Search Results

Search found 1162 results on 47 pages for 'taskflow conditional acti'.

Page 36/47 | < Previous Page | 32 33 34 35 36 37 38 39 40 41 42 43  | Next Page >

  • EXCEL generate a character in one column of a row, only if other columns in the same row are not bl

    - by Simon
    My speadsheet keeps track of when patients leave a specific floor of the hospital. There are columns in which where each patient goes is documented (1 column for "home", another column for "rehab facility", another for "other floor", etc.). Only when the patient leaves the hospital altogether does it count as a discharge, in which case the “discharge” column needs to have something in it. What formula can I use to generate, say, an "x" in the "discharge" column if certain "where they went" columns in the same row contain something, but not if there is nothing in any of them? Currently, to accomplish this I am using =IF(OR(M30,N30,O30,P30,Q30,R30,S30),"x") in row 3 of the "discharge" column (rows 1 and 2 are headings), and I have used "fill down" in all subsequent rows. To suppress the "FALSE" this formula yields when the condition is not true, I have applied conditonal formatting to the entire column that if the value=FALSE then the font is white (same colour as background). Is there a more efficient, elegant and idiot-proof way of doing this? The conditional formatting of text colour could potentially confuse everyone but the person who built the spreadsheet (me).

    Read the article

  • How to set the VirtualDocumentRoot based on the files within

    - by Chuck Vose
    I'm trying to set up Apache to use the VirtualDocumentRoot directive but my sites aren't all exactly the same. Most of the sites have a drupal folder which should be the root but there are a few really old drupal sites, a few rails sites, some django sites, etc. that want the Document root to be / or some other folder. Is there a way to set up VirtualDocumentRoot based on a conditional or is there a way to use RewriteRule/Cond to detect that / is the incorrect folder if there is a drupal folder or a public folder? Here's what I have so far: <VirtualHost *:80> # Wildcard ServerAlias, this is the default vhost if no specific vhost matches first. ServerAlias *.unicorn.devserver.com # Automatic ServerName, based on the HTTP_HOST header. UseCanonicalName Off # Automatic DocumentRoot. This uses the 4th level domain name as the document root, # for example http://bar.foo.baz.com/ would respond with /Users/vosechu/Sites/bar/drupal. VirtualDocumentRoot /Users/vosechu/Sites/%-4/drupal </VirtualHost> Thanks in advance! -Chuck

    Read the article

  • Problem while running the j2me application

    - by Paru
    I am not able to view any content in the emulator while running the application. The Build is not failed and i am able run the application successfully. While i am closing the emulator i am getting an error. i can provide both code and log here. import javax.microedition.lcdui.; import javax.microedition.midlet.; import java.io.; import java.lang.; import javax.microedition.io.; import javax.microedition.rms.; public class Login extends MIDlet implements CommandListener { TextField ItemName=null; TextField ItemNo=null; TextField UserName=null; TextField Password=null; Form authForm,mainscreen; TextBox t = null; StringBuffer b = new StringBuffer(); private Display myDisplay = null; private Command okCommand = new Command("Login", Command.OK, 1); private Command exitCommand = new Command("Exit", Command.EXIT, 2); private Command sendCommand = new Command("Send", Command.OK, 1); private Command backCommand = new Command("Back", Command.BACK, 2); private Alert alert = null; public Login() { ItemName=new TextField("Item Name","",10,TextField.ANY); ItemNo=new TextField("Item No","",10,TextField.ANY); myDisplay = Display.getDisplay(this); UserName=new TextField("Your Name","",10,TextField.ANY); Password=new TextField("Password","",10,TextField.PASSWORD); authForm=new Form("Identification"); mainscreen=new Form("Logging IN"); mainscreen.addCommand(sendCommand); mainscreen.addCommand(backCommand); authForm.append(UserName); authForm.append(Password); authForm.addCommand(okCommand); authForm.addCommand(exitCommand); authForm.setCommandListener(this); myDisplay.setCurrent(authForm); } public void startApp() throws MIDletStateChangeException { } public void pauseApp() { } protected void destroyApp(boolean unconditional) throws MIDletStateChangeException { } public void commandAction(Command c, Displayable d) { if ((c == okCommand) && (d == authForm)) { if (UserName.getString().equals("") || Password.getString().equals("")){ alert = new Alert("Error", "You should enter Username and Password", null, AlertType.ERROR); alert.setTimeout(Alert.FOREVER); myDisplay.setCurrent(alert); } else{ //myDisplay.setCurrent(mainscreen); login(UserName.getString(),Password.getString()); } } if ((c == backCommand) && (d == mainscreen)) { myDisplay.setCurrent(authForm); } if ((c == exitCommand) && (d == authForm)) { notifyDestroyed(); } if ((c == sendCommand) && (d == mainscreen)) { if(ItemName.getString().equals("") || ItemNo.getString().equals("")){ } else{ sendItem(ItemName.getString(),ItemNo.getString()); } } } public void login(String UserName,String PassWord) { HttpConnection connection=null; DataInputStream in=null; String url="http://olario.net/submitpost/submitpost/login.php"; OutputStream out=null; try { connection=(HttpConnection)Connector.open(url); connection.setRequestMethod(HttpConnection.POST); connection.setRequestProperty("IF-Modified-Since", "2 Oct 2002 15:10:15 GMT"); connection.setRequestProperty("User-Agent","Profile/MIDP-1.0 Configuration/CLDC-1.0"); connection.setRequestProperty("Content-Language", "en-CA"); connection.setRequestProperty("Content-Length",""+ (UserName.length()+PassWord.length())); connection.setRequestProperty("username",UserName); connection.setRequestProperty("password",PassWord); out = connection.openDataOutputStream(); out.flush(); in = connection.openDataInputStream(); int ch; while((ch = in.read()) != -1) { b.append((char) ch); //System.out.println((char)ch); } //t = new TextBox("Reply",b.toString(),1024,0); //mainscreen.append(b.toString()); String auth=b.toString(); if(in!=null) in.close(); if(out!=null) out.close(); if(connection!=null) connection.close(); if(auth.equals("ok")){ mainscreen.setCommandListener(this); myDisplay.setCurrent(mainscreen); } } catch(IOException x){ } } public void sendItem(String itemname,String itemno){ HttpConnection connection=null; DataInputStream in=null; String url="http://www.olario.net/submitpost/submitpost/submitPost.php"; OutputStream out=null; try { connection=(HttpConnection)Connector.open(url); connection.setRequestMethod(HttpConnection.POST); connection.setRequestProperty("IF-Modified-Since", "2 Oct 2002 15:10:15 GMT"); connection.setRequestProperty("User-Agent","Profile/MIDP-1.0 Configuration/CLDC-1.0"); connection.setRequestProperty("Content-Language", "en-CA"); connection.setRequestProperty("Content-Length",""+ (itemname.length()+itemno.length())); connection.setRequestProperty("itemCode",itemname); connection.setRequestProperty("qty",itemno); out = connection.openDataOutputStream(); out.flush(); in = connection.openDataInputStream(); int ch; while((ch = in.read()) != -1) { b.append((char) ch); //System.out.println((char)ch); } //t = new TextBox("Reply",b.toString(),1024,0); //mainscreen.append(b.toString()); String send=b.toString(); if(in!=null) in.close(); if(out!=null) out.close(); if(connection!=null) connection.close(); if(send.equals("added")){ alert = new Alert("Error", "Send Successfully", null, AlertType.INFO); alert.setTimeout(Alert.FOREVER); myDisplay.setCurrent(alert); } } catch(IOException x){ } } } and the log is pre-init: pre-load-properties: exists.config.active: exists.netbeans.user: exists.user.properties.file: load-properties: exists.platform.active: exists.platform.configuration: exists.platform.profile: basic-init: cldc-pre-init: cldc-init: cdc-init: ricoh-pre-init: ricoh-init: semc-pre-init: semc-init: savaje-pre-init: savaje-init: sjmc-pre-init: sjmc-init: ojec-pre-init: ojec-init: cdc-hi-pre-init: cdc-hi-init: nokiaS80-pre-init: nokiaS80-init: nsicom-pre-init: nsicom-init: post-init: init: conditional-clean-init: conditional-clean: deps-jar: pre-preprocess: do-preprocess: Pre-processing 0 file(s) into /home/sreekumar/NetBeansProjects/Login/build/preprocessed directory. post-preprocess: preprocess: pre-compile: extract-libs: do-compile: post-compile: compile: pre-obfuscate: proguard-init: skip-obfuscation: proguard: post-obfuscate: obfuscate: lwuit-build: pre-preverify: do-preverify: post-preverify: preverify: pre-jar: set-password-init: set-keystore-password: set-alias-password: set-password: create-jad: add-configuration: add-profile: do-extra-libs: nokiaS80-prepare-j9: nokiaS80-prepare-manifest: nokiaS80-prepare-manifest-no-icon: nokiaS80-create-manifest: jad-jsr211-properties.check: jad-jsr211-properties: semc-build-j9: do-jar: nsicom-create-manifest: do-jar-no-manifest: update-jad: Updating application descriptor: /home/sreekumar/NetBeansProjects/Login/dist/Login.jad Generated "/home/sreekumar/NetBeansProjects/Login/dist/Login.jar" is 3501 bytes. sign-jar: ricoh-init-dalp: ricoh-add-app-icon: ricoh-build-dalp-with-icon: ricoh-build-dalp-without-icon: ricoh-build-dalp: savaje-prepare-icon: savaje-build-jnlp: post-jar: jar: pre-run: netmon.check: open-netmon: cldc-run: Copying 1 file to /home/sreekumar/NetBeansProjects/Login/dist/nbrun4244989945642509378 Copying 1 file to /home/sreekumar/NetBeansProjects/Login/dist/nbrun4244989945642509378 Jad URL for OTA execution: http://localhost:8082/servlet/org.netbeans.modules.mobility.project.jam.JAMServlet//home/sreekumar/NetBeansProjects/Login/dist//Login.jad Starting emulator in execution mode Running with storage root /home/sreekumar/j2mewtk/2.5.2/appdb/temp.DefaultColorPhone1 /home/sreekumar/NetBeansProjects/Login/nbproject/build-impl.xml:915: Execution failed with error code 143. BUILD FAILED (total time: 35 seconds)

    Read the article

  • UITableview has problem reloading

    - by seelani
    Hi guys, I've kinda finished my application for a school project but have run into a major "bug". It's a account management application. I'm unable to insert a picture here so here's a link: http://i232.photobucket.com/albums/ee112/seelani/Screenshot2010-12-22atPM075512.png Here's the problem when i click on the plus sign, i push a nav controller to load another view to handle the adding and deleting of categories. When i add and return back to the view above, it doesn't update. It only updates after i hit the button on the right which is another view used to change some settings, and return back to the page. I did some research on viewWillAppear and such but I'm still confused to why it doesn't work properly. This problem is also affecting my program when i delete a category, and return back to this view it crashes cos the view has not reloaded successfully. I will get this error when deleting and returning to the view. "* Terminating app due to uncaught exception 'NSRangeException', reason: '* -[NSMutableArray objectAtIndex:]: index 4 beyond bounds [0 .. 3]'". [EDIT] Table View Code: @class LoginViewController; @implementation CategoryTableViewController @synthesize categoryTableViewController; @synthesize categoryArray; @synthesize accountsTableViewController; @synthesize editAccountTable; @synthesize window; CategoryMgmtTableController *categoryMgmtTableController; ChangePasswordView *changePasswordView; - (void) save_Clicked:(id)sender { /* UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Category Management" message:@"Load category management table view" delegate:self cancelButtonTitle: @"OK" otherButtonTitles:nil]; [alert show]; [alert release]; */ KeyCryptAppAppDelegate *appDelegate = (KeyCryptAppAppDelegate *)[[UIApplication sharedApplication] delegate]; categoryMgmtTableController = [[CategoryMgmtTableController alloc]initWithNibName:@"CategoryMgmtTable" bundle:nil]; [appDelegate.categoryNavController pushViewController:categoryMgmtTableController animated:YES]; } - (void) change_Clicked:(id)sender { UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Change Password" message:@"Change password View" delegate:self cancelButtonTitle: @"OK" otherButtonTitles:nil]; [alert show]; [alert release]; KeyCryptAppAppDelegate *appDelegate = (KeyCryptAppAppDelegate *)[[UIApplication sharedApplication] delegate]; changePasswordView = [[ChangePasswordView alloc]initWithNibName:@"ChangePasswordView" bundle:nil]; [appDelegate.categoryNavController pushViewController:changePasswordView animated:YES]; /* KeyCryptAppAppDelegate *appDelegate = (KeyCryptAppAppDelegate *)[[UIApplication sharedApplication] delegate]; categoryMgmtTableController = [[CategoryMgmtTableController alloc]initWithNibName:@"CategoryMgmtTable" bundle:nil]; [appDelegate.categoryNavController pushViewController:categoryMgmtTableController animated:YES]; */ } #pragma mark - #pragma mark Initialization /* - (id)initWithStyle:(UITableViewStyle)style { // Override initWithStyle: if you create the controller programmatically and want to perform customization that is not appropriate for viewDidLoad. if ((self = [super initWithStyle:style])) { } return self; } */ -(void) initializeCategoryArray { sqlite3 *db= [KeyCryptAppAppDelegate getNewDBConnection]; KeyCryptAppAppDelegate *appDelegate = (KeyCryptAppAppDelegate *)[[UIApplication sharedApplication] delegate]; const char *sql = [[NSString stringWithFormat:(@"Select Category from Categories;")]cString]; const char *cmd = [[NSString stringWithFormat:@"pragma key = '%@' ", appDelegate.pragmaKey]cString]; sqlite3_stmt *compiledStatement; sqlite3_exec(db, cmd, NULL, NULL, NULL); if (sqlite3_prepare_v2(db, sql, -1, &compiledStatement, NULL)==SQLITE_OK) { while(sqlite3_step(compiledStatement) == SQLITE_ROW) [categoryArray addObject:[NSString stringWithUTF8String:(char*) sqlite3_column_text(compiledStatement, 0)]]; } else { NSAssert1(0,@"Error preparing statement", sqlite3_errmsg(db)); } sqlite3_finalize(compiledStatement); } #pragma mark - #pragma mark View lifecycle - (void)viewDidLoad { // Uncomment the following line to display an Edit button in the navigation bar for this view controller. // self.navigationItem.rightBarButtonItem = self.editButtonItem; [super viewDidLoad]; } - (void)viewWillAppear:(BOOL)animated { self.title = NSLocalizedString(@"Categories",@"Types of Categories"); categoryArray = [[NSMutableArray alloc]init]; [self initializeCategoryArray]; self.navigationItem.rightBarButtonItem = [[[UIBarButtonItem alloc] initWithBarButtonSystemItem:UIBarButtonSystemItemAdd target:self action:@selector(save_Clicked:)] autorelease]; self.navigationItem.leftBarButtonItem = [[[UIBarButtonItem alloc] initWithBarButtonSystemItem:UIBarButtonSystemItemAction target:self action:@selector(change_Clicked:)] autorelease]; [super viewWillAppear:animated]; } - (void)viewDidAppear:(BOOL)animated { NSLog (@"view did appear"); [super viewDidAppear:animated]; } - (void)viewWillDisappear:(BOOL)animated { NSLog (@"view will disappear"); [super viewWillDisappear:animated]; } - (void)viewDidDisappear:(BOOL)animated { [categoryTableView reloadData]; NSLog (@"view did disappear"); [super viewDidDisappear:animated]; } /* // Override to allow orientations other than the default portrait orientation. - (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation { // Return YES for supported orientations return (interfaceOrientation == UIInterfaceOrientationPortrait); } */ #pragma mark - #pragma mark Table view data source - (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView { // Return the number of sections. return 1; } - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { // Return the number of rows in the section. return [self.categoryArray count]; } // Customize the appearance of table view cells. - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { static NSString *CellIdentifier = @"Cell"; UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:CellIdentifier]; if (cell == nil) { cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier] autorelease]; } // Configure the cell... NSUInteger row = [indexPath row]; cell.text = [categoryArray objectAtIndex:row]; cell.accessoryType = UITableViewCellAccessoryDisclosureIndicator; return cell; } /* // Override to support conditional editing of the table view. - (BOOL)tableView:(UITableView *)tableView canEditRowAtIndexPath:(NSIndexPath *)indexPath { // Return NO if you do not want the specified item to be editable. return YES; } */ /* // Override to support editing the table view. - (void)tableView:(UITableView *)tableView commitEditingStyle:(UITableViewCellEditingStyle)editingStyle forRowAtIndexPath:(NSIndexPath *)indexPath { if (editingStyle == UITableViewCellEditingStyleDelete) { // Delete the row from the data source [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath] withRowAnimation:YES]; } else if (editingStyle == UITableViewCellEditingStyleInsert) { // Create a new instance of the appropriate class, insert it into the array, and add a new row to the table view } } */ /* // Override to support rearranging the table view. - (void)tableView:(UITableView *)tableView moveRowAtIndexPath:(NSIndexPath *)fromIndexPath toIndexPath:(NSIndexPath *)toIndexPath { } */ /* // Override to support conditional rearranging of the table view. - (BOOL)tableView:(UITableView *)tableView canMoveRowAtIndexPath:(NSIndexPath *)indexPath { // Return NO if you do not want the item to be re-orderable. return YES; } */ #pragma mark - #pragma mark Table view delegate - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)indexPath { NSString *selectedCategory = [categoryArray objectAtIndex:[indexPath row]]; NSLog (@"AccountsTableView.xib is called."); if ([categoryArray containsObject: selectedCategory]) { if (self.accountsTableViewController == nil) { AccountsTableViewController *aAccountsView = [[AccountsTableViewController alloc]initWithNibName:@"AccountsTableView"bundle:nil]; self.accountsTableViewController =aAccountsView; [aAccountsView release]; } NSInteger row =[indexPath row]; accountsTableViewController.title = [NSString stringWithFormat:@"%@", [categoryArray objectAtIndex:row]]; // This portion pushes the categoryNavController. KeyCryptAppAppDelegate *delegate = [[UIApplication sharedApplication] delegate]; [self.accountsTableViewController initWithTextSelected:selectedCategory]; KeyCryptAppAppDelegate *appDelegate = (KeyCryptAppAppDelegate *)[[UIApplication sharedApplication] delegate]; appDelegate.pickedCategory = selectedCategory; [delegate.categoryNavController pushViewController:accountsTableViewController animated:YES]; } } #pragma mark - #pragma mark Memory management - (void)didReceiveMemoryWarning { // Releases the view if it doesn't have a superview. [super didReceiveMemoryWarning]; // Relinquish ownership any cached data, images, etc that aren't in use. } - (void)viewDidUnload { // Relinquish ownership of anything that can be recreated in viewDidLoad or on demand. // For example: self.myOutlet = nil; } - (void)dealloc { [accountsTableViewController release]; [super dealloc]; } @end And the code that i used to delete rows(this is in a totally different tableview): - (void)tableView:(UITableView *)tableView commitEditingStyle:(UITableViewCellEditingStyle)editingStyle forRowAtIndexPath:(NSIndexPath *)indexPath { if (editingStyle == UITableViewCellEditingStyleDelete) { // Delete the row from the data source NSString *selectedCategory = [categoryArray objectAtIndex:indexPath.row]; [categoryArray removeObjectAtIndex:indexPath.row]; [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath] withRowAnimation:YES]; [deleteCategoryTable reloadData]; //NSString *selectedCategory = [categoryArray objectAtIndex:indexPath.row]; sqlite3 *db= [KeyCryptAppAppDelegate getNewDBConnection]; KeyCryptAppAppDelegate *appDelegate = (KeyCryptAppAppDelegate *)[[UIApplication sharedApplication] delegate]; const char *sql = [[NSString stringWithFormat:@"Delete from Categories where Category = '%@';", selectedCategory]cString]; const char *cmd = [[NSString stringWithFormat:@"pragma key = '%@' ", appDelegate.pragmaKey]cString]; sqlite3_stmt *compiledStatement; sqlite3_exec(db, cmd, NULL, NULL, NULL); if (sqlite3_prepare_v2(db, sql, -1, &compiledStatement, NULL)==SQLITE_OK) { sqlite3_exec(db,sql,NULL,NULL,NULL); } else { NSAssert1(0,@"Error preparing statement", sqlite3_errmsg(db)); } sqlite3_finalize(compiledStatement); } else if (editingStyle == UITableViewCellEditingStyleInsert) { // Create a new instance of the appropriate class, insert it into the array, and add a new row to the table view } }

    Read the article

  • How should I configure nginx caching headers for a "baked" static file blog? (Octopress)

    - by Doug Stephen
    I recently deployed an Octopress blog (which is a blogging platform built around Jekyll). It's a static-site blog generator, with no dynamic content or databases to muck about with. It's being served up by nginx. My question is, what is the appropriate expires directive or Cache-Control header that I should set to make sure that visitors get the most up-to-date version of the site when they visit without having to manually refresh? Since the site is just .html files it seems to get cached pretty aggressively. I've tried a million different combinations of expires modified + xxxx and even straight up expires off but I can't seem to wrap my head around it. I'm very new to dealing with caching like this, specifically, on static files that change frequently, and obviously if the site hasn't been changed then I'd like for it to be served up out of the cache. Update (still not solved though): I found open_file_cache, tweaked that. Still no dice. It seems like what I might want to do is use nginx as a proxy cache and use Apache with ETags? Is there really no convenient way to make nginx play nicer with conditional requests from the client? TL;DR: I'm running a static-file blog and I'd like to set up nginx to only serve from the cache if the blog hasn't been updated recently, but I'm too stupid to figure it out myself because I'm relatively new to web servers.

    Read the article

  • Setting up xpra for client use in OS X

    - by Jonathan
    I've been trying to get xpra to run on OS X for the last few days to connect to my Ubuntu server. Note that there's a GUI for it called shifter, but that (at least on OS X) is still far too buggy. For those who don't know what xpra is, if you know what screen is, it's like screen for GUI X Windows apps tunneled over ssh. You can render a remote X app locally so it's faster than sending a series of compresses screen shots (like VNC), but with xpra you can disconnect and reconnect on different computers. To get the basic functionality you can just type "ssh -X server.location" and any GUI app you open from the command line will open locally. I've been able to get xpra to build by doing the following: Download pari-all-0.0.6.tar.gz from the xpra site listed under upstream and untar it. Issue the following Mac Ports command (Dependencies thanks to RogBlog): sudo port install python25 python26 py26-pyrex py26-gtk xorg-libXtst py25-gobject py25-gtk py25-nose py26-nose xorg-libXdamage xorg-libXcomposite xorg-libXtst xorg-libXfixes In the upstream list of v0.0.06 patches (NOT 0.0.8pre!) on the xpra site listed above, download mswindows-conditional-pyrex.patch. Open the patch with your favorite text editor and change the single occurrence of "win" in it to "darwin". Apply the patch to setup.py. Run do-build in the command line. Now where I'm stumped: how do I run xpra? The build produces a sub directory called install/bin in which xpra is located, but when I try to run it I get the following error: Traceback (most recent call last): File "./xpra", line 4, in import xpra.scripts.main ImportError: No module named xpra.scripts.main There is a file called main.py under xpra/scripts, but I don't know any python and I'm not sure if this is what it's looking for, and what to do with it even if it is. My goal is to set up xpra so I can install it into /usr/bin (or some other common path for executables) and execute it whenever I please. What do I do next?

    Read the article

  • Null-free "maps": Is a callback solution slower than tryGet()?

    - by David Moles
    In comments to "How to implement List, Set, and Map in null free design?", Steven Sudit and I got into a discussion about using a callback, with handlers for "found" and "not found" situations, vs. a tryGet() method, taking an out parameter and returning a boolean indicating whether the out parameter had been populated. Steven maintained that the callback approach was more complex and almost certain to be slower; I maintained that the complexity was no greater and the performance at worst the same. But code speaks louder than words, so I thought I'd implement both and see what I got. The original question was fairly theoretical with regard to language ("And for argument sake, let's say this language don't even have null") -- I've used Java here because that's what I've got handy. Java doesn't have out parameters, but it doesn't have first-class functions either, so style-wise, it should suck equally for both approaches. (Digression: As far as complexity goes: I like the callback design because it inherently forces the user of the API to handle both cases, whereas the tryGet() design requires callers to perform their own boilerplate conditional check, which they could forget or get wrong. But having now implemented both, I can see why the tryGet() design looks simpler, at least in the short term.) First, the callback example: class CallbackMap<K, V> { private final Map<K, V> backingMap; public CallbackMap(Map<K, V> backingMap) { this.backingMap = backingMap; } void lookup(K key, Callback<K, V> handler) { V val = backingMap.get(key); if (val == null) { handler.handleMissing(key); } else { handler.handleFound(key, val); } } } interface Callback<K, V> { void handleFound(K key, V value); void handleMissing(K key); } class CallbackExample { private final Map<String, String> map; private final List<String> found; private final List<String> missing; private Callback<String, String> handler; public CallbackExample(Map<String, String> map) { this.map = map; found = new ArrayList<String>(map.size()); missing = new ArrayList<String>(map.size()); handler = new Callback<String, String>() { public void handleFound(String key, String value) { found.add(key + ": " + value); } public void handleMissing(String key) { missing.add(key); } }; } void test() { CallbackMap<String, String> cbMap = new CallbackMap<String, String>(map); for (int i = 0, count = map.size(); i < count; i++) { String key = "key" + i; cbMap.lookup(key, handler); } System.out.println(found.size() + " found"); System.out.println(missing.size() + " missing"); } } Now, the tryGet() example -- as best I understand the pattern (and I might well be wrong): class TryGetMap<K, V> { private final Map<K, V> backingMap; public TryGetMap(Map<K, V> backingMap) { this.backingMap = backingMap; } boolean tryGet(K key, OutParameter<V> valueParam) { V val = backingMap.get(key); if (val == null) { return false; } valueParam.value = val; return true; } } class OutParameter<V> { V value; } class TryGetExample { private final Map<String, String> map; private final List<String> found; private final List<String> missing; public TryGetExample(Map<String, String> map) { this.map = map; found = new ArrayList<String>(map.size()); missing = new ArrayList<String>(map.size()); } void test() { TryGetMap<String, String> tgMap = new TryGetMap<String, String>(map); for (int i = 0, count = map.size(); i < count; i++) { String key = "key" + i; OutParameter<String> out = new OutParameter<String>(); if (tgMap.tryGet(key, out)) { found.add(key + ": " + out.value); } else { missing.add(key); } } System.out.println(found.size() + " found"); System.out.println(missing.size() + " missing"); } } And finally, the performance test code: public static void main(String[] args) { int size = 200000; Map<String, String> map = new HashMap<String, String>(); for (int i = 0; i < size; i++) { String val = (i % 5 == 0) ? null : "value" + i; map.put("key" + i, val); } long totalCallback = 0; long totalTryGet = 0; int iterations = 20; for (int i = 0; i < iterations; i++) { { TryGetExample tryGet = new TryGetExample(map); long tryGetStart = System.currentTimeMillis(); tryGet.test(); totalTryGet += (System.currentTimeMillis() - tryGetStart); } System.gc(); { CallbackExample callback = new CallbackExample(map); long callbackStart = System.currentTimeMillis(); callback.test(); totalCallback += (System.currentTimeMillis() - callbackStart); } System.gc(); } System.out.println("Avg. callback: " + (totalCallback / iterations)); System.out.println("Avg. tryGet(): " + (totalTryGet / iterations)); } On my first attempt, I got 50% worse performance for callback than for tryGet(), which really surprised me. But, on a hunch, I added some garbage collection, and the performance penalty vanished. This fits with my instinct, which is that we're basically talking about taking the same number of method calls, conditional checks, etc. and rearranging them. But then, I wrote the code, so I might well have written a suboptimal or subconsicously penalized tryGet() implementation. Thoughts?

    Read the article

  • How to quickly check if two columns in Excel are equivalent in value?

    - by mindless.panda
    I am interested in taking two columns and getting a quick answer on whether they are equivalent in value or not. Let me show you what I mean: So its trivial to make another column (EQUAL) that does a simple compare for each pair of cells in the two columns. It's also trivial to use conditional formatting on one of the two, checking its value against the other. The problem is both of these methods require scanning the third column or the color of one of the columns. Often I am doing this for columns that are very, very long, and visual verification would take too long and neither do I trust my eyes. I could use a pivot table to summarize the EQUAL column and see if any FALSE entries occur. I could also enable filtering and click on the filter on EQUAL and see what entries are shown. Again, all of these methods are time consuming for what seems to be such a simple computational task. What I'm interested in finding out is if there is a single cell formula that answers the question. I attempted one above in the screenshot, but clearly it doesn't do what I expected, since A10 does not equal B10. Anyone know of one that works or some other method that accomplishes this?

    Read the article

  • gitweb refusing to blame

    - by Slipp D. Thompson
    I'm attempting to get gitweb (git 1.8.4.2, via git instaweb) in a project dir on my Debian server to offer blame views. In my /etc/gitweb.conf: … # default logo, favicon, etc. settings $feature{'blame'}{'default'} = [1]; $feature{'pickaxe'}{'default'} = [1]; $feature{'snapshot'}{'default'} = ['tgz', 'txz', 'zip']; $feature{'highlight'}{'default'} = [1]; $feature{'pathinfo'}{'default'} = [1]; In my global config file: [gitweb] blame = true snapshot = tgz, txz, zip patches = 256 avatar = gravatar [instaweb] local = false httpd = apache2 -f port = 4321 In my project's .git/config file: [gitweb] blame = true And yet, when I try to load a git blame view (via hand-modifying the URL to http://myserversip:4321/?p=.git;a=blame;f=Tests/InchCoordProxyTests.m;h=b4b2…;hb=53b4, since blame action links don't show up): Doing a quick search for “Blame view not allowed” in the gitweb.cgi source reveals plainly that the gitweb_check_feature('blame') conditional is failing. What am I doing wrong? Or, is there a way to verbosely print out why gitweb is doing what it's doing (e.g. which config files were read, which settings were loaded from each file, etc.)?

    Read the article

  • Is there a way to have "default" or "placeholder" values in Excel?

    - by Iszi
    I've got a spreadsheet with cells that I want to be user-editable, but that I also want to have "default" or "placeholder" values in, whenever there is no user-entered data. There's a couple good use cases for this: Prevent formula errors, while providing reasonable assumptions when a user has not entered (or has deleted) their own value. I could use conditional formatting to alert the user to default values, so as to prevent their ignorance of them - they can then make an informed choice as to whether that value is still appropriate or not for the intended calculations. Give a short description of what is intended to be entered in the cell, without having to have a separate "instructions" segment or document. This would also eliminate the need for a nearby "Label" cell, in some cases where it's really not appropriate. To accomplish what I want, I need some formula, script, or other advanced spreadsheet option that will do the following: Show the default value in the cell before user enters data. Allow the default value to be found by any formulas referencing the cell, when there is no user-entered data in that cell. Allow the user to freely (naturally, exactly as they would do with any "normal" cell) overwrite the displayed value with their own value or formula, and have the user-entered data found by any formulas referencing the cell. When cell is blanked by deletion of user input, revert to default value. Is there a way to do this in Excel, or am I asking too much of a spreadsheet program here?

    Read the article

  • Prevent 'Run-time error '7' out of memory' error in Excel when using macro

    - by MasterJedi
    I keep getting this error whenever I run a macro in my excel file. Is there any way I can prevent this? My code is below. Debugging highlights the following line as the issue: ActiveSheet.Shapes.SelectAll My macro: Private Sub Save() Dim sh As Worksheet ActiveWorkbook.Sheets("Report").Copy 'Create new workbook with Sheets("Report"(2)) as only sheet. Set sh = ActiveWorkbook.Sheets(1) 'Set the new sheet to a variable. New workbook is now active workbook. sh.Name = sh.Range("B9") & "_" & Format(Date, "mmyyyy") 'Rename the new sheet to B9 value + date. With sh.UsedRange.Cells .Value = .Value 'eliminate all formulas .Validation.Delete 'remove all validation .FormatConditions.Delete 'remove all conditional formatting ActiveSheet.Buttons.Delete ActiveSheet.Shapes.SelectAll Selection.Delete lrow = Range("I" & Rows.Count).End(xlUp).Row 'select rows from bottom up to last containing data in column I Rows(lrow + 1 & ":" & Rows.Count).Delete 'delete rows with no data in column I Application.ScreenUpdating = False .Range("A410:XFD1048576").Delete Shift:=xlUp 'delete all cells outwith report range Application.ScreenUpdating = True Dim counter Dim nameCount nameCount = ActiveWorkbook.Names.Count counter = nameCount Do While counter > 0 ActiveWorkbook.Names(counter).Delete counter = counter - 1 Loop 'remove named ranges from workbook End With ActiveWorkbook.SaveAs "\\Marko\Report\" & sh.Name & ".xlsx" 'Save new workbook using same name as new sheet. ActiveWorkbook.Close False 'Close the new workbook. MsgBox ("Export complete. Choose the next ADP in cell B9 and click 'Calculate'.") 'Display message box to inform user that report has been saved. End Sub Not sure how to make this more efficient or to prevent this error.

    Read the article

  • How can I check cells for number series?

    - by Stephen Younger
    I have a bit of a problem evaluating an excel cell. Example: M M M M M M M M M 1 2 3 4 5 6 7 8 9 2;5;7 1;9 3;5;7;9 I have a number of excel cells which contain numbers (months). In the first column I have a series of numbers. I want to use conditional formatting to color the corresponding cells in the right columns. If correctly colored I would get something like this: M M M M M M M M M 1 2 3 4 5 6 7 8 9 2;5;7 X X X 1;9 X X 3;5;7;9 X X X X The formula I have now is this: IF(ISNUMBER(FIND(L$22;$K23));$H23;"") but the problem is that cells are colored too which contain part of a number. If I enter 10;15 as input I get this: M M M M M M M M M M M M M M M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 10;15 X X X X because 1 and 5 are found too. I only want column 10 and 15 to be marked. How can I change the formula or the input?

    Read the article

  • Compiz & Linux compositing: how does it fit into the X architecture?

    - by Latanius
    Not a really "how to solve stuff" question, but... I was wondering how the modern X architecture works, with compiz & all. What I know about it: in the beginning, there was the X server, clients connected (presumably on TCP), and then sent messages to the server to instruct it to show windows etc. because this didn't work (at all? or just fast enough?) for OpenGL & 3D acceleration, additional APIs were created for direct rendering (DRI? and, in addition to the X server, what things did the X clients talk to to render stuff and through what interfaces?) and, finally, enter Compiz: X clients end up (somehow) rendering to OpenGL textures, which is then put together to form a fancy-looking screen with translucent windows, and rendered to the screen. What I'm especially interested in is what components does the system have and how do they connect to each other? Like... if there is a box labelled "compiz" in the system... is it inside the X server? If it's not, how do the rendered images from the apps end up in it? And where does it render to? Is that another X server? Or DRI? Of course, I'd be equally happy if pointed to some docs capable of clearing up the confusion described above (conditional on they being significantly shorter than book-sized entities).

    Read the article

  • E.T. Phone "Home" - Hey I've discovered a leak..!

    - by Martin Deh
    Being a member of the WebCenter ATEAM, we are often asked to performance tune a WebCenter custom portal application or a WebCenter Spaces deployment.  Most of the time, the process is pretty much the same.  For example, we often use tools like httpWatch and FireBug to monitor the application, and then perform load tests using JMeter or Selenium.  In addition, there are the fine tuning of the different performance based tuning parameters that are outlined in the documentation and by blogs that have been written by my fellow ATEAMers (click on the "performance" tag in this ATEAM blog).  While performing the load test where the outcome produces a significant reduction in the systems resources (memory), one of the causes that plays a role in memory "leakage" is due to the implementation of the navigation menu UI.  OOTB in both JDeveloper and WebCenter Spaces, there are sample (page) templates that include a "default" navigation menu.  In WebCenter Spaces, this is through the SpacesNavigationModel taskflow region, and in a custom portal (i.e. pageTemplate_globe.jspx) the menu UI is contructed using standard ADF components.  These sample menu UI's basically enable the underlying navigation model to visualize itself to some extent.  However, due to certain limitations of these sample menu implementations (i.e. deeper sub-level of navigations items, look-n-feel, .etc), many customers have developed their own custom navigation menus using a combination of HTML, CSS and JQuery.  While this is supported somewhat by the framework, it is important to know what are some of the best practices in ensuring that the navigation menu does not leak.  In addition, in this blog I will point out a leak (BUG) that is in the sample templates.  OK, E.T. the suspence is killing me, what is this leak? Note: for those who don't know, info on E.T. can be found here In both of the included templates, the example given for handling the navigation back to the "Home" page, will essentially provide a nice little memory leak every time the link is clicked. Let's take a look a simple example, which uses the default template in Spaces. The outlined section below is the "link", which is used to enable a user to navigation back quickly to the Group Space Home page. When you (mouse) hover over the link, the browser displays the target URL. From looking initially at the proposed URL, this is the intended destination.  Note: "home" in this case is the navigation model reference (id), that enables the display of the "pretty URL". Next, notice the current URL, which is displayed in the browser.  Remember, that PortalSiteHome = home.  The other highlighted item adf.ctrl-state, is very important to the framework.  This item is basically a persistent query parameter, which is used by the (ADF) framework to managing the current session and page instance.  Without this parameter present, among other things, the browser back-button navigation will fail.  In this example, the value for this parameter is currently 95K25i7dd_4.  Next, through the navigation menu item, I will click on the Page2 link. Inspecting the URL again, I can see that it reports that indeed the navigation is successful and the adf.ctrl-state is also in the URL.  For those that are wondering why the URL displays Page3.jspx, instead of Page2.jspx. Basically the (file) naming convention for pages created ar runtime in Spaces start at Page1, and then increment as you create additional pages.  The name of the actual link (i.e. Page2) is the page "title" attribute.  So the moral of the story is, unlike design time created pages, run time created pages the name of the file will 99% never match the name that appears in the link. Next, is to click on the quick link for navigating back to the Home page. Quick investigation yields that the navigation was indeed successful.  In the browser's URL there is a home (pretty URL) reference, and there is also a reference to the adf.ctrl-state parameter.  So what's the issue?  Can you remember what the value was for the adf.ctrl-state?  The current value is 3D95k25i7dd_149.  However, the previous value was 95k25i7dd_4.  Here is what happened.  Remember when (mouse) hovering over the link produced the following target URL: http://localhost:8888/webcenter/spaces/NavigationTest/home This is great for the browser as this URL will navigate to the intended targer.  However, what is missing is the adf.ctrl-state parameter.  Since this parameter was not present upon navigation "within" the framework, the ADF framework produced another adf.ctrl-state (object).  The previous adf.ctrl-state basically is orphaned while continuing to be alive in memory.  Note: the auto-creation of the adf.ctrl state does happen initially when you invoke the Spaces application  for the first time.  The following is the line of code which produced the issue: <af:goLink destination="#{boilerBean.globalLogoURIInSpace} ... Here the boilerBean is responsible for returning the "string" url, which in this case is /spaces/NavigationTest/home. Unfortunately, again what is missing is adf.ctrl-state. Note: there are more than one instance of the goLinks in the sample templates. So E.T. how can I correct this? There are 2 simple fixes.  For the goLink's destination, use the navigation model to return the actually "node" value, then use the goLinkPrettyUrl method to add the current adf.ctrl-state: <af:goLink destination="#{navigationContext.defaultNavigationModel.node['home'].goLinkPrettyUrl}"} ... />  Note: the node value is the [navigation model id]  Using a goLink does solve the main issue.  However, since the link basically does a redirect, some browsers like IE will produce a somewhat significant "flash".  In a Spaces application, this may be an annoyance to the users.  Another way to solve the leakage problem, and also remove the flash between navigations is to use a af:commandLink.  For example, here is the code example for this scenario: <af:commandLink id="pt_cl2asf" actionListener="#{navigationContext.processAction}" action="pprnav">    <f:attribute name="node" value="#{navigationContext.defaultNavigationModel.node['home']}"/> </af:commandLink> Here, the navigation node to where home is located is delivered by way of the attribute to the commandLink.  The actual navigation is performed by the processAction, which is needing the "node" value. E.T. OK, you solved the OOTB sample BUG, what about my custom navigation code? I have seen many implementations of creating a navigation menu through custom code.  In addition, there are some blog sites that also give detailed examples.  The majority of these implementations are very similar.  The code usually involves using standard HTML tags (i.e. DIVS, UL, LI, .,etc) and either CSS or JavaScript (JQuery) to produce the flyout/drop-down effect.  The navigation links in these cases are standard <a href... > tags.  Although, this type of approach is not fully accepted by the ADF community, it does work.  The important thing to note here is that the <a> tag value must use the goLinkPrettyURL method of contructing the target URL.  For example: <a href="${contextRoot}${menu.goLinkPrettyUrl}"> The main reason why this type of approach is popular is that links that are created this way (also with using af:goLinks), the pages become crawlable by search engines.  CommandLinks are currently not search friendly.  However, in the case of a Spaces instance this may be acceptable.  So in this use-case, af:commandLinks, which would replace the <a>  (or goLink) tags. The example code given of the af:commandLink above is still valid. One last important item.  If you choose to use af:commandLinks, special attention must be given to the scenario in which java script has been used to produce the flyout effect in the custom menu UI.  In many cases that I have seen, the commandLink can only be invoked once, since there is a conflict between the custom java script with the ADF frameworks own scripting to control the view.  The recommendation here, would be to use a pure CSS approach to acheive the dropdown effects. One very important thing to note.  Due to another BUG, the WebCenter environement must be patched to BP3 (patch  p14076906).  Otherwise the leak is still present using the goLinkPrettyUrl method.  Thanks E.T.!  Now I can phone home and not worry about my application running out of resources due to my custom navigation! 

    Read the article

  • Towards Ultra-Reusability for ADF - Adaptive Bindings

    - by Duncan Mills
    The task flow mechanism embodies one of the key value propositions of the ADF Framework, it's primary contribution being the componentization of your applications and implicitly the introduction of a re-use culture, particularly in large applications. However, what if we could do more? How could we make task flows even more re-usable than they are today? Well one great technique is to take advantage of a feature that is already present in the framework, a feature which I will call, for want of a better name, "adaptive bindings". What's an adaptive binding? well consider a simple use case.  I have several screens within my application which display tabular data which are all essentially identical, the only difference is that they happen to be based on different data collections (View Objects, Bean collections, whatever) , and have a different set of columns. Apart from that, however, they happen to be identical; same toolbar, same key functions and so on. So wouldn't it be nice if I could have a single parametrized task flow to represent that type of UI and reuse it? Hold on you say, great idea, however, to do that we'd run into problems. Each different collection that I want to display needs different entries in the pageDef file and: I want to continue to use the ADF Bindings mechanism rather than dropping back to passing the whole collection into the taskflow   If I do use bindings, there is no way I want to have to declare iterators and tree bindings for every possible collection that I might want the flow to handle  Ah, joy! I reply, no need to panic, you can just use adaptive bindings. Defining an Adaptive Binding  It's easiest to explain with a simple before and after use case.  Here's a basic pageDef definition for our familiar Departments table.  <executables> <iterator Binds="DepartmentsView1" DataControl="HRAppModuleDataControl" RangeSize="25"             id="DepartmentsView1Iterator"/> </executables> <bindings> <tree IterBinding="DepartmentsView1Iterator" id="DepartmentsView1">   <nodeDefinition DefName="oracle.demo.model.vo.DepartmentsView" Name="DepartmentsView10">     <AttrNames>       <Item Value="DepartmentId"/>         <Item Value="DepartmentName"/>         <Item Value="ManagerId"/>         <Item Value="LocationId"/>       </AttrNames>     </nodeDefinition> </tree> </bindings>  Here's the adaptive version: <executables> <iterator Binds="${pageFlowScope.voName}" DataControl="HRAppModuleDataControl" RangeSize="25"             id="TableSourceIterator"/> </executables> <bindings> <tree IterBinding="TableSourceIterator" id="GenericView"> <nodeDefinition Name="GenericViewNode"/> </tree> </bindings>  You'll notice three changes here.   Most importantly, you'll see that the hard-coded View Object name  that formally populated the iterator Binds attribute is gone and has been replaced by an expression (${pageFlowScope.voName}). This of course, is key, you can see that we can pass a parameter to the task flow, telling it exactly what VO to instantiate to populate this table! I've changed the IDs of the iterator and the tree binding, simply to reflect that they are now re-usable The tree binding itself has simplified and the node definition is now empty.  Now what this effectively means is that the #{node} map exposed through the tree binding will expose every attribute of the underlying iterator's collection - neat! (kudos to Eugene Fedorenko at this point who reminded me that this was even possible in his excellent "deep dive" session at OpenWorld  this year) Using the adaptive binding in the UI Now we have a parametrized  binding we have to make changes in the UI as well, first of all to reflect the new ID that we've assigned to the binding (of course) but also to change the column list from being a fixed known list to being a generic metadata driven set: <af:table value="#{bindings.GenericView.collectionModel}" rows="#{bindings.GenericView.rangeSize}"         fetchSize="#{bindings.GenericView.rangeSize}"           emptyText="#{bindings.GenericView.viewable ? 'No data to display.' : 'Access Denied.'}"           var="row" rowBandingInterval="0"           selectedRowKeys="#{bindings.GenericView.collectionModel.selectedRow}"           selectionListener="#{bindings.GenericView.collectionModel.makeCurrent}"           rowSelection="single" id="t1"> <af:forEach items="#{bindings.GenericView.attributeDefs}" var="def">   <af:column headerText="#{bindings.GenericView.labels[def.name]}" sortable="true"            sortProperty="#{def.name}" id="c1">     <af:outputText value="#{row[def.name]}" id="ot1"/>     </af:column>   </af:forEach> </af:table> Of course you are not constrained to a simple read only table here.  It's a normal tree binding and iterator that you are using behind the scenes so you can do all the usual things, but you can see the value of using ADFBC as the back end model as you have the rich pantheon of UI hints to use to derive things like labels (and validators and converters...)  One Final Twist  To finish on a high note I wanted to point out that you can take this even further and achieve the ultra-reusability I promised. Here's the new version of the pageDef iterator, see if you can notice the subtle change? <iterator Binds="{pageFlowScope.voName}"  DataControl="${pageFlowScope.dataControlName}" RangeSize="25"           id="TableSourceIterator"/>  Yes, as well as parametrizing the collection (VO) name, we can also parametrize the name of the data control. So your task flow can graduate from being re-usable within an application to being truly generic. So if you have some really common patterns within your app you can wrap them up and reuse then across multiple developments without having to dictate data control names, or connection names. This also demonstrates the importance of interacting with data only via the binding layer APIs. If you keep any code in the task flow generic in that way you can deal with data from multiple types of data controls, not just one flavour. Enjoy!

    Read the article

  • CreationName for SSIS 2008 and adding components programmatically

    If you are building SSIS 2008 packages programmatically and adding data flow components, you will probably need to know the creation name of the component to add. I can never find a handy reference when I need one, hence this rather mundane post. See also CreationName for SSS 2005. We start with a very simple snippet for adding a component: // Add the Data Flow Task package.Executables.Add("STOCK:PipelineTask"); // Get the task host wrapper, and the Data Flow task TaskHost taskHost = package.Executables[0] as TaskHost; MainPipe dataFlowTask = (MainPipe)taskHost.InnerObject; // Add OLE-DB source component - ** This is where we need the creation name ** IDTSComponentMetaData90 componentSource = dataFlowTask.ComponentMetaDataCollection.New(); componentSource.Name = "OLEDBSource"; componentSource.ComponentClassID = "DTSAdapter.OLEDBSource.2"; So as you can see the creation name for a OLE-DB Source is DTSAdapter.OLEDBSource.2. CreationName Reference  ADO NET Destination Microsoft.SqlServer.Dts.Pipeline.ADONETDestination, Microsoft.SqlServer.ADONETDest, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 ADO NET Source Microsoft.SqlServer.Dts.Pipeline.DataReaderSourceAdapter, Microsoft.SqlServer.ADONETSrc, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Aggregate DTSTransform.Aggregate.2 Audit DTSTransform.Lineage.2 Cache Transform DTSTransform.Cache.1 Character Map DTSTransform.CharacterMap.2 Checksum Konesans.Dts.Pipeline.ChecksumTransform.ChecksumTransform, Konesans.Dts.Pipeline.ChecksumTransform, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b2ab4a111192992b Conditional Split DTSTransform.ConditionalSplit.2 Copy Column DTSTransform.CopyMap.2 Data Conversion DTSTransform.DataConvert.2 Data Mining Model Training MSMDPP.PXPipelineProcessDM.2 Data Mining Query MSMDPP.PXPipelineDMQuery.2 DataReader Destination Microsoft.SqlServer.Dts.Pipeline.DataReaderDestinationAdapter, Microsoft.SqlServer.DataReaderDest, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Derived Column DTSTransform.DerivedColumn.2 Dimension Processing MSMDPP.PXPipelineProcessDimension.2 Excel Destination DTSAdapter.ExcelDestination.2 Excel Source DTSAdapter.ExcelSource.2 Export Column TxFileExtractor.Extractor.2 Flat File Destination DTSAdapter.FlatFileDestination.2 Flat File Source DTSAdapter.FlatFileSource.2 Fuzzy Grouping DTSTransform.GroupDups.2 Fuzzy Lookup DTSTransform.BestMatch.2 Import Column TxFileInserter.Inserter.2 Lookup DTSTransform.Lookup.2 Merge DTSTransform.Merge.2 Merge Join DTSTransform.MergeJoin.2 Multicast DTSTransform.Multicast.2 OLE DB Command DTSTransform.OLEDBCommand.2 OLE DB Destination DTSAdapter.OLEDBDestination.2 OLE DB Source DTSAdapter.OLEDBSource.2 Partition Processing MSMDPP.PXPipelineProcessPartition.2 Percentage Sampling DTSTransform.PctSampling.2 Performance Counters Source DataCollectorTransform.TxPerfCounters.1 Pivot DTSTransform.Pivot.2 Raw File Destination DTSAdapter.RawDestination.2 Raw File Source DTSAdapter.RawSource.2 Recordset Destination DTSAdapter.RecordsetDestination.2 RegexClean Konesans.Dts.Pipeline.RegexClean.RegexClean, Konesans.Dts.Pipeline.RegexClean, Version=2.0.0.0, Culture=neutral, PublicKeyToken=d1abe77e8a21353e Row Count DTSTransform.RowCount.2 Row Count Plus Konesans.Dts.Pipeline.RowCountPlusTransform.RowCountPlusTransform, Konesans.Dts.Pipeline.RowCountPlusTransform, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b2ab4a111192992b Row Number Konesans.Dts.Pipeline.RowNumberTransform.RowNumberTransform, Konesans.Dts.Pipeline.RowNumberTransform, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b2ab4a111192992b Row Sampling DTSTransform.RowSampling.2 Script Component Microsoft.SqlServer.Dts.Pipeline.ScriptComponentHost, Microsoft.SqlServer.TxScript, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Slowly Changing Dimension DTSTransform.SCD.2 Sort DTSTransform.Sort.2 SQL Server Compact Destination Microsoft.SqlServer.Dts.Pipeline.SqlCEDestinationAdapter, Microsoft.SqlServer.SqlCEDest, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 SQL Server Destination DTSAdapter.SQLServerDestination.2 Term Extraction DTSTransform.TermExtraction.2 Term Lookup DTSTransform.TermLookup.2 Trash Destination Konesans.Dts.Pipeline.TrashDestination.Trash, Konesans.Dts.Pipeline.TrashDestination, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b8351fe7752642cc TxTopQueries DataCollectorTransform.TxTopQueries.1 Union All DTSTransform.UnionAll.2 Unpivot DTSTransform.UnPivot.2 XML Source Microsoft.SqlServer.Dts.Pipeline.XmlSourceAdapter, Microsoft.SqlServer.XmlSrc, Version=10.0.0.0, Culture=neutral, PublicKeyToken=89845dcd8080cc91 Here is a simple console program that can be used to enumerate the pipeline components installed on your machine, and dumps out a list of all components like that above. You will need to add a reference to the Microsoft.SQLServer.ManagedDTS assembly. using System; using System.Diagnostics; using Microsoft.SqlServer.Dts.Runtime; public class Program { static void Main(string[] args) { Application application = new Application(); PipelineComponentInfos componentInfos = application.PipelineComponentInfos; foreach (PipelineComponentInfo componentInfo in componentInfos) { Debug.WriteLine(componentInfo.Name + "\t" + componentInfo.CreationName); } Console.Read(); } }

    Read the article

  • Inequality joins, Asynchronous transformations and Lookups : SSIS

    - by jamiet
    It is pretty much accepted by SQL Server Integration Services (SSIS) developers that synchronous transformations are generally quicker than asynchronous transformations (for a description of synchronous and asynchronous transformations go read Asynchronous and synchronous data flow components). Notice I said “generally” and not “always”; there are circumstances where using asynchronous transformations can be beneficial and in this blog post I’ll demonstrate such a scenario, one that is pretty common when building data warehouses. Imagine I have a [Customer] dimension table that manages information about all of my customers as a slowly-changing dimension. If that is a type 2 slowly changing dimension then you will likely have multiple rows per customer in that table. Furthermore you might also have datetime fields that indicate the effective time period of each member record. Here is such a table that contains data for four dimension members {Terry, Max, Henry, Horace}: Notice that we have multiple records per customer and that the [SCDStartDate] of a record is equivalent to the [SCDEndDate] of the record that preceded it (if there was one). (Note that I am on record as saying I am not a fan of this technique of storing an [SCDEndDate] but for the purposes of clarity I have included it here.) Anyway, the idea here is that we will have some incoming data containing [CustomerName] & [EffectiveDate] and we need to use those values to lookup [Customer].[CustomerId]. The logic will be: Lookup a [CustomerId] WHERE [CustomerName]=[CustomerName] AND [SCDStartDate] <= [EffectiveDate] AND [EffectiveDate] <= [SCDEndDate] The conventional approach to this would be to use a full cached lookup but that isn’t an option here because we are using inequality conditions. The obvious next step then is to use a non-cached lookup which enables us to change the SQL statement to use inequality operators: Let’s take a look at the dataflow: Notice these are all synchronous components. This approach works just fine however it does have the limitation that it has to issue a SQL statement against your lookup set for every row thus we can expect the execution time of our dataflow to increase linearly in line with the number of rows in our dataflow; that’s not good. OK, that’s the obvious method. Let’s now look at a different way of achieving this using an asynchronous Merge Join transform coupled with a Conditional Split. I’ve shown it post-execution so that I can include the row counts which help to illustrate what is going on here: Notice that there are more rows output from our Merge Join component than on the input. That is because we are joining on [CustomerName] and, as we know, we have multiple records per [CustomerName] in our lookup set. Notice also that there are two asynchronous components in here (the Sort and the Merge Join). I have embedded a video below that compares the execution times for each of these two methods. The video is just over 8minutes long. View on Vimeo  For those that can’t be bothered watching the video I’ll tell you the results here. The dataflow that used the Lookup transform took 36 seconds whereas the dataflow that used the Merge Join took less than two seconds. An illustration in case it is needed: Pretty conclusive proof that in some scenarios it may be quicker to use an asynchronous component than a synchronous one. Your mileage may of course vary. The scenario outlined here is analogous to performance tuning procedural SQL that uses cursors. It is common to eliminate cursors by converting them to set-based operations and that is effectively what we have done here. Our non-cached lookup is performing a discrete operation for every single row of data, exactly like a cursor does. By eliminating this cursor-in-disguise we have dramatically sped up our dataflow. I hope all of that proves useful. You can download the package that I demonstrated in the video from my SkyDrive at http://cid-550f681dad532637.skydrive.live.com/self.aspx/Public/BlogShare/20100514/20100514%20Lookups%20and%20Merge%20Joins.zip Comments are welcome as always. @Jamiet Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Understanding EDI 997.

    - by VishnuTiwariBlog
    Hi Guys, This is for the EDI starter. Below is the complete detail of EDI 997 segment and element details. 997 Functional Acknowledgment Transaction Layout: No. Seg ID Name Description Example M/O 010 ST Transaction Set Header To indicate the start of a transaction set and to assign a control number ST*997*382823~   M ST01   Code uniquely identifying a Transaction Set   M ST02   Identifying control number that must be unique within the transaction set functional group assigned by the originator for a transaction set   M 020 AK1 Functional Group Response Header To start acknowledgment of a functional group AK1*QM*2459823 M        AK101   Code identifying a group of application related transaction sets IN Invoice Information (810) SH Ship Notice/Manifest (856)     AK102   Assigned number originated and maintained by the sender     030 AK2 Transaction Set Response Header To start acknowledgment of a single transaction set AK2*856*001 M AK201   Code uniquely identifying a Transaction Set 810 Invoice 856 Ship Notice/Manifest   M AK202   Identifying control number that must be unique within the transaction set functional group assigned by the originator for a transaction set   M 040 AK3 Data Segment Note To report errors in a data segment and identify the location of the data segment AK3*TD3*9 O AK301 Segment ID Code Code defining the segment ID of the data segment in error (See Appendix A - Number 77)     AK302 Segment Position in Transaction Set The numerical count position of this data segment from the start of the transaction set: the transaction set header is count position 1     050 AK4 Data Element Note To report errors in a data element or composite data structure and identify the location of the data element AK4*2**2 O AK401 Position in Segment Code indicating the relative position of a simple data element, or the relative position of a composite data structure combined with the relative position of the component data element within the composite data structure, in error; the count starts with 1 for the simple data element or composite data structure immediately following the segment ID     AK402 Element Position in Segment This is used to indicate the relative position of a simple data element, or the relative position of a composite data structure with the relative position of the component within the composite data structure, in error; in the data segment the count starts with 1 for the simple data element or composite data structure immediately following the segment ID     AK403 Data Element Syntax Error Code Code indicating the error found after syntax edits of a data element 1 Mandatory Data Element Missing 2 Conditional Required Data Element Missing 3 Too Many Data Elements 4 Data Element Too Short 5 Data Element Too Long 6 Invalid Character in Data Element 7 Invalid Code Value 8 Invalid Date 9 Invalid Time 10 Exclusion Condition Violated     AK404 Copy of Bad Data Element This is a copy of the data element in error     060 AK5 AK5 Transaction Set Response Trailer To acknowledge acceptance or rejection and report errors in a transaction set AK5*A~ AK5*R*5~ M AK501 Transaction Set Acknowledgment Code Code indicating accept or reject condition based on the syntax editing of the transaction set A Accepted E Accepted But Errors Were Noted R Rejected     AK502 Transaction Set Syntax Error Code Code indicating error found based on the syntax editing of a transaction set 1 Transaction Set Not Supported 2 Transaction Set Trailer Missing 3 Transaction Set Control Number in Header and Trailer Do Not Match 4 Number of Included Segments Does Not Match Actual Count 5 One or More Segments in Error 6 Missing or Invalid Transaction Set Identifier 7 Missing or Invalid Transaction Set Control Number     070 AK9 Functional Group Response Trailer To acknowledge acceptance or rejection of a functional group and report the number of included transaction sets from the original trailer, the accepted sets, and the received sets in this functional group AK9*A*1*1*1~ AK9*R*1*1*0~ M AK901 Functional Group Acknowledge Code Code indicating accept or reject condition based on the syntax editing of the functional group A Accepted E Accepted, But Errors Were Noted. R Rejected     AK902 Number of Transaction Sets Included Total number of transaction sets included in the functional group or interchange (transmission) group terminated by the trailer containing this data element     AK903 Number of Received Transaction Sets Number of Transaction Sets received     AK904 Number of Accepted Transaction Sets Number of accepted Transaction Sets in a Functional Group     AK905 Functional Group Syntax Error Code Code indicating error found based on the syntax editing of the functional group header and/or trailer 1 Functional Group Not Supported 2 Functional Group Version Not Supported 3 Functional Group Trailer Missing 4 Group Control Number in the Functional Group Header and Trailer Do Not Agree 5 Number of Included Transaction Sets Does Not Match Actual Count 6 Group Control Number Violates Syntax     080 SE Transaction Set Trailer To indicate the end of the transaction set and provide the count of the transmitted segments (including the beginning (ST) and ending (SE) segments) SE*9*223~ M SE01 Number of Included Segments Total number of segments included in a transaction set including ST and SE segments     SE02 Transaction Set Control Number Identifying control number that must be unique within the transaction set functional group assigned by the originator for a transaction set

    Read the article

  • Understanding EDI 997

    - by VishnuTiwariBlog
    Hi Guys, This is for the EDI starter. Below is the complete detail of EDI 997 segment and element details. 997 Functional Acknowledgment Transaction Layout:   No. Seg ID Name Description Example M/O 010 ST Transaction Set Header To indicate the start of a transaction set and to assign a control number ST*997*382823~   M ST01   Code uniquely identifying a Transaction Set   M ST02   Identifying control number that must be unique within the transaction set functional group assigned by the originator for a transaction set   M 020 AK1 Functional Group Response Header To start acknowledgment of a functional group AK1*QM*2459823 M        AK101   Code identifying a group of application related transaction sets IN Invoice Information (810) SH Ship Notice/Manifest (856)     AK102   Assigned number originated and maintained by the sender     030 AK2 Transaction Set Response Header To start acknowledgment of a single transaction set AK2*856*001 M AK201   Code uniquely identifying a Transaction Set 810 Invoice 856 Ship Notice/Manifest   M AK202   Identifying control number that must be unique within the transaction set functional group assigned by the originator for a transaction set   M 040 AK3 Data Segment Note To report errors in a data segment and identify the location of the data segment AK3*TD3*9 O AK301 Segment ID Code Code defining the segment ID of the data segment in error (See Appendix A - Number 77)     AK302 Segment Position in Transaction Set The numerical count position of this data segment from the start of the transaction set: the transaction set header is count position 1     050 AK4 Data Element Note To report errors in a data element or composite data structure and identify the location of the data element AK4*2**2 O AK401 Position in Segment Code indicating the relative position of a simple data element, or the relative position of a composite data structure combined with the relative position of the component data element within the composite data structure, in error; the count starts with 1 for the simple data element or composite data structure immediately following the segment ID     AK402 Element Position in Segment This is used to indicate the relative position of a simple data element, or the relative position of a composite data structure with the relative position of the component within the composite data structure, in error; in the data segment the count starts with 1 for the simple data element or composite data structure immediately following the segment ID     AK403 Data Element Syntax Error Code Code indicating the error found after syntax edits of a data element 1 Mandatory Data Element Missing 2 Conditional Required Data Element Missing 3 Too Many Data Elements 4 Data Element Too Short 5 Data Element Too Long 6 Invalid Character in Data Element 7 Invalid Code Value 8 Invalid Date 9 Invalid Time 10 Exclusion Condition Violated     AK404 Copy of Bad Data Element This is a copy of the data element in error     060 AK5 AK5 Transaction Set Response Trailer To acknowledge acceptance or rejection and report errors in a transaction set AK5*A~ AK5*R*5~ M AK501 Transaction Set Acknowledgment Code Code indicating accept or reject condition based on the syntax editing of the transaction set A Accepted E Accepted But Errors Were Noted R Rejected     AK502 Transaction Set Syntax Error Code Code indicating error found based on the syntax editing of a transaction set 1 Transaction Set Not Supported 2 Transaction Set Trailer Missing 3 Transaction Set Control Number in Header and Trailer Do Not Match 4 Number of Included Segments Does Not Match Actual Count 5 One or More Segments in Error 6 Missing or Invalid Transaction Set Identifier 7 Missing or Invalid Transaction Set Control Number     070 AK9 Functional Group Response Trailer To acknowledge acceptance or rejection of a functional group and report the number of included transaction sets from the original trailer, the accepted sets, and the received sets in this functional group AK9*A*1*1*1~ AK9*R*1*1*0~ M AK901 Functional Group Acknowledge Code Code indicating accept or reject condition based on the syntax editing of the functional group A Accepted E Accepted, But Errors Were Noted. R Rejected     AK902 Number of Transaction Sets Included Total number of transaction sets included in the functional group or interchange (transmission) group terminated by the trailer containing this data element     AK903 Number of Received Transaction Sets Number of Transaction Sets received     AK904 Number of Accepted Transaction Sets Number of accepted Transaction Sets in a Functional Group     AK905 Functional Group Syntax Error Code Code indicating error found based on the syntax editing of the functional group header and/or trailer 1 Functional Group Not Supported 2 Functional Group Version Not Supported 3 Functional Group Trailer Missing 4 Group Control Number in the Functional Group Header and Trailer Do Not Agree 5 Number of Included Transaction Sets Does Not Match Actual Count 6 Group Control Number Violates Syntax     080 SE Transaction Set Trailer To indicate the end of the transaction set and provide the count of the transmitted segments (including the beginning (ST) and ending (SE) segments) SE*9*223~ M SE01 Number of Included Segments Total number of segments included in a transaction set including ST and SE segments     SE02 Transaction Set Control Number Identifying control number that must be unique within the transaction set functional group assigned by the originator for a transaction set

    Read the article

  • jQuery Context Menu Plugin and Capturing Right-Click

    - by Ben Griswold
    I was thrilled to find Cory LaViska’s jQuery Context Menu Plugin a few months ago. In very little time, I was able to integrate the context menu with the jQuery Treeview.  I quickly had a really pretty user interface which took full advantage of limited real estate.  And guess what.  As promised, the plugin worked in Chrome, Safari 3, IE 6/7/8, Firefox 2/3 and Opera 9.5.  Everything was perfect and I shipped to the Integration Environment. One thing kept bugging though – right clicks aren’t the standard in a web environment. Sure, when one hovers over the treeview node, the mouse changed from an arrow to a pointer, but without help text most users will certainly left-click rather than right. As I was already doubting the design decision, we did some Mac testing.  The context menu worked in Firefox but not Safari.  Damn.  That’s when I started digging into the Madness of Javascript Mouse Events.  Don’t tell, but it’s complicated.  About as close as one can get to capture the right-click mouse event on all major browsers on Windows and Mac is this: if (event.which == null) /* IE case */ button= (event.button < 2) ? "LEFT" : ((event.button == 4) ? "MIDDLE" : "RIGHT"); else /* All others */ button= (event.which < 2) ? "LEFT" : ((event.which == 2) ? "MIDDLE" : "RIGHT"); Yikes.  The content menu code was simply checking if event.button == 2.  No problem.  Cory offers a jQuery Right Click Plugin which I’m sure works for windows but probably not the Mac either.  (Please note I haven’t verified this.) Anyway, I decided to address my UI design concern and the Safari Mac issue in one swoop.  I decided to make the context menu respond to any mouse click event.  This didn’t take much – especially after seeing how Bill Beckelman updated the library to recognize the left click. First, I added an AnyClick option to the library defaults: // Any click may trigger the dropdown and that's okay // See Javascript Madness: Mouse Events – http: //unixpapa.com/js/mouse.html if (o.anyClick == undefined) o.anyClick = false; And then I trigger the context menu dropdown based on the following conditional: if (evt.button == 2 || o.anyClick) { Nothing tricky about that, right?  Finally, I updated my menu setup to include the AnyClick value, if true: $('.member').contextMenu({ menu: 'memberContextMenu', anyClick: true },             function (action, el, pos) {                 … Now the context menu works in “all” environments if you left, right or even middle click.  Download jQuery Context Menu Plugin for Any Click *Opera 9.5 has an option to allow scripts to detect right-clicks, but it is disabled by default. Furthermore, Opera still doesn’t allow JavaScript to disable the browser’s default context menu which causes a usability conflict.

    Read the article

  • OWB 11gR2 &ndash; OLAP and Simba

    - by David Allan
    Oracle Warehouse Builder was the first ETL product to provide a single integrated and complete environment for managing enterprise data warehouse solutions that also incorporate multi-dimensional schemas. The OWB 11gR2 release provides Oracle OLAP 11g deployment for multi-dimensional models (in addition to support for prior releases of OLAP). This means users can easily utilize Simba's MDX Provider for Oracle OLAP (see here for details and cost) which allows you to use the powerful and popular ad hoc query and analysis capabilities of Microsoft Excel PivotTables® and PivotCharts® with your Oracle OLAP business intelligence data. The extensions to the dimensional modeling capabilities have been built on established relational concepts, with the option to seamlessly move from a relational deployment model to a multi-dimensional model at the click of a button. This now means that ETL designers can logically model a complete data warehouse solution using one single tool and control the physical implementation of a logical model at deployment time. As a result data warehouse projects that need to provide a multi-dimensional model as part of the overall solution can be designed and implemented faster and more efficiently. Wizards for dimensions and cubes let you quickly build dimensional models and realize either relationally or as an Oracle database OLAP implementation, both 10g and 11g formats are supported based on a configuration option. The wizard provides a good first cut definition and the objects can be further refined in the editor. Both wizards let you choose the implementation, to deploy to OLAP in the database select MOLAP: multidimensional storage. You will then be asked what levels and attributes are to be defined, by default the wizard creates a level bases hierarchy, parent child hierarchies can be defined in the editor. Once the dimension or cube has been designed there are special mapping operators that make it easy to load data into the objects, below we load a constant value for the total level and the other levels from a source table.   Again when the cube is defined using the wizard we can edit the cube and define a number of analytic calculations by using the 'generate calculated measures' option on the measures panel. This lets you very easily add a lot of rich analytic measures to your cube. For example one of the measures is the percentage difference from a year ago which we can see in detail below. You can also add your own custom calculations to leverage the capabilities of the Oracle OLAP option, either by selecting existing template types such as moving averages to defining true custom expressions. The 11g OLAP option now supports percentage based summarization (the amount of data to precompute and store), this is available from the option 'cost based aggregation' in the cube's configuration. Ensure all measure-dimensions level based aggregation is switched off (on the cube-dimension panel) - previously level based aggregation was the only option. The 11g generated code now uses the new unified API as you see below, to generate the code, OWB needs a valid connection to a real schema, this was not needed before 11gR2 and is a new requirement since the OLAP API which OWB uses is not an offline one. Once all of the objects are deployed and the maps executed then we get to the fun stuff! How can we analyze the data? One option which is powerful and at many users' fingertips is using Microsoft Excel PivotTables® and PivotCharts®, which can be used with your Oracle OLAP business intelligence data by utilizing Simba's MDX Provider for Oracle OLAP (see Simba site for details of cost). I'll leave the exotic reporting illustrations to the experts (see Bud's demonstration here), but with Simba's MDX Provider for Oracle OLAP its very simple to easily access the analytics stored in the database (all built and loaded via the OWB 11gR2 release) and get the regular features of Excel at your fingertips such as using the conditional formatting features for example. That's a very quick run through of the OWB 11gR2 with respect to Oracle 11g OLAP integration and the reporting using Simba's MDX Provider for Oracle OLAP. Not a deep-dive in any way but a quick overview to illustrate the design capabilities and integrations possible.

    Read the article

  • Excel Template Teaser

    - by Tim Dexter
    In lieu of some official documentation I'm in the process of putting together some posts on the new 10.1.3.4.1 Excel templates. No more HTML, maskerading as Excel; far more flexibility than Excel Analyzer and no need to write complex XSL templates to create the same output. Multi sheet outputs with macros and embeddable XSL commands are here. Their capabilities are pretty extensive and I have not worked on them for a few years since I helped put them together for EBS FSG users, so Im back on the learning curve. Let me say up front, there is no template builder, its a completely manual process to build them but, the results can be fantastic and provide yet another 'superstar' opportunity for you. The templates can take hierarchical XML data and walk the structure much like an RTF template. They use named cells/ranges and a hidden sheet to provide the rendering engine the hooks to drop the data in. As a taster heres the data and output I worked with on my first effort: <EMPLOYEES> <LIST_G_DEPT> <G_DEPT> <DEPARTMENT_ID>10</DEPARTMENT_ID> <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME> <LIST_G_EMP> <G_EMP> <EMPLOYEE_ID>200</EMPLOYEE_ID> <EMP_NAME>Jennifer Whalen</EMP_NAME> <EMAIL>JWHALEN</EMAIL> <PHONE_NUMBER>515.123.4444</PHONE_NUMBER> <HIRE_DATE>1987-09-17T00:00:00.000-06:00</HIRE_DATE> <SALARY>4400</SALARY> </G_EMP> </LIST_G_EMP> <TOTAL_EMPS>1</TOTAL_EMPS> <TOTAL_SALARY>4400</TOTAL_SALARY> <AVG_SALARY>4400</AVG_SALARY> <MAX_SALARY>4400</MAX_SALARY> <MIN_SALARY>4400</MIN_SALARY> </G_DEPT> ... </LIST_G_DEPT> </EMPLOYEES> Structured XML coming from a data template, check out the data template progression post. I can then generate the following binary XLS file. There are few cool things to notice in this output. DEPARTMENT-EMPLOYEE master detail output. Not easy to do in the Excel analyzer. Date formatting - this is using an Excel function. Remember BIP generates XML dates in the canonical format. I have formatted the other data in the template using native Excel functionality Salary Total - although in the data I have calculated this in the template Conditional formatting - this is handled by Excel based on the incoming data Bursting department data across sheets and using the department name for the sheet name. This alone is worth the wait! there's more, but this is surely enough to whet your appetite. These new templates are already tucked away in EBS R12 under controlled release by the GL team and have now come to the BIEE and standalone releases in the 10.1.3.4.1+ rollup patch. For the rest of you, its going to be a bit of a waiting game for the relevant teams to uptake the latest BIP release. Look out for more soon with some explanation of how they work and how to put them together!

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Tip on Reusing Classes in Different .NET Project Types

    - by psheriff
    All of us have class libraries that we developed for use in our projects. When you create a .NET Class Library project with many classes, you can use that DLL in ASP.NET, Windows Forms and WPF applications. However, for Silverlight and Windows Phone, these .NET Class Libraries cannot be used. The reason is Silverlight and Windows Phone both use a scaled down version of .NET and thus do not have access to the full .NET framework class library. However, there are many classes and functionality that will work in the full .NET and in the scaled down versions that Silverlight and Windows Phone use.Let’s take an example of a class that you might want to use in all of the above mentioned projects. The code listing shown below might be something that you have in a Windows Form or an ASP.NET application. public class StringCommon{  public static bool IsAllLowerCase(string value)  {    return new Regex(@"^([^A-Z])+$").IsMatch(value);  }   public static bool IsAllUpperCase(string value)  {    return new Regex(@"^([^a-z])+$").IsMatch(value);  }} The StringCommon class is very simple with just two methods, but you know that the System.Text.RegularExpressions namespace is available in Silverlight and Windows Phone. Thus, you know that you may reuse this class in your Silverlight and Windows Phone projects. Here is the problem: if you create a Silverlight Class Library project and you right-click on that project in Solution Explorer and choose Add | Add Existing Item… from the menu, the class file StringCommon.cs will be copied from the original location and placed into the Silverlight Class Library project. You now have two files with the same code. If you want to change the code you will now need to change it in two places! This is a maintenance nightmare that you have just created. If you then add this to a Windows Phone Class Library project, you now have three places you need to modify the code! Add As LinkInstead of creating three separate copies of the same class file, you want to leave the original class file in its original location and just create a link to that file from the Silverlight and Windows Phone class libraries. Visual Studio will allow you to do this, but you need to do one additional step in the Add Existing Item dialog (see Figure 1). You will still right mouse click on the project and choose Add | Add Existing Item… from the menu. You will still highlight the file you want to add to your project, but DO NOT click on the Add button. Instead click on the drop down portion of the Add button and choose the “Add As Link” menu item. This will now create a link to the file on disk and will not copy the file into your new project. Figure 1: Add as Link will create a link, not copy the file over. When this linked file is added to your project, there will be a different icon next to that file in the Solution Explorer window. This icon signifies that this is a link to a file in another folder on your hard drive.   Figure 2: The Linked file will have a different icon to show it is a link. Of course, if you have code that will not work in Silverlight or Windows Phone -- because the code has dependencies on features of .NET that are not supported on those platforms – you  can always wrap conditional compilation code around the offending code so it will be removed when compiled in those class libraries. SummaryIn this short blog entry you learned how to reuse one of your class libraries from ASP.NET, Windows Forms or WPF applications in your Silverlight or Windows Phone class libraries. You can do this without creating a maintenance nightmare by using the “Add a Link” feature of the Add Existing Item dialog. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free video on Silverlight entitled Silverlight XAML for the Complete Novice - Part 1.

    Read the article

  • Inside Red Gate - Experimenting In Public

    - by Simon Cooper
    Over the next few weeks, we'll be performing experiments on SmartAssembly to confirm or refute various hypotheses we have about how people use the product, what is stopping them from using it to its full extent, and what we can change to make it more useful and easier to use. Some of these experiments can be done within the team, some within Red Gate, and some need to be done on external users. External testing Some external testing can be done by standard usability tests and surveys, however, there are some hypotheses that can only be tested by building a version of SmartAssembly with some things in the UI or implementation changed. We'll then be able to look at how the experimental build is used compared to the 'mainline' build, which forms our baseline or control group, and use this data to confirm or refute the relevant hypotheses. However, there are several issues we need to consider before running experiments using separate builds: Ideally, the user wouldn't know they're running an experimental SmartAssembly. We don't want users to use the experimental build like it's an experimental build, we want them to use it like it's the real mainline build. Only then will we get valid, useful, and informative data concerning our hypotheses. There's no point running the experiments if we can't find out what happens after the download. To confirm or refute some of our hypotheses, we need to find out how the tool is used once it is installed. Fortunately, we've applied feature usage reporting to the SmartAssembly codebase itself to provide us with that information. Of course, this then makes the experimental data conditional on the user agreeing to send that data back to us in the first place. Unfortunately, even though this does limit the amount of useful data we'll be getting back, and possibly skew the data, there's not much we can do about this; we don't collect feature usage data without the user's consent. Looks like we'll simply have to live with this. What if the user tries to buy the experiment? This is something that isn't really covered by the Lean Startup book; how do you support users who give you money for an experiment? If the experiment is a new feature, and the user buys a license for SmartAssembly based on that feature, then what do we do if we later decide to pivot & scrap that feature? We've either got to spend time and money bringing that feature up to production quality and into the mainline anyway, or we've got disgruntled customers. Either way is bad. Again, there's not really any good solution to this. Similarly, what if we've removed some features for an experiment and a potential new user downloads the experimental build? (As I said above, there's no indication the build is an experimental build, as we want to see what users really do with it). The crucial feature they need is missing, causing a bad trial experience, a lost potential customer, and a lost chance to help the customer with their problem. Again, this is something not really covered by the Lean Startup book, and something that doesn't have a good solution. So, some tricky issues there, not all of them with nice easy answers. Turns out the practicalities of running Lean Startup experiments are more complicated than they first seem!

    Read the article

< Previous Page | 32 33 34 35 36 37 38 39 40 41 42 43  | Next Page >