Search Results

Search found 22310 results on 893 pages for 'key binding'.

Page 365/893 | < Previous Page | 361 362 363 364 365 366 367 368 369 370 371 372  | Next Page >

  • Need Help for Listview WPF events for finding index of rows and columns

    - by Ravi
    I have a listview in WPF and i displayed data in line by line manner,i want to just find the indexs of the rows and columns,i am new to WPF,plz give me some idea about this. <Grid Margin="3"> <Grid.RowDefinitions> <RowDefinition></RowDefinition> <RowDefinition></RowDefinition> <RowDefinition></RowDefinition> <RowDefinition></RowDefinition> <RowDefinition></RowDefinition> </Grid.RowDefinitions> <Grid.ColumnDefinitions> <ColumnDefinition Width="600"></ColumnDefinition> <ColumnDefinition></ColumnDefinition> </Grid.ColumnDefinitions> <StackPanel Orientation="Horizontal" Grid.RowSpan="1"> <Label Name="lblID1" FontWeight="Bold" Grid.Row="0">ID:</Label> <Label Name="lblID" Grid.Row="0"> <TextBlock FontFamily="verdana" FontSize="12" FontWeight="Bold" Grid.Column="0" Padding="0" Text="{Binding Path=ID}"></TextBlock> </Label> <Label Name="lblDescrip1" FontWeight="Bold" Grid.Row="1">Description:</Label> <Label Name="lblDescrip"> <TextBlock FontFamily="verdana" FontSize="12" Grid.Column="1" Text="{Binding Path=DESCRIP}"></TextBlock> </Label> </StackPanel> Fee: Type: Special:

    Read the article

  • How to implement the API/SPI Pattern in Java?

    - by Adam Tannon
    I am creating a framework that exposes an API for developers to use: public interface MyAPI { public void doSomeStuff(); public int getWidgets(boolean hasRun); } All the developers should have to do is code their projects against these API methods. I also want them to be able to place different "drivers"/"API bindings" on the runtime classpath (the same way JDBC or SLF4J work) and have the API method calls (doSomeStuff(), etc.) operate on different 3rd party resources (files, servers, whatever). Thus the same code and API calls will map to operations on different resources depending on what driver/binding the runtime classpath sees (i.e. myapi-ftp, myapi-ssh, myapi-teleportation). How do I write (and package) an SPI that allows for such runtime binding, and then maps MyAPI calls to the correct (concrete) implementation? In other words, if myapi-ftp allows you to getWidgets(boolean) from an FTP server, how would I could this up (to make use of both the API and SPI)? Bonus points for concrete, working Java code example! Thanks in advance!

    Read the article

  • IIS publish of WCF service -- fails with no error message

    - by tavistmorph
    I havea WCF service which I publish from Visual Studio 2008 to an IIS 6. According to the output window of VS, the publish succeeded, no error messages or warnings. When I look at IIS, the virtual directory was created, but there is no .svc listed in the directory. The directory just has my web.config and a bin. Any attempts to call my WCF service fail cause they don't exist. How can I see an error message of what's going wrong? By trial-and-error, I discovered changing my app.config before publishing will make the service show up. Namely my app.config file has these lines: <binding ...> <security mode="Transport"> <transport clientCreditionalType="None"/> </security> </binding> If I switch "Transport" to "None", then my service shows up on IIS. But I do have a certificate installed on IIS on the server, and as far as I can tell, everything is configured correctly on the server. There is no error message in the event log. How can I get a find more error messages about why the service is failing to show up?

    Read the article

  • WPF A good way to make a view/edit control?

    - by Jefim
    Hi, this is just a question to discuss - what is the best way to make a view/edit control in WPF? E.g. we have an entity object Person, that has some props (name, surname, address, phone etc.). One presentation of the control would be a read-only view. And the other would have the edit view for this same person. Example: <UserControl x:Name="MyPersonEditor"> <Grid> <Grid x:Name="ViewGrid" Visibility="Visible"> <TextBlock Text="Name:"/> <TextBlock Text="{Binding Person.Name}"/> <Button Content="Edit" Click="ButtonEditStart_Click"/> </Grid> <Grid x:Name="EditGrid" Visibility="Collapsed"> <TextBlock Text="Name:"/> <TextBox Text="{Binding Person.Name}"/> <Button Content="Save" Click="ButtonEditEnd_Click"/> </Grid> </Grid> </UserControl> I hope that the idea is clear. The two options I see right now two grids with visibility switching and a TabControl without its header panel This is just a discussion question - not much trouble with it, yet I am just wondering if there are any other possibilities and elegant solutions to this.

    Read the article

  • customized form_for tag in rails

    - by poseid
    I want to make a table within a form by making a new form_tag. The following code in ApplicationHelper fails: module ApplicationHelper class TabularFormBuilder < ActionView::Helpers::FormBuilder # ... code to insert <tr> tags </tr> end def tabular_form_for(name, object = nil, options = nil, &proc) concat("<table>", proc.binding) form_for(name, object, (options||{}).merge(:builder => TabularFormBuilder), &proc) concat("</table>", proc.binding) end end The view I use is: <h1>New project</h1> <% tabular_form_for :project, :builder => ApplicationHelper::TabularFormBuilder do |f| %> <%= f.error_messages %> <%= f.text_field :name %> <%= f.text_area :description %> <%= f.text_field :location %> <%= f.submit 'Create' %> <% end %> The error I get is: NoMethodError in Projects#new Showing app/views/projects/new.html.erb where line #5 raised: undefined method `errors' for {:builder=ApplicationHelper::TabularFormBuilder}:Hash Any ideas how to make this custom tag work?

    Read the article

  • How can I have a Label change dynamically based on a Slider Value?

    - by duney
    I'm writing a grade calculator and I currently have a slider with a textbox beside it which displays the current value of the slider: <Slider Name="gradeSlider" Grid.Row="3" Grid.Column="2" VerticalAlignment="Center" Minimum="40" Maximum="100" IsSnapToTickEnabled="True" TickFrequency="5" TickPlacement="BottomRight"/> <TextBox Name="targetGrade" Grid.Row="3" Grid.Column="3" Width="30" Height="23" Text="{Binding ElementName=gradeSlider, Path=Value}" TextAlignment="Center"/> However I'm struggling to include a label which will show display a different grade classification based on the slider's value range. I'd have thought that I could create the label: <Label Name="gradeClass" Grid.Row="2" Grid.Column="2" HorizontalAlignment="Center" VerticalAlignment="Bottom"/> And then use code: string gradeText; if (gradeSlider.Value >= 40 && gradeSlider.Value < 50) { gradeText = "Pass"; gradeClass.Content = gradeText; } else if (gradeSlider.Value >= 50 && gradeSlider.Value < 60) { gradeText = "2:2"; gradeClass.Content = gradeText; } else { gradeText = "so on..."; gradeClass.Content = gradeText; } But the label just stays as "Pass" whatever the slider value. Could somebody please advise me as to where I'm going wrong? I tried using Content = "{Binding Source = gradeText}" on the Label xaml and removing the gradeClass.Content's in the code but it complained that gradeText was declared but never used. Many thanks to anyone who can help.

    Read the article

  • Windows service (hosting WCF service) stops immediately on start up

    - by Thr33Dii
    My Question: I cannot navigate to the base address once the service is installed because the service won't remain running (stops immediately). Is there anything I need to do on the server or my machine to make the baseAddress valid? Background: I'm trying to learn how to use WCF services hosted in Windows Services. I have read several tutorials on how to accomplish this and it seems very straight forward. I've looked at this MSDN article and built it step-by-step. I can install the service on my machine and on a server, but when I start the service, it stops immediately. I then found this tutorial, which is essentially the same thing, but it contains some clients that consume the WCF service. I downloaded the source code, compiled, installed, but when I started the service, it stopped immediately. Searching SO, I found a possible solution that said to define the baseAddress when instantiating the ServiceHost, but that didnt help either. My serviceHost is defined as: serviceHost = new ServiceHost( typeof( CalculatorService ), new Uri( "http://localhost:8000/ServiceModelSamples/service" ) ); My service name, base address, and endpoint: <service name="Microsoft.ServiceModel.Samples.CalculatorService" behaviorConfiguration="CalculatorServiceBehavior"> <host> <baseAddresses> <add baseAddress="http://localhost:8000/ServiceModelSamples/service"/> </baseAddresses> </host> <endpoint address="" binding="wsHttpBinding" contract="Microsoft.ServiceModel.Samples.ICalculator"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/> </service> I've verified the namespaces are identical. It's just getting frustrating that the tutorials seem to assume that the Windows service will start as long as all the stated steps are followed. I'm missing something and it's probably right in front of me. Please help!

    Read the article

  • Rendering ListBox takes too long on Windows Phone

    - by Bhawk1990
    I am working on a Windows Phone 7 Application using Local SQLite Database and I'm having an issue with the rendering time of pages that use DataBinding. Currently it takes 60-70ms to retrieve the data from the database. Then it takes about 3100ms to render the data retrieved using a ListBox with DataBinding. Here you can see the DataTemplate of the ListBox: <DataTemplate x:Key="ListBoxItemTemplate"> <Grid> <Grid.ColumnDefinitions> <ColumnDefinition Width="68" /> <ColumnDefinition /> </Grid.ColumnDefinitions> <TextBlock x:Name="TimeColumn" Text="{Binding TimeSpan}" Grid.Column="0" Grid.Row="0" Foreground="White" HorizontalAlignment="Center" VerticalAlignment="Center" /> <TextBlock Text="{Binding Stop.StopName}" Grid.Column="1" Grid.Row="0" Margin="15,0,0,0" TextWrapping="NoWrap" Foreground="Black" HorizontalAlignment="Left" VerticalAlignment="Center" /> </Grid> </DataTemplate> Comment: I have tried it using Canvas instead of Grid too, same result. Then, the database loads data into a CSList (using ViciCoolStorage) and that gets Binded to the ListBox: StationList.ItemsSource = App.RouteViewModel.RouteStops; Comment: I have tried to add the elements of the CSList to an ObservableCollection and bind that to the interface but didn't seem to change anything. Question: Am I doing something wrong that results in a huge load time - even if just loading 10 elements -, or this is normal? Do you have any recommendations to get a better performance with DataBinding? Thank you for your answers in advance!

    Read the article

  • Invalid algorithm specified on Windows 2003 Server only

    - by JL
    I am decoding a file using the following method: string outFileName = zfoFileName.Replace(".zfo", "_tmp.zfo"); FileStream inFile = null; FileStream outFile = null; inFile = File.Open(zfoFileName, FileMode.Open); outFile = File.Create(outFileName); LargeCMS.CMS cms = new LargeCMS.CMS(); cms.Decode(inFile, outFile); This is working fine on my Win 7 dev machine, but on a Windows 2003 server production machine it fails with the following exception: Exception: System.Exception: CryptMsgUpdate error #-2146893816 --- System.ComponentModel.Win32Exception: Invalid algorithm specified --- End of inner exception stack trace --- at LargeCMS.CMS.Decode(FileStream inFile, FileStream outFile) Here are the classes below which I call to do the decoding, if needed I can upload a sample file for decoding, its just strange it works on Win 7, and not on Win2k3 server: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.IO; using System.Security.Cryptography; using System.Security.Cryptography.X509Certificates; using System.Runtime.InteropServices; using System.ComponentModel; namespace LargeCMS { class CMS { // File stream to use in callback function private FileStream m_callbackFile; // Streaming callback function for encoding private Boolean StreamOutputCallback(IntPtr pvArg, IntPtr pbData, int cbData, Boolean fFinal) { // Write all bytes to encoded file Byte[] bytes = new Byte[cbData]; Marshal.Copy(pbData, bytes, 0, cbData); m_callbackFile.Write(bytes, 0, cbData); if (fFinal) { // This is the last piece. Close the file m_callbackFile.Flush(); m_callbackFile.Close(); m_callbackFile = null; } return true; } // Encode CMS with streaming to support large data public void Encode(X509Certificate2 cert, FileStream inFile, FileStream outFile) { // Variables Win32.CMSG_SIGNER_ENCODE_INFO SignerInfo; Win32.CMSG_SIGNED_ENCODE_INFO SignedInfo; Win32.CMSG_STREAM_INFO StreamInfo; Win32.CERT_CONTEXT[] CertContexts = null; Win32.BLOB[] CertBlobs; X509Chain chain = null; X509ChainElement[] chainElements = null; X509Certificate2[] certs = null; RSACryptoServiceProvider key = null; BinaryReader stream = null; GCHandle gchandle = new GCHandle(); IntPtr hProv = IntPtr.Zero; IntPtr SignerInfoPtr = IntPtr.Zero; IntPtr CertBlobsPtr = IntPtr.Zero; IntPtr hMsg = IntPtr.Zero; IntPtr pbPtr = IntPtr.Zero; Byte[] pbData; int dwFileSize; int dwRemaining; int dwSize; Boolean bResult = false; try { // Get data to encode dwFileSize = (int)inFile.Length; stream = new BinaryReader(inFile); pbData = stream.ReadBytes(dwFileSize); // Prepare stream for encoded info m_callbackFile = outFile; // Get cert chain chain = new X509Chain(); chain.Build(cert); chainElements = new X509ChainElement[chain.ChainElements.Count]; chain.ChainElements.CopyTo(chainElements, 0); // Get certs in chain certs = new X509Certificate2[chainElements.Length]; for (int i = 0; i < chainElements.Length; i++) { certs[i] = chainElements[i].Certificate; } // Get context of all certs in chain CertContexts = new Win32.CERT_CONTEXT[certs.Length]; for (int i = 0; i < certs.Length; i++) { CertContexts[i] = (Win32.CERT_CONTEXT)Marshal.PtrToStructure(certs[i].Handle, typeof(Win32.CERT_CONTEXT)); } // Get cert blob of all certs CertBlobs = new Win32.BLOB[CertContexts.Length]; for (int i = 0; i < CertContexts.Length; i++) { CertBlobs[i].cbData = CertContexts[i].cbCertEncoded; CertBlobs[i].pbData = CertContexts[i].pbCertEncoded; } // Get CSP of client certificate key = (RSACryptoServiceProvider)certs[0].PrivateKey; bResult = Win32.CryptAcquireContext( ref hProv, key.CspKeyContainerInfo.KeyContainerName, key.CspKeyContainerInfo.ProviderName, key.CspKeyContainerInfo.ProviderType, 0 ); if (!bResult) { throw new Exception("CryptAcquireContext error #" + Marshal.GetLastWin32Error().ToString(), new Win32Exception(Marshal.GetLastWin32Error())); } // Populate Signer Info struct SignerInfo = new Win32.CMSG_SIGNER_ENCODE_INFO(); SignerInfo.cbSize = Marshal.SizeOf(SignerInfo); SignerInfo.pCertInfo = CertContexts[0].pCertInfo; SignerInfo.hCryptProvOrhNCryptKey = hProv; SignerInfo.dwKeySpec = (int)key.CspKeyContainerInfo.KeyNumber; SignerInfo.HashAlgorithm.pszObjId = Win32.szOID_OIWSEC_sha1; // Populate Signed Info struct SignedInfo = new Win32.CMSG_SIGNED_ENCODE_INFO(); SignedInfo.cbSize = Marshal.SizeOf(SignedInfo); SignedInfo.cSigners = 1; SignerInfoPtr = Marshal.AllocHGlobal(Marshal.SizeOf(SignerInfo)); Marshal.StructureToPtr(SignerInfo, SignerInfoPtr, false); SignedInfo.rgSigners = SignerInfoPtr; SignedInfo.cCertEncoded = CertBlobs.Length; CertBlobsPtr = Marshal.AllocHGlobal(Marshal.SizeOf(CertBlobs[0]) * CertBlobs.Length); for (int i = 0; i < CertBlobs.Length; i++) { Marshal.StructureToPtr(CertBlobs[i], new IntPtr(CertBlobsPtr.ToInt64() + (Marshal.SizeOf(CertBlobs[i]) * i)), false); } SignedInfo.rgCertEncoded = CertBlobsPtr; // Populate Stream Info struct StreamInfo = new Win32.CMSG_STREAM_INFO(); StreamInfo.cbContent = dwFileSize; StreamInfo.pfnStreamOutput = new Win32.StreamOutputCallbackDelegate(StreamOutputCallback); // TODO: CMSG_DETACHED_FLAG // Open message to encode hMsg = Win32.CryptMsgOpenToEncode( Win32.X509_ASN_ENCODING | Win32.PKCS_7_ASN_ENCODING, 0, Win32.CMSG_SIGNED, ref SignedInfo, null, ref StreamInfo ); if (hMsg.Equals(IntPtr.Zero)) { throw new Exception("CryptMsgOpenToEncode error #" + Marshal.GetLastWin32Error().ToString(), new Win32Exception(Marshal.GetLastWin32Error())); } // Process the whole message gchandle = GCHandle.Alloc(pbData, GCHandleType.Pinned); pbPtr = gchandle.AddrOfPinnedObject(); dwRemaining = dwFileSize; dwSize = (dwFileSize < 1024 * 1000 * 100) ? dwFileSize : 1024 * 1000 * 100; while (dwRemaining > 0) { // Update message piece by piece bResult = Win32.CryptMsgUpdate( hMsg, pbPtr, dwSize, (dwRemaining <= dwSize) ? true : false ); if (!bResult) { throw new Exception("CryptMsgUpdate error #" + Marshal.GetLastWin32Error().ToString(), new Win32Exception(Marshal.GetLastWin32Error())); } // Move to the next piece pbPtr = new IntPtr(pbPtr.ToInt64() + dwSize); dwRemaining -= dwSize; if (dwRemaining < dwSize) { dwSize = dwRemaining; } } } finally { // Clean up if (gchandle.IsAllocated) { gchandle.Free(); } if (stream != null) { stream.Close(); } if (m_callbackFile != null) { m_callbackFile.Close(); } if (!CertBlobsPtr.Equals(IntPtr.Zero)) { Marshal.FreeHGlobal(CertBlobsPtr); } if (!SignerInfoPtr.Equals(IntPtr.Zero)) { Marshal.FreeHGlobal(SignerInfoPtr); } if (!hProv.Equals(IntPtr.Zero)) { Win32.CryptReleaseContext(hProv, 0); } if (!hMsg.Equals(IntPtr.Zero)) { Win32.CryptMsgClose(hMsg); } } } // Decode CMS with streaming to support large data public void Decode(FileStream inFile, FileStream outFile) { // Variables Win32.CMSG_STREAM_INFO StreamInfo; Win32.CERT_CONTEXT SignerCertContext; BinaryReader stream = null; GCHandle gchandle = new GCHandle(); IntPtr hMsg = IntPtr.Zero; IntPtr pSignerCertInfo = IntPtr.Zero; IntPtr pSignerCertContext = IntPtr.Zero; IntPtr pbPtr = IntPtr.Zero; IntPtr hStore = IntPtr.Zero; Byte[] pbData; Boolean bResult = false; int dwFileSize; int dwRemaining; int dwSize; int cbSignerCertInfo; try { // Get data to decode dwFileSize = (int)inFile.Length; stream = new BinaryReader(inFile); pbData = stream.ReadBytes(dwFileSize); // Prepare stream for decoded info m_callbackFile = outFile; // Populate Stream Info struct StreamInfo = new Win32.CMSG_STREAM_INFO(); StreamInfo.cbContent = dwFileSize; StreamInfo.pfnStreamOutput = new Win32.StreamOutputCallbackDelegate(StreamOutputCallback); // Open message to decode hMsg = Win32.CryptMsgOpenToDecode( Win32.X509_ASN_ENCODING | Win32.PKCS_7_ASN_ENCODING, 0, 0, IntPtr.Zero, IntPtr.Zero, ref StreamInfo ); if (hMsg.Equals(IntPtr.Zero)) { throw new Exception("CryptMsgOpenToDecode error #" + Marshal.GetLastWin32Error().ToString(), new Win32Exception(Marshal.GetLastWin32Error())); } // Process the whole message gchandle = GCHandle.Alloc(pbData, GCHandleType.Pinned); pbPtr = gchandle.AddrOfPinnedObject(); dwRemaining = dwFileSize; dwSize = (dwFileSize < 1024 * 1000 * 100) ? dwFileSize : 1024 * 1000 * 100; while (dwRemaining > 0) { // Update message piece by piece bResult = Win32.CryptMsgUpdate( hMsg, pbPtr, dwSize, (dwRemaining <= dwSize) ? true : false ); if (!bResult) { throw new Exception("CryptMsgUpdate error #" + Marshal.GetLastWin32Error().ToString(), new Win32Exception(Marshal.GetLastWin32Error())); } // Move to the next piece pbPtr = new IntPtr(pbPtr.ToInt64() + dwSize); dwRemaining -= dwSize; if (dwRemaining < dwSize) { dwSize = dwRemaining; } } // Get signer certificate info cbSignerCertInfo = 0; bResult = Win32.CryptMsgGetParam( hMsg, Win32.CMSG_SIGNER_CERT_INFO_PARAM, 0, IntPtr.Zero, ref cbSignerCertInfo ); if (!bResult) { throw new Exception("CryptMsgGetParam error #" + Marshal.GetLastWin32Error().ToString(), new Win32Exception(Marshal.GetLastWin32Error())); } pSignerCertInfo = Marshal.AllocHGlobal(cbSignerCertInfo); bResult = Win32.CryptMsgGetParam( hMsg, Win32.CMSG_SIGNER_CERT_INFO_PARAM, 0, pSignerCertInfo, ref cbSignerCertInfo ); if (!bResult) { throw new Exception("CryptMsgGetParam error #" + Marshal.GetLastWin32Error().ToString(), new Win32Exception(Marshal.GetLastWin32Error())); } // Open a cert store in memory with the certs from the message hStore = Win32.CertOpenStore( Win32.CERT_STORE_PROV_MSG, Win32.X509_ASN_ENCODING | Win32.PKCS_7_ASN_ENCODING, IntPtr.Zero, 0, hMsg ); if (hStore.Equals(IntPtr.Zero)) { throw new Exception("CertOpenStore error #" + Marshal.GetLastWin32Error().ToString(), new Win32Exception(Marshal.GetLastWin32Error())); } // Find the signer's cert in the store pSignerCertContext = Win32.CertGetSubjectCertificateFromStore( hStore, Win32.X509_ASN_ENCODING | Win32.PKCS_7_ASN_ENCODING, pSignerCertInfo ); if (pSignerCertContext.Equals(IntPtr.Zero)) { throw new Exception("CertGetSubjectCertificateFromStore error #" + Marshal.GetLastWin32Error().ToString(), new Win32Exception(Marshal.GetLastWin32Error())); } // Set message for verifying SignerCertContext = (Win32.CERT_CONTEXT)Marshal.PtrToStructure(pSignerCertContext, typeof(Win32.CERT_CONTEXT)); bResult = Win32.CryptMsgControl( hMsg, 0, Win32.CMSG_CTRL_VERIFY_SIGNATURE, SignerCertContext.pCertInfo ); if (!bResult) { throw new Exception("CryptMsgControl error #" + Marshal.GetLastWin32Error().ToString(), new Win32Exception(Marshal.GetLastWin32Error())); } } finally { // Clean up if (gchandle.IsAllocated) { gchandle.Free(); } if (!pSignerCertContext.Equals(IntPtr.Zero)) { Win32.CertFreeCertificateContext(pSignerCertContext); } if (!pSignerCertInfo.Equals(IntPtr.Zero)) { Marshal.FreeHGlobal(pSignerCertInfo); } if (!hStore.Equals(IntPtr.Zero)) { Win32.CertCloseStore(hStore, Win32.CERT_CLOSE_STORE_FORCE_FLAG); } if (stream != null) { stream.Close(); } if (m_callbackFile != null) { m_callbackFile.Close(); } if (!hMsg.Equals(IntPtr.Zero)) { Win32.CryptMsgClose(hMsg); } } } } } and using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Runtime.InteropServices; using System.Security.Cryptography.X509Certificates; using System.ComponentModel; using System.Security.Cryptography; namespace LargeCMS { class Win32 { #region "CONSTS" public const int X509_ASN_ENCODING = 0x00000001; public const int PKCS_7_ASN_ENCODING = 0x00010000; public const int CMSG_SIGNED = 2; public const int CMSG_DETACHED_FLAG = 0x00000004; public const int AT_KEYEXCHANGE = 1; public const int AT_SIGNATURE = 2; public const String szOID_OIWSEC_sha1 = "1.3.14.3.2.26"; public const int CMSG_CTRL_VERIFY_SIGNATURE = 1; public const int CMSG_CERT_PARAM = 12; public const int CMSG_SIGNER_CERT_INFO_PARAM = 7; public const int CERT_STORE_PROV_MSG = 1; public const int CERT_CLOSE_STORE_FORCE_FLAG = 1; #endregion #region "STRUCTS" [StructLayout(LayoutKind.Sequential)] public struct CRYPT_ALGORITHM_IDENTIFIER { public String pszObjId; BLOB Parameters; } [StructLayout(LayoutKind.Sequential)] public struct CERT_ID { public int dwIdChoice; public BLOB IssuerSerialNumberOrKeyIdOrHashId; } [StructLayout(LayoutKind.Sequential)] public struct CMSG_SIGNER_ENCODE_INFO { public int cbSize; public IntPtr pCertInfo; public IntPtr hCryptProvOrhNCryptKey; public int dwKeySpec; public CRYPT_ALGORITHM_IDENTIFIER HashAlgorithm; public IntPtr pvHashAuxInfo; public int cAuthAttr; public IntPtr rgAuthAttr; public int cUnauthAttr; public IntPtr rgUnauthAttr; public CERT_ID SignerId; public CRYPT_ALGORITHM_IDENTIFIER HashEncryptionAlgorithm; public IntPtr pvHashEncryptionAuxInfo; } [StructLayout(LayoutKind.Sequential)] public struct CERT_CONTEXT { public int dwCertEncodingType; public IntPtr pbCertEncoded; public int cbCertEncoded; public IntPtr pCertInfo; public IntPtr hCertStore; } [StructLayout(LayoutKind.Sequential)] public struct BLOB { public int cbData; public IntPtr pbData; } [StructLayout(LayoutKind.Sequential)] public struct CMSG_SIGNED_ENCODE_INFO { public int cbSize; public int cSigners; public IntPtr rgSigners; public int cCertEncoded; public IntPtr rgCertEncoded; public int cCrlEncoded; public IntPtr rgCrlEncoded; public int cAttrCertEncoded; public IntPtr rgAttrCertEncoded; } [StructLayout(LayoutKind.Sequential)] public struct CMSG_STREAM_INFO { public int cbContent; public StreamOutputCallbackDelegate pfnStreamOutput; public IntPtr pvArg; } #endregion #region "DELEGATES" public delegate Boolean StreamOutputCallbackDelegate(IntPtr pvArg, IntPtr pbData, int cbData, Boolean fFinal); #endregion #region "API" [DllImport("advapi32.dll", CharSet = CharSet.Auto, SetLastError = true)] public static extern Boolean CryptAcquireContext( ref IntPtr hProv, String pszContainer, String pszProvider, int dwProvType, int dwFlags ); [DllImport("Crypt32.dll", SetLastError = true)] public static extern IntPtr CryptMsgOpenToEncode( int dwMsgEncodingType, int dwFlags, int dwMsgType, ref CMSG_SIGNED_ENCODE_INFO pvMsgEncodeInfo, String pszInnerContentObjID, ref CMSG_STREAM_INFO pStreamInfo ); [DllImport("Crypt32.dll", SetLastError = true)] public static extern IntPtr CryptMsgOpenToDecode( int dwMsgEncodingType, int dwFlags, int dwMsgType, IntPtr hCryptProv, IntPtr pRecipientInfo, ref CMSG_STREAM_INFO pStreamInfo ); [DllImport("Crypt32.dll", SetLastError = true)] public static extern Boolean CryptMsgClose( IntPtr hCryptMsg ); [DllImport("Crypt32.dll", SetLastError = true)] public static extern Boolean CryptMsgUpdate( IntPtr hCryptMsg, Byte[] pbData, int cbData, Boolean fFinal ); [DllImport("Crypt32.dll", SetLastError = true)] public static extern Boolean CryptMsgUpdate( IntPtr hCryptMsg, IntPtr pbData, int cbData, Boolean fFinal ); [DllImport("Crypt32.dll", SetLastError = true)] public static extern Boolean CryptMsgGetParam( IntPtr hCryptMsg, int dwParamType, int dwIndex, IntPtr pvData, ref int pcbData ); [DllImport("Crypt32.dll", SetLastError = true)] public static extern Boolean CryptMsgControl( IntPtr hCryptMsg, int dwFlags, int dwCtrlType, IntPtr pvCtrlPara ); [DllImport("advapi32.dll", SetLastError = true)] public static extern Boolean CryptReleaseContext( IntPtr hProv, int dwFlags ); [DllImport("Crypt32.dll", SetLastError = true)] public static extern IntPtr CertCreateCertificateContext( int dwCertEncodingType, IntPtr pbCertEncoded, int cbCertEncoded ); [DllImport("Crypt32.dll", SetLastError = true)] public static extern Boolean CertFreeCertificateContext( IntPtr pCertContext ); [DllImport("Crypt32.dll", SetLastError = true)] public static extern IntPtr CertOpenStore( int lpszStoreProvider, int dwMsgAndCertEncodingType, IntPtr hCryptProv, int dwFlags, IntPtr pvPara ); [DllImport("Crypt32.dll", SetLastError = true)] public static extern IntPtr CertGetSubjectCertificateFromStore( IntPtr hCertStore, int dwCertEncodingType, IntPtr pCertId ); [DllImport("Crypt32.dll", SetLastError = true)] public static extern IntPtr CertCloseStore( IntPtr hCertStore, int dwFlags ); #endregion } }

    Read the article

  • Referencing movie clips from within an actionscript class

    - by Ant
    Hi all, I have been given the task of adding a scoring system to various flash games. This simply involves taking input, adding functionality such as pausing and replaying and then outputting the score, time left etc. at the end. I've so far successfully edited two games. Both these games used the "actions" code on frames. The latest game I'm trying to do uses an actionscript class which makes it both easier and harder. I'm not very adept at flash at all, but I've worked it out so far. I've added various movie clips that are to be used for displaying the pause screen background, buttons for replaying etc. I've been showing and hiding these using: back._visible = true; //movie clip, instance of back (back.png) I doubt it's best practice, but it's quick and has been working. However, now with the change of coding style to classes, this doesn't seem to work. I kinda understand why, but I'm now unsure how to hide/show these elements. Any help would be greatly appreciated :) I've attached the modified AS. class RivalOrbs extends MovieClip { var infinite_levels, orbs_start, orbs_inc, orbs_per_level, show_timer, _parent, one_time_per_level, speed_start, speed_inc_percent, max_speed, percent_starting_on_wrong_side, colorize, colors, secs_per_level; function RivalOrbs() { super(); mc = this; this.init(); } // End of the function function get_num_orbs() { if (infinite_levels) { return (orbs_start + (level - 1) * orbs_inc); } else if (level > orbs_per_level.length) { return (0); } else { return (orbs_per_level[level - 1]); } // end else if } // End of the function function get_timer_str(secs) { var _loc2 = Math.floor(secs / 60); var _loc1 = secs % 60; return ((_loc2 > 0 ? (_loc2) : ("0")) + ":" + (_loc1 >= 10 ? (_loc1) : ("0" + _loc1))); } // End of the function function frame() { //PLACE PAUSE CODE HERE if (!Key.isDown(80) and !Key.isDown(Key.ESCAPE)) { _root.offKey = true; } else if (Key.isDown(80) or Key.isDown(Key.ESCAPE)) { if (_root.offKey and _root.game_mode == "play") { _root.game_mode = "pause"; /* back._visible = true; btn_resume._visible = true; btn_exit._visible = true; txt_pause._visible = true; */ } else if (_root.offKey and _root.game_mode == "pause") { _root.game_mode = "play"; } _root.offKey = false; } if (_root.game_mode == "pause" or paused) { return; } else { /* back._visible = false; btn_resume._visible = false; btn_exit._visible = false; txt_pause._visible = false; */ } if (show_timer && total_secs != -1 || show_timer && _parent.timesup) { _loc7 = total_secs - Math.ceil((getTimer() - timer) / 1000); var diff = oldSeconds - (_loc7 + additional); if (diff > 1) additional = additional + diff; _loc7 = _loc7 + additional; oldSeconds = _loc7; trace(oldSeconds); mc.timer_field.text = this.get_timer_str(Math.max(0, _loc7)); if (_loc7 <= -1 || _parent.timesup) { if (one_time_per_level) { _root.gotoAndPlay("Lose"); } else { this.show_dialog(false); return; } // end if } // end if } // end else if var _loc9 = _root._xmouse; var _loc8 = _root._ymouse; var _loc6 = {x: _loc9, y: _loc8}; mc.globalToLocal(_loc6); _loc6.y = Math.max(-mc.bg._height / 2 + gap / 2, _loc6.y); _loc6.y = Math.min(mc.bg._height / 2 - gap / 2, _loc6.y); mc.wall1._y = _loc6.y - gap / 2 - mc.wall1._height / 2; mc.wall2._y = _loc6.y + gap / 2 + mc.wall1._height / 2; var _loc5 = true; for (var _loc4 = 0; _loc4 < this.get_num_orbs(); ++_loc4) { var _loc3 = mc.stage["orb" + _loc4]; _loc3.x_last = _loc3._x; _loc3.y_last = _loc3._y; _loc3._x = _loc3._x + _loc3.x_speed; _loc3._y = _loc3._y + _loc3.y_speed; if (_loc3._x < l_thresh) { _loc3.x_speed = _loc3.x_speed * -1; _loc3._x = l_thresh + (l_thresh - _loc3._x); _loc3.gotoAndPlay("hit"); } // end if if (_loc3._x > r_thresh) { _loc3.x_speed = _loc3.x_speed * -1; _loc3._x = r_thresh - (_loc3._x - r_thresh); _loc3.gotoAndPlay("hit"); } // end if if (_loc3._y < t_thresh) { _loc3.y_speed = _loc3.y_speed * -1; _loc3._y = t_thresh + (t_thresh - _loc3._y); _loc3.gotoAndPlay("hit"); } // end if if (_loc3._y > b_thresh) { _loc3.y_speed = _loc3.y_speed * -1; _loc3._y = b_thresh - (_loc3._y - b_thresh); _loc3.gotoAndPlay("hit"); } // end if if (_loc3.x_speed > 0) { if (_loc3._x >= m1_thresh && _loc3.x_last < m1_thresh || _loc3._x >= m1_thresh && _loc3._x <= m2_thresh) { if (_loc3._y <= mc.wall1._y + mc.wall1._height / 2 || _loc3._y >= mc.wall2._y - mc.wall2._height / 2) { _loc3.x_speed = _loc3.x_speed * -1; _loc3._x = m1_thresh - (_loc3._x - m1_thresh); _loc3.gotoAndPlay("hit"); } // end if } // end if } else if (_loc3._x <= m2_thresh && _loc3.x_last > m2_thresh || _loc3._x >= m1_thresh && _loc3._x <= m2_thresh) { if (_loc3._y <= mc.wall1._y + mc.wall1._height / 2 || _loc3._y >= mc.wall2._y - mc.wall2._height / 2) { _loc3.x_speed = _loc3.x_speed * -1; _loc3._x = m2_thresh + (m2_thresh - _loc3._x); _loc3.gotoAndPlay("hit"); } // end if } // end else if if (_loc3.side == 1 && _loc3._x > 0) { _loc5 = false; } // end if if (_loc3.side == 2 && _loc3._x < 0) { _loc5 = false; } // end if } // end of for if (_loc5) { this.end_level(); } // end if } // End of the function function colorize_hex(mc, hex) { var _loc4 = hex >> 16; var _loc5 = (hex ^ hex >> 16 << 16) >> 8; var _loc3 = hex >> 8 << 8 ^ hex; var _loc2 = new flash.geom.ColorTransform(0, 0, 0, 1, _loc4, _loc5, _loc3, 0); mc.transform.colorTransform = _loc2; } // End of the function function tint_hex(mc, hex, amount) { var _loc4 = hex >> 16; var _loc5 = hex >> 8 & 255; var _loc3 = hex & 255; this.tint(mc, _loc4, _loc5, _loc3, amount); } // End of the function function tint(mc, r, g, b, amount) { var _loc4 = 100 - amount; var _loc1 = new Object(); _loc1.ra = _loc1.ga = _loc1.ba = _loc4; var _loc2 = amount / 100; _loc1.rb = r * _loc2; _loc1.gb = g * _loc2; _loc1.bb = b * _loc2; var _loc3 = new Color(mc); _loc3.setTransform(_loc1); } // End of the function function get_num_levels() { if (infinite_levels) { return (Number.MAX_VALUE); } else { return (orbs_per_level.length); } // end else if } // End of the function function end_level() { _global.inputTimeAvailable = _global.inputTimeAvailable - (60 - oldSeconds); ++level; _parent.levelOver = true; if (level <= this.get_num_levels()) { this.show_dialog(true); } else { _root.gotoAndPlay("Win"); } // end else if } // End of the function function get_speed() { var _loc3 = speed_start; for (var _loc2 = 0; _loc2 < level - 1; ++_loc2) { _loc3 = _loc3 + _loc3 * (speed_inc_percent / 100); } // end of for return (Math.min(_loc3, Math.max(max_speed, speed_start))); } // End of the function function init_orbs() { var _loc6 = this.get_speed(); var _loc7 = Math.max(1, Math.ceil(this.get_num_orbs() * (percent_starting_on_wrong_side / 100))); for (var _loc3 = 0; _loc3 < this.get_num_orbs(); ++_loc3) { var _loc2 = null; if (_loc3 % 2 == 0) { _loc2 = mc.stage.attachMovie("Orb1", "orb" + _loc3, _loc3); _loc2.side = 1; if (colorize && color1 != -1) { this.colorize_hex(_loc2.orb.bg, color1); } // end if _loc2._x = Math.random() * (mc.bg._width * 4.000000E-001) - mc.bg._width * 2.000000E-001 - mc.bg._width / 4; } else { _loc2 = mc.stage.attachMovie("Orb2", "orb" + _loc3, _loc3); _loc2.side = 2; if (colorize && color2 != -1) { this.colorize_hex(_loc2.orb.bg, color2); } // end if _loc2._x = Math.random() * (mc.bg._width * 4.000000E-001) - mc.bg._width * 2.000000E-001 + mc.bg._width / 4; } // end else if _loc2._width = _loc2._height = orb_w; _loc2._y = Math.random() * (mc.bg._height * 8.000000E-001) - mc.bg._height * 4.000000E-001; if (_loc3 < _loc7) { _loc2._x = _loc2._x * -1; } // end if var _loc5 = Math.random() * 60; var _loc4 = _loc5 / 180 * 3.141593E+000; _loc2.x_speed = Math.cos(_loc4) * _loc6; _loc2.y_speed = Math.sin(_loc4) * _loc6; if (Math.random() >= 5.000000E-001) { _loc2.x_speed = _loc2.x_speed * -1; } // end if if (Math.random() >= 5.000000E-001) { _loc2.y_speed = _loc2.y_speed * -1; } // end if } // end of for } // End of the function function init_colors() { if (colorize && colors.length >= 2) { color1 = colors[Math.floor(Math.random() * colors.length)]; for (color2 = colors[Math.floor(Math.random() * colors.length)]; color2 == color1; color2 = colors[Math.floor(Math.random() * colors.length)]) { } // end of for this.tint_hex(mc.side1, color1, 40); this.tint_hex(mc.side2, color2, 40); } else { color1 = -1; color2 = -1; } // end else if } // End of the function function get_total_secs() { if (show_timer) { if (secs_per_level.length > 0) { if (level > secs_per_level.length) { return (secs_per_level[secs_per_level.length - 1]); } else { return (secs_per_level[level - 1]); } // end if } // end if } // end else if return (-1); } // End of the function function start_level() { trace ("start_level"); _parent.timesup = false; _parent.levelOver = false; _parent.times_up_comp.start_timer(); this.init_orbs(); mc.level_field.text = "LEVEL " + level; total_secs = _global.inputTimeAvailable; if (total_secs > 60) total_secs = 60; timer = getTimer(); paused = false; mc.dialog.gotoAndPlay("off"); } // End of the function function clear_orbs() { for (var _loc2 = 0; mc.stage["orb" + _loc2]; ++_loc2) { mc.stage["orb" + _loc2].removeMovieClip(); } // end of for } // End of the function function show_dialog(new_level) { mc.back._visible = false; trace("yes"); paused = true; if (new_level) { this.init_colors(); } // end if this.clear_orbs(); mc.dialog.gotoAndPlay("level"); if (!new_level || _parent.timesup) { mc.dialog.level_top.text = "Time\'s Up!"; /* dyn_line1.text = "Goodbye " + _global.inputName + "!"; dyn_line2.text = "You scored " + score; //buttons if (_global.inputTimeAvailable > 60) btn_replay._visible = true; btn_resume._visible = false; btn_exit._visible = false; txt_pause._visible = false; sendInfo = new LoadVars(); sendLoader = new LoadVars(); sendInfo.game_name = 'rival_orbs'; sendInfo.timeavailable = _global.inputTimeAvailable; if (sendInfo.timeavailable < 0) sendInfo.timeavailable = 0; sendInfo.id = _global.inputId; sendInfo.score = level*_global.inputFactor; sendInfo.directive = 'record'; //sendInfo.sendAndLoad('ncc1701e.aspx', sendLoader, "GET"); sendInfo.sendAndLoad('http://keyload.co.uk/output.php', sendLoader, "POST"); */ } else if (level > 1) { mc.dialog.level_top.text = "Next Level:"; } else { mc.dialog.level_top.text = ""; } // end else if mc.dialog.level_num.text = "LEVEL " + level; mc.dialog.level_mid.text = "Number of Orbs: " + this.get_num_orbs(); _root.max_level = level; var _this = this; mc.dialog.btn.onRelease = function () { _this.start_level(); }; } // End of the function function init() { var getInfo = new LoadVars(); var getLoader = new LoadVars(); getInfo.directive = "read"; getInfo.sendAndLoad('http://keyload.co.uk/input.php', getLoader, "GET"); getLoader.onLoad = function (success) { if (success) { _global.inputId = this.id; _global.inputTimeAvailable = this.timeavailable; _global.inputFactor = this.factor; _global.inputName = this.name; } else { trace("Failed"); } } _root.game_mode = "play"; /* back._visible = false; btn_exit._visible = false; btn_replay._visible = false; btn_resume._visible = false; txt_pause._visible = false; */ l_thresh = -mc.bg._width / 2 + orb_w / 2; t_thresh = -mc.bg._height / 2 + orb_w / 2; r_thresh = mc.bg._width / 2 - orb_w / 2; b_thresh = mc.bg._height / 2 - orb_w / 2; m1_thresh = -wall_w / 2 - orb_w / 2; m2_thresh = wall_w / 2 + orb_w / 2; this.show_dialog(true); mc.onEnterFrame = frame; } // End of the function var mc = null; var orb_w = 15; var wall_w = 2; var l_thresh = 0; var r_thresh = 0; var t_thresh = 0; var b_thresh = 0; var m1_thresh = 0; var m2_thresh = 0; var color1 = -1; var color2 = -1; var level = 1; var total_secs = 30; var gap = 60; var timer = 0; var additional = 0; var oldSeconds = 0; var paused = true; var _loc7 = 0; } // End of Class

    Read the article

  • Making WCF Output a single WSDL file for interop purposes.

    By default, when WCF emits a WSDL definition for your services, it can often contain many links to others related schemas that need to be imported. For the most part, this is fine. WCF clients understand this type of schema without issue, and it conforms to the requisite standards as far as WSDL definitions go. However, some non Microsoft stacks will only work with a single WSDL file and require that all definitions for the service(s) (port types, messages, operation etc) are contained within that single file. In other words, no external imports are supported. Some Java clients (to my working knowledge) have this limitation. This obviously presents a problem when trying to create services exposed for consumption and interop by these clients. Note: You can download the full source code for this sample from here To illustrate this point, lets say we have a simple service that looks like: Service Contract public interface IService1 { [OperationContract] [FaultContract(typeof(DataFault))] string GetData(DataModel1 model); [OperationContract] [FaultContract(typeof(DataFault))] string GetMoreData(DataModel2 model); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Service Implementation/Behaviour public class Service1 : IService1 { public string GetData(DataModel1 model) { return string.Format("Some Field was: {0} and another field was {1}", model.SomeField,model.AnotherField); } public string GetMoreData(DataModel2 model) { return string.Format("Name: {0}, age: {1}", model.Name, model.Age); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Configuration File <system.serviceModel> <services> <service name="SingleWSDL_WcfService.Service1" behaviorConfiguration="SingleWSDL_WcfService.Service1Behavior"> <!-- ...std/default data omitted for brevity..... --> <endpoint address ="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" > ....... </services> <behaviors> <serviceBehaviors> <behavior name="SingleWSDL_WcfService.Service1Behavior"> ........ </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When WCF is asked to produce a WSDL for this service, it will produce a file that looks something like this (note: some sections omitted for brevity): <?xml version="1.0" encoding="utf-8" ?> - <wsdl:definitions name="Service1" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...... namespace definitions omitted for brevity + <wsp:Policy wsu:Id="WSHttpBinding_IService1_policy"> ... multiple policy items omitted for brevity </wsp:Policy> - <wsdl:types> - <xsd:schema targetNamespace="http://tempuri.org/Imports"> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd0" namespace="http://tempuri.org/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd3" namespace="Http://SingleWSDL/Fault" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd1" namespace="http://schemas.microsoft.com/2003/10/Serialization/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd2" namespace="http://SingleWSDL/Model1" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd4" namespace="http://SingleWSDL/Model2" /> </xsd:schema> </wsdl:types> + <wsdl:message name="IService1_GetData_InputMessage"> .... </wsdl:message> - <wsdl:operation name="GetData"> ..... </wsdl:operation> - <wsdl:service name="Service1"> ....... </wsdl:service> </wsdl:definitions> The above snippet from the WSDL shows the external links and references that are generated by WCF for a relatively simple service. Note the xsd:import statements that reference external XSD definitions which are also generated by WCF. In order to get WCF to produce a single WSDL file, we first need to follow some good practices when it comes to WCF service definitions. Step 1: Define a namespace for your service contract. [ServiceContract(Namespace="http://SingleWSDL/Service1")] public interface IService1 { ...... } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Normally you would not use a literal string and may instead define a constant to use in your own application for the namespace. When this is applied and we generate the WSDL, we get the following statement inserted into the document: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl=wsdl0" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } All the previous imports have gone. If we follow this link, we will see that the XSD imports are now in this external WSDL file. Not really any benefit for our purposes. Step 2: Define a namespace for your service behaviour [ServiceBehavior(Namespace = "http://SingleWSDL/Service1")] public class Service1 : IService1 { ...... } As you can see, the namespace of the service behaviour should be the same as the service contract interface to which it implements. Failure to do these tasks will cause WCF to emit its default http://tempuri.org namespace all over the place and cause WCF to still generate import statements. This is also true if the namespace of the contract and behaviour differ. If you define one and not the other, defaults kick in, and youll find extra imports generated. While each of the previous 2 steps wont cause any less import statements to be generated, you will notice that namespace definitions within the WSDL have identical, well defined names. Step 3: Define a binding namespace In the configuration file, modify the endpoint configuration line item to iunclude a bindingNamespace attribute which is the same as that defined on the service behaviour and service contract <endpoint address="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" bindingNamespace="http://SingleWSDL/Service1"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, this does not completely solve the issue. What this will do is remove the WSDL import statements like this one: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } from the generated WSDL. Finally. the magic. Step 4: Use a custom endpoint behaviour to read in external imports and include in the main WSDL output. In order to force WCF to output a single WSDL with all the required definitions, we need to define a custom WSDL Export extension that can be applied to any endpoints. This requires implementing the IWsdlExportExtension and IEndpointBehavior interfaces and then reading in any imported schemas, and adding that output to the main, flattened WSDL to be output. Sounds like fun right..? Hmmm well maybe not. This step sounds a little hairy, but its actually quite easy thanks to some kind individuals who have already done this for us. As far as I know, there are 2 available implementations that we can easily use to perform the import and WSDL flattening.  WCFExtras which is on codeplex and FlatWsdl by Thinktecture. Both implementations actually do exactly the same thing with the imports and provide an endpoint behaviour, however FlatWsdl does a little more work for us by providing a ServiceHostFactory that we can use which automatically attaches the requisite behaviour to our endpoints for us. To use this in an IIS hosted service, we can modify the .SVC file to specify this ne factory to use like so: <%@ ServiceHost Language="C#" Debug="true" Service="SingleWSDL_WcfService.Service1" Factory="Thinktecture.ServiceModel.Extensions.Description.FlatWsdlServiceHostFactory" %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Within a service application or another form of executable such as a console app, we can simply create an instance of the custom service host and open it as we normally would as shown here: FlatWsdlServiceHost host = new FlatWsdlServiceHost(typeof(Service1)); host.Open(); And we are done. WCF will now generate one single WSDL file that contains all he WSDL imports and data/XSD imports. You can download the full source code for this sample from here Hope this has helped you. Note: Please note that I have not extensively tested this in a number of different scenarios so no guarantees there.Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Making WCF Output a single WSDL file for interop purposes.

    - by Glav
    By default, when WCF emits a WSDL definition for your services, it can often contain many links to others related schemas that need to be imported. For the most part, this is fine. WCF clients understand this type of schema without issue, and it conforms to the requisite standards as far as WSDL definitions go. However, some non Microsoft stacks will only work with a single WSDL file and require that all definitions for the service(s) (port types, messages, operation etc…) are contained within that single file. In other words, no external imports are supported. Some Java clients (to my working knowledge) have this limitation. This obviously presents a problem when trying to create services exposed for consumption and interop by these clients. Note: You can download the full source code for this sample from here To illustrate this point, lets say we have a simple service that looks like: Service Contract public interface IService1 { [OperationContract] [FaultContract(typeof(DataFault))] string GetData(DataModel1 model); [OperationContract] [FaultContract(typeof(DataFault))] string GetMoreData(DataModel2 model); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Service Implementation/Behaviour public class Service1 : IService1 { public string GetData(DataModel1 model) { return string.Format("Some Field was: {0} and another field was {1}", model.SomeField,model.AnotherField); } public string GetMoreData(DataModel2 model) { return string.Format("Name: {0}, age: {1}", model.Name, model.Age); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Configuration File <system.serviceModel> <services> <service name="SingleWSDL_WcfService.Service1" behaviorConfiguration="SingleWSDL_WcfService.Service1Behavior"> <!-- ...std/default data omitted for brevity..... --> <endpoint address ="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" > ....... </services> <behaviors> <serviceBehaviors> <behavior name="SingleWSDL_WcfService.Service1Behavior"> ........ </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When WCF is asked to produce a WSDL for this service, it will produce a file that looks something like this (note: some sections omitted for brevity): <?xml version="1.0" encoding="utf-8" ?> - <wsdl:definitions name="Service1" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...... namespace definitions omitted for brevity + &lt;wsp:Policy wsu:Id="WSHttpBinding_IService1_policy"> ... multiple policy items omitted for brevity </wsp:Policy> - <wsdl:types> - <xsd:schema targetNamespace="http://tempuri.org/Imports"> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd0" namespace="http://tempuri.org/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd3" namespace="Http://SingleWSDL/Fault" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd1" namespace="http://schemas.microsoft.com/2003/10/Serialization/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd2" namespace="http://SingleWSDL/Model1" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd4" namespace="http://SingleWSDL/Model2" /> </xsd:schema> </wsdl:types> + <wsdl:message name="IService1_GetData_InputMessage"> .... </wsdl:message> - <wsdl:operation name="GetData"> ..... </wsdl:operation> - <wsdl:service name="Service1"> ....... </wsdl:service> </wsdl:definitions> The above snippet from the WSDL shows the external links and references that are generated by WCF for a relatively simple service. Note the xsd:import statements that reference external XSD definitions which are also generated by WCF. In order to get WCF to produce a single WSDL file, we first need to follow some good practices when it comes to WCF service definitions. Step 1: Define a namespace for your service contract. [ServiceContract(Namespace="http://SingleWSDL/Service1")] public interface IService1 { ...... } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Normally you would not use a literal string and may instead define a constant to use in your own application for the namespace. When this is applied and we generate the WSDL, we get the following statement inserted into the document: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl=wsdl0" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } All the previous imports have gone. If we follow this link, we will see that the XSD imports are now in this external WSDL file. Not really any benefit for our purposes. Step 2: Define a namespace for your service behaviour [ServiceBehavior(Namespace = "http://SingleWSDL/Service1")] public class Service1 : IService1 { ...... } As you can see, the namespace of the service behaviour should be the same as the service contract interface to which it implements. Failure to do these tasks will cause WCF to emit its default http://tempuri.org namespace all over the place and cause WCF to still generate import statements. This is also true if the namespace of the contract and behaviour differ. If you define one and not the other, defaults kick in, and you’ll find extra imports generated. While each of the previous 2 steps wont cause any less import statements to be generated, you will notice that namespace definitions within the WSDL have identical, well defined names. Step 3: Define a binding namespace In the configuration file, modify the endpoint configuration line item to iunclude a bindingNamespace attribute which is the same as that defined on the service behaviour and service contract <endpoint address="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" bindingNamespace="http://SingleWSDL/Service1"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, this does not completely solve the issue. What this will do is remove the WSDL import statements like this one: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } from the generated WSDL. Finally…. the magic…. Step 4: Use a custom endpoint behaviour to read in external imports and include in the main WSDL output. In order to force WCF to output a single WSDL with all the required definitions, we need to define a custom WSDL Export extension that can be applied to any endpoints. This requires implementing the IWsdlExportExtension and IEndpointBehavior interfaces and then reading in any imported schemas, and adding that output to the main, flattened WSDL to be output. Sounds like fun right…..? Hmmm well maybe not. This step sounds a little hairy, but its actually quite easy thanks to some kind individuals who have already done this for us. As far as I know, there are 2 available implementations that we can easily use to perform the import and “WSDL flattening”.  WCFExtras which is on codeplex and FlatWsdl by Thinktecture. Both implementations actually do exactly the same thing with the imports and provide an endpoint behaviour, however FlatWsdl does a little more work for us by providing a ServiceHostFactory that we can use which automatically attaches the requisite behaviour to our endpoints for us. To use this in an IIS hosted service, we can modify the .SVC file to specify this ne factory to use like so: <%@ ServiceHost Language="C#" Debug="true" Service="SingleWSDL_WcfService.Service1" Factory="Thinktecture.ServiceModel.Extensions.Description.FlatWsdlServiceHostFactory" %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Within a service application or another form of executable such as a console app, we can simply create an instance of the custom service host and open it as we normally would as shown here: FlatWsdlServiceHost host = new FlatWsdlServiceHost(typeof(Service1)); host.Open(); And we are done. WCF will now generate one single WSDL file that contains all he WSDL imports and data/XSD imports. You can download the full source code for this sample from here Hope this has helped you. Note: Please note that I have not extensively tested this in a number of different scenarios so no guarantees there.

    Read the article

  • SQL SERVER – Enumerations in Relational Database – Best Practice

    - by pinaldave
    Marko Parkkola This article has been submitted by Marko Parkkola, Data systems designer at Saarionen Oy, Finland. Marko is excellent developer and always thinking at next level. You can read his earlier comment which created very interesting discussion here: SQL SERVER- IF EXISTS(Select null from table) vs IF EXISTS(Select 1 from table). I must express my special thanks to Marko for sending this best practice for Enumerations in Relational Database. He has really wrote excellent piece here and welcome comments here. Enumerations in Relational Database This is a subject which is very basic thing in relational databases but often not very well understood and sometimes badly implemented. There are of course many ways to do this but I concentrate only two cases, one which is “the right way” and one which is definitely wrong way. The concept Let’s say we have table Person in our database. Person has properties/fields like Firstname, Lastname, Birthday and so on. Then there’s a field that tells person’s marital status and let’s name it the same way; MaritalStatus. Now MaritalStatus is an enumeration. In C# I would definitely make it an enumeration with values likes Single, InRelationship, Married, Divorced. Now here comes the problem, SQL doesn’t have enumerations. The wrong way This is, in my opinion, absolutely the wrong way to do this. It has one upside though; you’ll see the enumeration’s description instantly when you do simple SELECT query and you don’t have to deal with mysterious values. There’s plenty of downsides too and one would be database fragmentation. Consider this (I’ve left all indexes and constraints out of the query on purpose). CREATE TABLE [dbo].[Person] ( [Firstname] NVARCHAR(100), [Lastname] NVARCHAR(100), [Birthday] datetime, [MaritalStatus] NVARCHAR(10) ) You have nvarchar(20) field in the table that tells the marital status. Obvious problem with this is that what if you create a new value which doesn’t fit into 20 characters? You’ll have to come and alter the table. There are other problems also but I’ll leave those for the reader to think about. The correct way Here’s how I’ve done this in many projects. This model still has one problem but it can be alleviated in the application layer or with CHECK constraints if you like. First I will create a namespace table which tells the name of the enumeration. I will add one row to it too. I’ll write all the indexes and constraints here too. CREATE TABLE [CodeNamespace] ( [Id] INT IDENTITY(1, 1), [Name] NVARCHAR(100) NOT NULL, CONSTRAINT [PK_CodeNamespace] PRIMARY KEY ([Id]), CONSTRAINT [IXQ_CodeNamespace_Name] UNIQUE NONCLUSTERED ([Name]) ) GO INSERT INTO [CodeNamespace] SELECT 'MaritalStatus' GO Then I create a table that holds the actual values and which reference to namespace table in order to group the values under different namespaces. I’ll add couple of rows here too. CREATE TABLE [CodeValue] ( [CodeNamespaceId] INT NOT NULL, [Value] INT NOT NULL, [Description] NVARCHAR(100) NOT NULL, [OrderBy] INT, CONSTRAINT [PK_CodeValue] PRIMARY KEY CLUSTERED ([CodeNamespaceId], [Value]), CONSTRAINT [FK_CodeValue_CodeNamespace] FOREIGN KEY ([CodeNamespaceId]) REFERENCES [CodeNamespace] ([Id]) ) GO -- 1 is the 'MaritalStatus' namespace INSERT INTO [CodeValue] SELECT 1, 1, 'Single', 1 INSERT INTO [CodeValue] SELECT 1, 2, 'In relationship', 2 INSERT INTO [CodeValue] SELECT 1, 3, 'Married', 3 INSERT INTO [CodeValue] SELECT 1, 4, 'Divorced', 4 GO Now there’s four columns in CodeValue table. CodeNamespaceId tells under which namespace values belongs to. Value tells the enumeration value which is used in Person table (I’ll show how this is done below). Description tells what the value means. You can use this, for example, column in UI’s combo box. OrderBy tells if the values needs to be ordered in some way when displayed in the UI. And here’s the Person table again now with correct columns. I’ll add one row here to show how enumerations are to be used. CREATE TABLE [dbo].[Person] ( [Firstname] NVARCHAR(100), [Lastname] NVARCHAR(100), [Birthday] datetime, [MaritalStatus] INT ) GO INSERT INTO [Person] SELECT 'Marko', 'Parkkola', '1977-03-04', 3 GO Now I said earlier that there is one problem with this. MaritalStatus column doesn’t have any database enforced relationship to the CodeValue table so you can enter any value you like into this field. I’ve solved this problem in the application layer by selecting all the values from the CodeValue table and put them into a combobox / dropdownlist (with Value field as value and Description as text) so the end user can’t enter any illegal values; and of course I’ll check the entered value in data access layer also. I said in the “The wrong way” section that there is one benefit to it. In fact, you can have the same benefit here by using a simple view, which I schema bound so you can even index it if you like. CREATE VIEW [dbo].[Person_v] WITH SCHEMABINDING AS SELECT p.[Firstname], p.[Lastname], p.[BirthDay], c.[Description] MaritalStatus FROM [dbo].[Person] p JOIN [dbo].[CodeValue] c ON p.[MaritalStatus] = c.[Value] JOIN [dbo].[CodeNamespace] n ON n.[Id] = c.[CodeNamespaceId] AND n.[Name] = 'MaritalStatus' GO -- Select from View SELECT * FROM [dbo].[Person_v] GO This is excellent write up byMarko Parkkola. Do you have this kind of design setup at your organization? Let us know your opinion. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Best Practices, Database, DBA, Readers Contribution, Software Development, SQL, SQL Authority, SQL Documentation, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "\n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • Seven Worlds will collide…. High Availability BI is not such a Distant Sun.

    - by Testas
    Over the last 5 years I have observed Microsoft persevere with the notion of Self Service BI over a series of conferences as far back as SQLBits V in Newport. The release of SQL Server 2012, improvements in Excel and the integration with SharePoint 2010 is making this a reality. Business users are now empowered to create their own BI reports through a number of different technologies such as PowerPivot, PowerView and Report Builder. This opens up a whole new way of working; improving staff productivity, promoting efficient decision making and delivering timely business reports. There is, however; a serious question to answer. What happens should any of these applications become unavailable? More to the point, how would the business react should key business users be unable to fulfil reporting requests for key management meetings when they require it?  While the introduction of self-service BI will provide instant access to the creation of management information reports, it will also cause instant support calls should the access to the data become unavailable. These are questions that are often overlooked when a business evaluates the need for self-service BI. But as I have written in other blog posts, the thirst for information is unquenchable once the business users have access to the data. When they are unable to access the information, you will be the first to know about it and will be expected to have a resolution to the downtime as soon as possible. The world of self-service BI is pushing reporting and analytical databases to the tier 1 application level for some of Coeo’s customers. A level that is traditionally associated with mission critical OLTP environments. There is recognition that by making BI readily available to the business user, provisions also need to be made to ensure that the solution is highly available so that there is minimal disruption to the business. This is where High Availability BI infrastructures provide a solution. As there is a convergence of technologies to support a self-service BI culture, there is also a convergence of technologies that need to be understood in order to provide the high availability architecture required to support the self-service BI infrastructure. While you may not be the individual that implements these components, understanding the concepts behind these components will empower you to have meaningful discussions with the right people should you put this infrastructure in place. There are 7 worlds that you will have to understand to successfully implement a highly available BI infrastructure   1.       Server/Virtualised server hardware/software 2.       DNS 3.       Network Load Balancing 4.       Active Directory 5.       Kerberos 6.       SharePoint 7.       SQL Server I have found myself over the last 6 months reaching out to knowledge that I learnt years ago when I studied for the Windows 2000 and 2003 (MCSE) Microsoft Certified System Engineer. (To the point that I am resuming my studies for the Windows Server 2008 equivalent to be up to date with newer technologies) This knowledge has proved very useful in the numerous engagements I have undertaken since being at Coeo, particularly when dealing with High Availability Infrastructures. As a result of running my session at SQLBits X and SQL Saturday in Dublin, the feedback I have received has been that many individuals desire to understand more of the concepts behind the first 6 “worlds” in the list above. Over the coming weeks, a series of blog posts will be put on this site to help understand the key concepts of each area as it pertains to a High Availability BI Infrastructure. Each post will not provide exhaustive coverage of the topic. For example DNS can be a book in its own right when you consider that there are so many different configuration options with Forward Lookup, Reverse Lookups, AD Integrated Zones and DNA forwarders to name some examples. What I want to do is share the pertinent points as it pertains to the BI infrastructure that you build so that you are equipped with the knowledge to have the right discussion when planning this infrastructure. Next, we will focus on the server infrastructure that will be required to support the High Availability BI Infrastructure, from both a physical box and virtualised perspective. Thanks   Chris

    Read the article

  • New .NET Library for Accessing the Survey Monkey API

    - by Ben Emmett
    I’ve used Survey Monkey’s API for a while, and though it’s pretty powerful, there’s a lot of boilerplate each time it’s used in a new project, and the json it returns needs a bunch of processing to be able to use the raw information. So I’ve finally got around to releasing a .NET library you can use to consume the API more easily. The main advantages are: Only ever deal with strongly-typed .NET objects, making everything much more robust and a lot faster to get going Automatically handles things like rate-limiting and paging through results Uses combinations of endpoints to get all relevant data for you, and processes raw response data to map responses to questions To start, either install it using NuGet with PM> Install-Package SurveyMonkeyApi (easier option), or grab the source from https://github.com/bcemmett/SurveyMonkeyApi if you prefer to build it yourself. You’ll also need to have signed up for a developer account with Survey Monkey, and have both your API key and an OAuth token. A simple usage would be something like: string apiKey = "KEY"; string token = "TOKEN"; var sm = new SurveyMonkeyApi(apiKey, token); List<Survey> surveys = sm.GetSurveyList(); The surveys object is now a list of surveys with all the information available from the /surveys/get_survey_list API endpoint, including the title, id, date it was created and last modified, language, number of questions / responses, and relevant urls. If there are more than 1000 surveys in your account, the library pages through the results for you, making multiple requests to get a complete list of surveys. All the filtering available in the API can be controlled using .NET objects. For example you might only want surveys created in the last year and containing “pineapple” in the title: var settings = new GetSurveyListSettings { Title = "pineapple", StartDate = DateTime.Now.AddYears(-1) }; List<Survey> surveys = sm.GetSurveyList(settings); By default, whenever optional fields can be requested with a response, they will all be fetched for you. You can change this behaviour if for some reason you explicitly don’t want the information, using var settings = new GetSurveyListSettings { OptionalData = new GetSurveyListSettingsOptionalData { DateCreated = false, AnalysisUrl = false } }; Survey Monkey’s 7 read-only endpoints are supported, and the other 4 which make modifications to data might be supported in the future. The endpoints are: Endpoint Method Object returned /surveys/get_survey_list GetSurveyList() List<Survey> /surveys/get_survey_details GetSurveyDetails() Survey /surveys/get_collector_list GetCollectorList() List<Collector> /surveys/get_respondent_list GetRespondentList() List<Respondent> /surveys/get_responses GetResponses() List<Response> /surveys/get_response_counts GetResponseCounts() Collector /user/get_user_details GetUserDetails() UserDetails /batch/create_flow Not supported Not supported /batch/send_flow Not supported Not supported /templates/get_template_list Not supported Not supported /collectors/create_collector Not supported Not supported The hierarchy of objects the library can return is Survey List<Page> List<Question> QuestionType List<Answer> List<Item> List<Collector> List<Response> Respondent List<ResponseQuestion> List<ResponseAnswer> Each of these classes has properties which map directly to the names of properties returned by the API itself (though using PascalCasing which is more natural for .NET, rather than the snake_casing used by SurveyMonkey). For most users, Survey Monkey imposes a rate limit of 2 requests per second, so by default the library leaves at least 500ms between requests. You can request higher limits from them, so if you want to change the delay between requests just use a different constructor: var sm = new SurveyMonkeyApi(apiKey, token, 200); //200ms delay = 5 reqs per sec There’s a separate cap of 1000 requests per day for each API key, which the library doesn’t currently enforce, so if you think you’ll be in danger of exceeding that you’ll need to handle it yourself for now.  To help, you can see how many requests the current instance of the SurveyMonkeyApi object has made by reading its RequestsMade property. If the library encounters any errors, including communicating with the API, it will throw a SurveyMonkeyException, so be sure to handle that sensibly any time you use it to make calls. Finally, if you have a survey (or list of surveys) obtained using GetSurveyList(), the library can automatically fill in all available information using sm.FillMissingSurveyInformation(surveys); For each survey in the list, it uses the other endpoints to fill in the missing information about the survey’s question structure, respondents, and responses. This results in at least 5 API calls being made per survey, so be careful before passing it a large list. It also joins up the raw response information to the survey’s question structure, so that for each question in a respondent’s set of replies, you can access a ProcessedAnswer object. For example, a response to a dropdown question (from the /surveys/get_responses endpoint) might be represented in json as { "answers": [ { "row": "9384627365", } ], "question_id": "615487516" } Separately, the question’s structure (from the /surveys/get_survey_details endpoint) might have several possible answers, one of which might look like { "text": "Fourth item in dropdown list", "visible": true, "position": 4, "type": "row", "answer_id": "9384627365" } The library understands how this mapping works, and uses that to give you the following ProcessedAnswer object, which first describes the family and type of question, and secondly gives you the respondent’s answers as they relate to the question. Survey Monkey has many different question types, with 11 distinct data structures, each of which are supported by the library. If you have suggestions or spot any bugs, let me know in the comments, or even better submit a pull request .

    Read the article

  • How to Increase the VMWare Boot Screen Delay

    - by Trevor Bekolay
    If you’ve wanted to try out a bootable CD or USB flash drive in a virtual machine environment, you’ve probably noticed that VMWare’s offerings make it difficult to change the boot device. We’ll show you how to change these options. You can do this either for one boot, or permanently for a particular virtual machine. Even experienced users of VMWare Player or Workstation may not recognize the screen above – it’s the virtual machine’s BIOS, which in most cases flashes by in the blink of an eye. If you want to boot up the virtual machine with a CD or USB key instead of the hard drive, then you’ll need more than an eye’s-blink to press Escape and bring up the Boot Menu. Fortunately, there is a way to introduce a boot delay that isn’t exposed in VMWare’s graphical interface – you have to edit the virtual machine’s settings file (a .vmx file) manually. Editing the Virtual Machine’s .vmx Find the .vmx file that contains the settings for your virtual machine. You chose a location for this when you created the virtual machine – in Windows, the default location is a folder called My Virtual Machines in your My Documents folder. In VMWare Workstation, the location of the .vmx file is listed on the virtual machine’s tab. If in doubt, search your hard drive for .vmx files. If you don’t want to use Windows default search, an awesome utility that locates files instantly is Everything. Open the .vmx file with any text editor. Somewhere in this file, enter in the following line… save the file, then close out of the text editor: bios.bootdelay = 20000 This will introduce a 20 second delay when the virtual machine loads up, giving you plenty of time to press the Escape button and access the boot menu. The number in this line is just a value in milliseconds, so for a five second boot delay, enter 5000, and so on. Change Boot Options Temporarily Now, when you boot up your virtual machine, you’ll have plenty of time to enter one of the keystrokes listed at the bottom of the BIOS screen on boot-up. Press Escape to bring up the Boot Menu. This allows you to select a different device to boot from – like a CD drive. Your selection will be forgotten the next time you boot up this virtual machine. Change Boot Options Permanently When the BIOS screen comes up, press F2 to enter the BIOS Setup menu. Switch to the Boot tab, and change the ordering of the items by pressing the “+” key to move items up on the list, and the “-” key to move items down the list. We’ve switched the order so that the CD-ROM Drive boots first. Once you make this change permanent, you may want to re-edit the .vmx file to remove the boot delay. Boot from a USB Flash Drive One thing that is noticeably missing from the list of boot options is a USB device. VMWare’s BIOS just does not allow this, but we can get around that limitation using the PLoP Boot Manager that we’ve previously written about. And as a bonus, since everything is virtual anyway, there’s no need to actually burn PLoP to a CD. Open the settings for the virtual machine you want to boot with a USB drive. Click on Add… at the bottom of the settings screen, and select CD/DVD Drive. Click Next. Click the Use ISO Image radio button, and click Next. Browse to find plpbt.iso or plpbtnoemul.iso from the PLoP zip file. Ensure that Connect at power on is checked, and then click Finish. Click OK on the main Virtual Machine Settings page. Now, if you use the steps above to boot using that CD/DVD drive, PLoP will load, allowing you to boot from a USB drive! Conclusion We’re big fans of VMWare Player and Workstation, as they let us try out a ton of geeky things without worrying about harming our systems. By introducing a boot delay, we can add bootable CDs and USB drives to the list of geeky things we can try out. Download PLoP Boot Manager Similar Articles Productive Geek Tips How To Switch to Console Mode for Ubuntu VMware GuestHack: Turn Off Debug Mode in VMWare Workstation 6 BetaStart Your Computer More Quickly by Delaying the Startup of a Service in VistaEnable Hidden BootScreen in Windows VistaEnable Copy and Paste from Ubuntu VMware Guest TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 OutlookStatView Scans and Displays General Usage Statistics How to Add Exceptions to the Windows Firewall Office 2010 reviewed in depth by Ed Bott FoxClocks adds World Times in your Statusbar (Firefox) Have Fun Editing Photo Editing with Citrify Outlook Connector Upgrade Error

    Read the article

  • How-to call server side Java from JavaScript

    - by frank.nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The af:serverListener tag in Oracle ADF Faces allows JavaScript to call into server side Java. The example shown below uses an af:clientListener tag to invoke client side JavaScript in response to a key stroke in an Input Text field. The script then call a defined af:serverListener by its name defined in the type attribute. The server listener can be defined anywhere on the page, though from a code readability perspective it sounds like a good idea to put it close to from where it is invoked. <af:inputText id="it1" label="...">   <af:clientListener method="handleKeyUp" type="keyUp"/>   <af:serverListener type="MyCustomServerEvent"                      method="#{mybean.handleServerEvent}"/> </af:inputText> The JavaScript function below reads the event source from the event object that gets passed into the called JavaScript function. The call to the server side Java method, which is defined on a managed bean, is issued by a JavaScript call to AdfCustomEvent. The arguments passed to the custom event are the event source, the name of the server listener, a message payload formatted as an array of key:value pairs, and true/false indicating whether or not to make the call immediate in the request lifecycle. <af:resource type="javascript">     function handleKeyUp (evt) {    var inputTextComponen = event.getSource();       AdfCustomEvent.queue(inputTextComponent,                         "MyCustomServerEvent ",                         {fvalue:component.getSubmittedValue()},                         false);    event.cancel();}   </af:resource> The server side managed bean method uses a single argument signature with the argument type being ClientEvent. The client event provides information about the event source object - as provided in the call to AdfCustomEvent, as well as the payload keys and values. The payload is accessible from a call to getParameters, which returns a HashMap to get the values by its key identifiers.  public void handleServerEvent(ClientEvent ce){    String message = (String) ce.getParameters().get("fvalue");   ...  } Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Find the tag library at: http://download.oracle.com/docs/cd/E15523_01/apirefs.1111/e12419/tagdoc/af_serverListener.html

    Read the article

  • How to create a new WCF/MVC/jQuery application from scratch

    - by pjohnson
    As a corporate developer by trade, I don't get much opportunity to create from-the-ground-up web sites; usually it's tweaks, fixes, and new functionality to existing sites. And with hobby sites, I often don't find the challenges I run into with enterprise systems; usually it's starting from Visual Studio's boilerplate project and adding whatever functionality I want to play around with, rarely deploying outside my own machine. So my experience creating a new enterprise-level site was a bit dated, and the technologies to do so have come a long way, and are much more ready to go out of the box. My intention with this post isn't so much to provide any groundbreaking insights, but to just tie together a lot of information in one place to make it easy to create a new site from scratch. Architecture One site I created earlier this year had an MVC 3 front end and a WCF 4-driven service layer. Using Visual Studio 2010, these project types are easy enough to add to a new solution. I created a third Class Library project to store common functionality the front end and services layers both needed to access, for example, the DataContract classes that the front end uses to call services in the service layer. By keeping DataContract classes in a separate project, I avoided the need for the front end to have an assembly/project reference directly to the services code, a bit cleaner and more flexible of an SOA implementation. Consuming the service Even by this point, VS has given you a lot. You have a working web site and a working service, neither of which do much but are great starting points. To wire up the front end and the services, I needed to create proxy classes and WCF client configuration information. I decided to use the SvcUtil.exe utility provided as part of the Windows SDK, which you should have installed if you installed VS. VS also provides an Add Service Reference command since the .NET 1.x ASMX days, which I've never really liked; it creates several .cs/.disco/etc. files, some of which contained hardcoded URL's, adding duplicate files (*1.cs, *2.cs, etc.) without doing a good job of cleaning up after itself. I've found SvcUtil much cleaner, as it outputs one C# file (containing several proxy classes) and a config file with settings, and it's easier to use to regenerate the proxy classes when the service changes, and to then maintain all your configuration in one place (your Web.config, instead of the Service Reference files). I provided it a reference to a copy of my common assembly so it doesn't try to recreate the data contract classes, had it use the type List<T> for collections, and modified the output files' names and .NET namespace, ending up with a command like: svcutil.exe /l:cs /o:MyService.cs /config:MyService.config /r:MySite.Common.dll /ct:System.Collections.Generic.List`1 /n:*,MySite.Web.ServiceProxies http://localhost:59999/MyService.svc I took the generated MyService.cs file and drop it in the web project, under a ServiceProxies folder, matching the namespace and keeping it separate from classes I coded manually. Integrating the config file took a little more work, but only needed to be done once as these settings didn't often change. A great thing Microsoft improved with WCF 4 is configuration; namely, you can use all the default settings and not have to specify them explicitly in your config file. Unfortunately, SvcUtil doesn't generate its config file this way. If you just copy & paste MyService.config's contents into your front end's Web.config, you'll copy a lot of settings you don't need, plus this will get unwieldy if you add more services in the future, each with its own custom binding. Really, as the only mandatory settings are the endpoint's ABC's (address, binding, and contract) you can get away with just this: <system.serviceModel>  <client>    <endpoint address="http://localhost:59999/MyService.svc" binding="wsHttpBinding" contract="MySite.Web.ServiceProxies.IMyService" />  </client></system.serviceModel> By default, the services project uses basicHttpBinding. As you can see, I switched it to wsHttpBinding, a more modern standard. Using something like netTcpBinding would probably be faster and more efficient since the client & service are both written in .NET, but it requires additional server setup and open ports, whereas switching to wsHttpBinding is much simpler. From an MVC controller action method, I instantiated the client, and invoked the method for my operation. As with any object that implements IDisposable, I wrapped it in C#'s using() statement, a tidy construct that ensures Dispose gets called no matter what, even if an exception occurs. Unfortunately there are problems with that, as WCF's ClientBase<TChannel> class doesn't implement Dispose according to Microsoft's own usage guidelines. I took an approach similar to Technology Toolbox's fix, except using partial classes instead of a wrapper class to extend the SvcUtil-generated proxy, making the fix more seamless from the controller's perspective, and theoretically, less code I have to change if and when Microsoft fixes this behavior. User interface The MVC 3 project template includes jQuery and some other common JavaScript libraries by default. I updated the ones I used to the latest versions using NuGet, available in VS via the Tools > Library Package Manager > Manage NuGet Packages for Solution... > Updates. I also used this dialog to remove packages I wasn't using. Given that it's smart enough to know the difference between the .js and .min.js files, I was hoping it would be smart enough to know which to include during build and publish operations, but this doesn't seem to be the case. I ended up using Cassette to perform the minification and bundling of my JavaScript and CSS files; ASP.NET 4.5 includes this functionality out of the box. The web client to web server link via jQuery was easy enough. In my JavaScript function, unobtrusively wired up to a button's click event, I called $.ajax, corresponding to an action method that returns a JsonResult, accomplished by passing my model class to the Controller.Json() method, which jQuery helpfully translates from JSON to a JavaScript object.$.ajax calls weren't perfectly straightforward. I tried using the simpler $.post method instead, but ran into trouble without specifying the contentType parameter, which $.post doesn't have. The url parameter is simple enough, though for flexibility in how the site is deployed, I used MVC's Url.Action method to get the URL, then sent this to JavaScript in a JavaScript string variable. If the request needed input data, I used the JSON.stringify function to convert a JavaScript object with the parameters into a JSON string, which MVC then parses into strongly-typed C# parameters. I also specified "json" for dataType, and "application/json; charset=utf-8" for contentType. For success and error, I provided my success and error handling functions, though success is a bit hairier. "Success" in this context indicates whether the HTTP request succeeds, not whether what you wanted the AJAX call to do on the web server was successful. For example, if you make an AJAX call to retrieve a piece of data, the success handler will be invoked for any 200 OK response, and the error handler will be invoked for failed requests, e.g. a 404 Not Found (if the server rejected the URL you provided in the url parameter) or 500 Internal Server Error (e.g. if your C# code threw an exception that wasn't caught). If an exception was caught and handled, or if the data requested wasn't found, this would likely go through the success handler, which would need to do further examination to verify it did in fact get back the data for which it asked. I discuss this more in the next section. Logging and exception handling At this point, I had a working application. If I ran into any errors or unexpected behavior, debugging was easy enough, but of course that's not an option on public web servers. Microsoft Enterprise Library 5.0 filled this gap nicely, with its Logging and Exception Handling functionality. First I installed Enterprise Library; NuGet as outlined above is probably the best way to do so. I needed a total of three assembly references--Microsoft.Practices.EnterpriseLibrary.ExceptionHandling, Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.Logging, and Microsoft.Practices.EnterpriseLibrary.Logging. VS links with the handy Enterprise Library 5.0 Configuration Console, accessible by right-clicking your Web.config and choosing Edit Enterprise Library V5 Configuration. In this console, under Logging Settings, I set up a Rolling Flat File Trace Listener to write to log files but not let them get too large, using a Text Formatter with a simpler template than that provided by default. Logging to a different (or additional) destination is easy enough, but a flat file suited my needs. At this point, I verified it wrote as expected by calling the Microsoft.Practices.EnterpriseLibrary.Logging.Logger.Write method from my C# code. With those settings verified, I went on to wire up Exception Handling with Logging. Back in the EntLib Configuration Console, under Exception Handling, I used a LoggingExceptionHandler, setting its Logging Category to the category I already had configured in the Logging Settings. Then, from code (e.g. a controller's OnException method, or any action method's catch block), I called the Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.ExceptionPolicy.HandleException method, providing the exception and the exception policy name I had configured in the Exception Handling Settings. Before I got this configured correctly, when I tried it out, nothing was logged. In working with .NET, I'm used to seeing an exception if something doesn't work or isn't set up correctly, but instead working with these EntLib modules reminds me more of JavaScript (before the "use strict" v5 days)--it just does nothing and leaves you to figure out why, I presume due in part to the listener pattern Microsoft followed with the Enterprise Library. First, I verified logging worked on its own. Then, verifying/correcting where each piece wires up to the next resolved my problem. Your C# code calls into the Exception Handling module, referencing the policy you pass the HandleException method; that policy's configuration contains a LoggingExceptionHandler that references a logCategory; that logCategory should be added in the loggingConfiguration's categorySources section; that category references a listener; that listener should be added in the loggingConfiguration's listeners section, which specifies the name of the log file. One final note on error handling, as the proper way to handle WCF and MVC errors is a whole other very lengthy discussion. For AJAX calls to MVC action methods, depending on your configuration, an exception thrown here will result in ASP.NET'S Yellow Screen Of Death being sent back as a response, which is at best unnecessarily and uselessly verbose, and at worst a security risk as the internals of your application are exposed to potential hackers. I mitigated this by overriding my controller's OnException method, passing the exception off to the Exception Handling module as above. I created an ErrorModel class with as few properties as possible (e.g. an Error string), sending as little information to the client as possible, to both maximize bandwidth and mitigate risk. I then return an ErrorModel in JSON format for AJAX requests: if (filterContext.HttpContext.Request.IsAjaxRequest()){    filterContext.Result = Json(new ErrorModel(...));    filterContext.ExceptionHandled = true;} My $.ajax calls from the browser get a valid 200 OK response and go into the success handler. Before assuming everything is OK, I check if it's an ErrorModel or a model containing what I requested. If it's an ErrorModel, or null, I pass it to my error handler. If the client needs to handle different errors differently, ErrorModel can contain a flag, error code, string, etc. to differentiate, but again, sending as little information back as possible is ideal. Summary As any experienced ASP.NET developer knows, this is a far cry from where ASP.NET started when I began working with it 11 years ago. WCF services are far more powerful than ASMX ones, MVC is in many ways cleaner and certainly more unit test-friendly than Web Forms (if you don't consider the code/markup commingling you're doing again), the Enterprise Library makes error handling and logging almost entirely configuration-driven, AJAX makes a responsive UI more feasible, and jQuery makes JavaScript coding much less painful. It doesn't take much work to get a functional, maintainable, flexible application, though having it actually do something useful is a whole other matter.

    Read the article

  • Building a &ldquo;real&rdquo; extension for Expression Blend

    - by Timmy Kokke
    .Last time I showed you how to get started building extensions for Expression Blend. Lets build a useful extension this time and go a bit deeper into Blend. Source of project  => here Compiled dll => here (extract into /extensions folder of Expression Blend)   The Extension When working on large Xaml files in Blend it’s often hard to find a specific control in the "Objects and Timeline Pane”. An extension that searches the active document and presents all elements that satisfy the query would be helpful. When the user starts typing a search query a search will be performed and the results are shown in the list. After the user selects an item in the results list, the control in the "Objects and Timeline Pane” will be selected. Below is a sketch of what it is going to look like. The Solution Create a new WPF User Control project as shown in the earlier tutorial in the Configuring the extension project section, but name it AdvancedSearch this time. Delete the default UserControl1.Xaml to clear the solution (a new user control will be added later thought, but adding a user control is easier then renaming one). Create the main entry point of the addin by adding a new class to the solution and naming this  AdvancedSearchPackage. Add a reference to Microsoft.Expression.Extensibility and to System.ComponentModel.Composition . Implement the IPackage interface and add the Export attribute from the MEF to the definition. While you’re at it. Add references to Microsoft.Expression.DesignSurface, Microsoft.Expression.FrameWork and Microsoft.Expression.Markup. These will be used later. The Load method from the IPackage interface is going to create a ViewModel to bind to from the UI. Add another class to the solution and name this AdvancedSearchViewModel. This class needs to implement the INotifyPropertyChanged interface to enable notifications to the view.  Add a constructor to the class that takes an IServices interface as a parameter. Create a new instance of the AdvancedSearchViewModel in the load method in the AdvanceSearchPackage class. The AdvancedSearchPackage class should looks like this now:   using System.ComponentModel.Composition; using Microsoft.Expression.Extensibility;   namespace AdvancedSearch { [Export(typeof(IPackage))] public class AdvancedSearchPackage:IPackage {   public void Load(IServices services) { new AdvancedSearchViewModel(services); }   public void Unload() { } } }   Add a new UserControl to the project and name this AdvancedSearchView. The View will be created by the ViewModel, which will pass itself to the constructor of the view. Change the constructor of the View to take a AdvancedSearchViewModel object as a parameter. Add a private field to store the ViewModel and set this field in the constructor. Point the DataContext of the view to the ViewModel. The View will look something like this now:   namespace AdvancedSearch { public partial class AdvancedSearchView:UserControl { private readonly AdvancedSearchViewModel _advancedSearchViewModel;   public AdvancedSearchView(AdvancedSearchViewModel advancedSearchViewModel) { _advancedSearchViewModel = advancedSearchViewModel; InitializeComponent(); this.DataContext = _advancedSearchViewModel; } } }   The View is going to be created in the constructor of the ViewModel and stored in a read only property.   public FrameworkElement View { get; private set; }   public AdvancedSearchViewModel(IServices services) { _services = services; View = new AdvancedSearchView(this); } The last thing the solution needs before we’ll wire things up is a new class, PossibleNode. This class will be used later to store the search results. The solution should look like this now:   Adding UI to the UI The extension should build and run now, although nothing is showing up in Blend yet. To enable the user to perform a search query add a TextBox and a ListBox to the AdvancedSearchView.xaml file. I’ve set the rows of the grid too to make them look a little better. Add the TextChanged event to the TextBox and the SelectionChanged event to the ListBox, we’ll need those later on. <Grid> <Grid.RowDefinitions> <RowDefinition Height="32" /> <RowDefinition Height="*" /> </Grid.RowDefinitions> <TextBox TextChanged="SearchQueryTextChanged" HorizontalAlignment="Stretch" Margin="4" Name="SearchQuery" VerticalAlignment="Stretch" /> <ListBox SelectionChanged="SearchResultSelectionChanged" HorizontalAlignment="Stretch" Margin="4" Name="SearchResult" VerticalAlignment="Stretch" Grid.Row="1" /> </Grid>   This will create a user interface like: To make the View show up in Blend it has to be registered with the WindowService. The GetService<T> method is used to get services from Blend, which are your entry points into Blend.When writing extensions you will encounter this method very often. In this case we’re asking for an IWindowService interface. The IWindowService interface serves events for changing windows and themes, is used for adding or removing resources and is used for registering and unregistering Palettes. All panes in Blend are palettes and are registered thru the RegisterPalette method. The first parameter passed to this method is a string containing a unique ID for the palette. This ID can be used to get access to the palette later. The second parameter is the View. The third parameter is a title for the pane. This title is shown when the pane is visible. It is also shown in the window menu of Blend. The last parameter is a KeyBinding. I have chosen Ctrl+Shift+F to call the Advanced Search pane. This value is also shown in the window menu of Blend.   services.GetService<IWindowService>().RegisterPalette( "AdvancedSearch", viewModel.View, "Advanced Search", new KeyBinding { Key = Key.F, Modifiers = ModifierKeys.Control | ModifierKeys.Shift } );   You can compiler and run now. After Blend starts you can hit Ctrl+Shift+F or go the windows menu to call the advanced search extension. Searching for controls The search has to be cleared on every change of the active document. The DocumentServices fires an event every time a new document is opened, a document is closed or another document view is selected. Add the following line to the constructor of the ViewModel to handle the ActiveDocumentChanged event:   _services.GetService<IDocumentService>().ActiveDocumentChanged += ActiveDocumentChanged;   And implement the ActiveDocumentChanged method:   private void ActiveDocumentChanged(object sender, DocumentChangedEventArgs e) { }   To get to the contents of the document we first need to get access to the “Objects and Timeline” pane. This pane is registered in the PaletteRegistry in the same way as this extension has registered itself. The palettes are accessible thru an associative array. All you need to provide is the Identifier of the palette you want. The Id of the “Objects and Timeline” pane is “Designer_TimelinePane”. I’ve included a list of the other default panes at the bottom of this article. Each palette has a Content property which can be cast to the type of the pane.   var timelinePane = (TimelinePane)_services.GetService<IWindowService>() .PaletteRegistry["Designer_TimelinePane"] .Content;   Add a private field to the top of the AdvancedSearchViewModel class to store the active SceneViewModel. The SceneViewModel is needed to set the current selection and to get the little icons for the type of control.   private SceneViewModel _activeSceneViewModel;   When the active SceneViewModel changes, the ActiveSceneViewModel is stored in this field. The list of possible nodes is cleared and an PropertyChanged event is fired for this list to notify the UI to clear the list. This will make the eventhandler look like this: private void ActiveDocumentChanged(object sender, DocumentChangedEventArgs e) { var timelinePane = (TimelinePane)_services.GetService<IWindowService>() .PaletteRegistry["Designer_TimelinePane"].Content;   _activeSceneViewModel = timelinePane.ActiveSceneViewModel; PossibleNodes = new List<PossibleNode>(); InvokePropertyChanged("PossibleNodes"); } The PossibleNode class used to store information about the controls found by the search. It’s a dumb data class with only 3 properties, the name of the control, the SceneNode and a brush used for the little icon. The SceneNode is the base class for every possible object you can create in Blend, like Brushes, Controls, Annotations, ResourceDictionaries and VisualStates. The entire PossibleNode class looks like this:   using System.Windows.Media; using Microsoft.Expression.DesignSurface.ViewModel;   namespace AdvancedSearch { public class PossibleNode { public string Name { get; set; } public SceneNode SceneNode { get; set; } public DrawingBrush IconBrush { get; set; } } }   Add these two methods to the AdvancedSearchViewModel class:   public void Search(string searchText) { } public void SelectElement(PossibleNode node){ }   Both these methods are going to be called from the view. The Search method performs the search and updates the PossibleNodes list.  The controls in the active document can be accessed thru TimeLineItemsManager class. This class contains a read only collection of TimeLineItems. By using a Linq query the possible nodes are selected and placed in the PossibleNodes list.   var timelineItemManager = new TimelineItemManager(_activeSceneViewModel); PossibleNodes = new List<PossibleNode>( (from d in timelineItemManager.ItemList where d.DisplayName.ToLowerInvariant().StartsWith( searchText.ToLowerInvariant()) select new PossibleNode() { IconBrush = d.IconBrush, SceneNode = d.SceneNode, Name = d.DisplayName }).ToList() ); InvokePropertyChanged(InternalConst.PossibleNodes);   The Select method is pretty straight forward. It contains two lines.The first to clear the selection. Otherwise the selected element would be added to the current selection. The second line selects the nodes. It is given a new array with the node to be selected.   _activeSceneViewModel.ClearSelections(); _activeSceneViewModel.SelectNodes(new[] { node.SceneNode });   The last thing that needs to be done is to wire the whole thing to the View. The two event handlers just call the Search and SelectElement methods on the ViewModel.   private void SearchQueryTextChanged(object sender, TextChangedEventArgs e) { _advancedSearchViewModel.Search(SearchQuery.Text); }   private void SearchResultSelectionChanged(object sender, SelectionChangedEventArgs e) { if(e.AddedItems.Count>0) { _advancedSearchViewModel.SelectElement(e.AddedItems[0] as PossibleNode); } }   The Listbox has to be bound to the PossibleNodes list and a simple DataTemplate is added to show the selection. The IconWithOverlay control can be found in the Microsoft.Expression.DesignSurface.UserInterface.Timeline.UI namespace in the Microsoft.Expression.DesignSurface assembly. The ListBox should look something like:   <ListBox SelectionChanged="SearchResultSelectionChanged" HorizontalAlignment="Stretch" Margin="4" Name="SearchResult" VerticalAlignment="Stretch" Grid.Row="1" ItemsSource="{Binding PossibleNodes}"> <ListBox.ItemTemplate> <DataTemplate> <StackPanel Orientation="Horizontal"> <tlui:IconWithOverlay Margin="2,0,10,0" Width="12" Height="12" SourceBrush="{Binding Path=IconBrush, Mode=OneWay}" /> <TextBlock Text="{Binding Name}"/> </StackPanel> </DataTemplate> </ListBox.ItemTemplate> </ListBox>   Compile and run. Inside Blend the extension could look something like below. What’s Next When you’ve got the extension running. Try placing breakpoints in the code and see what else is in there. There’s a lot to explore and build extension on. I personally would love an extension to search for resources. Last but not least, you can download the source of project here.  If you have any questions let me know. If you just want to use this extension, you can download the compiled dll here. Just extract the . zip into the /extensions folder of Expression Blend. Notes Target framework I ran into some issues when using the .NET Framework 4 Client Profile as a target framework. I got some strange error saying certain obvious namespaces could not be found, Microsoft.Expression in my case. If you run into something like this, try setting the target framework to .NET Framework 4 instead of the client version.   Identifiers of default panes Identifier Type Title Designer_TimelinePane TimelinePane Objects and Timeline Designer_ToolPane ToolPane Tools Designer_ProjectPane ProjectPane Projects Designer_DataPane DataPane Data Designer_ResourcePane ResourcePane Resources Designer_PropertyInspector PropertyInspector Properties Designer_TriggersPane TriggersPane Triggers Interaction_Skin SkinView States Designer_AssetPane AssetPane Assets Interaction_Parts PartsPane Parts Designer_ResultsPane ResultsPane Results

    Read the article

  • Joins in single-table queries

    - by Rob Farley
    Tables are only metadata. They don’t store data. I’ve written something about this before, but I want to take a viewpoint of this idea around the topic of joins, especially since it’s the topic for T-SQL Tuesday this month. Hosted this time by Sebastian Meine (@sqlity), who has a whole series on joins this month. Good for him – it’s a great topic. In that last post I discussed the fact that we write queries against tables, but that the engine turns it into a plan against indexes. My point wasn’t simply that a table is actually just a Clustered Index (or heap, which I consider just a special type of index), but that data access always happens against indexes – never tables – and we should be thinking about the indexes (specifically the non-clustered ones) when we write our queries. I described the scenario of looking up phone numbers, and how it never really occurs to us that there is a master list of phone numbers, because we think in terms of the useful non-clustered indexes that the phone companies provide us, but anyway – that’s not the point of this post. So a table is metadata. It stores information about the names of columns and their data types. Nullability, default values, constraints, triggers – these are all things that define the table, but the data isn’t stored in the table. The data that a table describes is stored in a heap or clustered index, but it goes further than this. All the useful data is going to live in non-clustered indexes. Remember this. It’s important. Stop thinking about tables, and start thinking about indexes. So let’s think about tables as indexes. This applies even in a world created by someone else, who doesn’t have the best indexes in mind for you. I’m sure you don’t need me to explain Covering Index bit – the fact that if you don’t have sufficient columns “included” in your index, your query plan will either have to do a Lookup, or else it’ll give up using your index and use one that does have everything it needs (even if that means scanning it). If you haven’t seen that before, drop me a line and I’ll run through it with you. Or go and read a post I did a long while ago about the maths involved in that decision. So – what I’m going to tell you is that a Lookup is a join. When I run SELECT CustomerID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 285; against the AdventureWorks2012 get the following plan: I’m sure you can see the join. Don’t look in the query, it’s not there. But you should be able to see the join in the plan. It’s an Inner Join, implemented by a Nested Loop. It’s pulling data in from the Index Seek, and joining that to the results of a Key Lookup. It clearly is – the QO wouldn’t call it that if it wasn’t really one. It behaves exactly like any other Nested Loop (Inner Join) operator, pulling rows from one side and putting a request in from the other. You wouldn’t have a problem accepting it as a join if the query were slightly different, such as SELECT sod.OrderQty FROM Sales.SalesOrderHeader AS soh JOIN Sales.SalesOrderDetail as sod on sod.SalesOrderID = soh.SalesOrderID WHERE soh.SalesPersonID = 285; Amazingly similar, of course. This one is an explicit join, the first example was just as much a join, even thought you didn’t actually ask for one. You need to consider this when you’re thinking about your queries. But it gets more interesting. Consider this query: SELECT SalesOrderID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 276 AND CustomerID = 29522; It doesn’t look like there’s a join here either, but look at the plan. That’s not some Lookup in action – that’s a proper Merge Join. The Query Optimizer has worked out that it can get the data it needs by looking in two separate indexes and then doing a Merge Join on the data that it gets. Both indexes used are ordered by the column that’s indexed (one on SalesPersonID, one on CustomerID), and then by the CIX key SalesOrderID. Just like when you seek in the phone book to Farley, the Farleys you have are ordered by FirstName, these seek operations return the data ordered by the next field. This order is SalesOrderID, even though you didn’t explicitly put that column in the index definition. The result is two datasets that are ordered by SalesOrderID, making them very mergeable. Another example is the simple query SELECT CustomerID FROM Sales.SalesOrderHeader WHERE SalesPersonID = 276; This one prefers a Hash Match to a standard lookup even! This isn’t just ordinary index intersection, this is something else again! Just like before, we could imagine it better with two whole tables, but we shouldn’t try to distinguish between joining two tables and joining two indexes. The Query Optimizer can see (using basic maths) that it’s worth doing these particular operations using these two less-than-ideal indexes (because of course, the best indexese would be on both columns – a composite such as (SalesPersonID, CustomerID – and it would have the SalesOrderID column as part of it as the CIX key still). You need to think like this too. Not in terms of excusing single-column indexes like the ones in AdventureWorks2012, but in terms of having a picture about how you’d like your queries to run. If you start to think about what data you need, where it’s coming from, and how it’s going to be used, then you will almost certainly write better queries. …and yes, this would include when you’re dealing with regular joins across multiples, not just against joins within single table queries.

    Read the article

  • Design review for application facing memory issues

    - by Mr Moose
    I apologise in advance for the length of this post, but I want to paint an accurate picture of the problems my app is facing and then pose some questions below; I am trying to address some self inflicted design pain that is now leading to my application crashing due to out of memory errors. An abridged description of the problem domain is as follows; The application takes in a “dataset” that consists of numerous text files containing related data An individual text file within the dataset usually contains approx 20 “headers” that contain metadata about the data it contains. It also contains a large tab delimited section containing data that is related to data in one of the other text files contained within the dataset. The number of columns per file is very variable from 2 to 256+ columns. The original application was written to allow users to load a dataset, map certain columns of each of the files which basically indicating key information on the files to show how they are related as well as identify a few expected column names. Once this is done, a validation process takes place to enforce various rules and ensure that all the relationships between the files are valid. Once that is done, the data is imported into a SQL Server database. The database design is an EAV (Entity-Attribute-Value) model used to cater for the variable columns per file. I know EAV has its detractors, but in this case, I feel it was a reasonable choice given the disparate data and variable number of columns submitted in each dataset. The memory problem Given the fact the combined size of all text files was at most about 5 megs, and in an effort to reduce the database transaction time, it was decided to read ALL the data from files into memory and then perform the following; perform all the validation whilst the data was in memory relate it using an object model Start DB transaction and write the key columns row by row, noting the Id of the written row (all tables in the database utilise identity columns), then the Id of the newly written row is applied to all related data Once all related data had been updated with the key information to which it relates, these records are written using SqlBulkCopy. Due to our EAV model, we essentially have; x columns by y rows to write, where x can by 256+ and rows are often into the tens of thousands. Once all the data is written without error (can take several minutes for large datasets), Commit the transaction. The problem now comes from the fact we are now receiving individual files containing over 30 megs of data. In a dataset, we can receive any number of files. We’ve started seen datasets of around 100 megs coming in and I expect it is only going to get bigger from here on in. With files of this size, data can’t even be read into memory without the app falling over, let alone be validated and imported. I anticipate having to modify large chunks of the code to allow validation to occur by parsing files line by line and am not exactly decided on how to handle the import and transactions. Potential improvements I’ve wondered about using GUIDs to relate the data rather than relying on identity fields. This would allow data to be related prior to writing to the database. This would certainly increase the storage required though. Especially in an EAV design. Would you think this is a reasonable thing to try, or do I simply persist with identity fields (natural keys can’t be trusted to be unique across all submitters). Use of staging tables to get data into the database and only performing the transaction to copy data from staging area to actual destination tables. Questions For systems like this that import large quantities of data, how to you go about keeping transactions small. I’ve kept them as small as possible in the current design, but they are still active for several minutes and write hundreds of thousands of records in one transaction. Is there a better solution? The tab delimited data section is read into a DataTable to be viewed in a grid. I don’t need the full functionality of a DataTable, so I suspect it is overkill. Is there anyway to turn off various features of DataTables to make them more lightweight? Are there any other obvious things you would do in this situation to minimise the memory footprint of the application described above? Thanks for your kind attention.

    Read the article

  • The Virtues and Challenges of Implementing Basel III: What Every CFO and CRO Needs To Know

    - by Jenna Danko
    The Basel Committee on Banking Supervision (BCBS) is a group tasked with providing thought-leadership to the global banking industry.  Over the years, the BCBS has released volumes of guidance in an effort to promote stability within the financial sector.  By effectively communicating best-practices, the Basel Committee has influenced financial regulations worldwide.  Basel regulations are intended to help banks: More easily absorb shocks due to various forms of financial-economic stress Improve risk management and governance Enhance regulatory reporting and transparency In June 2011, the BCBS released Basel III: A global regulatory framework for more resilient banks and banking systems.  This new set of regulations included many enhancements to previous rules and will have both short and long term impacts on the banking industry.  Some of the key features of Basel III include: A stronger capital base More stringent capital standards and higher capital requirements Introduction of capital buffers  Additional risk coverage Enhanced quantification of counterparty credit risk Credit valuation adjustments  Wrong  way risk  Asset Value Correlation Multiplier for large financial institutions Liquidity management and monitoring Introduction of leverage ratio Even more rigorous data requirements To implement these features banks need to embark on a journey replete with challenges. These can be categorized into three key areas: Data, Models and Compliance. Data Challenges Data quality - All standard dimensions of Data Quality (DQ) have to be demonstrated.  Manual approaches are now considered too cumbersome and automation has become the norm. Data lineage - Data lineage has to be documented and demonstrated.  The PPT / Excel approach to documentation is being replaced by metadata tools.  Data lineage has become dynamic due to a variety of factors, making static documentation out-dated quickly.  Data dictionaries - A strong and clean business glossary is needed with proper identification of business owners for the data.  Data integrity - A strong, scalable architecture with work flow tools helps demonstrate data integrity.  Manual touch points have to be minimized.   Data relevance/coverage - Data must be relevant to all portfolios and storage devices must allow for sufficient data retention.  Coverage of both on and off balance sheet exposures is critical.   Model Challenges Model development - Requires highly trained resources with both quantitative and subject matter expertise. Model validation - All Basel models need to be validated. This requires additional resources with skills that may not be readily available in the marketplace.  Model documentation - All models need to be adequately documented.  Creation of document templates and model development processes/procedures is key. Risk and finance integration - This integration is necessary for Basel as the Allowance for Loan and Lease Losses (ALLL) is calculated by Finance, yet Expected Loss (EL) is calculated by Risk Management – and they need to somehow be equal.  This is tricky at best from an implementation perspective.  Compliance Challenges Rules interpretation - Some Basel III requirements leave room for interpretation.  A misinterpretation of regulations can lead to delays in Basel compliance and undesired reprimands from supervisory authorities. Gap identification and remediation - Internal identification and remediation of gaps ensures smoother Basel compliance and audit processes.  However business lines are challenged by the competing priorities which arise from regulatory compliance and business as usual work.  Qualification readiness - Providing internal and external auditors with robust evidence of a thorough examination of the readiness to proceed to parallel run and Basel qualification  In light of new regulations like Basel III and local variations such as the Dodd Frank Act (DFA) and Comprehensive Capital Analysis and Review (CCAR) in the US, banks are now forced to ask themselves many difficult questions.  For example, executives must consider: How will Basel III play into their Risk Appetite? How will they create project plans for Basel III when they haven’t yet finished implementing Basel II? How will new regulations impact capital structure including profitability and capital distributions to shareholders? After all, new regulations often lead to diminished profitability as well as an assortment of implementation problems as we discussed earlier in this note.  However, by requiring banks to focus on premium growth, regulators increase the potential for long-term profitability and sustainability.  And a more stable banking system: Increases consumer confidence which in turn supports banking activity  Ensures that adequate funding is available for individuals and companies Puts regulators at ease, allowing bankers to focus on banking Stability is intended to bring long-term profitability to banks.  Therefore, it is important that every banking institution takes the steps necessary to properly manage, monitor and disclose its risks.  This can be done with the assistance and oversight of an independent regulatory authority.  A spectrum of banks exist today wherein some continue to debate and negotiate with regulators over the implementation of new requirements, while others are simply choosing to embrace them for the benefits I highlighted above. Do share with me how your institution is coping with and embracing these new regulations within your bank. Dr. Varun Agarwal is a Principal in the Banking Practice for Capgemini Financial Services.  He has over 19 years experience in areas that span from enterprise risk management, credit, market, and to country risk management; financial modeling and valuation; and international financial markets research and analyses.

    Read the article

  • Getting App.config to be configuration specific in VS2010

    - by MarkPearl
    I recently wanted to have a console application that had configuration specific settings. For instance, if I had two configurations “Debug” and “Release”, depending on the currently selected configuration I wanted it to use a specific configuration file (either debug or config). If you are wanting to do something similar, here is a potential solution that worked for me. Setting up a demo app to illustrate the point First, let’s set up an application that will demonstrate the most basic concept. using System; using System.Configuration; namespace ConsoleSpecificConfiguration { class Program { static void Main(string[] args) { Console.WriteLine("Config"); Console.WriteLine(ConfigurationManager.AppSettings["Example Config"]); Console.ReadLine(); } } }   This does a really simple thing. Display a config when run. To do this, you also need a config file set up. My default looks as follows… <?xml version="1.0" encoding="utf-8" ?> <configuration> <appSettings> <add key="Example Config" value="Default"/> </appSettings> </configuration>   Your entire solution will look as follows… Running the project you will get the following amazing output…   Let’s now say instead of having one config file we want depending on whether we are running in “Debug” or “Release” for the solution configuration we want different config settings to be propagated across you can do the following… Step 1 – Create alternate config Files First add additional config files to your solution. You should have some form of naming convention for these config files, I have decided to follow a similar convention to the one used for web.config, so in my instance I am going to add a App.Debug.config and a App.Release.config file BUT you can follow any naming convention you want provided you wire up the rest of the approach to use this convention. My files look as follows.. App.Debug.config <?xml version="1.0" encoding="utf-8" ?> <configuration> <appSettings> <add key="Example Config" value="Debug"/> </appSettings> </configuration>   App.Release.config <?xml version="1.0" encoding="utf-8" ?> <configuration> <appSettings> <add key="Example Config" value="Release"/> </appSettings> </configuration>   Your solution will now look as follows… Step 2 – Create a bat file that will overwrite files The next step is to create a bat file that will overwrite one file with another. If you right click on the solution in the solution explorer there will be a menu option to add new items to the solution. Create a text file called “copyifnewer.bat” which will be our copy script. It’s contents should look as follows… @echo off echo Comparing two files: %1 with %2 if not exist %1 goto File1NotFound if not exist %2 goto File2NotFound fc %1 %2 /A if %ERRORLEVEL%==0 GOTO NoCopy echo Files are not the same. Copying %1 over %2 copy %1 %2 /y & goto END :NoCopy echo Files are the same. Did nothing goto END :File1NotFound echo %1 not found. goto END :File2NotFound copy %1 %2 /y goto END :END echo Done. Your solution should now look as follows…   Step 3 – Customize the Post Build event command line We now need to wire up everything – which we will do using the post build event command line in VS2010. Right click on your project and go to it’s properties We are now going to wire up the script so that when we build our project it will overwrite the default App.config with whatever file we want. The syntax goes as follows… call "$(SolutionDir)copyifnewer.bat" "$(ProjectDir)App.$(ConfigurationName).config" "$(ProjectDir)$(OutDir)\$(TargetFileName).config" Testing it If I now change my project configuration to Release   And then run my application I get the following output… Toggling between Release and Debug mode will show that the config file is changing each time. And that is it!

    Read the article

< Previous Page | 361 362 363 364 365 366 367 368 369 370 371 372  | Next Page >