Search Results

Search found 3511 results on 141 pages for 'const correctness'.

Page 37/141 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • Qtimer not timing out QT, C++

    - by realz
    Hi, I am learning C++ and using QT. I have a small program in which I am trying to update the text of the PushButton every second. The label being current time. I have a timer that should time out every second, but seems like it never does. here's the code. Header File #ifndef _HELLOFORM_H #define _HELLOFORM_H #include "ui_HelloForm.h" class HelloForm : public QDialog { public: HelloForm(); virtual ~HelloForm(); public slots: void textChanged(const QString& text); void updateCaption(); private: Ui::HelloForm widget; }; #endif /* _HELLOFORM_H */ CPP file #include "HelloForm.h" #include <QTimer> #include <QtGui/QPushButton> #include <QTime> HelloForm::HelloForm(){ widget.setupUi(this); widget.pushButton->setText(QTime::currentTime().toString()); widget.pushButton->setFont(QFont( "Times", 9, QFont::Bold ) ); QTimer *timer = new QTimer(this); connect(timer, SIGNAL(timeout()), SLOT(updateCaption())); timer->start(1000); connect(widget.pushButton, SIGNAL(clicked()), qApp, SLOT(quit()) ); connect(widget.nameEdit, SIGNAL(textChanged(const QString&)), this, SLOT(textChanged(const QString&))); } HelloForm::~HelloForm() { } void HelloForm::textChanged(const QString& text) { if (0 < text.trimmed().length()) { widget.helloEdit->setText("Hello " + text.trimmed() + "!"); } else { widget.helloEdit->clear(); } } void HelloForm::updateCaption() { QString myVar; myVar = QTime::currentTime().toString(); widget.pushButton->setText(myVar); } Any help will be greatly appreciated... The PushButton's text never changes...

    Read the article

  • I just wanted to DES 4096 bytes of data with a 128 bits key...

    - by badp
    ...and what the nice folks at OpenSSL gratiously provide me with is this. :) Now, since you shouldn't be guessing when using cryptography, I come here for confirmation: what is the function call I want to use? What I understood A 128 bits key is 16 byte large, so I'll need double DES (2 × 8 byte). This leaves me with only a few function calls: void DES_ede2_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc); void DES_ede2_cbc_encrypt(const unsigned char *input, unsigned char *output, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_cblock *ivec, int enc); void DES_ede2_cfb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc); void DES_ede2_ofb64_encrypt(const unsigned char *in, unsigned char *out, long length, DES_key_schedule *ks1, DES_key_schedule *ks2, DES_cblock *ivec, int *num); In this case, I guess the function I want to call DES_ede2_cfb64_encrypt, although I'm not so sure -- I definitely don't need padding here and I'd have to care about what ivec and num are, and how I want to generate them... What am I missing?

    Read the article

  • Ways to make (relatively) safe assumptions about the type of concrete subclasses?

    - by Kylotan
    I have an interface (defined as a abstract base class) that looks like this: class AbstractInterface { public: bool IsRelatedTo(const AbstractInterface& other) const = 0; } And I have an implementation of this (constructors etc omitted): class ConcreteThing { public: bool IsRelatedTo(const AbstractInterface& other) const { return m_ImplObject.has_relationship_to(other.m_ImplObject); } private: ImplementationObject m_ImplObject; } The AbstractInterface forms an interface in Project A, and the ConcreteThing lives in Project B as an implementation of that interface. This is so that code in Project A can access data from Project B without having a direct dependency on it - Project B just has to implement the correct interface. Obviously the line in the body of the IsRelatedTo function cannot compile - that instance of ConcreteThing has an m_ImplObject member, but it can't assume that all AbstractInterfaces do, including the other argument. In my system, I can actually assume that all implementations of AbstractInterface are instances of ConcreteThing (or subclasses thereof), but I'd prefer not to be casting the object to the concrete type in order to get at the private member, or encoding that assumption in a way that will crash without a diagnostic later if this assumption ceases to hold true. I cannot modify ImplementationObject, but I can modify AbstractInterface and ConcreteThing. I also cannot use the standard RTTI mechanism for checking a type prior to casting, or use dynamic_cast for a similar purpose. I have a feeling that I might be able to overload IsRelatedTo with a ConcreteThing argument, but I'm not sure how to call it via the base IsRelatedTo(AbstractInterface) method. It wouldn't get called automatically as it's not a strict reimplementation of that method. Is there a pattern for doing what I want here, allowing me to implement the IsRelatedTo function via ImplementationObject::has_relationship_to(ImplementationObject), without risky casts? (Also, I couldn't think of a good question title - please change it if you have a better one.)

    Read the article

  • Operator+ for a subtype of a template classe.

    - by baol
    I have a template class that defines a subtype. I'm trying to define the binary operator+ as a template function, but the compiler cannot resolve the template version of the operator+. #include <iostream> template<typename other_type> struct c { c(other_type v) : cs(v) {} struct subtype { subtype(other_type v) : val(v) {} other_type val; } cs; }; template<typename other_type> typename c<other_type>::subtype operator+(const typename c<other_type>::subtype& left, const typename c<other_type>::subtype& right) { return typename c<other_type>::subtype(left.val + right.val); } // This one works // c<a>::subtype operator+(const c<a>::subtype& left, // const c<a>::subtype& right) // { return c<a>::subtype(left.val + right.val); } int main() { c<int> c1 = 1; c<int> c2 = 2; c<int>::subtype cs3 = c1.cs + c2.cs; std::cerr << cs3.val << std::endl; } I think the reason is because the compiler (g++4.3) cannot guess the template type so it's searching for operator+<int> instead of operator+. What's the reason for that? What elegant solution can you suggest?

    Read the article

  • Imbricated C++ template

    - by gregseth
    I have the following pattern: template <int a, int b> class MyClass { template <int c> MyClass<a, c> &operator*(MyClass<c, b> const &other) const; }; // ../.. template <int a, int b> template <int c> MyClass<a, c> &MyClass<a, b>::operator*(MyClass<c, b> const &other) const { MyClass<a, c> result; // ..do stuff.. return result; } It doesn't compile, the error message is Error C2975. invalid template argument 'number', constant expression expected. If I replace template <int c> by template <int c, int d> and use it accordignly, it works fine. But I want d to be the same value as b. My questions: Why the example doesn't work? How can I enforce d to be the same than b? Thanks.

    Read the article

  • Efficiently get the size of a parameter pack up to a certain index

    - by NmdMystery
    I want to be able to determine the number of bytes that are in a subset of a parameter pack from 0 to a given index. Right now I'm using a non-constexpr way of doing this. Below is my code: template <size_t index, typename... args> struct pack_size_index; template <size_t index, typename type_t, typename... args> struct pack_size_index <index, type_t, args...> { static const size_t index_v = index; static const size_t value(void) { if (index_v > 0) { return sizeof(type_t) + pack_size_index<index - 1, args...>::value(); } return 0; } }; template <size_t index> struct pack_size_index <index> { static const size_t index_v = index; static const size_t value(void) { return 0; } }; Usage: //output: 5 (equal to 1 + 4) std::cout << pack_size_index<2, bool, float, int, double>::value() << std::endl; //output: 20 (equal to 8 + 8 + 4) std::cout << pack_size_index<3, double, double, float, int>::value() << std::endl; This gets the job done, but this uses runtime comparison and the resulting executable increases in size rapidly whenever this is used. What's a less expensive way of doing this?

    Read the article

  • how to change the image on click from database

    - by iosdev
    In my application i having multiple image in sq lite database,Since i want to change to the next image on button click,Here my code, -(void)Readthesqlitefile:(NSInteger *)sno { sqlite3 *database;//database object NSString *docpath=[self doccumentspath];//get sqlite path const char *ch=[docpath UTF8String];//string to constant char UTF8string main part to connect DB if (sqlite3_open(ch, &database)==SQLITE_OK) { const char *chstmt="SELECT * FROM animal where rowid= = %d",sno; sqlite3_stmt *sqlstmt;//to execute the above statement if (sqlite3_prepare_v2(database, chstmt, -1, &sqlstmt, NULL)==SQLITE_OK) { while (sqlite3_step(sqlstmt)==SQLITE_ROW) { const char *Bname=(char *)sqlite3_column_text(sqlstmt, 0); //converting const char to nsstring NSString *Bndname=[NSString stringWithFormat:@"%s",Bname]; NSLog(@"Brand Names=%@",Bndname); lb1.text=[NSString stringWithFormat:Bndname]; NSUInteger legnt=sqlite3_column_bytes(sqlstmt, 1); if (legnt>0) { NSData *dt=[NSData dataWithBytes:sqlite3_column_blob(sqlstmt, 1) length:legnt]; clsimg=[UIImage imageWithData:dt];//converting data to image imager.image=clsimg; } else { clsimg=nil; } } } sqlite3_finalize(sqlstmt); } sqlite3_close(database); } Button click function -(IBAction)changenext { int j; for (j=1; j<10; j++) { [self Readthesqlitefile:j]; } } its is not working pls help me to solve it out?

    Read the article

  • How can I speed-up this loop (in C)?

    - by splicer
    Hi! I'm trying to parallelize a convolution function in C. Here's the original function which convolves two arrays of 64-bit floats: void convolve(const Float64 *in1, UInt32 in1Len, const Float64 *in2, UInt32 in2Len, Float64 *results) { UInt32 i, j; for (i = 0; i < in1Len; i++) { for (j = 0; j < in2Len; j++) { results[i+j] += in1[i] * in2[j]; } } } In order to allow for concurrency (without semaphores), I created a function that computes the result for a particular position in the results array: void convolveHelper(const Float64 *in1, UInt32 in1Len, const Float64 *in2, UInt32 in2Len, Float64 *result, UInt32 outPosition) { UInt32 i, j; for (i = 0; i < in1Len; i++) { if (i > outPosition) break; j = outPosition - i; if (j >= in2Len) continue; *result += in1[i] * in2[j]; } } The problem is, using convolveHelper slows down the code about 3.5 times (when running on a single thread). Any ideas on how I can speed-up convolveHelper, while maintaining thread safety?

    Read the article

  • insertvalue function in stack class is not calling when pointing by smartpointer class? please expai

    - by user323422
    template< class Type > class cStack { Type *m_array; int m_Top; int m_Size; public:cStack(); cStack(const Type&); cStack(const cStack<Type> &); bool Is_Full(); bool Is_Empty(); void InsertValue(const Type&); void RemeoveValue(); ~cStack(); }; template< class Type > class Smartpointer { cStack<Type> *sPtr; public: Smartpointer(); Smartpointer(const Type&); Type* operator->(); Type& operator*(); }; int main() { Smartpointer<int> sptr(1); sptr->InsertValue(2);//its not calling insertvalue } }

    Read the article

  • C++0x Smart Pointer Comparisons: Inconsistent, what's the rationale?

    - by GManNickG
    In C++0x (n3126), smart pointers can be compared, both relationally and for equality. However, the way this is done seems inconsistent to me. For example, shared_ptr defines operator< be equivalent to: template <typename T, typename U> bool operator<(const shared_ptr<T>& a, const shared_ptr<T>& b) { return std::less<void*>()(a.get(), b.get()); } Using std::less provides total ordering with respect to pointer values, unlike a vanilla relational pointer comparison, which is unspecified. However, unique_ptr defines the same operator as: template <typename T1, typename D1, typename T2, typename D2> bool operator<(const unique_ptr<T1, D1>& a, const unique_ptr<T2, D2>& b) { return a.get() < b.get(); } It also defined the other relational operators in similar fashion. Why the change in method and "completeness"? That is, why does shared_ptr use std::less while unique_ptr uses the built-in operator<? And why doesn't shared_ptr also provide the other relational operators, like unique_ptr? I can understand the rationale behind either choice: with respect to method: it represents a pointer so just use the built-in pointer operators, versus it needs to be usable within an associative container so provide total ordering (like a vanilla pointer would get with the default std::less predicate template argument) with respect to completeness: it represents a pointer so provide all the same comparisons as a pointer, versus it is a class type and only needs to be less-than comparable to be used in an associative container, so only provide that requirement But I don't see why the choice changes depending on the smart pointer type. What am I missing? Bonus/related: std::shared_ptr seems to have followed from boost::shared_ptr, and the latter omits the other relational operators "by design" (and so std::shared_ptr does too). Why is this?

    Read the article

  • tile_static, tile_barrier, and tiled matrix multiplication with C++ AMP

    - by Daniel Moth
    We ended the previous post with a mechanical transformation of the C++ AMP matrix multiplication example to the tiled model and in the process introduced tiled_index and tiled_grid. This is part 2. tile_static memory You all know that in regular CPU code, static variables have the same value regardless of which thread accesses the static variable. This is in contrast with non-static local variables, where each thread has its own copy. Back to C++ AMP, the same rules apply and each thread has its own value for local variables in your lambda, whereas all threads see the same global memory, which is the data they have access to via the array and array_view. In addition, on an accelerator like the GPU, there is a programmable cache, a third kind of memory type if you'd like to think of it that way (some call it shared memory, others call it scratchpad memory). Variables stored in that memory share the same value for every thread in the same tile. So, when you use the tiled model, you can have variables where each thread in the same tile sees the same value for that variable, that threads from other tiles do not. The new storage class for local variables introduced for this purpose is called tile_static. You can only use tile_static in restrict(direct3d) functions, and only when explicitly using the tiled model. What this looks like in code should be no surprise, but here is a snippet to confirm your mental image, using a good old regular C array // each tile of threads has its own copy of locA, // shared among the threads of the tile tile_static float locA[16][16]; Note that tile_static variables are scoped and have the lifetime of the tile, and they cannot have constructors or destructors. tile_barrier In amp.h one of the types introduced is tile_barrier. You cannot construct this object yourself (although if you had one, you could use a copy constructor to create another one). So how do you get one of these? You get it, from a tiled_index object. Beyond the 4 properties returning index objects, tiled_index has another property, barrier, that returns a tile_barrier object. The tile_barrier class exposes a single member, the method wait. 15: // Given a tiled_index object named t_idx 16: t_idx.barrier.wait(); 17: // more code …in the code above, all threads in the tile will reach line 16 before a single one progresses to line 17. Note that all threads must be able to reach the barrier, i.e. if you had branchy code in such a way which meant that there is a chance that not all threads could reach line 16, then the code above would be illegal. Tiled Matrix Multiplication Example – part 2 So now that we added to our understanding the concepts of tile_static and tile_barrier, let me obfuscate rewrite the matrix multiplication code so that it takes advantage of tiling. Before you start reading this, I suggest you get a cup of your favorite non-alcoholic beverage to enjoy while you try to fully understand the code. 01: void MatrixMultiplyTiled(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: static const int TS = 16; 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M,N,vC); 07: parallel_for_each(c.grid.tile< TS, TS >(), 08: [=] (tiled_index< TS, TS> t_idx) restrict(direct3d) 09: { 10: int row = t_idx.local[0]; int col = t_idx.local[1]; 11: float sum = 0.0f; 12: for (int i = 0; i < W; i += TS) { 13: tile_static float locA[TS][TS], locB[TS][TS]; 14: locA[row][col] = a(t_idx.global[0], col + i); 15: locB[row][col] = b(row + i, t_idx.global[1]); 16: t_idx.barrier.wait(); 17: for (int k = 0; k < TS; k++) 18: sum += locA[row][k] * locB[k][col]; 19: t_idx.barrier.wait(); 20: } 21: c[t_idx.global] = sum; 22: }); 23: } Notice that all the code up to line 9 is the same as per the changes we made in part 1 of tiling introduction. If you squint, the body of the lambda itself preserves the original algorithm on lines 10, 11, and 17, 18, and 21. The difference being that those lines use new indexing and the tile_static arrays; the tile_static arrays are declared and initialized on the brand new lines 13-15. On those lines we copy from the global memory represented by the array_view objects (a and b), to the tile_static vanilla arrays (locA and locB) – we are copying enough to fit a tile. Because in the code that follows on line 18 we expect the data for this tile to be in the tile_static storage, we need to synchronize the threads within each tile with a barrier, which we do on line 16 (to avoid accessing uninitialized memory on line 18). We also need to synchronize the threads within a tile on line 19, again to avoid the race between lines 14, 15 (retrieving the next set of data for each tile and overwriting the previous set) and line 18 (not being done processing the previous set of data). Luckily, as part of the awesome C++ AMP debugger in Visual Studio there is an option that helps you find such races, but that is a story for another blog post another time. May I suggest reading the next section, and then coming back to re-read and walk through this code with pen and paper to really grok what is going on, if you haven't already? Cool. Why would I introduce this tiling complexity into my code? Funny you should ask that, I was just about to tell you. There is only one reason we tiled our extent, had to deal with finding a good tile size, ensure the number of threads we schedule are correctly divisible with the tile size, had to use a tiled_index instead of a normal index, and had to understand tile_barrier and to figure out where we need to use it, and double the size of our lambda in terms of lines of code: the reason is to be able to use tile_static memory. Why do we want to use tile_static memory? Because accessing tile_static memory is around 10 times faster than accessing the global memory on an accelerator like the GPU, e.g. in the code above, if you can get 150GB/second accessing data from the array_view a, you can get 1500GB/second accessing the tile_static array locA. And since by definition you are dealing with really large data sets, the savings really pay off. We have seen tiled implementations being twice as fast as their non-tiled counterparts. Now, some algorithms will not have performance benefits from tiling (and in fact may deteriorate), e.g. algorithms that require you to go only once to global memory will not benefit from tiling, since with tiling you already have to fetch the data once from global memory! Other algorithms may benefit, but you may decide that you are happy with your code being 150 times faster than the serial-version you had, and you do not need to invest to make it 250 times faster. Also algorithms with more than 3 dimensions, which C++ AMP supports in the non-tiled model, cannot be tiled. Also note that in future releases, we may invest in making the non-tiled model, which already uses tiling under the covers, go the extra step and use tile_static memory on your behalf, but it is obviously way to early to commit to anything like that, and we certainly don't do any of that today. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Scheduling thread tiles with C++ AMP

    - by Daniel Moth
    This post assumes you are totally comfortable with, what some of us call, the simple model of C++ AMP, i.e. you could write your own matrix multiplication. We are now ready to explore the tiled model, which builds on top of the non-tiled one. Tiling the extent We know that when we pass a grid (which is just an extent under the covers) to the parallel_for_each call, it determines the number of threads to schedule and their index values (including dimensionality). For the single-, two-, and three- dimensional cases you can go a step further and subdivide the threads into what we call tiles of threads (others may call them thread groups). So here is a single-dimensional example: extent<1> e(20); // 20 units in a single dimension with indices from 0-19 grid<1> g(e);      // same as extent tiled_grid<4> tg = g.tile<4>(); …on the 3rd line we subdivided the single-dimensional space into 5 single-dimensional tiles each having 4 elements, and we captured that result in a concurrency::tiled_grid (a new class in amp.h). Let's move on swiftly to another example, in pictures, this time 2-dimensional: So we start on the left with a grid of a 2-dimensional extent which has 8*6=48 threads. We then have two different examples of tiling. In the first case, in the middle, we subdivide the 48 threads into tiles where each has 4*3=12 threads, hence we have 2*2=4 tiles. In the second example, on the right, we subdivide the original input into tiles where each has 2*2=4 threads, hence we have 4*3=12 tiles. Notice how you can play with the tile size and achieve different number of tiles. The numbers you pick must be such that the original total number of threads (in our example 48), remains the same, and every tile must have the same size. Of course, you still have no clue why you would do that, but stick with me. First, we should see how we can use this tiled_grid, since the parallel_for_each function that we know expects a grid. Tiled parallel_for_each and tiled_index It turns out that we have additional overloads of parallel_for_each that accept a tiled_grid instead of a grid. However, those overloads, also expect that the lambda you pass in accepts a concurrency::tiled_index (new in amp.h), not an index<N>. So how is a tiled_index different to an index? A tiled_index object, can have only 1 or 2 or 3 dimensions (matching exactly the tiled_grid), and consists of 4 index objects that are accessible via properties: global, local, tile_origin, and tile. The global index is the same as the index we know and love: the global thread ID. The local index is the local thread ID within the tile. The tile_origin index returns the global index of the thread that is at position 0,0 of this tile, and the tile index is the position of the tile in relation to the overall grid. Confused? Here is an example accompanied by a picture that hopefully clarifies things: array_view<int, 2> data(8, 6, p_my_data); parallel_for_each(data.grid.tile<2,2>(), [=] (tiled_index<2,2> t_idx) restrict(direct3d) { /* todo */ }); Given the code above and the picture on the right, what are the values of each of the 4 index objects that the t_idx variables exposes, when the lambda is executed by T (highlighted in the picture on the right)? If you can't work it out yourselves, the solution follows: t_idx.global       = index<2> (6,3) t_idx.local          = index<2> (0,1) t_idx.tile_origin = index<2> (6,2) t_idx.tile             = index<2> (3,1) Don't move on until you are comfortable with this… the picture really helps, so use it. Tiled Matrix Multiplication Example – part 1 Let's paste here the C++ AMP matrix multiplication example, bolding the lines we are going to change (can you guess what the changes will be?) 01: void MatrixMultiplyTiled_Part1(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M, N, vC); 07: parallel_for_each(c.grid, 08: [=](index<2> idx) restrict(direct3d) { 09: 10: int row = idx[0]; int col = idx[1]; 11: float sum = 0.0f; 12: for(int i = 0; i < W; i++) 13: sum += a(row, i) * b(i, col); 14: c[idx] = sum; 15: }); 16: } To turn this into a tiled example, first we need to decide our tile size. Let's say we want each tile to be 16*16 (which assumes that we'll have at least 256 threads to process, and that c.grid.extent.size() is divisible by 256, and moreover that c.grid.extent[0] and c.grid.extent[1] are divisible by 16). So we insert at line 03 the tile size (which must be a compile time constant). 03: static const int TS = 16; ...then we need to tile the grid to have tiles where each one has 16*16 threads, so we change line 07 to be as follows 07: parallel_for_each(c.grid.tile<TS,TS>(), ...that means that our index now has to be a tiled_index with the same characteristics as the tiled_grid, so we change line 08 08: [=](tiled_index<TS, TS> t_idx) restrict(direct3d) { ...which means, without changing our core algorithm, we need to be using the global index that the tiled_index gives us access to, so we insert line 09 as follows 09: index<2> idx = t_idx.global; ...and now this code just works and it is tiled! Closing thoughts on part 1 The process we followed just shows the mechanical transformation that can take place from the simple model to the tiled model (think of this as step 1). In fact, when we wrote the matrix multiplication example originally, the compiler was doing this mechanical transformation under the covers for us (and it has additional smarts to deal with the cases where the total number of threads scheduled cannot be divisible by the tile size). The point is that the thread scheduling is always tiled, even when you use the non-tiled model. But with this mechanical transformation, we haven't gained anything… Hint: our goal with explicitly using the tiled model is to gain even more performance. In the next post, we'll evolve this further (beyond what the compiler can automatically do for us, in this first release), so you can see the full usage of the tiled model and its benefits… Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • UV Atlas Generation and Seam Removal

    - by P. Avery
    I'm generating light maps for scene mesh objects using DirectX's UV Atlas Tool( D3DXUVAtlasCreate() ). I've succeeded in generating an atlas, however, when I try to render the mesh object using the atlas the seams are visible on the mesh. Below are images of a lightmap generated for a cube. Here is the code I use to generate a uv atlas for a cube: struct sVertexPosNormTex { D3DXVECTOR3 vPos, vNorm; D3DXVECTOR2 vUV; sVertexPosNormTex(){} sVertexPosNormTex( D3DXVECTOR3 v, D3DXVECTOR3 n, D3DXVECTOR2 uv ) { vPos = v; vNorm = n; vUV = uv; } ~sVertexPosNormTex() { } }; // create a light map texture to fill programatically hr = D3DXCreateTexture( pd3dDevice, 128, 128, 1, 0, D3DFMT_A8R8G8B8, D3DPOOL_MANAGED, &pLightmap ); if( FAILED( hr ) ) { DebugStringDX( "Main", "Failed to D3DXCreateTexture( lightmap )", __LINE__, hr ); return hr; } // get the zero level surface from the texture IDirect3DSurface9 *pS = NULL; pLightmap->GetSurfaceLevel( 0, &pS ); // clear surface pd3dDevice->ColorFill( pS, NULL, D3DCOLOR_XRGB( 0, 0, 0 ) ); // load a sample mesh DWORD dwcMaterials = 0; LPD3DXBUFFER pMaterialBuffer = NULL; V_RETURN( D3DXLoadMeshFromX( L"cube3.x", D3DXMESH_MANAGED, pd3dDevice, &pAdjacency, &pMaterialBuffer, NULL, &dwcMaterials, &g_pMesh ) ); // generate adjacency DWORD *pdwAdjacency = new DWORD[ 3 * g_pMesh->GetNumFaces() ]; g_pMesh->GenerateAdjacency( 1e-6f, pdwAdjacency ); // create light map coordinates LPD3DXMESH pMesh = NULL; LPD3DXBUFFER pFacePartitioning = NULL, pVertexRemapArray = NULL; FLOAT resultStretch = 0; UINT numCharts = 0; hr = D3DXUVAtlasCreate( g_pMesh, 0, 0, 128, 128, 3.5f, 0, pdwAdjacency, NULL, NULL, NULL, NULL, NULL, 0, &pMesh, &pFacePartitioning, &pVertexRemapArray, &resultStretch, &numCharts ); if( SUCCEEDED( hr ) ) { // release and set mesh SAFE_RELEASE( g_pMesh ); g_pMesh = pMesh; // write mesh to file hr = D3DXSaveMeshToX( L"cube4.x", g_pMesh, 0, ( const D3DXMATERIAL* )pMaterialBuffer->GetBufferPointer(), NULL, dwcMaterials, D3DXF_FILEFORMAT_TEXT ); if( FAILED( hr ) ) { DebugStringDX( "Main", "Failed to D3DXSaveMeshToX() at OnD3D9CreateDevice()", __LINE__, hr ); } // fill the the light map hr = BuildLightmap( pS, g_pMesh ); if( FAILED( hr ) ) { DebugStringDX( "Main", "Failed to BuildLightmap()", __LINE__, hr ); } } else { DebugStringDX( "Main", "Failed to D3DXUVAtlasCreate() at OnD3D9CreateDevice()", __LINE__, hr ); } SAFE_RELEASE( pS ); SAFE_DELETE_ARRAY( pdwAdjacency ); SAFE_RELEASE( pFacePartitioning ); SAFE_RELEASE( pVertexRemapArray ); SAFE_RELEASE( pMaterialBuffer ); Here is code to fill lightmap texture: HRESULT BuildLightmap( IDirect3DSurface9 *pS, LPD3DXMESH pMesh ) { HRESULT hr = S_OK; // validate lightmap texture surface and mesh if( !pS || !pMesh ) return E_POINTER; // lock the mesh vertex buffer sVertexPosNormTex *pV = NULL; pMesh->LockVertexBuffer( D3DLOCK_READONLY, ( void** )&pV ); // lock the mesh index buffer WORD *pI = NULL; pMesh->LockIndexBuffer( D3DLOCK_READONLY, ( void** )&pI ); // get the lightmap texture surface description D3DSURFACE_DESC desc; pS->GetDesc( &desc ); // lock the surface rect to fill with color data D3DLOCKED_RECT rct; hr = pS->LockRect( &rct, NULL, 0 ); if( FAILED( hr ) ) { DebugStringDX( "main.cpp:", "Failed to IDirect3DTexture9::LockRect()", __LINE__, hr ); return hr; } // iterate the pixels of the lightmap texture // check each pixel to see if it lies between the uv coordinates of a cube face BYTE *pBuffer = ( BYTE* )rct.pBits; for( UINT y = 0; y < desc.Height; ++y ) { BYTE* pBufferRow = ( BYTE* )pBuffer; for( UINT x = 0; x < desc.Width * 4; x+=4 ) { // determine the pixel's uv coordinate D3DXVECTOR2 p( ( ( float )x / 4.0f ) / ( float )desc.Width + 0.5f / 128.0f, y / ( float )desc.Height + 0.5f / 128.0f ); // for each face of the mesh // check to see if the pixel lies within the face's uv coordinates for( UINT i = 0; i < 3 * pMesh->GetNumFaces(); i +=3 ) { sVertexPosNormTex v[ 3 ]; v[ 0 ] = pV[ pI[ i + 0 ] ]; v[ 1 ] = pV[ pI[ i + 1 ] ]; v[ 2 ] = pV[ pI[ i + 2 ] ]; if( TexcoordIsWithinBounds( v[ 0 ].vUV, v[ 1 ].vUV, v[ 2 ].vUV, p ) ) { // the pixel lies b/t the uv coordinates of a cube face // light contribution functions aren't needed yet //D3DXVECTOR3 vPos = TexcoordToPos( v[ 0 ].vPos, v[ 1 ].vPos, v[ 2 ].vPos, v[ 0 ].vUV, v[ 1 ].vUV, v[ 2 ].vUV, p ); //D3DXVECTOR3 vNormal = v[ 0 ].vNorm; // set the color of this pixel red( for demo ) BYTE ba[] = { 0, 0, 255, 255, }; //ComputeContribution( vPos, vNormal, g_sLight, ba ); // copy the byte array into the light map texture memcpy( ( void* )&pBufferRow[ x ], ( void* )ba, 4 * sizeof( BYTE ) ); } } } // go to next line of the texture pBuffer += rct.Pitch; } // unlock the surface rect pS->UnlockRect(); // unlock mesh vertex and index buffers pMesh->UnlockIndexBuffer(); pMesh->UnlockVertexBuffer(); // write the surface to file hr = D3DXSaveSurfaceToFile( L"LightMap.jpg", D3DXIFF_JPG, pS, NULL, NULL ); if( FAILED( hr ) ) DebugStringDX( "Main.cpp", "Failed to D3DXSaveSurfaceToFile()", __LINE__, hr ); return hr; } bool TexcoordIsWithinBounds( const D3DXVECTOR2 &t0, const D3DXVECTOR2 &t1, const D3DXVECTOR2 &t2, const D3DXVECTOR2 &p ) { // compute vectors D3DXVECTOR2 v0 = t1 - t0, v1 = t2 - t0, v2 = p - t0; float f00 = D3DXVec2Dot( &v0, &v0 ); float f01 = D3DXVec2Dot( &v0, &v1 ); float f02 = D3DXVec2Dot( &v0, &v2 ); float f11 = D3DXVec2Dot( &v1, &v1 ); float f12 = D3DXVec2Dot( &v1, &v2 ); // Compute barycentric coordinates float invDenom = 1 / ( f00 * f11 - f01 * f01 ); float fU = ( f11 * f02 - f01 * f12 ) * invDenom; float fV = ( f00 * f12 - f01 * f02 ) * invDenom; // Check if point is in triangle if( ( fU >= 0 ) && ( fV >= 0 ) && ( fU + fV < 1 ) ) return true; return false; } Screenshot Lightmap I believe the problem comes from the difference between the lightmap uv coordinates and the pixel center coordinates...for example, here are the lightmap uv coordinates( generated by D3DXUVAtlasCreate() ) for a specific face( tri ) within the mesh, keep in mind that I'm using the mesh uv coordinates to write the pixels for the texture: v[ 0 ].uv = D3DXVECTOR2( 0.003581, 0.295631 ); v[ 1 ].uv = D3DXVECTOR2( 0.003581, 0.003581 ); v[ 2 ].uv = D3DXVECTOR2( 0.295631, 0.003581 ); the lightmap texture size is 128 x 128 pixels. The upper-left pixel center coordinates are: float halfPixel = 0.5 / 128 = 0.00390625; D3DXVECTOR2 pixelCenter = D3DXVECTOR2( halfPixel, halfPixel ); will the mapping and sampling of the lightmap texture will require that an offset be taken into account or that the uv coordinates are snapped to the pixel centers..? ...Any ideas on the best way to approach this situation would be appreciated...What are the common practices?

    Read the article

  • Why does C qicksort function implementation works much slower (tape comparations, tape swapping) than bobble sort function?

    - by Artur Mustafin
    I'm going to implement a toy tape "mainframe" for a students, showing the quickness of "quicksort" class functions (recursive or not, does not really matters, due to the slow hardware, and well known stack reversal techniques) comparatively to the "bubblesort" function class, so, while I'm clear about the hardware implementation ans controllers, i guessed that quicksort function is much faster that other ones in terms of sequence, order and comparation distance (it is much faster to rewind the tape from the middle than from the very end, because of different speed of rewind). Unfortunately, this is not the true, this simple "bubble" code shows great improvements comparatively to the "quicksort" functions in terms of comparison distances, direction and number of comparisons and writes. So I have 3 questions: Does I have mistaken in my implememtation of quicksort function? Does I have mistaken in my implememtation of bubblesoft function? If not, why the "bubblesort" function is works much faster in (comparison and write operations) than "quicksort" function? I already have a "quicksort" function: void quicksort(float *a, long l, long r, const compare_function& compare) { long i=l, j=r, temp, m=(l+r)/2; if (l == r) return; if (l == r-1) { if (compare(a, l, r)) { swap(a, l, r); } return; } if (l < r-1) { while (1) { i = l; j = r; while (i < m && !compare(a, i, m)) i++; while (m < j && !compare(a, m, j)) j--; if (i >= j) { break; } swap(a, i, j); } if (l < m) quicksort(a, l, m, compare); if (m < r) quicksort(a, m, r, compare); return; } } and the kind of my own implememtation of the "bubblesort" function: void bubblesort(float *a, long l, long r, const compare_function& compare) { long i, j, k; if (l == r) { return; } if (l == r-1) { if (compare(a, l, r)) { swap(a, l, r); } return; } if (l < r-1) { while(l < r) { i = l; j = l; while (i < r) { i++; if (!compare(a, j, i)) { continue; } j = i; } if (l < j) { swap(a, l, j); } l++; i = r; k = r; while(l < i) { i--; if (!compare(a, i, k)) { continue; } k = i; } if (k < r) { swap(a, k, r); } r--; } return; } } I have used this sort functions in a test sample code, like this: #include <stdio.h> #include <stdlib.h> #include <math.h> #include <conio.h> long swap_count; long compare_count; typedef long (*compare_function)(float *, long, long ); typedef void (*sort_function)(float *, long , long , const compare_function& ); void init(float *, long ); void print(float *, long ); void sort(float *, long, const sort_function& ); void swap(float *a, long l, long r); long less(float *a, long l, long r); long greater(float *a, long l, long r); void bubblesort(float *, long , long , const compare_function& ); void quicksort(float *, long , long , const compare_function& ); void main() { int n; printf("n="); scanf("%d",&n); printf("\r\n"); long i; float *a = (float *)malloc(n*n*sizeof(float)); sort(a, n, &bubblesort); print(a, n); sort(a, n, &quicksort); print(a, n); free(a); } long less(float *a, long l, long r) { compare_count++; return *(a+l) < *(a+r) ? 1 : 0; } long greater(float *a, long l, long r) { compare_count++; return *(a+l) > *(a+r) ? 1 : 0; } void swap(float *a, long l, long r) { swap_count++; float temp; temp = *(a+l); *(a+l) = *(a+r); *(a+r) = temp; } float tg(float x) { return tan(x); } float ctg(float x) { return 1.0/tan(x); } void init(float *m,long n) { long i,j; for (i = 0; i < n; i++) { for (j=0; j< n; j++) { m[i + j*n] = tg(0.2*(i+1)) + ctg(0.3*(j+1)); } } } void print(float *m, long n) { long i, j; for(i = 0; i < n; i++) { for(j = 0; j < n; j++) { printf(" %5.1f", m[i + j*n]); } printf("\r\n"); } printf("\r\n"); } void sort(float *a, long n, const sort_function& sort) { long i, sort_compare = 0, sort_swap = 0; init(a,n); for(i = 0; i < n*n; i+=n) { if (fmod (i / n, 2) == 0) { compare_count = 0; swap_count = 0; sort(a, i, i+n-1, &less); if (swap_count == 0) { compare_count = 0; sort(a, i, i+n-1, &greater); } sort_compare += compare_count; sort_swap += swap_count; } } printf("compare=%ld\r\n", sort_compare); printf("swap=%ld\r\n", sort_swap); printf("\r\n"); }

    Read the article

  • How can I use Boost::regex.hpp library in C++?

    - by MIH1406
    I tried to use Boost library but I failed, see my code: #include "listy.h" #include <boost/regex.hpp> using namespace boost; ListyCheck::ListyCheck() { } ListyCheck::~ListyCheck() { } bool ListyCheck::isValidItem(std::string &__item) { regex e("(\\d{4}[- ]){3}\\d{4}"); return regex_match(__item, e); } When I tried to compile it I get those messages: /usr/include/boost/regex/v4/regex_match.hpp:50: undefined reference to `boost::re_detail::perl_matcher<__gnu_cxx::__normal_iterator, std::allocator , std::allocator, std::allocator , boost::regex_traits ::match()' /usr/include/boost/regex/v4/basic_regex.hpp:425: undefined reference to `boost::basic_regex ::do_assign(char const*, char const*, unsigned int)' /usr/include/boost/regex/v4/perl_matcher.hpp:366: undefined reference to `boost::re_detail::perl_matcher<__gnu_cxx::__normal_iterator, std::allocator , std::allocator, std::allocator , boost::regex_traits ::construct_init(boost::basic_regex const&, boost::regex_constants::_match_flags)' etc...

    Read the article

  • Implement JNI listener.

    - by G B
    I have the following code in a c++ "listener class" (more or less), which calls some function of a Java object. I suspect there's a memory leak: JNIEnv *env = NULL; vm_->AttachCurrentThread(&env, NULL); const jclass cls = env->FindClass(...); const jmethodID meth = env->GetMethodID(...); const jobject obj = env->NewObject(cls, meth, ...); [ more code ] env->DeleteLocalRef(obj); My question is: should I also release the local reference of cls and meth? JNI Documentation isn't very clear about it.

    Read the article

  • Event Handlers Not Getting Called? - wxWidgets

    - by Alex
    Hello all, I'm working on a program for my C++ programming class, using wxWidgets. I'm having a huge problem in that my event handlers (I assume) are not getting called, because when I click on the button to trigger the event, nothing happens. My question is: Can you help me find the problem and explain why they would not be getting called? The event handlers OnAbout and OnQuit are working, just not OnCompute or OnClear. I'm really frustrated as I can't figure this out. Thanks a bunch in advance! #include "wx/wx.h" #include "time.h" #include <string> using std::string; // create object of Time class Time first; class App: public wxApp { virtual bool OnInit(); }; class MainPanel : public wxPanel { public: // Constructor for panel class // Constructs my panel class // Params - wxWindow pointer // no return type // pre-conditions: none // post-conditions: none MainPanel(wxWindow* parent); // OnCompute is the event handler for the Compute button // params - none // preconditions - none // postconditions - tasks will have been carried otu successfully // returns void void OnCompute(wxCommandEvent& WXUNUSED(event)); // OnClear is the event handler for the Clear button // params - none // preconditions - none // postconditions - all text areas will be cleared of data // returns void void OnClear(wxCommandEvent& WXUNUSED(event)); // Destructor for panel class // params none // preconditions - none // postconditions - none // no return type ~MainPanel( ); private: wxStaticText *startLabel; wxStaticText *endLabel; wxStaticText *pCLabel; wxStaticText *newEndLabel; wxTextCtrl *start; wxTextCtrl *end; wxTextCtrl *pC; wxTextCtrl *newEnd; wxButton *compute; wxButton *clear; DECLARE_EVENT_TABLE() }; class MainFrame: public wxFrame { private: wxPanel *mainPanel; public: MainFrame(const wxString& title, const wxPoint& pos, const wxSize& size); void OnQuit(wxCommandEvent& event); void OnAbout(wxCommandEvent& event); ~MainFrame(); DECLARE_EVENT_TABLE() }; enum { ID_Quit = 1, ID_About, BUTTON_COMPUTE = 100, BUTTON_CLEAR = 200 }; IMPLEMENT_APP(App) BEGIN_EVENT_TABLE(MainFrame, wxFrame) EVT_MENU(ID_Quit, MainFrame::OnQuit) EVT_MENU(ID_About, MainFrame::OnAbout) END_EVENT_TABLE() BEGIN_EVENT_TABLE(MainPanel, wxPanel) EVT_MENU(BUTTON_COMPUTE, MainPanel::OnCompute) EVT_MENU(BUTTON_CLEAR, MainPanel::OnClear) END_EVENT_TABLE() bool App::OnInit() { MainFrame *frame = new MainFrame( _("Good Guys Delivery Time Calculator"), wxPoint(50, 50), wxSize(450,340) ); frame->Show(true); SetTopWindow(frame); return true; } MainPanel::MainPanel(wxWindow* parent) : wxPanel(parent) { startLabel = new wxStaticText(this, -1, "Start Time:", wxPoint(75, 35)); start = new wxTextCtrl(this, -1, "", wxPoint(135, 35), wxSize(40, 21)); endLabel = new wxStaticText(this, -1, "End Time:", wxPoint(200, 35)); end = new wxTextCtrl(this, -1, "", wxPoint(260, 35), wxSize(40, 21)); pCLabel = new wxStaticText(this, -1, "Percent Change:", wxPoint(170, 85)); pC = new wxTextCtrl(this, -1, "", wxPoint(260, 85), wxSize(40, 21)); newEndLabel = new wxStaticText(this, -1, "New End Time:", wxPoint(180, 130)); newEnd = new wxTextCtrl(this, -1, "", wxPoint(260, 130), wxSize(40, 21)); compute = new wxButton(this, BUTTON_COMPUTE, "Compute", wxPoint(135, 185), wxSize(75, 35)); clear = new wxButton(this, BUTTON_CLEAR, "Clear", wxPoint(230, 185), wxSize(75, 35)); } MainPanel::~MainPanel() {} MainFrame::MainFrame(const wxString& title, const wxPoint& pos, const wxSize& size) : wxFrame( NULL, -1, title, pos, size ) { mainPanel = new MainPanel(this); wxMenu *menuFile = new wxMenu; menuFile->Append( ID_About, _("&About...") ); menuFile->AppendSeparator(); menuFile->Append( ID_Quit, _("E&xit") ); wxMenuBar *menuBar = new wxMenuBar; menuBar->Append( menuFile, _("&File") ); SetMenuBar( menuBar ); CreateStatusBar(); SetStatusText( _("Hi") ); } MainFrame::~MainFrame() {} void MainFrame::OnQuit(wxCommandEvent& WXUNUSED(event)) { Close(TRUE); } void MainFrame::OnAbout(wxCommandEvent& WXUNUSED(event)) { wxMessageBox( _("Alex Olson\nProject 11"), _("About"), wxOK | wxICON_INFORMATION, this); } void MainPanel::OnCompute(wxCommandEvent& WXUNUSED(event)) { int startT; int endT; int newEndT; double tD; wxString startTString = start->GetValue(); wxString endTString = end->GetValue(); startT = wxAtoi(startTString); endT = wxAtoi(endTString); pC->GetValue().ToDouble(&tD); first.SetStartTime(startT); first.SetEndTime(endT); first.SetTimeDiff(tD); try { first.ValidateData(); newEndT = first.ComputeEndTime(); *newEnd << newEndT; } catch (BaseException& e) { wxMessageBox(_(e.GetMessage()), _("Something Went Wrong!"), wxOK | wxICON_INFORMATION, this); } } void MainPanel::OnClear(wxCommandEvent& WXUNUSED(event)) { start->Clear(); end->Clear(); pC->Clear(); newEnd->Clear(); }

    Read the article

  • Should this immutable struct be a mutable class?

    - by ChaosPandion
    I showed this struct to a fellow programmer and they felt that it should be a mutable class. They felt it is inconvenient not to have null references and the ability to alter the object as required. I would really like to know if there are any other reasons to make this a mutable class. [Serializable] public struct PhoneNumber : ICloneable, IEquatable<PhoneNumber> { private const int AreaCodeShift = 54; private const int CentralOfficeCodeShift = 44; private const int SubscriberNumberShift = 30; private const int CentralOfficeCodeMask = 0x000003FF; private const int SubscriberNumberMask = 0x00003FFF; private const int ExtensionMask = 0x3FFFFFFF; private readonly ulong value; public int AreaCode { get { return UnmaskAreaCode(value); } } public int CentralOfficeCode { get { return UnmaskCentralOfficeCode(value); } } public int SubscriberNumber { get { return UnmaskSubscriberNumber(value); } } public int Extension { get { return UnmaskExtension(value); } } public PhoneNumber(ulong value) : this(UnmaskAreaCode(value), UnmaskCentralOfficeCode(value), UnmaskSubscriberNumber(value), UnmaskExtension(value), true) { } public PhoneNumber(int areaCode, int centralOfficeCode, int subscriberNumber) : this(areaCode, centralOfficeCode, subscriberNumber, 0, true) { } public PhoneNumber(int areaCode, int centralOfficeCode, int subscriberNumber, int extension) : this(areaCode, centralOfficeCode, subscriberNumber, extension, true) { } private PhoneNumber(int areaCode, int centralOfficeCode, int subscriberNumber, int extension, bool throwException) { value = 0; if (areaCode < 200 || areaCode > 989) { if (!throwException) return; throw new ArgumentOutOfRangeException("areaCode", areaCode, @"The area code portion must fall between 200 and 989."); } else if (centralOfficeCode < 200 || centralOfficeCode > 999) { if (!throwException) return; throw new ArgumentOutOfRangeException("centralOfficeCode", centralOfficeCode, @"The central office code portion must fall between 200 and 999."); } else if (subscriberNumber < 0 || subscriberNumber > 9999) { if (!throwException) return; throw new ArgumentOutOfRangeException("subscriberNumber", subscriberNumber, @"The subscriber number portion must fall between 0 and 9999."); } else if (extension < 0 || extension > 1073741824) { if (!throwException) return; throw new ArgumentOutOfRangeException("extension", extension, @"The extension portion must fall between 0 and 1073741824."); } else if (areaCode.ToString()[1] - 48 > 8) { if (!throwException) return; throw new ArgumentOutOfRangeException("areaCode", areaCode, @"The second digit of the area code cannot be greater than 8."); } else { value |= ((ulong)(uint)areaCode << AreaCodeShift); value |= ((ulong)(uint)centralOfficeCode << CentralOfficeCodeShift); value |= ((ulong)(uint)subscriberNumber << SubscriberNumberShift); value |= ((ulong)(uint)extension); } } public object Clone() { return this; } public override bool Equals(object obj) { return obj != null && obj.GetType() == typeof(PhoneNumber) && Equals((PhoneNumber)obj); } public bool Equals(PhoneNumber other) { return this.value == other.value; } public override int GetHashCode() { return value.GetHashCode(); } public override string ToString() { return ToString(PhoneNumberFormat.Separated); } public string ToString(PhoneNumberFormat format) { switch (format) { case PhoneNumberFormat.Plain: return string.Format(@"{0:D3}{1:D3}{2:D4} {3:#}", AreaCode, CentralOfficeCode, SubscriberNumber, Extension).Trim(); case PhoneNumberFormat.Separated: return string.Format(@"{0:D3}-{1:D3}-{2:D4} {3:#}", AreaCode, CentralOfficeCode, SubscriberNumber, Extension).Trim(); default: throw new ArgumentOutOfRangeException("format"); } } public ulong ToUInt64() { return value; } public static PhoneNumber Parse(string value) { var result = default(PhoneNumber); if (!TryParse(value, out result)) { throw new FormatException(string.Format(@"The string ""{0}"" could not be parsed as a phone number.", value)); } return result; } public static bool TryParse(string value, out PhoneNumber result) { result = default(PhoneNumber); if (string.IsNullOrEmpty(value)) { return false; } var index = 0; var numericPieces = new char[value.Length]; foreach (var c in value) { if (char.IsNumber(c)) { numericPieces[index++] = c; } } if (index < 9) { return false; } var numericString = new string(numericPieces); var areaCode = int.Parse(numericString.Substring(0, 3)); var centralOfficeCode = int.Parse(numericString.Substring(3, 3)); var subscriberNumber = int.Parse(numericString.Substring(6, 4)); var extension = 0; if (numericString.Length > 10) { extension = int.Parse(numericString.Substring(10)); } result = new PhoneNumber( areaCode, centralOfficeCode, subscriberNumber, extension, false ); return result.value == 0; } public static bool operator ==(PhoneNumber left, PhoneNumber right) { return left.Equals(right); } public static bool operator !=(PhoneNumber left, PhoneNumber right) { return !left.Equals(right); } private static int UnmaskAreaCode(ulong value) { return (int)(value >> AreaCodeShift); } private static int UnmaskCentralOfficeCode(ulong value) { return (int)((value >> CentralOfficeCodeShift) & CentralOfficeCodeMask); } private static int UnmaskSubscriberNumber(ulong value) { return (int)((value >> SubscriberNumberShift) & SubscriberNumberMask); } private static int UnmaskExtension(ulong value) { return (int)(value & ExtensionMask); } } public enum PhoneNumberFormat { Plain, Separated }

    Read the article

  • C++ Why is the converter constructor implicitly called?

    - by ShaChris23
    Why is the Child class's converter constructor called in the code below? I mean, it automatically converts Base to Child via the Child converter constructor. The code below compiles, but shouldn't it not compile since I haven't provided bool Child::operator!=(Base const&)? class Base { }; class Child : public Base { public: Child() {} Child(Base const& base_) : Base(base_) { std::cout <<"should never called!"; } bool operator!=(Child const&) { return true; } }; void main() { Base base; Child child; if(child != base) std::cout << "not equal"; else std::cout << "equal"; }

    Read the article

  • Operator overloading outside class

    - by bobobobo
    There are two ways to overload operators for a C++ class: Inside class class Vector2 { public: float x, y ; Vector2 operator+( const Vector2 & other ) { Vector2 ans ; ans.x = x + other.x ; ans.y = y + other.y ; return ans ; } } ; Outside class class Vector2 { public: float x, y ; } ; Vector2 operator+( const Vector2& v1, const Vector2& v2 ) { Vector2 ans ; ans.x = v1.x + v2.x ; ans.y = v1.y + v2.y ; return ans ; } (Apparently in C# you can only use the "outside class" method.) In C++, which way is more correct? Which is preferable?

    Read the article

  • ASPX ajax form post help

    - by StealthRT
    Hey all, i have this peice of code that allows a user to select a jpg image, resize it and uploads it to the server driectory. The problem being is that it reloads the aspx page when it saves the image. My question is-is there any way to do this same thing but with ajax so that it doesn't leave the page after submitting it? I've done this pleanty of times with classic asp pages but never with a aspx page. Here is the code for the ASPX page: <%@ Page Trace="False" Language="vb" aspcompat="false" debug="true" validateRequest="false"%> <%@ Import Namespace=System.Drawing %> <%@ Import Namespace=System.Drawing.Imaging %> <%@ Import Namespace=System.Drawing.Text %> <%@ Import Namespace=System %> <%@ Import Namespace=System.IO %> <%@ Import Namespace=System.Web %> <%@ Import Namespace=System.ServiceProcess %> <%@ Import Namespace=Microsoft.Data.Odbc %> <%@ Import Namespace=System.Data.Odbc %> <%@ Import Namespace=MySql.Data.MySqlClient %> <%@ Import Namespace=MySql.Data %> <%@ Import Namespace=System.Drawing.Drawing2D %> <%@ Import Namespace="System.Data" %> <%@ Import Namespace="System.Data.ADO" %> <%@ Import Namespace=ADODB %> <SCRIPT LANGUAGE="VBScript" runat="server"> const Lx = 200 const Ly = 60 const upload_dir = "/img/avatar/" const upload_original = "tmpAvatar" const upload_thumb = "thumb" const upload_max_size = 256 dim fileExt dim newWidth, newHeight as integer dim l2 dim fileFld as HTTPPostedFile Dim originalimg As System.Drawing.Image dim msg dim upload_ok as boolean </script> <% Dim theID, theEmail, maleOrFemale theID = Request.QueryString("ID") theEmail = Request.QueryString("eMail") maleOrFemale = Request.QueryString("MF") randomize() upload_ok = false if lcase(Request.ServerVariables("REQUEST_METHOD"))="post" then fileFld = request.files(0) if fileFld.ContentLength > upload_max_size * 1024 then msg = "Sorry, the image must be less than " & upload_max_size & "Kb" else try fileExt = System.IO.Path.GetExtension(fileFld.FileName).ToLower() if fileExt = ".jpg" then originalImg = System.Drawing.Image.FromStream(fileFld.InputStream) if originalImg.Height > Ly then newWidth = Ly * (originalImg.Width / originalImg.Height) newHeight = Ly end if Dim thumb As New Bitmap(newWidth, newHeight) Dim gr_dest As Graphics = Graphics.FromImage(thumb) dim sb = new SolidBrush(System.Drawing.Color.White) gr_dest.SmoothingMode = System.Drawing.Drawing2D.SmoothingMode.HighQuality gr_dest.CompositingQuality = System.Drawing.Drawing2D.CompositingQuality.HighQuality gr_dest.FillRectangle(sb, 0, 0, thumb.Width, thumb.Height) gr_dest.DrawImage(originalImg, 0, 0, thumb.Width, thumb.Height) try originalImg.save(Server.MapPath(upload_dir & upload_original & fileExt), originalImg.rawformat) thumb.save(Server.MapPath(upload_dir & theID & fileExt), originalImg.rawformat) msg = "Uploaded " & fileFld.FileName & " to " & Server.MapPath(upload_dir & upload_original & fileExt) upload_ok = true File.Delete(Server.MapPath(upload_dir & upload_original & fileExt)) catch msg = "Sorry, there was a problem saving your avatar. Please try again." end try if not thumb is nothing then thumb.Dispose() thumb = nothing end if else msg = "That image does not seem to be a JPG. Upload only JPG images." end if catch msg = "That image does not seem to be a JPG." end try end if if not originalImg is nothing then originalImg.Dispose() originalImg = nothing end if end if %><head> <meta http-equiv="pragma" content="no-cache" /> </head> <html> <script type="text/javascript" src="js/jquery-1.3.min.js"></script> <form enctype="multipart/form-data" method="post" runat="server" id="sendImg"> <input type="file" name="upload_file" id="upload_file" style="-moz-opacity: 0; opacity:0; filter: alpha(opacity=0); margin-top: 5px; float:left; cursor:pointer;" onChange="$('#sendImg').submit();" > <input type="submit" value="Upload" style="visibility:hidden; display:none;"> </form> </body> </html> Any help would be great! :o) David

    Read the article

  • Event Handlers Not Getting Called? - wxWidgets & C++

    - by Alex
    Hello all, I'm working on a program for my C++ programming class, using wxWidgets. I'm having a huge problem in that my event handlers (I assume) are not getting called, because when I click on the button to trigger the event, nothing happens. My question is: Can you help me find the problem and explain why they would not be getting called? The event handlers OnAbout and OnQuit are working, just not OnCompute or OnClear. I'm really frustrated as I can't figure this out. Thanks a bunch in advance! #include "wx/wx.h" #include "time.h" #include <string> using std::string; // create object of Time class Time first; class App: public wxApp { virtual bool OnInit(); }; class MainPanel : public wxPanel { public: // Constructor for panel class // Constructs my panel class // Params - wxWindow pointer // no return type // pre-conditions: none // post-conditions: none MainPanel(wxWindow* parent); // OnCompute is the event handler for the Compute button // params - none // preconditions - none // postconditions - tasks will have been carried otu successfully // returns void void OnCompute(wxCommandEvent& WXUNUSED(event)); // OnClear is the event handler for the Clear button // params - none // preconditions - none // postconditions - all text areas will be cleared of data // returns void void OnClear(wxCommandEvent& WXUNUSED(event)); // Destructor for panel class // params none // preconditions - none // postconditions - none // no return type ~MainPanel( ); private: wxStaticText *startLabel; wxStaticText *endLabel; wxStaticText *pCLabel; wxStaticText *newEndLabel; wxTextCtrl *start; wxTextCtrl *end; wxTextCtrl *pC; wxTextCtrl *newEnd; wxButton *compute; wxButton *clear; DECLARE_EVENT_TABLE() }; class MainFrame: public wxFrame { private: wxPanel *mainPanel; public: MainFrame(const wxString& title, const wxPoint& pos, const wxSize& size); void OnQuit(wxCommandEvent& event); void OnAbout(wxCommandEvent& event); ~MainFrame(); DECLARE_EVENT_TABLE() }; enum { ID_Quit = 1, ID_About, BUTTON_COMPUTE = 100, BUTTON_CLEAR = 200 }; IMPLEMENT_APP(App) BEGIN_EVENT_TABLE(MainFrame, wxFrame) EVT_MENU(ID_Quit, MainFrame::OnQuit) EVT_MENU(ID_About, MainFrame::OnAbout) END_EVENT_TABLE() BEGIN_EVENT_TABLE(MainPanel, wxPanel) EVT_MENU(BUTTON_COMPUTE, MainPanel::OnCompute) EVT_MENU(BUTTON_CLEAR, MainPanel::OnClear) END_EVENT_TABLE() bool App::OnInit() { MainFrame *frame = new MainFrame( _("Good Guys Delivery Time Calculator"), wxPoint(50, 50), wxSize(450,340) ); frame->Show(true); SetTopWindow(frame); return true; } MainPanel::MainPanel(wxWindow* parent) : wxPanel(parent) { startLabel = new wxStaticText(this, -1, "Start Time:", wxPoint(75, 35)); start = new wxTextCtrl(this, -1, "", wxPoint(135, 35), wxSize(40, 21)); endLabel = new wxStaticText(this, -1, "End Time:", wxPoint(200, 35)); end = new wxTextCtrl(this, -1, "", wxPoint(260, 35), wxSize(40, 21)); pCLabel = new wxStaticText(this, -1, "Percent Change:", wxPoint(170, 85)); pC = new wxTextCtrl(this, -1, "", wxPoint(260, 85), wxSize(40, 21)); newEndLabel = new wxStaticText(this, -1, "New End Time:", wxPoint(180, 130)); newEnd = new wxTextCtrl(this, -1, "", wxPoint(260, 130), wxSize(40, 21)); compute = new wxButton(this, BUTTON_COMPUTE, "Compute", wxPoint(135, 185), wxSize(75, 35)); clear = new wxButton(this, BUTTON_CLEAR, "Clear", wxPoint(230, 185), wxSize(75, 35)); } MainPanel::~MainPanel() {} MainFrame::MainFrame(const wxString& title, const wxPoint& pos, const wxSize& size) : wxFrame( NULL, -1, title, pos, size ) { mainPanel = new MainPanel(this); wxMenu *menuFile = new wxMenu; menuFile->Append( ID_About, _("&About...") ); menuFile->AppendSeparator(); menuFile->Append( ID_Quit, _("E&xit") ); wxMenuBar *menuBar = new wxMenuBar; menuBar->Append( menuFile, _("&File") ); SetMenuBar( menuBar ); CreateStatusBar(); SetStatusText( _("Hi") ); } MainFrame::~MainFrame() {} void MainFrame::OnQuit(wxCommandEvent& WXUNUSED(event)) { Close(TRUE); } void MainFrame::OnAbout(wxCommandEvent& WXUNUSED(event)) { wxMessageBox( _("Alex Olson\nProject 11"), _("About"), wxOK | wxICON_INFORMATION, this); } void MainPanel::OnCompute(wxCommandEvent& WXUNUSED(event)) { int startT; int endT; int newEndT; double tD; wxString startTString = start->GetValue(); wxString endTString = end->GetValue(); startT = wxAtoi(startTString); endT = wxAtoi(endTString); pC->GetValue().ToDouble(&tD); first.SetStartTime(startT); first.SetEndTime(endT); first.SetTimeDiff(tD); try { first.ValidateData(); newEndT = first.ComputeEndTime(); *newEnd << newEndT; } catch (BaseException& e) { wxMessageBox(_(e.GetMessage()), _("Something Went Wrong!"), wxOK | wxICON_INFORMATION, this); } } void MainPanel::OnClear(wxCommandEvent& WXUNUSED(event)) { start->Clear(); end->Clear(); pC->Clear(); newEnd->Clear(); }

    Read the article

  • Qt - drag and drop with graphics view framework

    - by David Davidson
    I'm trying to make a simple draggable item using the graphics framework. Here's the code for what I did so far: Widget class: class Widget : public QWidget { Q_OBJECT public: Widget(QWidget *parent = 0); ~Widget(); }; Widget::Widget(QWidget *parent) : QWidget(parent) { DragScene *scene = new DragScene(); DragView *view = new DragView(); QHBoxLayout *layout = new QHBoxLayout(); DragItem *item = new DragItem(); view->setAcceptDrops(true); scene->addItem(item); view->setScene(scene); layout->addWidget(view); this->setLayout(layout); } Widget::~Widget() { } DragView class: class DragView : public QGraphicsView { public: DragView(QWidget *parent = 0); }; DragView::DragView(QWidget *parent) : QGraphicsView(parent) { setRenderHints(QPainter::Antialiasing); } DragScene class: class DragScene : public QGraphicsScene { public: DragScene(QObject* parent = 0); protected: void dragEnterEvent(QGraphicsSceneDragDropEvent *event); void dragMoveEvent(QGraphicsSceneDragDropEvent *event); void dragLeaveEvent(QGraphicsSceneDragDropEvent *event); void dropEvent(QGraphicsSceneDragDropEvent *event); }; DragScene::DragScene(QObject* parent) : QGraphicsScene(parent) { } void DragScene::dragEnterEvent(QGraphicsSceneDragDropEvent *event){ } void DragScene::dragMoveEvent(QGraphicsSceneDragDropEvent *event){ } void DragScene::dragLeaveEvent(QGraphicsSceneDragDropEvent *event){ } void DragScene::dropEvent(QGraphicsSceneDragDropEvent *event){ qDebug() << event->pos(); event->acceptProposedAction(); DragItem *item = new DragItem(); this->addItem(item); item->setPos(event->pos()); } DragItem class: class DragItem : public QGraphicsItem { public: DragItem(QGraphicsItem *parent = 0); QRectF boundingRect() const; void paint(QPainter *painter, const QStyleOptionGraphicsItem *option, QWidget *widget = 0); protected: void mouseDoubleClickEvent(QGraphicsSceneMouseEvent *event); void mouseMoveEvent(QGraphicsSceneMouseEvent *event); void mousePressEvent(QGraphicsSceneMouseEvent *event); void mouseReleaseEvent(QGraphicsSceneMouseEvent *event); }; DragItem::DragItem(QGraphicsItem *parent) : QGraphicsItem(parent) { setFlag(QGraphicsItem::ItemIsMovable); } QRectF DragItem::boundingRect() const{ const QPointF *p0 = new QPointF(-10,-10); const QPointF *p1 = new QPointF(10,10); return QRectF(*p0,*p1); } void DragItem::paint(QPainter *painter, const QStyleOptionGraphicsItem *option, QWidget *widget){ if(painter == 0) painter = new QPainter(); painter->drawEllipse(QPoint(0,0),10,10); } void DragItem::mouseDoubleClickEvent(QGraphicsSceneMouseEvent *event){ } void DragItem::mouseMoveEvent(QGraphicsSceneMouseEvent *event){ } void DragItem::mousePressEvent(QGraphicsSceneMouseEvent *event){ QMimeData* mime = new QMimeData(); QDrag* drag = new QDrag(event->widget()); drag->setMimeData(mime); drag->exec(); } void DragItem::mouseReleaseEvent(QGraphicsSceneMouseEvent *event){ } main.cpp instantiates a Widget and shows it. When I try to drag the circle, the app just creates another circle over the original one, regardless of where I release the drag. qDebug() in DragScene's dropEvent() shows QPointF(0,0) everytime the drag ends. I'm having a hard time trying to understand exactly what I have to do, which classes I should subclass, which methods needs to be overriden, to make this work. The documentation on this isn't very detailed. I'd like to know how to make this work, and if there's some other, more comprehensive resource to learn about the graphics view framework, besides the official documentation (which is excellent btw, but it would be great if there was a more detailed treatise on the subject). EDIT: Following badgerr's advice, I replaced item-pos() in DragScene::dropEvent() with item-scenePos(), now the drop event creates a new circle in the drop site, which is more or less what I wanted. But the original circle is still in place, and while the drag is in progress, the item doesn't follow the mouse cursor. The QGraphicsSceneDragDropEvent documentation says that pos() should return the cursor position in relation to the view that sent the event, which, unless I got it wrong, shouldn't be (0,0) all the time. Weird. I've read in a forum post that you can use QDrag::setPixMap() to show something during the drag, and in examples I've seen pictures being set as pixmaps, but how do I make the pixmap just like the graphics item I'm supposed to be dragging?

    Read the article

  • Operator overloading C++ outside class

    - by bobobobo
    Well, so there are 2 ways to overload operators for a C++ class INSIDE CLASS class Vector2 { public: float x, y ; Vector2 operator+( const Vector2 & other ) { Vector2 ans ; ans.x = x + other.x ; ans.y = y + other.y ; return ans ; } } ; OUTSIDE CLASS class Vector2 { public: float x, y ; } ; Vector2 operator+( const Vector2& v1, const Vector2& v2 ) { Vector2 ans ; ans.x = v1.x + v2.x ; ans.y = v1.y + v2.y ; return ans ; } In C# apparently you can only use the OUTSIDE class method The question is, in C++, which is "morer-correcter?" Which is preferable? When is one way better than another?

    Read the article

  • C++ - Conway's Game of Life & Stepping Backwards

    - by Gabe
    I was able to create a version Conway's Game of Life that either stepped forward each click, or just ran forward using a timer. (I'm doing this using Qt.) Now, I need to be able to save all previous game grids, so that I can step backwards by clicking a button. I'm trying to use a stack, and it seems like I'm pushing the old gridcells onto the stack correctly. But when I run it in QT, the grids don't change when I click BACK. I've tried different things for the last three hours, to no avail. Any ideas? gridwindow.cpp - My problem should be in here somewhere. Probably the handleBack() func. #include <iostream> #include "gridwindow.h" using namespace std; // Constructor for window. It constructs the three portions of the GUI and lays them out vertically. GridWindow::GridWindow(QWidget *parent,int rows,int cols) : QWidget(parent) { QHBoxLayout *header = setupHeader(); // Setup the title at the top. QGridLayout *grid = setupGrid(rows,cols); // Setup the grid of colored cells in the middle. QHBoxLayout *buttonRow = setupButtonRow(); // Setup the row of buttons across the bottom. QVBoxLayout *layout = new QVBoxLayout(); // Puts everything together. layout->addLayout(header); layout->addLayout(grid); layout->addLayout(buttonRow); setLayout(layout); } // Destructor. GridWindow::~GridWindow() { delete title; } // Builds header section of the GUI. QHBoxLayout* GridWindow::setupHeader() { QHBoxLayout *header = new QHBoxLayout(); // Creates horizontal box. header->setAlignment(Qt::AlignHCenter); this->title = new QLabel("CONWAY'S GAME OF LIFE",this); // Creates big, bold, centered label (title): "Conway's Game of Life." this->title->setAlignment(Qt::AlignHCenter); this->title->setFont(QFont("Arial", 32, QFont::Bold)); header->addWidget(this->title); // Adds widget to layout. return header; // Returns header to grid window. } // Builds the grid of cells. This method populates the grid's 2D array of GridCells with MxN cells. QGridLayout* GridWindow::setupGrid(int rows,int cols) { isRunning = false; QGridLayout *grid = new QGridLayout(); // Creates grid layout. grid->setHorizontalSpacing(0); // No empty spaces. Cells should be contiguous. grid->setVerticalSpacing(0); grid->setSpacing(0); grid->setAlignment(Qt::AlignHCenter); for(int i=0; i < rows; i++) //Each row is a vector of grid cells. { std::vector<GridCell*> row; // Creates new vector for current row. cells.push_back(row); for(int j=0; j < cols; j++) { GridCell *cell = new GridCell(); // Creates and adds new cell to row. cells.at(i).push_back(cell); grid->addWidget(cell,i,j); // Adds to cell to grid layout. Column expands vertically. grid->setColumnStretch(j,1); } grid->setRowStretch(i,1); // Sets row expansion horizontally. } return grid; // Returns grid. } // Builds footer section of the GUI. QHBoxLayout* GridWindow::setupButtonRow() { QHBoxLayout *buttonRow = new QHBoxLayout(); // Creates horizontal box for buttons. buttonRow->setAlignment(Qt::AlignHCenter); // Clear Button - Clears cell; sets them all to DEAD/white. QPushButton *clearButton = new QPushButton("CLEAR"); clearButton->setFixedSize(100,25); connect(clearButton, SIGNAL(clicked()), this, SLOT(handlePause())); // Pauses timer before clearing. connect(clearButton, SIGNAL(clicked()), this, SLOT(handleClear())); // Connects to clear function to make all cells DEAD/white. buttonRow->addWidget(clearButton); // Forward Button - Steps one step forward. QPushButton *forwardButton = new QPushButton("FORWARD"); forwardButton->setFixedSize(100,25); connect(forwardButton, SIGNAL(clicked()), this, SLOT(handleForward())); // Signals to handleForward function.. buttonRow->addWidget(forwardButton); // Back Button - Steps one step backward. QPushButton *backButton = new QPushButton("BACK"); backButton->setFixedSize(100,25); connect(backButton, SIGNAL(clicked()), this, SLOT(handleBack())); // Signals to handleBack funciton. buttonRow->addWidget(backButton); // Start Button - Starts game when user clicks. Or, resumes game after being paused. QPushButton *startButton = new QPushButton("START/RESUME"); startButton->setFixedSize(100,25); connect(startButton, SIGNAL(clicked()), this, SLOT(handlePause())); // Deletes current timer if there is one. Then restarts everything. connect(startButton, SIGNAL(clicked()), this, SLOT(handleStart())); // Signals to handleStart function. buttonRow->addWidget(startButton); // Pause Button - Pauses simulation of game. QPushButton *pauseButton = new QPushButton("PAUSE"); pauseButton->setFixedSize(100,25); connect(pauseButton, SIGNAL(clicked()), this, SLOT(handlePause())); // Signals to pause function which pauses timer. buttonRow->addWidget(pauseButton); // Quit Button - Exits program. QPushButton *quitButton = new QPushButton("EXIT"); quitButton->setFixedSize(100,25); connect(quitButton, SIGNAL(clicked()), qApp, SLOT(quit())); // Signals the quit slot which ends the program. buttonRow->addWidget(quitButton); return buttonRow; // Returns bottom of layout. } /* SLOT method for handling clicks on the "clear" button. Receives "clicked" signals on the "Clear" button and sets all cells to DEAD. */ void GridWindow::handleClear() { for(unsigned int row=0; row < cells.size(); row++) // Loops through current rows' cells. { for(unsigned int col=0; col < cells[row].size(); col++) // Loops through the rows'columns' cells. { GridCell *cell = cells[row][col]; // Grab the current cell & set its value to dead. cell->setType(DEAD); } } } /* SLOT method for handling clicks on the "start" button. Receives "clicked" signals on the "start" button and begins game simulation. */ void GridWindow::handleStart() { isRunning = true; // It is running. Sets isRunning to true. this->timer = new QTimer(this); // Creates new timer. connect(this->timer, SIGNAL(timeout()), this, SLOT(timerFired())); // Connect "timerFired" method class to the "timeout" signal fired by the timer. this->timer->start(500); // Timer to fire every 500 milliseconds. } /* SLOT method for handling clicks on the "pause" button. Receives "clicked" signals on the "pause" button and stops the game simulation. */ void GridWindow::handlePause() { if(isRunning) // If it is running... this->timer->stop(); // Stops the timer. isRunning = false; // Set to false. } void GridWindow::handleForward() { if(isRunning); // If it's running, do nothing. else timerFired(); // It not running, step forward one step. } void GridWindow::handleBack() { std::vector<std::vector<GridCell*> > cells2; if(isRunning); // If it's running, do nothing. else if(backStack.empty()) cout << "EMPTYYY" << endl; else { cells2 = backStack.peek(); for (unsigned int f = 0; f < cells.size(); f++) // Loop through cells' rows. { for (unsigned int g = 0; g < cells.at(f).size(); g++) // Loop through cells columns. { cells[f][g]->setType(cells2[f][g]->getType()); // Set cells[f][g]'s type to cells2[f][g]'s type. } } cout << "PRE=POP" << endl; backStack.pop(); cout << "OYYYY" << endl; } } // Accessor method - Gets the 2D vector of grid cells. std::vector<std::vector<GridCell*> >& GridWindow::getCells() { return this->cells; } /* TimerFired function: 1) 2D-Vector cells2 is declared. 2) cells2 is initliazed with loops/push_backs so that all its cells are DEAD. 3) We loop through cells, and count the number of LIVE neighbors next to a given cell. --> Depending on how many cells are living, we choose if the cell should be LIVE or DEAD in the next simulation, according to the rules. -----> We save the cell type in cell2 at the same indice (the same row and column cell in cells2). 4) After check all the cells (and save the next round values in cells 2), we set cells's gridcells equal to cells2 gridcells. --> This causes the cells to be redrawn with cells2 types (white or black). */ void GridWindow::timerFired() { backStack.push(cells); std::vector<std::vector<GridCell*> > cells2; // Holds new values for 2D vector. These are the next simulation round of cell types. for(unsigned int i = 0; i < cells.size(); i++) // Loop through the rows of cells2. (Same size as cells' rows.) { vector<GridCell*> row; // Creates Gridcell* vector to push_back into cells2. cells2.push_back(row); // Pushes back row vectors into cells2. for(unsigned int j = 0; j < cells[i].size(); j++) // Loop through the columns (the cells in each row). { GridCell *cell = new GridCell(); // Creates new GridCell. cell->setType(DEAD); // Sets cell type to DEAD/white. cells2.at(i).push_back(cell); // Pushes back the DEAD cell into cells2. } // This makes a gridwindow the same size as cells with all DEAD cells. } for (unsigned int m = 0; m < cells.size(); m++) // Loop through cells' rows. { for (unsigned int n = 0; n < cells.at(m).size(); n++) // Loop through cells' columns. { unsigned int neighbors = 0; // Counter for number of LIVE neighbors for a given cell. // We know check all different variations of cells[i][j] to count the number of living neighbors for each cell. // We check m > 0 and/or n > 0 to make sure we don't access negative indexes (ex: cells[-1][0].) // We check m < size to make sure we don't try to access rows out of the vector (ex: row 5, if only 4 rows). // We check n < row size to make sure we don't access column item out of the vector (ex: 10th item in a column of only 9 items). // If we find that the Type = 1 (it is LIVE), then we add 1 to the neighbor. // Else - we add nothing to the neighbor counter. // Neighbor is the number of LIVE cells next to the current cell. if(m > 0 && n > 0) { if (cells[m-1][n-1]->getType() == 1) neighbors += 1; } if(m > 0) { if (cells[m-1][n]->getType() == 1) neighbors += 1; if(n < (cells.at(m).size() - 1)) { if (cells[m-1][n+1]->getType() == 1) neighbors += 1; } } if(n > 0) { if (cells[m][n-1]->getType() == 1) neighbors += 1; if(m < (cells.size() - 1)) { if (cells[m+1][n-1]->getType() == 1) neighbors += 1; } } if(n < (cells.at(m).size() - 1)) { if (cells[m][n+1]->getType() == 1) neighbors += 1; } if(m < (cells.size() - 1)) { if (cells[m+1][n]->getType() == 1) neighbors += 1; } if(m < (cells.size() - 1) && n < (cells.at(m).size() - 1)) { if (cells[m+1][n+1]->getType() == 1) neighbors += 1; } // Done checking number of neighbors for cells[m][n] // Now we change cells2 if it should switch in the next simulation step. // cells2 holds the values of what cells should be on the next iteration of the game. // We can't change cells right now, or it would through off our other cell values. // Apply game rules to cells: Create new, updated grid with the roundtwo vector. // Note - LIVE is 1; DEAD is 0. if (cells[m][n]->getType() == 1 && neighbors < 2) // If cell is LIVE and has less than 2 LIVE neighbors -> Set to DEAD. cells2[m][n]->setType(DEAD); else if (cells[m][n]->getType() == 1 && neighbors > 3) // If cell is LIVE and has more than 3 LIVE neighbors -> Set to DEAD. cells2[m][n]->setType(DEAD); else if (cells[m][n]->getType() == 1 && (neighbors == 2 || neighbors == 3)) // If cell is LIVE and has 2 or 3 LIVE neighbors -> Set to LIVE. cells2[m][n]->setType(LIVE); else if (cells[m][n]->getType() == 0 && neighbors == 3) // If cell is DEAD and has 3 LIVE neighbors -> Set to LIVE. cells2[m][n]->setType(LIVE); } } // Now we've gone through all of cells, and saved the new values in cells2. // Now we loop through cells and set all the cells' types to those of cells2. for (unsigned int f = 0; f < cells.size(); f++) // Loop through cells' rows. { for (unsigned int g = 0; g < cells.at(f).size(); g++) // Loop through cells columns. { cells[f][g]->setType(cells2[f][g]->getType()); // Set cells[f][g]'s type to cells2[f][g]'s type. } } } stack.h - Here's my stack. #ifndef STACK_H_ #define STACK_H_ #include <iostream> #include "node.h" template <typename T> class Stack { private: Node<T>* top; int listSize; public: Stack(); int size() const; bool empty() const; void push(const T& value); void pop(); T& peek() const; }; template <typename T> Stack<T>::Stack() : top(NULL) { listSize = 0; } template <typename T> int Stack<T>::size() const { return listSize; } template <typename T> bool Stack<T>::empty() const { if(listSize == 0) return true; else return false; } template <typename T> void Stack<T>::push(const T& value) { Node<T>* newOne = new Node<T>(value); newOne->next = top; top = newOne; listSize++; } template <typename T> void Stack<T>::pop() { Node<T>* oldT = top; top = top->next; delete oldT; listSize--; } template <typename T> T& Stack<T>::peek() const { return top->data; // Returns data in top item. } #endif gridcell.cpp - Gridcell implementation #include <iostream> #include "gridcell.h" using namespace std; // Constructor: Creates a grid cell. GridCell::GridCell(QWidget *parent) : QFrame(parent) { this->type = DEAD; // Default: Cell is DEAD (white). setFrameStyle(QFrame::Box); // Set the frame style. This is what gives each box its black border. this->button = new QPushButton(this); //Creates button that fills entirety of each grid cell. this->button->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); // Expands button to fill space. this->button->setMinimumSize(19,19); //width,height // Min height and width of button. QHBoxLayout *layout = new QHBoxLayout(); //Creates a simple layout to hold our button and add the button to it. layout->addWidget(this->button); setLayout(layout); layout->setStretchFactor(this->button,1); // Lets the buttons expand all the way to the edges of the current frame with no space leftover layout->setContentsMargins(0,0,0,0); layout->setSpacing(0); connect(this->button,SIGNAL(clicked()),this,SLOT(handleClick())); // Connects clicked signal with handleClick slot. redrawCell(); // Calls function to redraw (set new type for) the cell. } // Basic destructor. GridCell::~GridCell() { delete this->button; } // Accessor for the cell type. CellType GridCell::getType() const { return(this->type); } // Mutator for the cell type. Also has the side effect of causing the cell to be redrawn on the GUI. void GridCell::setType(CellType type) { this->type = type; redrawCell(); // Sets type and redraws cell. } // Handler slot for button clicks. This method is called whenever the user clicks on this cell in the grid. void GridCell::handleClick() { // When clicked on... if(this->type == DEAD) // If type is DEAD (white), change to LIVE (black). type = LIVE; else type = DEAD; // If type is LIVE (black), change to DEAD (white). setType(type); // Sets new type (color). setType Calls redrawCell() to recolor. } // Method to check cell type and return the color of that type. Qt::GlobalColor GridCell::getColorForCellType() { switch(this->type) { default: case DEAD: return Qt::white; case LIVE: return Qt::black; } } // Helper method. Forces current cell to be redrawn on the GUI. Called whenever the setType method is invoked. void GridCell::redrawCell() { Qt::GlobalColor gc = getColorForCellType(); //Find out what color this cell should be. this->button->setPalette(QPalette(gc,gc)); //Force the button in the cell to be the proper color. this->button->setAutoFillBackground(true); this->button->setFlat(true); //Force QT to NOT draw the borders on the button } Thanks a lot. Let me know if you need anything else.

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >