Search Results

Search found 1822 results on 73 pages for 'bandwidth caps'.

Page 37/73 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • Preferred Options for Webservice to Android

    - by Tim Almond
    I need to get an Android app to interface with an XML webservice (it's really just a request which returns XML), but as the data is large and includes some things I don't need (like a huge description block), I was thinking of transforming it via a server into a format that would be good for Android, and also to be reduced considering it will be used in a low bandwidth area. Does anyone have any suggestions for a good lightweight protocol? I'm especially thinking about libraries for Android that already exist for say REST or even delimited data.

    Read the article

  • Seamlessly use large background images on webpages

    - by Ben Shelock
    I want to have huge background images on my site but without giving the user a hard time downloading them and the site looking ugly as the background loads. They would be no bigger than 1920 X 1080 in size, however it's hard to say in terms of kilobytes/megabytes. What are my options here and which are most effective? I'm not too bothered about bandwidth, just want to user to think everything looks nice ;)

    Read the article

  • Is there a method to include CSS background images in print?

    - by jitendra
    Is there a method to include CSS background images in print? If i use image replace techniques for (which is considered as a best practice) Logo then logo doesn't come in print. and many places in site CSS background is saving bandwidth and my time both. but client is asking to include many things in print also. What should i do?

    Read the article

  • Read files via php

    - by Koka
    You all know about restrictions that exist in shared environment, so with that in mind, please suggest me a php function or something with the help of which I could stream my videos and other files. I have a lot of videos on the server, unlimited bandwidth and disk space, but I am limited in ram and cpu.

    Read the article

  • How does JSON compare to XML in terms of file size and serialisation/deserialisation time?

    - by nbolton
    I have an application that performs a little slow over the internet due to bandwidth reasons. I have enabled GZip which has improved download time by a significant amout, but I was also considering whether or not I could switch from XML to JSON in order to squeeze out that last bit of performance. Would using JSON make the message size significantly smaller, or just somewhat smaller? Let's say we're talking about 250kB of XML data (which compresses to 30kB).

    Read the article

  • Prevent abuse of public HTTP directory meant for images

    - by sutre
    The situation: Each user has their own public HTTP directory, meant for images only. This could easily be abused by users using it to serve large files, wasting bandwidth. The question: Is there any fairly simple way to prevent this abuse? Either by allowing the webserver to only images to be served, restricting size, or some other method.

    Read the article

  • persistant message queues

    - by Will
    I have several services on different machines and a message-passing system suits my problem. Reliability - sent messages always delivered, even if one end goes down - is the key concern, although it should also be fast and reasonably bandwidth-efficient. So which message queue should I use?

    Read the article

  • How to make the swf load after all the images and text loaded?

    - by Jay
    My CMS system allow people to post some swf on the homepage, however, sometime there is video which is included in swf, not two files swf+flv. When the swf video load, it near used up the bandwidth and so the page seems not response for a while ... Can I use jQuery to control all the swf in a page that they load after the others done or maybe just load it after 3s or what? Thanks!!

    Read the article

  • Can't configure frame relay T1 on Cisco 1760

    - by sonar
    For the past few days I've been trying to configure a data T1 via a Frame Relay. Now I've been pretty unsuccessful at it, and it's been a while, since I've done this so please bare with me. The ISP provided me the following information: 1. IP address 2. Gateway address 3. Encapsulation Frame Relay 4. DLCI 100 5. BZ8 ESF (I think the bz8 was supposed to be b8zs) 6. Time Slot (1 al 24). And what I have configured up until now is the following: interface Serial0/0 ip address <ip address> 255.255.255.252 encapsulation frame-relay service-module t1 timeslots 1-24 frame-relay interface-dlci 100 sh service-module s0/0 (outputs): Module type is T1/fractional Hardware revision is 0.128, Software revision is 0.2, Image checksum is 0x73D70058, Protocol revision is 0.1 Receiver has no alarms. Framing is **ESF**, Line Code is **B8ZS**, Current clock source is line, Fraction has **24 timeslots** (64 Kbits/sec each), Net bandwidth is 1536 Kbits/sec. Last module self-test (done at startup): Passed Last clearing of alarm counters 00:17:17 loss of signal : 0, loss of frame : 0, AIS alarm : 0, Remote alarm : 2, last occurred 00:10:10 Module access errors : 0, Total Data (last 1 15 minute intervals): 0 Line Code Violations, 0 Path Code Violations 0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins 0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs Data in current interval (138 seconds elapsed): 0 Line Code Violations, 0 Path Code Violations 0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins 0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs sh int: FastEthernet0/0 is up, line protocol is up Hardware is PQUICC_FEC, address is 000d.6516.e5aa (bia 000d.6516.e5aa) Internet address is 10.0.0.1/24 MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation ARPA, loopback not set Keepalive set (10 sec) Full-duplex, 100Mb/s, 100BaseTX/FX ARP type: ARPA, ARP Timeout 04:00:00 Last input 00:20:00, output 00:00:00, output hang never Last clearing of "show interface" counters never Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: fifo Output queue: 0/40 (size/max) 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 0 packets input, 0 bytes Received 0 broadcasts, 0 runts, 0 giants, 0 throttles 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored 0 watchdog 0 input packets with dribble condition detected 191 packets output, 20676 bytes, 0 underruns 0 output errors, 0 collisions, 1 interface resets 0 babbles, 0 late collision, 0 deferred 0 lost carrier, 0 no carrier 0 output buffer failures, 0 output buffers swapped out Serial0/0 is up, line protocol is down Hardware is PQUICC with Fractional T1 CSU/DSU MTU 1500 bytes, BW 1536 Kbit, DLY 20000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation FRAME-RELAY, loopback not set Keepalive set (10 sec) LMI enq sent 157, LMI stat recvd 0, LMI upd recvd 0, DTE LMI down LMI enq recvd 23, LMI stat sent 0, LMI upd sent 0 LMI DLCI 1023 LMI type is CISCO frame relay DTE FR SVC disabled, LAPF state down Broadcast queue 0/64, broadcasts sent/dropped 2/0, interface broadcasts 0 Last input 00:24:51, output 00:00:05, output hang never Last clearing of "show interface" counters 00:27:20 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0 Queueing strategy: weighted fair Output queue: 0/1000/64/0 (size/max total/threshold/drops) Conversations 0/1/256 (active/max active/max total) Reserved Conversations 0/0 (allocated/max allocated) Available Bandwidth 1152 kilobits/sec 5 minute input rate 0 bits/sec, 0 packets/sec 5 minute output rate 0 bits/sec, 0 packets/sec 23 packets input, 302 bytes, 0 no buffer Received 0 broadcasts, 0 runts, 0 giants, 0 throttles 1725 input errors, 595 CRC, 1099 frame, 0 overrun, 0 ignored, 30 abort 246 packets output, 3974 bytes, 0 underruns 0 output errors, 0 collisions, 48 interface resets 0 output buffer failures, 0 output buffers swapped out 4 carrier transitions DCD=up DSR=up DTR=up RTS=up CTS=up Serial0/0.1 is down, line protocol is down Hardware is PQUICC with Fractional T1 CSU/DSU MTU 1500 bytes, BW 1536 Kbit, DLY 20000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation FRAME-RELAY Last clearing of "show interface" counters never Serial0/0.100 is down, line protocol is down Hardware is PQUICC with Fractional T1 CSU/DSU Internet address is <ip address>/30 MTU 1500 bytes, BW 1536 Kbit, DLY 20000 usec, reliability 255/255, txload 1/255, rxload 1/255 Encapsulation FRAME-RELAY Last clearing of "show interface" counters never And everything seems to be accounted for to me, but apparently I'm missing something. My issue is that I'm stuck on interface up, line protocol down, so the T1 doesn't go up. Any ideas? Thank you,

    Read the article

  • HTG Reviews the CODE Keyboard: Old School Construction Meets Modern Amenities

    - by Jason Fitzpatrick
    There’s nothing quite as satisfying as the smooth and crisp action of a well built keyboard. If you’re tired of  mushy keys and cheap feeling keyboards, a well-constructed mechanical keyboard is a welcome respite from the $10 keyboard that came with your computer. Read on as we put the CODE mechanical keyboard through the paces. What is the CODE Keyboard? The CODE keyboard is a collaboration between manufacturer WASD Keyboards and Jeff Atwood of Coding Horror (the guy behind the Stack Exchange network and Discourse forum software). Atwood’s focus was incorporating the best of traditional mechanical keyboards and the best of modern keyboard usability improvements. In his own words: The world is awash in terrible, crappy, no name how-cheap-can-we-make-it keyboards. There are a few dozen better mechanical keyboard options out there. I’ve owned and used at least six different expensive mechanical keyboards, but I wasn’t satisfied with any of them, either: they didn’t have backlighting, were ugly, had terrible design, or were missing basic functions like media keys. That’s why I originally contacted Weyman Kwong of WASD Keyboards way back in early 2012. I told him that the state of keyboards was unacceptable to me as a geek, and I proposed a partnership wherein I was willing to work with him to do whatever it takes to produce a truly great mechanical keyboard. Even the ardent skeptic who questions whether Atwood has indeed created a truly great mechanical keyboard certainly can’t argue with the position he starts from: there are so many agonizingly crappy keyboards out there. Even worse, in our opinion, is that unless you’re a typist of a certain vintage there’s a good chance you’ve never actually typed on a really nice keyboard. Those that didn’t start using computers until the mid-to-late 1990s most likely have always typed on modern mushy-key keyboards and never known the joy of typing on a really responsive and crisp mechanical keyboard. Is our preference for and love of mechanical keyboards shining through here? Good. We’re not even going to try and hide it. So where does the CODE keyboard stack up in pantheon of keyboards? Read on as we walk you through the simple setup and our experience using the CODE. Setting Up the CODE Keyboard Although the setup of the CODE keyboard is essentially plug and play, there are two distinct setup steps that you likely haven’t had to perform on a previous keyboard. Both highlight the degree of care put into the keyboard and the amount of customization available. Inside the box you’ll find the keyboard, a micro USB cable, a USB-to-PS2 adapter, and a tool which you may be unfamiliar with: a key puller. We’ll return to the key puller in a moment. Unlike the majority of keyboards on the market, the cord isn’t permanently affixed to the keyboard. What does this mean for you? Aside from the obvious need to plug it in yourself, it makes it dead simple to repair your own keyboard cord if it gets attacked by a pet, mangled in a mechanism on your desk, or otherwise damaged. It also makes it easy to take advantage of the cable routing channels in on the underside of the keyboard to  route your cable exactly where you want it. While we’re staring at the underside of the keyboard, check out those beefy rubber feet. By peripherals standards they’re huge (and there is six instead of the usual four). Once you plunk the keyboard down where you want it, it might as well be glued down the rubber feet work so well. After you’ve secured the cable and adjusted it to your liking, there is one more task  before plug the keyboard into the computer. On the bottom left-hand side of the keyboard, you’ll find a small recess in the plastic with some dip switches inside: The dip switches are there to switch hardware functions for various operating systems, keyboard layouts, and to enable/disable function keys. By toggling the dip switches you can change the keyboard from QWERTY mode to Dvorak mode and Colemak mode, the two most popular alternative keyboard configurations. You can also use the switches to enable Mac-functionality (for Command/Option keys). One of our favorite little toggles is the SW3 dip switch: you can disable the Caps Lock key; goodbye accidentally pressing Caps when you mean to press Shift. You can review the entire dip switch configuration chart here. The quick-start for Windows users is simple: double check that all the switches are in the off position (as seen in the photo above) and then simply toggle SW6 on to enable the media and backlighting function keys (this turns the menu key on the keyboard into a function key as typically found on laptop keyboards). After adjusting the dip switches to your liking, plug the keyboard into an open USB port on your computer (or into your PS/2 port using the included adapter). Design, Layout, and Backlighting The CODE keyboard comes in two flavors, a traditional 87-key layout (no number pad) and a traditional 104-key layout (number pad on the right hand side). We identify the layout as traditional because, despite some modern trapping and sneaky shortcuts, the actual form factor of the keyboard from the shape of the keys to the spacing and position is as classic as it comes. You won’t have to learn a new keyboard layout and spend weeks conditioning yourself to a smaller than normal backspace key or a PgUp/PgDn pair in an unconventional location. Just because the keyboard is very conventional in layout, however, doesn’t mean you’ll be missing modern amenities like media-control keys. The following additional functions are hidden in the F11, F12, Pause button, and the 2×6 grid formed by the Insert and Delete rows: keyboard illumination brightness, keyboard illumination on/off, mute, and then the typical play/pause, forward/backward, stop, and volume +/- in Insert and Delete rows, respectively. While we weren’t sure what we’d think of the function-key system at first (especially after retiring a Microsoft Sidewinder keyboard with a huge and easily accessible volume knob on it), it took less than a day for us to adapt to using the Fn key, located next to the right Ctrl key, to adjust our media playback on the fly. Keyboard backlighting is a largely hit-or-miss undertaking but the CODE keyboard nails it. Not only does it have pleasant and easily adjustable through-the-keys lighting but the key switches the keys themselves are attached to are mounted to a steel plate with white paint. Enough of the light reflects off the interior cavity of the keys and then diffuses across the white plate to provide nice even illumination in between the keys. Highlighting the steel plate beneath the keys brings us to the actual construction of the keyboard. It’s rock solid. The 87-key model, the one we tested, is 2.0 pounds. The 104-key is nearly a half pound heavier at 2.42 pounds. Between the steel plate, the extra-thick PCB board beneath the steel plate, and the thick ABS plastic housing, the keyboard has very solid feel to it. Combine that heft with the previously mentioned thick rubber feet and you have a tank-like keyboard that won’t budge a millimeter during normal use. Examining The Keys This is the section of the review the hardcore typists and keyboard ninjas have been waiting for. We’ve looked at the layout of the keyboard, we’ve looked at the general construction of it, but what about the actual keys? There are a wide variety of keyboard construction techniques but the vast majority of modern keyboards use a rubber-dome construction. The key is floated in a plastic frame over a rubber membrane that has a little rubber dome for each key. The press of the physical key compresses the rubber dome downwards and a little bit of conductive material on the inside of the dome’s apex connects with the circuit board. Despite the near ubiquity of the design, many people dislike it. The principal complaint is that dome keyboards require a complete compression to register a keystroke; keyboard designers and enthusiasts refer to this as “bottoming out”. In other words, the register the “b” key, you need to completely press that key down. As such it slows you down and requires additional pressure and movement that, over the course of tens of thousands of keystrokes, adds up to a whole lot of wasted time and fatigue. The CODE keyboard features key switches manufactured by Cherry, a company that has manufactured key switches since the 1960s. Specifically the CODE features Cherry MX Clear switches. These switches feature the same classic design of the other Cherry switches (such as the MX Blue and Brown switch lineups) but they are significantly quieter (yes this is a mechanical keyboard, but no, your neighbors won’t think you’re firing off a machine gun) as they lack the audible click found in most Cherry switches. This isn’t to say that they keyboard doesn’t have a nice audible key press sound when the key is fully depressed, but that the key mechanism isn’t doesn’t create a loud click sound when triggered. One of the great features of the Cherry MX clear is a tactile “bump” that indicates the key has been compressed enough to register the stroke. For touch typists the very subtle tactile feedback is a great indicator that you can move on to the next stroke and provides a welcome speed boost. Even if you’re not trying to break any word-per-minute records, that little bump when pressing the key is satisfying. The Cherry key switches, in addition to providing a much more pleasant typing experience, are also significantly more durable than dome-style key switch. Rubber dome switch membrane keyboards are typically rated for 5-10 million contacts whereas the Cherry mechanical switches are rated for 50 million contacts. You’d have to write the next War and Peace  and follow that up with A Tale of Two Cities: Zombie Edition, and then turn around and transcribe them both into a dozen different languages to even begin putting a tiny dent in the lifecycle of this keyboard. So what do the switches look like under the classicly styled keys? You can take a look yourself with the included key puller. Slide the loop between the keys and then gently beneath the key you wish to remove: Wiggle the key puller gently back and forth while exerting a gentle upward pressure to pop the key off; You can repeat the process for every key, if you ever find yourself needing to extract piles of cat hair, Cheeto dust, or other foreign objects from your keyboard. There it is, the naked switch, the source of that wonderful crisp action with the tactile bump on each keystroke. The last feature worthy of a mention is the N-key rollover functionality of the keyboard. This is a feature you simply won’t find on non-mechanical keyboards and even gaming keyboards typically only have any sort of key roller on the high-frequency keys like WASD. So what is N-key rollover and why do you care? On a typical mass-produced rubber-dome keyboard you cannot simultaneously press more than two keys as the third one doesn’t register. PS/2 keyboards allow for unlimited rollover (in other words you can’t out type the keyboard as all of your keystrokes, no matter how fast, will register); if you use the CODE keyboard with the PS/2 adapter you gain this ability. If you don’t use the PS/2 adapter and use the native USB, you still get 6-key rollover (and the CTRL, ALT, and SHIFT don’t count towards the 6) so realistically you still won’t be able to out type the computer as even the more finger twisting keyboard combos and high speed typing will still fall well within the 6-key rollover. The rollover absolutely doesn’t matter if you’re a slow hunt-and-peck typist, but if you’ve read this far into a keyboard review there’s a good chance that you’re a serious typist and that kind of quality construction and high-number key rollover is a fantastic feature.  The Good, The Bad, and the Verdict We’ve put the CODE keyboard through the paces, we’ve played games with it, typed articles with it, left lengthy comments on Reddit, and otherwise used and abused it like we would any other keyboard. The Good: The construction is rock solid. In an emergency, we’re confident we could use the keyboard as a blunt weapon (and then resume using it later in the day with no ill effect on the keyboard). The Cherry switches are an absolute pleasure to type on; the Clear variety found in the CODE keyboard offer a really nice middle-ground between the gun-shot clack of a louder mechanical switch and the quietness of a lesser-quality dome keyboard without sacrificing quality. Touch typists will love the subtle tactile bump feedback. Dip switch system makes it very easy for users on different systems and with different keyboard layout needs to switch between operating system and keyboard layouts. If you’re investing a chunk of change in a keyboard it’s nice to know you can take it with you to a different operating system or “upgrade” it to a new layout if you decide to take up Dvorak-style typing. The backlighting is perfect. You can adjust it from a barely-visible glow to a blazing light-up-the-room brightness. Whatever your intesity preference, the white-coated steel backplate does a great job diffusing the light between the keys. You can easily remove the keys for cleaning (or to rearrange the letters to support a new keyboard layout). The weight of the unit combined with the extra thick rubber feet keep it planted exactly where you place it on the desk. The Bad: While you’re getting your money’s worth, the $150 price tag is a shock when compared to the $20-60 price tags you find on lower-end keyboards. People used to large dedicated media keys independent of the traditional key layout (such as the large buttons and volume controls found on many modern keyboards) might be off put by the Fn-key style media controls on the CODE. The Verdict: The keyboard is clearly and heavily influenced by the needs of serious typists. Whether you’re a programmer, transcriptionist, or just somebody that wants to leave the lengthiest article comments the Internet has ever seen, the CODE keyboard offers a rock solid typing experience. Yes, $150 isn’t pocket change, but the quality of the CODE keyboard is so high and the typing experience is so enjoyable, you’re easily getting ten times the value you’d get out of purchasing a lesser keyboard. Even compared to other mechanical keyboards on the market, like the Das Keyboard, you’re still getting more for your money as other mechanical keyboards don’t come with the lovely-to-type-on Cherry MX Clear switches, back lighting, and hardware-based operating system keyboard layout switching. If it’s in your budget to upgrade your keyboard (especially if you’ve been slogging along with a low-end rubber-dome keyboard) there’s no good reason to not pickup a CODE keyboard. Key animation courtesy of Geekhack.org user Lethal Squirrel.       

    Read the article

  • CodePlex Daily Summary for Thursday, April 01, 2010

    CodePlex Daily Summary for Thursday, April 01, 2010New ProjectsASP.NET Bing Maps: Extensible and easy to use, this is ASP.NET Bing Maps Control. Drag & Drop and is ready to go. You can configure map mode, map style, add a PushPin...Bricks' Bane: Bricks' Bane is a brick breaker game developed using XNA and published on XBox Live Indy Games. Source code includes a C# library useful for game d...cURL for dotnet: Another dotnet binding for libcurl see http://curl.haxx.se for more info about cURL/libcurlCustom Functoid que acessa o banco de dados SQL: Functoid para Biztalk Server 2006 utilizando dados do SQL Server 2005FEI STU Pharmacy e-shop: Elektronicky obchod s liekmi Vytvorte jednoduchú klient-server aplikáciu, ktorá bude realizovať elektronický obchod s liekmi. Moduly: 1. e-shop f...Flavours of Wix: Investigating building DSL's to create installers based on WIXFulcrum: Fulcrum is a code generation framework built on top of the T4 technology in Visual Studio. GreviousAngel: New team projectHabanero Inferno: Habanero Inferno coming soon.Kawo Pounga !: A useless game !!!LetsXNA!!: This is a project created by members of Linked In group Lets XNA!! to build a XNA game and have fun in the process. The goal is to build a simple ...Linq To Naver , Custom Linq Provider for Naver searchengine OpenAPI: <project name>Linq to Naver </project name> <programming language>C#, CSharp</programming language>LocoSync: LocoSync is a file Syncronization/Backup/Archiver program, which is easily extendable. It is easy to add new syncronization methods using C# code.Natural Language Processing: Natural Language ProcessingNop Commerce Azure: Ce projet vous permet de mettre en place rapidement et simplement votre site d'e-commerce en ligne en bénéficiant de tous les avantages de la plate...Nwinsock: Nwinsock is a component for network , Object Transfer, Pocket Compression, Support TCP,UDP Protocol, Thread Base OnTime: OnTime is a simple program from that matching game back in the day just to bring light to programming techniques. It's developed in C#.?OpenGL ES 2.0 Compact Framework Wrapper: OpenGL ES 2.0 wrapper for .NET Compact Framework. Developed on HTC HD 2 device but should run on any Windows Mobile device that has the correct lib...ortaknokta: bu proje: birkaç kişinin bir araya gelip, istedikleri konularda tartışma yapmalarına olanak saglamak icin hazırlanmaya çalışıl maktadır. P-Data: P-Data es una herramienta que permite obtener información procedente de archivos de datos (Data Profiling) a través de consultas SQL, automatizando...PowerAuras: Addon for World of Warcraft - Displays effects on screen at different conditionsPowerShell ToodleDo Module: PowerShell Module for interacting with toodledo.com online To-Do list site. RSS Reader for Windows Phone 7: This RSS Reader application for windows 7Streamlet Containers: This is my implement of STL-style containers, including a dynamic array, a double-linked list and an r-b-tree. Just for practice. Please feel free...Troav: Social encyclopedia built using c# and the Orchard frameworkUmbraco App_Code/Usercontrol Editor: Package for Umbraco to add App_Code and usercontrol editing to the Developer section of the Umbraco administration system. Will support GeSHi editi...Vczh Reactive Programming Library: Reactive programming library provide a stream or state machine view to use .NET eventsWhoIs XML API: The project uses the public WhoIs XML API service (http://www.whoisxmlapi.com/) to obtain detailed details. The project is written in C# and serial...WPF FlowDocument Examples for VS2008 and VS2010: WPF Text Samples (especially FlowDocument) on the various possible effects: sub- and super-script, ruby (a.k.a. furigana), and various others...You are here (for Windows Mobile): This sample shows you how to play a *.wav file on your device with Compact Framework 2.0. There is better support for playing music on Compact F...New Releases( λunula ): Lunula 0.4.0: Changelog Implemented a virtual machine. Implemented a compiler for the virtual machine. Added first-class continuations (call/cc) Removed co...Alter gear SQL index Management: Setup 1.0.1: Changes Test connection - successful message Connection string timeout property added Setup Project added to project source code Possible issu...ASP.NET Bing Maps: ASP.NET Bing Maps 0.1b: Project Description Extensible and easy to use, this is ASP.NET Bing Maps Control. Drag & Drop and is ready to go. You can configure map mode, map ...ASP.NET MVC Validation Library: ASP.NET MVC Validation Library 1.3: Changes since 1.2: - Support remote validation - Support custom server-side validation - The design of validation attribute is improved Note: test...BigDays 2010: HelfenHelfen - v1: PLEASE NOTE: This project is published under the Microsoft Public License (Ms-PL). http://bigdays10.codeplex.com/license IT IS A DEMO SOLUTION FOR...Caps - Manage your collection!: Caps Console 0.1.4.0 Alpha: This is preview release (Alpha quality). This release contains only limited amount of fixes and new features from user point of view. Major focus f...CSharpQuery: Version 1.0: This version is stable. Please report any possible bugs. The next release will include a sample project and index management tools. Until then pl...Custom Functoid que acessa o banco de dados SQL: Custom Functoid SQL Server: Solução do Visual Studio com código fonte e script SQL do functoid em BiztalkDawf: Dual Audio Workflow: Beta 3: Suppose if two good audio events overlap in time with a videoevent of interest. (This can only happen if PluralEyes isn't used on everything). Befo...Dirac codec user interface: Dirac User Interface (checkin 37132): Same as 36795 version, but done with the last source code.DotNetNuke® Blog: 04.00.00 RC 3: PLEASE NOTE: You may upgrade an RC 2 install. But please do not upgrade previous version of the Beta releases - please start from RC 2 or 03.05.0...DotNetNuke® Skinning Extensions: SimpleTitle Skin Object: This is an example skin object that only renders the "page name" if used in a skin and the "module title" if used in a container. No extra spans, c...Fulcrum: Fulcrum v0.9: Initial release of FulcrumHelloTipi Photos Uploader: Version 2010.03.31: De toute petites corrections : - Correction du bouton envoyer - Impossible d'interagir avec l'application quand on uploadkdar: KDAR 0.0.18: KDAR - Kernel Debugger Anti Rootkit - dispacth table's signature bases updated ( many driver's) - scripts refactored - some bug fixedLegend: Legend Libraries: The latest release.Linq To Naver , Custom Linq Provider for Naver searchengine OpenAPI: Linq to Naver: Linq to NaverLive at Education Meta Web-Service: Live at Education Meta Web Service v. 1.0: We're happy to publish final version of Live at Education Meta Web Serivce (LAEMWS). In this release: Huge list of Windows Live ID enabled servic...Live@edu SSO WebPart for MOSS 2007: WebPart 2.0: This release is based on Live@edu Meta Web Service (laemws - http://laemws.codeplex.com). It is highly recomended to use laemws version of webpart,...LocoSync: LocoSync v0.1r2010.03.31 installer: This is the first public release. Unzip and run setup. Or if you have .net 3.5 runtime available download the exetutable and try...Natural Language Processing: test1: testNop Commerce Azure: Nop Commerce Azure: Nop Commerce Full Sources with additionnals Azure Projects.Nwinsock: NWinsock: Nwinsock version 1.0 is hereOpen NFe: DANFe v1.9.8: Correção CSTOpenGL ES 2.0 Compact Framework Wrapper: v0.1 Sources: First rough release. It has a working sample application which renders a triangle with rotation. Don't expect anything great. Just a very early ...patterns & practices - Windows Azure Guidance: Code Drop 3: Second iteration of a-Expense on Azure. This release builds on the previous one and mainly focuses on replacing SQL Azure by Table Storage. We hav...Posh4DNN: Posh4DNN Scripts 2.0: This release greatly increases the speed of installation and incorporates the use of IIS and SQL Server Snap-ins for managing those services. Inst...Process Enactment Tool Framework: PET 1.1: PET Core new intermediate model with arbitrary "clean" relations among objects and several updates of the object fields (see DependencyInterfacesA...Project Tru Tiên: Elements-test V1-fix (v1): Là Elements-test V1 đã được fix các vấn đề sau: - Fix lỗi hiển thị thú cưỡi Hổ Kỳ Lân - Fix hiển thị tab tiếng trung --> sang tiếng việt - Fix hiể...Sentinel - Log Viewer: Sentinel 0.8.1 (nLog support): Build of the 0.8.1 code (svn revision 36823) which included support for both nLog and log4net that has been in SVN for a while but didn't have a bi...sgMotion Animation Library: SgMotion v1.1 (For Sunburn 1.3.1): SgMotion v1.1 (For Sunburn 1.3.1) This release includes both a Windows & Xbox sample. The sample is set to default at Forward rendering, but can e...sTASKedit: sTASKedit 44538 (Developer Alpha): + nearly all fields are viewed in this release for task verification and identifying of unknownsTest Project (ignore): asdf asdf asdf asdf asdf asdf asdf sadf sdf asdf a: ;dlf jkasdf ;lkasjdf ;dlf jkasdf ;lkasjdf ;dlf jkasdf ;lkasjdf ;dlf jkasdf ;lkasjdf ;dlf jkasdf ;lkasjdf ;dlf jkasdf ;lkasjdf ;dlf jkasdf ;lkasjdf ...Test Project (ignore): cdscs: csdcacacTroav: Traov20100331 Source Pre-Alpah: This is some experiements with implementing custom modules with Microsoft's Orchard frame work. This is very preliminary, and subject to change.Weather Report WebControls: WebWeatherReport: 主要文件的源代码WhoIs XML API: Initial Release: Initial ReleaseYou are here (for Windows Mobile): CAB file and Source Code: You can find more Controls and samples for Windows Mobile developers at: http://www.beemobile4.netMost Popular ProjectshmrEngineRawrWBFS ManagerASP.NET Ajax LibraryMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitAJAX Control ToolkitWindows Presentation Foundation (WPF)ASP.NETLiveUpload to FacebookMost Active ProjectsRawrGraffiti CMSBase Class LibrariesjQuery Library for SharePoint Web ServicesBlogEngine.NETMicrosoft Biology FoundationN2 CMSLINQ to TwitterManaged Extensibility FrameworkFarseer Physics Engine

    Read the article

  • General monitoring for SQL Server Analysis Services using Performance Monitor

    - by Testas
    A recent customer engagement required a setup of a monitoring solution for SSAS, due to the time restrictions placed upon this, native Windows Performance Monitor (Perfmon) and SQL Server Profiler Monitoring Tools was used as using a third party tool would have meant the customer providing an additional monitoring server that was not available.I wanted to outline the performance monitoring counters that was used to monitor the system on which SSAS was running. Due to the slow query performance that was occurring during certain scenarios, perfmon was used to establish if any pressure was being placed on the Disk, CPU or Memory subsystem when concurrent connections access the same query, and Profiler to pinpoint how the query was being managed within SSAS, profiler I will leave for another blogThis guide is not designed to provide a definitive list of what should be used when monitoring SSAS, different situations may require the addition or removal of counters as presented by the situation. However I hope that it serves as a good basis for starting your monitoring of SSAS. I would also like to acknowledge Chris Webb’s awesome chapters from “Expert Cube Development” that also helped shape my monitoring strategy:http://cwebbbi.spaces.live.com/blog/cns!7B84B0F2C239489A!6657.entrySimulating ConnectionsTo simulate the additional connections to the SSAS server whilst monitoring, I used ascmd to simulate multiple connections to the typical and worse performing queries that were identified by the customer. A similar sript can be downloaded from codeplex at http://www.codeplex.com/SQLSrvAnalysisSrvcs.     File name: ASCMD_StressTestingScripts.zip. Performance MonitorWithin performance monitor,  a counter log was created that contained the list of counters below. The important point to note when running the counter log is that the RUN AS property within the counter log properties should be changed to an account that has rights to the SSAS instance when monitoring MSAS counters. Failure to do so means that the counter log runs under the system account, no errors or warning are given while running the counter log, and it is not until you need to view the MSAS counters that they will not be displayed if run under the default account that has no right to SSAS. If your connection simulation takes hours, this could prove quite frustrating if not done beforehand JThe counters used……  Object Counter Instance Justification System Processor Queue legnth N/A Indicates how many threads are waiting for execution against the processor. If this counter is consistently higher than around 5 when processor utilization approaches 100%, then this is a good indication that there is more work (active threads) available (ready for execution) than the machine's processors are able to handle. System Context Switches/sec N/A Measures how frequently the processor has to switch from user- to kernel-mode to handle a request from a thread running in user mode. The heavier the workload running on your machine, the higher this counter will generally be, but over long term the value of this counter should remain fairly constant. If this counter suddenly starts increasing however, it may be an indicating of a malfunctioning device, especially if the Processor\Interrupts/sec\(_Total) counter on your machine shows a similar unexplained increase Process % Processor Time sqlservr Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process % Processor Time msmdsrv Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process Working Set sqlservr If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Process Working Set msmdsrv If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Processor % Processor Time _Total and individual cores measures the total utilization of your processor by all running processes. If multi-proc then be mindful only an average is provided Processor % Privileged Time _Total To see how the OS is handling basic IO requests. If kernel mode utilization is high, your machine is likely underpowered as it's too busy handling basic OS housekeeping functions to be able to effectively run other applications. Processor % User Time _Total To see how the applications is interacting from a processor perspective, a high percentage utilisation determine that the server is dealing with too many apps and may require increasing thje hardware or scaling out Processor Interrupts/sec _Total  The average rate, in incidents per second, at which the processor received and serviced hardware interrupts. Shoulr be consistant over time but a sudden unexplained increase could indicate a device malfunction which can be confirmed using the System\Context Switches/sec counter Memory Pages/sec N/A Indicates the rate at which pages are read from or written to disk to resolve hard page faults. This counter is a primary indicator of the kinds of faults that cause system-wide delays, this is the primary counter to watch for indication of possible insufficient RAM to meet your server's needs. A good idea here is to configure a perfmon alert that triggers when the number of pages per second exceeds 50 per paging disk on your system. May also want to see the configuration of the page file on the Server Memory Available Mbytes N/A is the amount of physical memory, in bytes, available to processes running on the computer. if this counter is greater than 10% of the actual RAM in your machine then you probably have more than enough RAM. monitor it regularly to see if any downward trend develops, and set an alert to trigger if it drops below 2% of the installed RAM. Physical Disk Disk Transfers/sec for each physical disk If it goes above 10 disk I/Os per second then you've got poor response time for your disk. Physical Disk Idle Time _total If Disk Transfers/sec is above  25 disk I/Os per second use this counter. which measures the percent time that your hard disk is idle during the measurement interval, and if you see this counter fall below 20% then you've likely got read/write requests queuing up for your disk which is unable to service these requests in a timely fashion. Physical Disk Disk queue legnth For the OLAP and SQL physical disk A value that is consistently less than 2 means that the disk system is handling the IO requests against the physical disk Network Interface Bytes Total/sec For the NIC Should be monitored over a period of time to see if there is anb increase/decrease in network utilisation Network Interface Current Bandwidth For the NIC is an estimate of the current bandwidth of the network interface in bits per second (BPS). MSAS 2005: Memory Memory Limit High KB N/A Shows (as a percentage) the high memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Limit Low KB N/A Shows (as a percentage) the low memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Usage KB N/A Displays the memory usage of the server process. MSAS 2005: Memory File Store KB N/A Displays the amount of memory that is reserved for the Cache. Note if total memory limit in the msmdsrv.ini is set to 0, no memory is reserved for the cache MSAS 2005: Storage Engine Query Queries from Cache Direct / sec N/A Displays the rate of queries answered from the cache directly MSAS 2005: Storage Engine Query Queries from Cache Filtered / Sec N/A Displays the Rate of queries answered by filtering existing cache entry. MSAS 2005: Storage Engine Query Queries from File / Sec N/A Displays the Rate of queries answered from files. MSAS 2005: Storage Engine Query Average time /query N/A Displays the average time of a query MSAS 2005: Connection Current connections N/A Displays the number of connections against the SSAS instance MSAS 2005: Connection Requests / sec N/A Displays the rate of query requests per second MSAS 2005: Locks Current Lock Waits N/A Displays thhe number of connections waiting on a lock MSAS 2005: Threads Query Pool job queue Length N/A The number of queries in the job queue MSAS 2005:Proc Aggregations Temp file bytes written/sec N/A Shows the number of bytes of data processed in a temporary file MSAS 2005:Proc Aggregations Temp file rows written/sec N/A Shows the number of bytes of data processed in a temporary file 

    Read the article

  • Guide to MySQL & NoSQL, Webinar Q&A

    - by Mat Keep
    0 0 1 959 5469 Homework 45 12 6416 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} Yesterday we ran a webinar discussing the demands of next generation web services and how blending the best of relational and NoSQL technologies enables developers and architects to deliver the agility, performance and availability needed to be successful. Attendees posted a number of great questions to the MySQL developers, serving to provide additional insights into areas like auto-sharding and cross-shard JOINs, replication, performance, client libraries, etc. So I thought it would be useful to post those below, for the benefit of those unable to attend the webinar. Before getting to the Q&A, there are a couple of other resources that maybe useful to those looking at NoSQL capabilities within MySQL: - On-Demand webinar (coming soon!) - Slides used during the webinar - Guide to MySQL and NoSQL whitepaper  - MySQL Cluster demo, including NoSQL interfaces, auto-sharing, high availability, etc.  So here is the Q&A from the event  Q. Where does MySQL Cluster fit in to the CAP theorem? A. MySQL Cluster is flexible. A single Cluster will prefer consistency over availability in the presence of network partitions. A pair of Clusters can be configured to prefer availability over consistency. A full explanation can be found on the MySQL Cluster & CAP Theorem blog post.  Q. Can you configure the number of replicas? (the slide used a replication factor of 1) Yes. A cluster is configured by an .ini file. The option NoOfReplicas sets the number of originals and replicas: 1 = no data redundancy, 2 = one copy etc. Usually there's no benefit in setting it >2. Q. Interestingly most (if not all) of the NoSQL databases recommend having 3 copies of data (the replication factor).    Yes, with configurable quorum based Reads and writes. MySQL Cluster does not need a quorum of replicas online to provide service. Systems that require a quorum need > 2 replicas to be able to tolerate a single failure. Additionally, many NoSQL systems take liberal inspiration from the original GFS paper which described a 3 replica configuration. MySQL Cluster avoids the need for a quorum by using a lightweight arbitrator. You can configure more than 2 replicas, but this is a tradeoff between incrementally improved availability, and linearly increased cost. Q. Can you have cross node group JOINS? Wouldn't that run into the risk of flooding the network? MySQL Cluster 7.2 supports cross nodegroup joins. A full cross-join can require a large amount of data transfer, which may bottleneck on network bandwidth. However, for more selective joins, typically seen with OLTP and light analytic applications, cross node-group joins give a great performance boost and network bandwidth saving over having the MySQL Server perform the join. Q. Are the details of the benchmark available anywhere? According to my calculations it results in approx. 350k ops/sec per processor which is the largest number I've seen lately The details are linked from Mikael Ronstrom's blog The benchmark uses a benchmarking tool we call flexAsynch which runs parallel asynchronous transactions. It involved 100 byte reads, of 25 columns each. Regarding the per-processor ops/s, MySQL Cluster is particularly efficient in terms of throughput/node. It uses lock-free minimal copy message passing internally, and maximizes ID cache reuse. Note also that these are in-memory tables, there is no need to read anything from disk. Q. Is access control (like table) planned to be supported for NoSQL access mode? Currently we have not seen much need for full SQL-like access control (which has always been overkill for web apps and telco apps). So we have no plans, though especially with memcached it is certainly possible to turn-on connection-level access control. But specifically table level controls are not planned. Q. How is the performance of memcached APi with MySQL against memcached+MySQL or any other Object Cache like Ecache with MySQL DB? With the memcache API we generally see a memcached response in less than 1 ms. and a small cluster with one memcached server can handle tens of thousands of operations per second. Q. Can .NET can access MemcachedAPI? Yes, just use a .Net memcache client such as the enyim or BeIT memcache libraries. Q. Is the row level locking applicable when you update a column through memcached API? An update that comes through memcached uses a row lock and then releases it immediately. Memcached operations like "INCREMENT" are actually pushed down to the data nodes. In most cases the locks are not even held long enough for a network round trip. Q. Has anyone published an example using something like PHP? I am assuming that you just use the PHP memcached extension to hook into the memcached API. Is that correct? Not that I'm aware of but absolutely you can use it with php or any of the other drivers Q. For beginner we need more examples. Take a look here for a fully worked example Q. Can I access MySQL using Cobol (Open Cobol) or C and if so where can I find the coding libraries etc? A. There is a cobol implementation that works well with MySQL, but I do not think it is Open Cobol. Also there is a MySQL C client library that is a standard part of every mysql distribution Q. Is there a place to go to find help when testing and/implementing the NoSQL access? If using Cluster then you can use the [email protected] alias or post on the MySQL Cluster forum Q. Are there any white papers on this?  Yes - there is more detail in the MySQL Guide to NoSQL whitepaper If you have further questions, please don’t hesitate to use the comments below!

    Read the article

  • NUMA-aware placement of communication variables

    - by Dave
    For classic NUMA-aware programming I'm typically most concerned about simple cold, capacity and compulsory misses and whether we can satisfy the miss by locally connected memory or whether we have to pull the line from its home node over the coherent interconnect -- we'd like to minimize channel contention and conserve interconnect bandwidth. That is, for this style of programming we're quite aware of where memory is homed relative to the threads that will be accessing it. Ideally, a page is collocated on the node with the thread that's expected to most frequently access the page, as simple misses on the page can be satisfied without resorting to transferring the line over the interconnect. The default "first touch" NUMA page placement policy tends to work reasonable well in this regard. When a virtual page is first accessed, the operating system will attempt to provision and map that virtual page to a physical page allocated from the node where the accessing thread is running. It's worth noting that the node-level memory interleaving granularity is usually a multiple of the page size, so we can say that a given page P resides on some node N. That is, the memory underlying a page resides on just one node. But when thinking about accesses to heavily-written communication variables we normally consider what caches the lines underlying such variables might be resident in, and in what states. We want to minimize coherence misses and cache probe activity and interconnect traffic in general. I don't usually give much thought to the location of the home NUMA node underlying such highly shared variables. On a SPARC T5440, for instance, which consists of 4 T2+ processors connected by a central coherence hub, the home node and placement of heavily accessed communication variables has very little impact on performance. The variables are frequently accessed so likely in M-state in some cache, and the location of the home node is of little consequence because a requester can use cache-to-cache transfers to get the line. Or at least that's what I thought. Recently, though, I was exploring a simple shared memory point-to-point communication model where a client writes a request into a request mailbox and then busy-waits on a response variable. It's a simple example of delegation based on message passing. The server polls the request mailbox, and having fetched a new request value, performs some operation and then writes a reply value into the response variable. As noted above, on a T5440 performance is insensitive to the placement of the communication variables -- the request and response mailbox words. But on a Sun/Oracle X4800 I noticed that was not the case and that NUMA placement of the communication variables was actually quite important. For background an X4800 system consists of 8 Intel X7560 Xeons . Each package (socket) has 8 cores with 2 contexts per core, so the system is 8x8x2. Each package is also a NUMA node and has locally attached memory. Every package has 3 point-to-point QPI links for cache coherence, and the system is configured with a twisted ladder "mobius" topology. The cache coherence fabric is glueless -- there's not central arbiter or coherence hub. The maximum distance between any two nodes is just 2 hops over the QPI links. For any given node, 3 other nodes are 1 hop distant and the remaining 4 nodes are 2 hops distant. Using a single request (client) thread and a single response (server) thread, a benchmark harness explored all permutations of NUMA placement for the two threads and the two communication variables, measuring the average round-trip-time and throughput rate between the client and server. In this benchmark the server simply acts as a simple transponder, writing the request value plus 1 back into the reply field, so there's no particular computation phase and we're only measuring communication overheads. In addition to varying the placement of communication variables over pairs of nodes, we also explored variations where both variables were placed on one page (and thus on one node) -- either on the same cache line or different cache lines -- while varying the node where the variables reside along with the placement of the threads. The key observation was that if the client and server threads were on different nodes, then the best placement of variables was to have the request variable (written by the client and read by the server) reside on the same node as the client thread, and to place the response variable (written by the server and read by the client) on the same node as the server. That is, if you have a variable that's to be written by one thread and read by another, it should be homed with the writer thread. For our simple client-server model that means using split request and response communication variables with unidirectional message flow on a given page. This can yield up to twice the throughput of less favorable placement strategies. Our X4800 uses the QPI 1.0 protocol with source-based snooping. Briefly, when node A needs to probe a cache line it fires off snoop requests to all the nodes in the system. Those recipients then forward their response not to the original requester, but to the home node H of the cache line. H waits for and collects the responses, adjudicates and resolves conflicts and ensures memory-model ordering, and then sends a definitive reply back to the original requester A. If some node B needed to transfer the line to A, it will do so by cache-to-cache transfer and let H know about the disposition of the cache line. A needs to wait for the authoritative response from H. So if a thread on node A wants to write a value to be read by a thread on node B, the latency is dependent on the distances between A, B, and H. We observe the best performance when the written-to variable is co-homed with the writer A. That is, we want H and A to be the same node, as the writer doesn't need the home to respond over the QPI link, as the writer and the home reside on the very same node. With architecturally informed placement of communication variables we eliminate at least one QPI hop from the critical path. Newer Intel processors use the QPI 1.1 coherence protocol with home-based snooping. As noted above, under source-snooping a requester broadcasts snoop requests to all nodes. Those nodes send their response to the home node of the location, which provides memory ordering, reconciles conflicts, etc., and then posts a definitive reply to the requester. In home-based snooping the snoop probe goes directly to the home node and are not broadcast. The home node can consult snoop filters -- if present -- and send out requests to retrieve the line if necessary. The 3rd party owner of the line, if any, can respond either to the home or the original requester (or even to both) according to the protocol policies. There are myriad variations that have been implemented, and unfortunately vendor terminology doesn't always agree between vendors or with the academic taxonomy papers. The key is that home-snooping enables the use of a snoop filter to reduce interconnect traffic. And while home-snooping might have a longer critical path (latency) than source-based snooping, it also may require fewer messages and less overall bandwidth. It'll be interesting to reprise these experiments on a platform with home-based snooping. While collecting data I also noticed that there are placement concerns even in the seemingly trivial case when both threads and both variables reside on a single node. Internally, the cores on each X7560 package are connected by an internal ring. (Actually there are multiple contra-rotating rings). And the last-level on-chip cache (LLC) is partitioned in banks or slices, which with each slice being associated with a core on the ring topology. A hardware hash function associates each physical address with a specific home bank. Thus we face distance and topology concerns even for intra-package communications, although the latencies are not nearly the magnitude we see inter-package. I've not seen such communication distance artifacts on the T2+, where the cache banks are connected to the cores via a high-speed crossbar instead of a ring -- communication latencies seem more regular.

    Read the article

  • FreeBSD performance tuning. Sysctls, loader.conf, kernel

    - by SaveTheRbtz
    I wanted to share knowledge of tuning FreeBSD via sysctl.conf/loader.conf/KENCONF. It was initially based on Igor Sysoev's (author of nginx) presentation about FreeBSD tuning up to 100,000-200,000 active connections. Tunings are for FreeBSD-CURRENT. Since 7.2 amd64 some of them are tuned well by default. Prior 7.0 some of them are boot only (set via /boot/loader.conf) or does not exist at all. sysctl.conf: # No zero mapping feature # May break wine # (There are also reports about broken samba3) #security.bsd.map_at_zero=0 # If you have really busy webserver with apache13 you may run out of processes #kern.maxproc=10000 # Same for servers with apache2 / Pound #kern.threads.max_threads_per_proc=4096 # Max. backlog size kern.ipc.somaxconn=4096 # Shared memory // 7.2+ can use shared memory > 2Gb kern.ipc.shmmax=2147483648 # Sockets kern.ipc.maxsockets=204800 # Can cause this on older kernels: # http://old.nabble.com/Significant-performance-regression-for-increased-maxsockbuf-on-8.0-RELEASE-tt26745981.html#a26745981 ) kern.ipc.maxsockbuf=10485760 # Mbuf 2k clusters (on amd64 7.2+ 25600 is default) # For such high value vm.kmem_size must be increased to 3G kern.ipc.nmbclusters=262144 # Jumbo pagesize(_SC_PAGESIZE) clusters # Used as general packet storage for jumbo frames # can be monitored via `netstat -m` #kern.ipc.nmbjumbop=262144 # Jumbo 9k/16k clusters # If you are using them #kern.ipc.nmbjumbo9=65536 #kern.ipc.nmbjumbo16=32768 # For lower latency you can decrease scheduler's maximum time slice # default: stathz/10 (~ 13) #kern.sched.slice=1 # Increase max command-line length showed in `ps` (e.g for Tomcat/Java) # Default is PAGE_SIZE / 16 or 256 on x86 # This avoids commands to be presented as [executable] in `ps` # For more info see: http://www.freebsd.org/cgi/query-pr.cgi?pr=120749 kern.ps_arg_cache_limit=4096 # Every socket is a file, so increase them kern.maxfiles=204800 kern.maxfilesperproc=200000 kern.maxvnodes=200000 # On some systems HPET is almost 2 times faster than default ACPI-fast # Useful on systems with lots of clock_gettime / gettimeofday calls # See http://old.nabble.com/ACPI-fast-default-timecounter,-but-HPET-83--faster-td23248172.html # After revision 222222 HPET became default: http://svnweb.freebsd.org/base?view=revision&revision=222222 kern.timecounter.hardware=HPET # Small receive space, only usable on http-server, on file server this # should be increased to 65535 or even more #net.inet.tcp.recvspace=8192 # This is useful on Fat-Long-Pipes #net.inet.tcp.recvbuf_max=10485760 #net.inet.tcp.recvbuf_inc=65535 # Small send space is useful for http servers that serve small files # Autotuned since 7.x net.inet.tcp.sendspace=16384 # This is useful on Fat-Long-Pipes #net.inet.tcp.sendbuf_max=10485760 #net.inet.tcp.sendbuf_inc=65535 # Turn off receive autotuning # You can play with it. #net.inet.tcp.recvbuf_auto=0 #net.inet.tcp.sendbuf_auto=0 # This should be enabled if you going to use big spaces (>64k) # Also timestamp field is useful when using syncookies net.inet.tcp.rfc1323=1 # Turn this off on high-speed, lossless connections (LAN 1Gbit+) # If you set it there is no need in TCP_NODELAY sockopt (see man tcp) net.inet.tcp.delayed_ack=0 # This feature is useful if you are serving data over modems, Gigabit Ethernet, # or even high speed WAN links (or any other link with a high bandwidth delay product), # especially if you are also using window scaling or have configured a large send window. # Automatically disables on small RTT ( http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/tcp_subr.c?#rev1.237 ) # This sysctl was removed in 10-CURRENT: # See: http://www.mail-archive.com/[email protected]/msg06178.html #net.inet.tcp.inflight.enable=0 # TCP slowstart algorithm tunings # We assuming we have very fast clients #net.inet.tcp.slowstart_flightsize=100 #net.inet.tcp.local_slowstart_flightsize=100 # Disable randomizing of ports to avoid false RST # Before usage check SA here www.bsdcan.org/2006/papers/ImprovingTCPIP.pdf # (it's also says that port randomization auto-disables at some conn.rates, but I didn't checked it thou) #net.inet.ip.portrange.randomized=0 # Increase portrange # For outgoing connections only. Good for seed-boxes and ftp servers. net.inet.ip.portrange.first=1024 net.inet.ip.portrange.last=65535 # # stops route cache degregation during a high-bandwidth flood # http://www.freebsd.org/doc/en/books/handbook/securing-freebsd.html #net.inet.ip.rtexpire=2 net.inet.ip.rtminexpire=2 net.inet.ip.rtmaxcache=1024 # Security net.inet.ip.redirect=0 net.inet.ip.sourceroute=0 net.inet.ip.accept_sourceroute=0 net.inet.icmp.maskrepl=0 net.inet.icmp.log_redirect=0 net.inet.icmp.drop_redirect=1 net.inet.tcp.drop_synfin=1 # # There is also good example of sysctl.conf with comments: # http://www.thern.org/projects/sysctl.conf # # icmp may NOT rst, helpful for those pesky spoofed # icmp/udp floods that end up taking up your outgoing # bandwidth/ifqueue due to all that outgoing RST traffic. # #net.inet.tcp.icmp_may_rst=0 # Security net.inet.udp.blackhole=1 net.inet.tcp.blackhole=2 # IPv6 Security # For more info see http://www.fosslc.org/drupal/content/security-implications-ipv6 # Disable Node info replies # To see this vulnerability in action run `ping6 -a sglAac ::1` or `ping6 -w ::1` on unprotected node net.inet6.icmp6.nodeinfo=0 # Turn on IPv6 privacy extensions # For more info see proposal http://unix.derkeiler.com/Mailing-Lists/FreeBSD/net/2008-06/msg00103.html net.inet6.ip6.use_tempaddr=1 net.inet6.ip6.prefer_tempaddr=1 # Disable ICMP redirect net.inet6.icmp6.rediraccept=0 # Disable acceptation of RA and auto linklocal generation if you don't use them #net.inet6.ip6.accept_rtadv=0 #net.inet6.ip6.auto_linklocal=0 # Increases default TTL, sometimes useful # Default is 64 net.inet.ip.ttl=128 # Lessen max segment life to conserve resources # ACK waiting time in miliseconds # (default: 30000. RFC from 1979 recommends 120000) net.inet.tcp.msl=5000 # Max bumber of timewait sockets net.inet.tcp.maxtcptw=200000 # Don't use tw on local connections # As of 15 Apr 2009. Igor Sysoev says that nolocaltimewait has some buggy realization. # So disable it or now till get fixed #net.inet.tcp.nolocaltimewait=1 # FIN_WAIT_2 state fast recycle net.inet.tcp.fast_finwait2_recycle=1 # Time before tcp keepalive probe is sent # default is 2 hours (7200000) #net.inet.tcp.keepidle=60000 # Should be increased until net.inet.ip.intr_queue_drops is zero net.inet.ip.intr_queue_maxlen=4096 # Interrupt handling via multiple CPU, but with context switch. # You can play with it. Default is 1; #net.isr.direct=0 # This is for routers only #net.inet.ip.forwarding=1 #net.inet.ip.fastforwarding=1 # This speed ups dummynet when channel isn't saturated net.inet.ip.dummynet.io_fast=1 # Increase dummynet(4) hash #net.inet.ip.dummynet.hash_size=2048 #net.inet.ip.dummynet.max_chain_len # Should be increased when you have A LOT of files on server # (Increase until vfs.ufs.dirhash_mem becomes lower) vfs.ufs.dirhash_maxmem=67108864 # Note from commit http://svn.freebsd.org/base/head@211031 : # For systems with RAID volumes and/or virtualization envirnments, where # read performance is very important, increasing this sysctl tunable to 32 # or even more will demonstratively yield additional performance benefits. vfs.read_max=32 # Explicit Congestion Notification (see http://en.wikipedia.org/wiki/Explicit_Congestion_Notification) net.inet.tcp.ecn.enable=1 # Flowtable - flow caching mechanism # Useful for routers #net.inet.flowtable.enable=1 #net.inet.flowtable.nmbflows=65535 # Extreme polling tuning #kern.polling.burst_max=1000 #kern.polling.each_burst=1000 #kern.polling.reg_frac=100 #kern.polling.user_frac=1 #kern.polling.idle_poll=0 # IPFW dynamic rules and timeouts tuning # Increase dyn_buckets till net.inet.ip.fw.curr_dyn_buckets is lower net.inet.ip.fw.dyn_buckets=65536 net.inet.ip.fw.dyn_max=65536 net.inet.ip.fw.dyn_ack_lifetime=120 net.inet.ip.fw.dyn_syn_lifetime=10 net.inet.ip.fw.dyn_fin_lifetime=2 net.inet.ip.fw.dyn_short_lifetime=10 # Make packets pass firewall only once when using dummynet # i.e. packets going thru pipe are passing out from firewall with accept #net.inet.ip.fw.one_pass=1 # shm_use_phys Wires all shared pages, making them unswappable # Use this to lessen Virtual Memory Manager's work when using Shared Mem. # Useful for databases #kern.ipc.shm_use_phys=1 # ZFS # Enable prefetch. Useful for sequential load type i.e fileserver. # FreeBSD sets vfs.zfs.prefetch_disable to 1 on any i386 systems and # on any amd64 systems with less than 4GB of avaiable memory # For additional info check this nabble thread http://old.nabble.com/Samba-read-speed-performance-tuning-td27964534.html #vfs.zfs.prefetch_disable=0 # On highload servers you may notice following message in dmesg: # "Approaching the limit on PV entries, consider increasing either the # vm.pmap.shpgperproc or the vm.pmap.pv_entry_max tunable" vm.pmap.shpgperproc=2048 loader.conf: # Accept filters for data, http and DNS requests # Useful when your software uses select() instead of kevent/kqueue or when you under DDoS # DNS accf available on 8.0+ accf_data_load="YES" accf_http_load="YES" accf_dns_load="YES" # Async IO system calls aio_load="YES" # Linux specific devices in /dev # As for 8.1 it only /dev/full #lindev_load="YES" # Adds NCQ support in FreeBSD # WARNING! all ad[0-9]+ devices will be renamed to ada[0-9]+ # 8.0+ only #ahci_load="YES" #siis_load="YES" # FreeBSD 8.2+ # New Congestion Control for FreeBSD # http://caia.swin.edu.au/urp/newtcp/tools/cc_chd-readme-0.1.txt # http://www.ietf.org/proceedings/78/slides/iccrg-5.pdf # Initial merge commit message http://www.mail-archive.com/[email protected]/msg31410.html #cc_chd_load="YES" # Increase kernel memory size to 3G. # # Use ONLY if you have KVA_PAGES in kernel configuration, and you have more than 3G RAM # Otherwise panic will happen on next reboot! # # It's required for high buffer sizes: kern.ipc.nmbjumbop, kern.ipc.nmbclusters, etc # Useful on highload stateful firewalls, proxies or ZFS fileservers # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #vm.kmem_size="3G" # If your server has lots of swap (>4Gb) you should increase following value # according to http://lists.freebsd.org/pipermail/freebsd-hackers/2009-October/029616.html # Otherwise you'll be getting errors # "kernel: swap zone exhausted, increase kern.maxswzone" # kern.maxswzone="256M" # Older versions of FreeBSD can't tune maxfiles on the fly #kern.maxfiles="200000" # Useful for databases # Sets maximum data size to 1G # (FreeBSD 7.2+ amd64 users: Check that current value is lower!) #kern.maxdsiz="1G" # Maximum buffer size(vfs.maxbufspace) # You can check current one via vfs.bufspace # Should be lowered/upped depending on server's load-type # Usually decreased to preserve kmem # (default is 10% of mem) #kern.maxbcache="512M" # Sendfile buffers # For i386 only #kern.ipc.nsfbufs=10240 # FreeBSD 9+ # HPET "legacy route" support. It should allow HPET to work per-CPU # See http://www.mail-archive.com/[email protected]/msg03603.html #hint.atrtc.0.clock=0 #hint.attimer.0.clock=0 #hint.hpet.0.legacy_route=1 # syncache Hash table tuning net.inet.tcp.syncache.hashsize=1024 net.inet.tcp.syncache.bucketlimit=512 net.inet.tcp.syncache.cachelimit=65536 # Increased hostcache # Later host cache can be viewed via net.inet.tcp.hostcache.list hidden sysctl # Very useful for it's RTT RTTVAR # Must be power of two net.inet.tcp.hostcache.hashsize=65536 # hashsize * bucketlimit (which is 30 by default) # It allocates 255Mb (1966080*136) of RAM net.inet.tcp.hostcache.cachelimit=1966080 # TCP control-block Hash table tuning net.inet.tcp.tcbhashsize=4096 # Disable ipfw deny all # Should be uncommented when there is a chance that # kernel and ipfw binary may be out-of sync on next reboot #net.inet.ip.fw.default_to_accept=1 # # SIFTR (Statistical Information For TCP Research) is a kernel module that # logs a range of statistics on active TCP connections to a log file. # See prerelease notes http://groups.google.com/group/mailing.freebsd.current/browse_thread/thread/b4c18be6cdce76e4 # and man 4 sitfr #siftr_load="YES" # Enable superpages, for 7.2+ only # Also read http://lists.freebsd.org/pipermail/freebsd-hackers/2009-November/030094.html vm.pmap.pg_ps_enabled=1 # Usefull if you are using Intel-Gigabit NIC #hw.em.rxd=4096 #hw.em.txd=4096 #hw.em.rx_process_limit="-1" # Also if you have ALOT interrupts on NIC - play with following parameters # NOTE: You should set them for every NIC #dev.em.0.rx_int_delay: 250 #dev.em.0.tx_int_delay: 250 #dev.em.0.rx_abs_int_delay: 250 #dev.em.0.tx_abs_int_delay: 250 # There is also multithreaded version of em/igb drivers can be found here: # http://people.yandex-team.ru/~wawa/ # # for additional em monitoring and statistics use # sysctl dev.em.0.stats=1 ; dmesg # sysctl dev.em.0.debug=1 ; dmesg # Also after r209242 (-CURRENT) there is a separate sysctl for each stat variable; # Same tunings for igb #hw.igb.rxd=4096 #hw.igb.txd=4096 #hw.igb.rx_process_limit=100 # Some useful netisr tunables. See sysctl net.isr #net.isr.maxthreads=4 #net.isr.defaultqlimit=4096 #net.isr.maxqlimit: 10240 # Bind netisr threads to CPUs #net.isr.bindthreads=1 # # FreeBSD 9.x+ # Increase interface send queue length # See commit message http://svn.freebsd.org/viewvc/base?view=revision&revision=207554 #net.link.ifqmaxlen=1024 # Nicer boot logo =) loader_logo="beastie" And finally here is KERNCONF: # Just some of them, see also # cat /sys/{i386,amd64,}/conf/NOTES # This one useful only on i386 #options KVA_PAGES=512 # You can play with HZ in environments with high interrupt rate (default is 1000) # 100 is for my notebook to prolong it's battery life #options HZ=100 # Polling is goot on network loads with high packet rates and low-end NICs # NB! Do not enable it if you want more than one netisr thread #options DEVICE_POLLING # Eliminate datacopy on socket read-write # To take advantage with zero copy sockets you should have an MTU >= 4k # This req. is only for receiving data. # Read more in man zero_copy_sockets # Also this epic thread on kernel trap: # http://kerneltrap.org/node/6506 # Here Linus says that "anybody that does it that way (FreeBSD) is totally incompetent" #options ZERO_COPY_SOCKETS # Support TCP sign. Used for IPSec options TCP_SIGNATURE # There was stackoverflow found in KAME IPSec stack: # See http://secunia.com/advisories/43995/ # For quick workaround you can use `ipfw add deny proto ipcomp` options IPSEC # This ones can be loaded as modules. They described in loader.conf section #options ACCEPT_FILTER_DATA #options ACCEPT_FILTER_HTTP # Adding ipfw, also can be loaded as modules options IPFIREWALL # On 8.1+ you can disable verbose to see blocked packets on ipfw0 interface. # Also there is no point in compiling verbose into the kernel, because # now there is net.inet.ip.fw.verbose tunable. #options IPFIREWALL_VERBOSE #options IPFIREWALL_VERBOSE_LIMIT=10 options IPFIREWALL_FORWARD # Adding kernel NAT options IPFIREWALL_NAT options LIBALIAS # Traffic shaping options DUMMYNET # Divert, i.e. for userspace NAT options IPDIVERT # This is for OpenBSD's pf firewall device pf device pflog # pf's QoS - ALTQ options ALTQ options ALTQ_CBQ # Class Bases Queuing (CBQ) options ALTQ_RED # Random Early Detection (RED) options ALTQ_RIO # RED In/Out options ALTQ_HFSC # Hierarchical Packet Scheduler (HFSC) options ALTQ_PRIQ # Priority Queuing (PRIQ) options ALTQ_NOPCC # Required for SMP build # Pretty console # Manual can be found here http://forums.freebsd.org/showthread.php?t=6134 #options VESA #options SC_PIXEL_MODE # Disable reboot on Ctrl Alt Del #options SC_DISABLE_REBOOT # Change normal|kernel messages color options SC_NORM_ATTR=(FG_GREEN|BG_BLACK) options SC_KERNEL_CONS_ATTR=(FG_YELLOW|BG_BLACK) # More scroll space options SC_HISTORY_SIZE=8192 # Adding hardware crypto device device crypto device cryptodev # Useful network interfaces device vlan device tap #Virtual Ethernet driver device gre #IP over IP tunneling device if_bridge #Bridge interface device pfsync #synchronization interface for PF device carp #Common Address Redundancy Protocol device enc #IPsec interface device lagg #Link aggregation interface device stf #IPv4-IPv6 port # Also for my notebook, but may be used with Opteron device amdtemp # Same for Intel processors device coretemp # man 4 cpuctl device cpuctl # CPU control pseudo-device # Support for ECMP. More than one route for destination # Works even with default route so one can use it as LB for two ISP # For now code is unstable and panics (panic: rtfree 2) on route deletions. #options RADIX_MPATH # Multicast routing #options MROUTING #options PIM # Debug & DTrace options KDB # Kernel debugger related code options KDB_TRACE # Print a stack trace for a panic options KDTRACE_FRAME # amd64-only(?) options KDTRACE_HOOKS # all architectures - enable general DTrace hooks #options DDB #options DDB_CTF # all architectures - kernel ELF linker loads CTF data # Adaptive spining in lockmgr (8.x+) # See http://www.mail-archive.com/[email protected]/msg10782.html options ADAPTIVE_LOCKMGRS # UTF-8 in console (8.x+) #options TEKEN_UTF8 # FreeBSD 8.1+ # Deadlock resolver thread # For additional information see http://www.mail-archive.com/[email protected]/msg18124.html # (FYI: "resolution" is panic so use with caution) #options DEADLKRES # Increase maximum size of Raw I/O and sendfile(2) readahead #options MAXPHYS=(1024*1024) #options MAXBSIZE=(1024*1024) # For scheduler debug enable following option. # Debug will be available via `kern.sched.stats` sysctl # For more information see http://svnweb.freebsd.org/base/head/sys/conf/NOTES?view=markup #options SCHED_STATS If you are tuning network for maximum performance you may wish to play with ifconfig options like: # You can list all capabilities via `ifconfig -m` ifconfig [-]rxcsum [-]txcsum [-]tso [-]lro mtu In case you've enabled DDB in kernel config, you should edit your /etc/ddb.conf and add something like this to enable automatic reboot (and textdump as bonus): script kdb.enter.panic=textdump set; capture on; show pcpu; bt; ps; alltrace; capture off; call doadump; reset script kdb.enter.default=textdump set; capture on; bt; ps; capture off; call doadump; reset And do not forget to add ddb_enable="YES" to /etc/rc.conf Since FreeBSD 9 you can select to enable/disable flowcontrol on your NIC: # See http://en.wikipedia.org/wiki/Ethernet_flow_control and # http://www.mail-archive.com/[email protected]/msg07927.html for additional info ifconfig bge0 media auto mediaopt flowcontrol PS. Also most of FreeBSD's limits can be monitored by # vmstat -z and # limits PPS. variety of network counters can be monitored via # netstat -s In FreeBSD-9 netstat's -Q option appeared, try following command to display netisr stats # netstat -Q PPPS. also see # man 7 tuning PPPPS. I wanted to thank FreeBSD community, especially author of nginx - Igor Sysoev, nginx-ru@ and FreeBSD-performance@ mailing lists for providing useful information about FreeBSD tuning. FreeBSD WIP * Whats cooking for FreeBSD 7? * Whats cooking for FreeBSD 8? * Whats cooking for FreeBSD 9? So here is the question: What tunings are you using on yours FreeBSD servers? You can also post your /etc/sysctl.conf, /boot/loader.conf, kernel options, etc with description of its' meaning (do not copy-paste from sysctl -d). Don't forget to specify server type (web, smb, gateway, etc) Let's share experience!

    Read the article

  • Keyboard for programmers

    - by Robert Höglund
    I'm trying to improve my working environment and I'm still searching for that perfect keyboard that practically types bug-free code all by itself. At the moment I'm using a Logitech Wave for my Windows need and an Apple Wireless Keyboard (the one without a numeric keypad) when doing OS X stuff. I'm quite happy with the Logitech Wave but I would prefer one without all the extra multimedia buttons. What I like most about the Apple Wireless Keyboard is that it is very similar to the Macbook's keyboard which for me makes it easier to write code when on my Macbook. What kind of keyboard would you recommend for going all out writing code until your fingers bleed? I have remapped the Caps Lock key to Ctrl which after a while feels really good, until I have to sit at another computer or when someone at work is going to show me something on my computer. Are there other little keyboard tricks that you use to get a little bit more productive? I have looked into switching to Dvorak but I have decided it's not for me.

    Read the article

  • Java2D OpenGL Hardware Acceleration Doesn't Work

    - by Aaron
    It doesn't work with OpenGL with even the simplest of programs. Here is what I am doing.. java -Dsun.java2d.opengl=True -jar Java2Demo.jar (Java2Demo.jar is usually included with the JDK..) The text output is: OpenGL pipeline enabled for default config on screen 0 When I don't pass in the above VM argument things work fine (but slowly). When I do pass in the above argument nothing shows up... If I move the window around it captures whatever image it was on top of and jumbles it into nonsense. I'm running Windows XP Pro SP3 (Microsoft Windows XP [Version 5.1.2600]) (under Parallels on OS X 10.5.8) I used "Geeks3D GPU Caps Viewer" to tell me I have Open GL version: 2.0 NVIDIA-1.5.48 I have tried this with two version of the JVM. First: java version "1.6.0_13" Java(TM) SE Runtime Environment (build 1.6.0_13-b03) Java HotSpot(TM) Client VM (build 11.3-b02, mixed mode) and second: java version "1.6.0_20" Java(TM) SE Runtime Environment (build 1.6.0_20-b02) Java HotSpot(TM) Client VM (build 16.3-b01, mixed mode, sharing)

    Read the article

  • RegEx: Split String at Capitalized Letters and Non-capitalized letters to Create Small Cap Fonts

    - by Otaku
    So i've purposefully stayed away from RegEx as just looking at it kills me...ugh. But now I need it and could really use some help to do this in .NET (C# or VB.NET). I need to split a string based on capitalization or lack thereof. For example: I'm not upPercase "I" "'m not up" "P" "ercase" or FBI Agent Winters "FBI A" "gent " "W" "inters" The reason I'm doing this is to manually create small caps, in which non-capitalized strings will be sent to uppercase and their font size made 80% of the original font size. Appreciate any help that could be provided here.

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >