadOnly bit, IsPresent bit ) insert into @backup_file_contents exec ('restore filelistonly from disk=' + '''' + @backup_file_path + '''') select @mdf_logical_name = LogicalName from @backup_file_contents where [Type] = 'D' select @ldf_logical_name = LogicalName from @backup_file_contents where [Type] = 'L' /* DEBUG */ print @mdf_logical_name + ', ' + @ldf_logical_name -- step 2c: restore declare @mdf_file_name varchar(1000), @ldf_file_name varchar(1000) set @mdf_file_name = @restore_directory + @db_name + '.mdf' set @ldf_file_name = @restore_directory + @db_name + '.ldf' /* DEBUG */ print 'mdf_logical_name = ' + @mdf_logical_name + '|' + 'ldf_logical_name = ' + @ldf_logical_name + '|' + 'db_name = ' + @db_name + '|' + 'backup_file_path = ' + @backup_file_path + '|' + 'restore_directory = ' + @restore_directory + '|' + 'mdf_file_name = ' + @mdf_file_name + '|' + 'ldf_file_name = ' + @ldf_file_name restore database @db_name from disk = @backup_file_path with move @mdf_logical_name to @mdf_file_name, move @ldf_logical_name to @ldf_file_name -- step 2d: iterate set @index = @index + 1 end close backup_file_cursor deallocate backup_file_cursor -- end try -- begin catch -- print error_message() -- rollback transaction -- return -- end catch -- -- commit transaction end Does anybody have any ideas why this might be happening? Another question: is the transaction code useful ? i.e., if there are 2 databases to be restored, will SQL Server undo the restore of one database if the second restore fails?

    Read the article

  • Using jQuery validation plugin with tabbed navigation

    - by user3438917
    I have a tabbed navigation wizard, for which the first section needs to be validated before proceeding to the next tab. The validation should trigger when the user hits the "next" button. I am unable to get the validation to trigger though: <form id="target-group" novalidate="novalidate"> <div class="box"> <div class='box-header-main'><h2><img src="assets/img/list.png" /> Target Group Information</h2></div> <br /> <div class='box'> <div class='box-header-property'><h2><span data-bind="text:Name">New Target Group</span> | <i class='fa fa-file'></i></h2></div> <br /> <div class='row'> <div id='flight-wizard'> <div id='content' class='col-lg-12'> <div class='col-lg-12'> <div id='tabs'> <ul> <li id="targetgroup-info-tab"><a href='#tabs-1'><i class="fa fa-info-circle"></i>Target Group Info</a></li> <li id="zone-tab"><a href='#tabs-2'><i class="fa fa-map-marker"></i>Zones</a></li> </ul> <div id='tabs-1'> <div class='row'> <div class='col-xs-6'> <div class='form-group'> Name<sup>*</sup> <input id="selectError0" name="name" class='form-control col-xs-12' data-bind="value: asdf" placeholder='Enter Name ...' /> </div> <form class='form-horizontal'> <div class='form-group'> Product(s)<sup>*</sup> <div class='controls' id='products'> <select id='selectError3' class='form-control' data-bind="options:test, optionsText: 'Name', optionsValue : 'test', value: test, optionsCaption: 'Choose Product...'"></select> </div> </div> </form> </div> <!--RIGHT PANE--> <div class='col-xs-6'> <div class='form-group'> Platform<sup>*</sup> <div class='controls'> <select id="selectError2" class='form-control' data-bind="options:test, optionsText: 'Name', optionsValue: 'test', value : test, optionsCaption: 'Choose Platform...'"></select> </div> </div> <form class='form-horizontal'> <div class='form-group'> AdTypes(s)<sup>*</sup> <div class='controls' id='adtypes'> <select multiple="" id='adtypesselect' class='form-control' data-rel="chosen" data-bind="options:test, optionsText: 'Name', optionsValue : 'test', selectedOptions: test, optionsCaption: 'test...'"></select> </div> </div> </form> <button id="btn_cancel_large" class='btn btn-large btn-primary btn-round'><i class='fa fa-ban' /></i> Cancel</button> <button id="btn-next-large" class='btn btn-large btn-primary btn-round'>Next <i class='fa fa-arrow-circle-right'></i></button> </div> <!--end of right pane--> </div> </div> <div id='tabs-2'> <div class='row'> <div class='col-lg-12'> <div class='row'> <div class='col-lg-12'> <div id='zones_list' class='box-content'> <div id='add-new-targetgroupzone' class='add-new'><i class='fa fa-plus-circle'></i><a href='/#/inventory/targeting/' onclick="return false;">Add Zone</a></div> <table id="results" width="100%"> <thead> <tr> <th>Publisher</th> <th>Property</th> <th>Zone</th> <th>AdTypes</th> <th width='10%'>Quick&nbsp;Actions</th> </tr> </thead> </table> </div> </div> </div> </div> </div> <br /> <div class="btn_row"> <button id="btn_cancel_large2" class='btn btn-large btn-primary btn-round'><i class='fa fa-ban' /></i> Cancel</button> <button id="btn-submit-large" class='btn btn-large btn-primary btn-round'>Submit <i class='fa fa-arrow-circle-down'></i></button> </div> </div> </div> </div> </div> </div> </div> </div> </div> </form> <form id="zones-form" style="display: none;" novalidate="novalidate" class="slideup-form"> <div class="box"> <div class="box-header-panel"> <h2>Add Target Group Zone</h2> <div class="box-icon" id="zones-form-close"> <i class="fa fa-arrow-circle-down"></i> </div> </div> <div class="box-content clearfix"> <div class="box-content"> <table id="zones-list" width="100%"> <thead> <tr> <th>Publisher</th> <th>Property</th> <th>Zone</th> <th>AdTypes</th> <th width='10%'>Quick&nbsp;Actions</th> </tr> </thead> </table> </div> </div> </div> </div> </form> jQuery: $("#target-group").validate({ rules: { name: { required: true } }, messages: { name: "Name required", } }); $('#btn-next-large').click(function () { if ($('#target-group').valid()) $tabs.tabs('select', $(this).attr("rel")); });

    Read the article

< Previous Page | 355 356 357 358 359 360 361 362 363 364 365 366  | Next Page >