Search Results

Search found 2696 results on 108 pages for 'lazy bob'.

Page 37/108 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • How to search for alphanumeric word before or after a keyword in perl?

    - by aliocee
    I have sentences as shown in the below examples: $sen1 = "The quick brown fox jump KEYWORD over123 the3 lazy dog, fox is quick"; $sen2 = "The quick brown fox jump123 KEYWORD over the lazy dog, fox is quick"; i want to use the keyword 'KEYWORD' as my search string to extract the alphanumeric words before and after the search string using Perl regular expression. sample output: over123 jump123 NB: The word 'the3' is left out because i'm only searching for alphanumeric words exactly before or after the 'KEYWORD'. Thanks

    Read the article

  • Mysql storing quotes as &#39;

    - by Click Upvote
    I have some PHP code which stores whatever is typed in a textbox in the databse. If I type in bob's apples, it gets stored in the database as bob&#39;s apples. What can be the problem? The table storing this has the collation of latin1_swedish_ci.

    Read the article

  • How to disable automatic loading in NHibernate?

    - by Drevak
    This question might be a duplicate of this one: http://stackoverflow.com/questions/217761/nhibernate-disable-automatic-lazy-loading-of-child-records-for-one-to-many-rela I'd like to know if there is any way to tell nhibernate to do not load a child collections (best if it's with fluent Nhibernate) unless i do it manually with a query (keeping all the mappings!). The problem is that even turning off lazy loading the collections get eager-loaded automatically. I'd like that no collections are loaded unless I specify a fetchmode in my query.

    Read the article

  • maintaing a sorted list that is bigger than memory

    - by tcurdt
    I have a list of tuples. [ "Bob": 3, "Alice: 2, "Jane": 1, ] When incrementing the counts "Alice" += 2 the order should be maintained: [ "Alice: 4, "Bob": 3, "Jane": 1, ] When all is in memory there rather simple ways (some more or some less) to efficiently implement this. (using an index, insert-sort etc) The question though is: What's the most promising approach when the list does not fit into memory. Bonus question: What if not even the index fits into memory? How would you approach this?

    Read the article

  • SQL View Creation

    - by george9170
    I have two tables Table FOO FooUniqueID| Year| Name| Worth| --------------------------- 1 2008 Bob 23.00 2 2009 Bob 40200 Table Bar BarUniqueID | Name | Value ----------------------- 1aBc Year 2009 I would like to create a view. That will select everything from FOO where the Year is equal select value from Bar where name = year without using a sub query. thank you

    Read the article

  • Entities equals(), hashCode() and toString(). How to correctly implement them?

    - by spike07
    I'm implementing equals(), hashCode() and toString() of my entities using all the available fields in the bean. I'm getting some Lazy init Exception on the frontend when I try to compare the equality or when I print the obj state. That's because some list in the entity can be lazy initialized. I'm wondering what's the correct way to for implementing equals() and toString() on an entity object.

    Read the article

  • NHibernate Many to Many delete all my data in the table

    - by Daoming Yang
    I would love to thank @Stefan Steinegger and @David helped me out yesterday with many-to-many mapping. I have 3 tables which are "News", "Tags" and "News_Tags" with Many-To-Many relationship and the "News_Tags" is the link table. If I delete one of the news records, the following mappings will delete all my news records which have the same tags. One thing I need to notice, I only allowed unique tag stored in the "Tag" table. This mapping make sense for me, it will delete the tag and related News records, but how can I implement a tagging system with NHibernate? Can anyone give me some suggestion? Many thanks. Daoming. News Mapping: <class name="New" table="News" lazy="false"> <id name="NewID"> <generator class="identity" /> </id> <property name="Title" type="String"></property> <property name="Description" type="String"></property> <set name="TagsList" table="New_Tags" lazy="false" inverse="true" cascade="all"> <key column="NewID" /> <many-to-many class="Tag" column="TagID" /> </set> </class> Tag Mapping: <class name="Tag" table="Tags" lazy="false"> <id name="TagID"> <generator class="identity" /> </id> <property name="TagName" type="String"></property> <property name="DateCreated" type="DateTime"></property> <!--inverse="true" has been defined in the "News mapping"--> <set name="NewsList" table="New_Tags" lazy="false" cascade="all"> <key column="TagID" /> <many-to-many class="New" column="NewID" /> </set> </class>

    Read the article

  • mysqli_stmt_bind_param SQL Injection

    - by profitphp
    Is there still an injection risk when using prepared statements and mysqli_stmt_bind_param? For example: $malicious_input = 'bob"; drop table users'; mysqli_stmt_bind_param($stmt, 's', $malicious_input); Behind the scenes does mysqli_stmt_bind_param pass this query string to mysql: SET @username = "bob"; drop table users"; Or does it perform the SET command through the API, or use some type of protection to keep this from happening?

    Read the article

  • Simplest way to print an array in Java

    - by Alex Spurling
    What's the simplest way of printing an array of primitives or of objects in Java? Here are some example inputs and outputs: int[] intArray = new int[] {1, 2, 3, 4, 5}; //output: [1, 2, 3, 4, 5] String[] strArray = new String[] {"John", "Mary", "Bob"}; //output: [John, Mary, Bob]

    Read the article

  • how to change the while loop condition depending on stuff?

    - by linkcool
    by this question what i mean is that if, by example, someone's username is "bob" then the while loop condition will be ($i < 10), and if the username is something else then the while loop condition will be ($i 10) if($username == "bob") { //make this while loop condition: ($i < 10) // it means: while($i <10){ so stuff} } else { //make the while loop condition: ($i >10) }

    Read the article

  • Use Shakespeare-text and external file

    - by Adam
    How can I convert the below example to use an external file instead of the embedded lazy text quasi quotes? {-# LANGUAGE QuasiQuotes, OverloadedStrings #-} import Text.Shakespeare.Text import qualified Data.Text.Lazy.IO as TLIO import Data.Text (Text) import Control.Monad (forM_) data Item = Item { itemName :: Text , itemQty :: Int } items :: [Item] items = [ Item "apples" 5 , Item "bananas" 10 ] main :: IO () main = forM_ items $ \item -> TLIO.putStrLn [lt|You have #{show $ itemQty item} #{itemName item}.|] This is from the yesod online book.

    Read the article

  • Entities equals() - hashcode() - toString(). How to correctly implement them?

    - by spike07
    I'm implementing equals() - hashcode() - toString() of my Entities using all the available fields in the bean. I'm getting some Lazy init Exception on the frontend when I try to compare the equality or when I print the obj state. That's because some list in the entity can be lazy initialized. I'm wondering what's the correct way to for implementing equals() and toString() on an Entity Obj

    Read the article

  • how ot change the while loop condition depending on stuff?

    - by linkcool
    by this question what i mean is that if, by example, someone's username is "bob" then the while loop condition will be ($i < 10), and if the username is something else then the while loop condition will be ($i 10) if($username == "bob") { //make this while loop condition: ($i < 10) // it means: while($i <10){ so stuff} } else { //make the while loop condition: ($i >10) }

    Read the article

  • Not seeing Sync Block in Object Layout

    - by bob-bedell
    It's my understanding the all .NET object instances begin with an 8 byte 'object header': a synch block (4 byte pointer into a SynchTableEntry table), and a type handle (4 byte pointer into the types method table). I'm not seeing this in VS 2010 RC's (CLR 4.0) debugger memory windows. Here's a simple class that will generate a 16 byte instance, less the object header. class Program { short myInt = 2; // 4 bytes long myLong = 3; // 8 bytes string myString = "aString"; // 4 byte object reference // 16 byte instance static void Main(string[] args) { new Program(); return; } } An SOS object dump tells me that the total object size is 24 bytes. That makes sense. My 16 byte instance plus an 8 byte object header. !DumpObj 0205b660 Name: Offset_Test.Program MethodTable: 000d383c EEClass: 000d13f8 Size: 24(0x18) bytes File: C:\Users\Bob\Desktop\Offset_Test\Offset_Test\bin\Debug\Offset_Test.exe Fields: MT Field Offset Type VT Attr Value Name 632020fc 4000001 10 System.Int16 1 instance 2 myInt 632050d8 4000002 4 System.Int64 1 instance 3 myLong 631fd2b8 4000003 c System.String 0 instance 0205b678 myString Here's the raw memory: 0x0205B660 000d383c 00000003 00000000 0205b678 00000002 ... And here are some annotations: offset 0 000d383c ;TypeHandle (pointer to MethodTable), 4 bytes offset 4 00000003 00000000 ;myLong, 8 bytes offset 12 0205b678 ;myString, 4 byte reference to address of "myString" on GC Heap offset 16 00000002 ;myInt, 4 bytes My object begins a address 0x0205B660. But I can only account for 20 bytes of it, the type handle and the instance fields. There is no sign of a synch block pointer. The object size is reported as 24 bytes, but the debugger is showing that it only occupies 20 bytes of memory. I'm reading Drill Into .NET Framework Internals to See How the CLR Creates Runtime Objects, and expected the first 4 bytes of my object to be a zeroed synch block pointer, as shown in Figure 8 of that article. Granted, this is an article about CLR 1.1. I'm just wondering if the difference between what I'm seeing and what this early article reports is a change in either the debugger's display of object layout, or in the way the CLR lays out objects in versions later than 1.1. Anyway, can anyone account for my 4 missing bytes?

    Read the article

  • How to find an specific key/value (property list)

    - by Bob Rivers
    Hi, I'm learning cocoa/objective-c. Right now I'm dealing with key/value coding. After reading Aaron's book and other sources, I thought that I was able to left the simple examples and try a complex one... I'm trying read iTunes property list (iTunes Music Library.xml). I would like to retrieve the tracks held by an specific playlist. Probably everybody knows it, but bellow I put a piece of the xml: <plist version="1.0"> <dict> <key>Major Version</key><integer>1</integer> ... <key>Playlists</key> <array> <dict> <key>Name</key><string>Library</string> ... <key>Playlist Items</key> <array> <dict> <key>Track ID</key><integer>10281</integer> </dict> ... </array> </dict> <dict> ... </dict> </array> </dict> </plist> As you can see, the playlists are stored as dictionaries inside an array, and the key that identifies it is inside it, not as a <key> preceding it. The problem is that I'm not able to figure out how to search for a key that is inside another one. With the following code I can find the the array in which the playlists are stored, but how to find an specific <dict>? NSDictionary *rootDict = [[NSDictionary alloc] initWithContentsOfFile:file]; NSArray *playlists = [rootDict objectForKey:@"Playlists"]; Here at Stackoverflow I found this post, but I'm not sure if iterate over the array and test it is a good idea. I'm quite sure that I could use valueForKeyPath, but I'm unable to figure out how to do it. Any help is welcome. TIA, Bob

    Read the article

  • Haskell "Source reduction"

    - by Martin
    I'm revising for an upcoming Haskell exam and I don't understand one of the questions on a past paper. Google turns up nothing useful fst(x, y) = x square i = i * i i) Source reduce, using Haskells lazy evaluation, the expression: fst(square(3+4), square 8) ii) Source reduce, using strict evaluation, the same expression iii) State one advantage of lazy evaluation and one advantage of strict evaluation

    Read the article

  • Adding object to child collection causes entire collection to load in Fluent NHibernate.

    - by Mike C.
    Hello, I have my Parent object, which contains an ICollection of Children objects. The Children are lazy loaded and I do not need them in the context of my scenario. However, when I try to add a new child object to my Children collection, it kicks off the lazy load and loads all 7000 child records. I assume I am making a newbie mistake. Anybody out there know how I can fix this? Thanks!

    Read the article

  • C#/.NET Little Wonders: Interlocked CompareExchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Two posts ago, I discussed the Interlocked Add(), Increment(), and Decrement() methods (here) for adding and subtracting values in a thread-safe, lightweight manner.  Then, last post I talked about the Interlocked Read() and Exchange() methods (here) for safely and efficiently reading and setting 32 or 64 bit values (or references).  This week, we’ll round out the discussion by talking about the Interlocked CompareExchange() method and how it can be put to use to exchange a value if the current value is what you expected it to be. Dirty reads can lead to bad results Many of the uses of Interlocked that we’ve explored so far have centered around either reading, setting, or adding values.  But what happens if you want to do something more complex such as setting a value based on the previous value in some manner? Perhaps you were creating an application that reads a current balance, applies a deposit, and then saves the new modified balance, where of course you’d want that to happen atomically.  If you read the balance, then go to save the new balance and between that time the previous balance has already changed, you’ll have an issue!  Think about it, if we read the current balance as $400, and we are applying a new deposit of $50.75, but meanwhile someone else deposits $200 and sets the total to $600, but then we write a total of $450.75 we’ve lost $200! Now, certainly for int and long values we can use Interlocked.Add() to handles these cases, and it works well for that.  But what if we want to work with doubles, for example?  Let’s say we wanted to add the numbers from 0 to 99,999 in parallel.  We could do this by spawning several parallel tasks to continuously add to a total: 1: double total = 0; 2:  3: Parallel.For(0, 10000, next => 4: { 5: total += next; 6: }); Were this run on one thread using a standard for loop, we’d expect an answer of 4,999,950,000 (the sum of all numbers from 0 to 99,999).  But when we run this in parallel as written above, we’ll likely get something far off.  The result of one of my runs, for example, was 1,281,880,740.  That is way off!  If this were banking software we’d be in big trouble with our clients.  So what happened?  The += operator is not atomic, it will read in the current value, add the result, then store it back into the total.  At any point in all of this another thread could read a “dirty” current total and accidentally “skip” our add.   So, to clean this up, we could use a lock to guarantee concurrency: 1: double total = 0.0; 2: object locker = new object(); 3:  4: Parallel.For(0, count, next => 5: { 6: lock (locker) 7: { 8: total += next; 9: } 10: }); Which will give us the correct result of 4,999,950,000.  One thing to note is that locking can be heavy, especially if the operation being locked over is trivial, or the life of the lock is a high percentage of the work being performed concurrently.  In the case above, the lock consumes pretty much all of the time of each parallel task – and the task being locked on is relatively trivial. Now, let me put in a disclaimer here before we go further: For most uses, lock is more than sufficient for your needs, and is often the simplest solution!    So, if lock is sufficient for most needs, why would we ever consider another solution?  The problem with locking is that it can suspend execution of your thread while it waits for the signal that the lock is free.  Moreover, if the operation being locked over is trivial, the lock can add a very high level of overhead.  This is why things like Interlocked.Increment() perform so well, instead of locking just to perform an increment, we perform the increment with an atomic, lockless method. As with all things performance related, it’s important to profile before jumping to the conclusion that you should optimize everything in your path.  If your profiling shows that locking is causing a high level of waiting in your application, then it’s time to consider lighter alternatives such as Interlocked. CompareExchange() – Exchange existing value if equal some value So let’s look at how we could use CompareExchange() to solve our problem above.  The general syntax of CompareExchange() is: T CompareExchange<T>(ref T location, T newValue, T expectedValue) If the value in location == expectedValue, then newValue is exchanged.  Either way, the value in location (before exchange) is returned. Actually, CompareExchange() is not one method, but a family of overloaded methods that can take int, long, float, double, pointers, or references.  It cannot take other value types (that is, can’t CompareExchange() two DateTime instances directly).  Also keep in mind that the version that takes any reference type (the generic overload) only checks for reference equality, it does not call any overridden Equals(). So how does this help us?  Well, we can grab the current total, and exchange the new value if total hasn’t changed.  This would look like this: 1: // grab the snapshot 2: double current = total; 3:  4: // if the total hasn’t changed since I grabbed the snapshot, then 5: // set it to the new total 6: Interlocked.CompareExchange(ref total, current + next, current); So what the code above says is: if the amount in total (1st arg) is the same as the amount in current (3rd arg), then set total to current + next (2nd arg).  This check and exchange pair is atomic (and thus thread-safe). This works if total is the same as our snapshot in current, but the problem, is what happens if they aren’t the same?  Well, we know that in either case we will get the previous value of total (before the exchange), back as a result.  Thus, we can test this against our snapshot to see if it was the value we expected: 1: // if the value returned is != current, then our snapshot must be out of date 2: // which means we didn't (and shouldn't) apply current + next 3: if (Interlocked.CompareExchange(ref total, current + next, current) != current) 4: { 5: // ooops, total was not equal to our snapshot in current, what should we do??? 6: } So what do we do if we fail?  That’s up to you and the problem you are trying to solve.  It’s possible you would decide to abort the whole transaction, or perhaps do a lightweight spin and try again.  Let’s try that: 1: double current = total; 2:  3: // make first attempt... 4: if (Interlocked.CompareExchange(ref total, current + i, current) != current) 5: { 6: // if we fail, go into a spin wait, spin, and try again until succeed 7: var spinner = new SpinWait(); 8:  9: do 10: { 11: spinner.SpinOnce(); 12: current = total; 13: } 14: while (Interlocked.CompareExchange(ref total, current + i, current) != current); 15: } 16:  This is not trivial code, but it illustrates a possible use of CompareExchange().  What we are doing is first checking to see if we succeed on the first try, and if so great!  If not, we create a SpinWait and then repeat the process of SpinOnce(), grab a fresh snapshot, and repeat until CompareExchnage() succeeds.  You may wonder why not a simple do-while here, and the reason it’s more efficient to only create the SpinWait until we absolutely know we need one, for optimal efficiency. Though not as simple (or maintainable) as a simple lock, this will perform better in many situations.  Comparing an unlocked (and wrong) version, a version using lock, and the Interlocked of the code, we get the following average times for multiple iterations of adding the sum of 100,000 numbers: 1: Unlocked money average time: 2.1 ms 2: Locked money average time: 5.1 ms 3: Interlocked money average time: 3 ms So the Interlocked.CompareExchange(), while heavier to code, came in lighter than the lock, offering a good compromise of safety and performance when we need to reduce contention. CompareExchange() - it’s not just for adding stuff… So that was one simple use of CompareExchange() in the context of adding double values -- which meant we couldn’t have used the simpler Interlocked.Add() -- but it has other uses as well. If you think about it, this really works anytime you want to create something new based on a current value without using a full lock.  For example, you could use it to create a simple lazy instantiation implementation.  In this case, we want to set the lazy instance only if the previous value was null: 1: public static class Lazy<T> where T : class, new() 2: { 3: private static T _instance; 4:  5: public static T Instance 6: { 7: get 8: { 9: // if current is null, we need to create new instance 10: if (_instance == null) 11: { 12: // attempt create, it will only set if previous was null 13: Interlocked.CompareExchange(ref _instance, new T(), (T)null); 14: } 15:  16: return _instance; 17: } 18: } 19: } So, if _instance == null, this will create a new T() and attempt to exchange it with _instance.  If _instance is not null, then it does nothing and we discard the new T() we created. This is a way to create lazy instances of a type where we are more concerned about locking overhead than creating an accidental duplicate which is not used.  In fact, the BCL implementation of Lazy<T> offers a similar thread-safety choice for Publication thread safety, where it will not guarantee only one instance was created, but it will guarantee that all readers get the same instance.  Another possible use would be in concurrent collections.  Let’s say, for example, that you are creating your own brand new super stack that uses a linked list paradigm and is “lock free”.  We could use Interlocked.CompareExchange() to be able to do a lockless Push() which could be more efficient in multi-threaded applications where several threads are pushing and popping on the stack concurrently. Yes, there are already concurrent collections in the BCL (in .NET 4.0 as part of the TPL), but it’s a fun exercise!  So let’s assume we have a node like this: 1: public sealed class Node<T> 2: { 3: // the data for this node 4: public T Data { get; set; } 5:  6: // the link to the next instance 7: internal Node<T> Next { get; set; } 8: } Then, perhaps, our stack’s Push() operation might look something like: 1: public sealed class SuperStack<T> 2: { 3: private volatile T _head; 4:  5: public void Push(T value) 6: { 7: var newNode = new Node<int> { Data = value, Next = _head }; 8:  9: if (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next) 10: { 11: var spinner = new SpinWait(); 12:  13: do 14: { 15: spinner.SpinOnce(); 16: newNode.Next = _head; 17: } 18: while (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next); 19: } 20: } 21:  22: // ... 23: } Notice a similar paradigm here as with adding our doubles before.  What we are doing is creating the new Node with the data to push, and with a Next value being the original node referenced by _head.  This will create our stack behavior (LIFO – Last In, First Out).  Now, we have to set _head to now refer to the newNode, but we must first make sure it hasn’t changed! So we check to see if _head has the same value we saved in our snapshot as newNode.Next, and if so, we set _head to newNode.  This is all done atomically, and the result is _head’s original value, as long as the original value was what we assumed it was with newNode.Next, then we are good and we set it without a lock!  If not, we SpinWait and try again. Once again, this is much lighter than locking in highly parallelized code with lots of contention.  If I compare the method above with a similar class using lock, I get the following results for pushing 100,000 items: 1: Locked SuperStack average time: 6 ms 2: Interlocked SuperStack average time: 4.5 ms So, once again, we can get more efficient than a lock, though there is the cost of added code complexity.  Fortunately for you, most of the concurrent collection you’d ever need are already created for you in the System.Collections.Concurrent (here) namespace – for more information, see my Little Wonders – The Concurent Collections Part 1 (here), Part 2 (here), and Part 3 (here). Summary We’ve seen before how the Interlocked class can be used to safely and efficiently add, increment, decrement, read, and exchange values in a multi-threaded environment.  In addition to these, Interlocked CompareExchange() can be used to perform more complex logic without the need of a lock when lock contention is a concern. The added efficiency, though, comes at the cost of more complex code.  As such, the standard lock is often sufficient for most thread-safety needs.  But if profiling indicates you spend a lot of time waiting for locks, or if you just need a lock for something simple such as an increment, decrement, read, exchange, etc., then consider using the Interlocked class’s methods to reduce wait. Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked,CompareExchange,threading,concurrency

    Read the article

  • SQL SERVER – Shrinking Database is Bad – Increases Fragmentation – Reduces Performance

    - by pinaldave
    Earlier, I had written two articles related to Shrinking Database. I wrote about why Shrinking Database is not good. SQL SERVER – SHRINKDATABASE For Every Database in the SQL Server SQL SERVER – What the Business Says Is Not What the Business Wants I received many comments on Why Database Shrinking is bad. Today we will go over a very interesting example that I have created for the same. Here are the quick steps of the example. Create a test database Create two tables and populate with data Check the size of both the tables Size of database is very low Check the Fragmentation of one table Fragmentation will be very low Truncate another table Check the size of the table Check the fragmentation of the one table Fragmentation will be very low SHRINK Database Check the size of the table Check the fragmentation of the one table Fragmentation will be very HIGH REBUILD index on one table Check the size of the table Size of database is very HIGH Check the fragmentation of the one table Fragmentation will be very low Here is the script for the same. USE MASTER GO CREATE DATABASE ShrinkIsBed GO USE ShrinkIsBed GO -- Name of the Database and Size SELECT name, (size*8) Size_KB FROM sys.database_files GO -- Create FirstTable CREATE TABLE FirstTable (ID INT, FirstName VARCHAR(100), LastName VARCHAR(100), City VARCHAR(100)) GO -- Create Clustered Index on ID CREATE CLUSTERED INDEX [IX_FirstTable_ID] ON FirstTable ( [ID] ASC ) ON [PRIMARY] GO -- Create SecondTable CREATE TABLE SecondTable (ID INT, FirstName VARCHAR(100), LastName VARCHAR(100), City VARCHAR(100)) GO -- Create Clustered Index on ID CREATE CLUSTERED INDEX [IX_SecondTable_ID] ON SecondTable ( [ID] ASC ) ON [PRIMARY] GO -- Insert One Hundred Thousand Records INSERT INTO FirstTable (ID,FirstName,LastName,City) SELECT TOP 100000 ROW_NUMBER() OVER (ORDER BY a.name) RowID, 'Bob', CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 1 THEN 'New York' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 5 THEN 'San Marino' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 3 THEN 'Los Angeles' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Name of the Database and Size SELECT name, (size*8) Size_KB FROM sys.database_files GO -- Insert One Hundred Thousand Records INSERT INTO SecondTable (ID,FirstName,LastName,City) SELECT TOP 100000 ROW_NUMBER() OVER (ORDER BY a.name) RowID, 'Bob', CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 1 THEN 'New York' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 5 THEN 'San Marino' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 3 THEN 'Los Angeles' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Name of the Database and Size SELECT name, (size*8) Size_KB FROM sys.database_files GO -- Check Fragmentations in the database SELECT avg_fragmentation_in_percent, fragment_count FROM sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID('SecondTable'), NULL, NULL, 'LIMITED') GO Let us check the table size and fragmentation. Now let us TRUNCATE the table and check the size and Fragmentation. USE MASTER GO CREATE DATABASE ShrinkIsBed GO USE ShrinkIsBed GO -- Name of the Database and Size SELECT name, (size*8) Size_KB FROM sys.database_files GO -- Create FirstTable CREATE TABLE FirstTable (ID INT, FirstName VARCHAR(100), LastName VARCHAR(100), City VARCHAR(100)) GO -- Create Clustered Index on ID CREATE CLUSTERED INDEX [IX_FirstTable_ID] ON FirstTable ( [ID] ASC ) ON [PRIMARY] GO -- Create SecondTable CREATE TABLE SecondTable (ID INT, FirstName VARCHAR(100), LastName VARCHAR(100), City VARCHAR(100)) GO -- Create Clustered Index on ID CREATE CLUSTERED INDEX [IX_SecondTable_ID] ON SecondTable ( [ID] ASC ) ON [PRIMARY] GO -- Insert One Hundred Thousand Records INSERT INTO FirstTable (ID,FirstName,LastName,City) SELECT TOP 100000 ROW_NUMBER() OVER (ORDER BY a.name) RowID, 'Bob', CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 1 THEN 'New York' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 5 THEN 'San Marino' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 3 THEN 'Los Angeles' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Name of the Database and Size SELECT name, (size*8) Size_KB FROM sys.database_files GO -- Insert One Hundred Thousand Records INSERT INTO SecondTable (ID,FirstName,LastName,City) SELECT TOP 100000 ROW_NUMBER() OVER (ORDER BY a.name) RowID, 'Bob', CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%2 = 1 THEN 'Smith' ELSE 'Brown' END, CASE WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 1 THEN 'New York' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 5 THEN 'San Marino' WHEN ROW_NUMBER() OVER (ORDER BY a.name)%10 = 3 THEN 'Los Angeles' ELSE 'Houston' END FROM sys.all_objects a CROSS JOIN sys.all_objects b GO -- Name of the Database and Size SELECT name, (size*8) Size_KB FROM sys.database_files GO -- Check Fragmentations in the database SELECT avg_fragmentation_in_percent, fragment_count FROM sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID('SecondTable'), NULL, NULL, 'LIMITED') GO You can clearly see that after TRUNCATE, the size of the database is not reduced and it is still the same as before TRUNCATE operation. After the Shrinking database operation, we were able to reduce the size of the database. If you notice the fragmentation, it is considerably high. The major problem with the Shrink operation is that it increases fragmentation of the database to very high value. Higher fragmentation reduces the performance of the database as reading from that particular table becomes very expensive. One of the ways to reduce the fragmentation is to rebuild index on the database. Let us rebuild the index and observe fragmentation and database size. -- Rebuild Index on FirstTable ALTER INDEX IX_SecondTable_ID ON SecondTable REBUILD GO -- Name of the Database and Size SELECT name, (size*8) Size_KB FROM sys.database_files GO -- Check Fragmentations in the database SELECT avg_fragmentation_in_percent, fragment_count FROM sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID('SecondTable'), NULL, NULL, 'LIMITED') GO You can notice that after rebuilding, Fragmentation reduces to a very low value (almost same to original value); however the database size increases way higher than the original. Before rebuilding, the size of the database was 5 MB, and after rebuilding, it is around 20 MB. Regular rebuilding the index is rebuild in the same user database where the index is placed. This usually increases the size of the database. Look at irony of the Shrinking database. One person shrinks the database to gain space (thinking it will help performance), which leads to increase in fragmentation (reducing performance). To reduce the fragmentation, one rebuilds index, which leads to size of the database to increase way more than the original size of the database (before shrinking). Well, by Shrinking, one did not gain what he was looking for usually. Rebuild indexing is not the best suggestion as that will create database grow again. I have always remembered the excellent post from Paul Randal regarding Shrinking the database is bad. I suggest every one to read that for accuracy and interesting conversation. Let us run following script where we Shrink the database and REORGANIZE. -- Name of the Database and Size SELECT name, (size*8) Size_KB FROM sys.database_files GO -- Check Fragmentations in the database SELECT avg_fragmentation_in_percent, fragment_count FROM sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID('SecondTable'), NULL, NULL, 'LIMITED') GO -- Shrink the Database DBCC SHRINKDATABASE (ShrinkIsBed); GO -- Name of the Database and Size SELECT name, (size*8) Size_KB FROM sys.database_files GO -- Check Fragmentations in the database SELECT avg_fragmentation_in_percent, fragment_count FROM sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID('SecondTable'), NULL, NULL, 'LIMITED') GO -- Rebuild Index on FirstTable ALTER INDEX IX_SecondTable_ID ON SecondTable REORGANIZE GO -- Name of the Database and Size SELECT name, (size*8) Size_KB FROM sys.database_files GO -- Check Fragmentations in the database SELECT avg_fragmentation_in_percent, fragment_count FROM sys.dm_db_index_physical_stats (DB_ID(), OBJECT_ID('SecondTable'), NULL, NULL, 'LIMITED') GO You can see that REORGANIZE does not increase the size of the database or remove the fragmentation. Again, I no way suggest that REORGANIZE is the solution over here. This is purely observation using demo. Read the blog post of Paul Randal. Following script will clean up the database -- Clean up USE MASTER GO ALTER DATABASE ShrinkIsBed SET SINGLE_USER WITH ROLLBACK IMMEDIATE GO DROP DATABASE ShrinkIsBed GO There are few valid cases of the Shrinking database as well, but that is not covered in this blog post. We will cover that area some other time in future. Additionally, one can rebuild index in the tempdb as well, and we will also talk about the same in future. Brent has written a good summary blog post as well. Are you Shrinking your database? Well, when are you going to stop Shrinking it? Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Index, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Dependency Injection with Spring/Junit/JPA

    - by Steve
    I'm trying to create JUnit tests for my JPA DAO classes, using Spring 2.5.6 and JUnit 4.8.1. My test case looks like this: @RunWith(SpringJUnit4ClassRunner.class) @ContextConfiguration(locations={"classpath:config/jpaDaoTestsConfig.xml"} ) public class MenuItem_Junit4_JPATest extends BaseJPATestCase { private ApplicationContext context; private InputStream dataInputStream; private IDataSet dataSet; @Resource private IMenuItemDao menuItemDao; @Test public void testFindAll() throws Exception { assertEquals(272, menuItemDao.findAll().size()); } ... Other test methods ommitted for brevity ... } I have the following in my jpaDaoTestsConfig.xml: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx.xsd"> <!-- uses the persistence unit defined in the META-INF/persistence.xml JPA configuration file --> <bean id="entityManagerFactory" class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean"> <property name="persistenceUnitName" value="CONOPS_PU" /> </bean> <bean id="groupDao" class="mil.navy.ndms.conops.common.dao.impl.jpa.GroupDao" lazy-init="true" /> <bean id="permissionDao" class="mil.navy.ndms.conops.common.dao.impl.jpa.PermissionDao" lazy-init="true" /> <bean id="applicationUserDao" class="mil.navy.ndms.conops.common.dao.impl.jpa.ApplicationUserDao" lazy-init="true" /> <bean id="conopsUserDao" class="mil.navy.ndms.conops.common.dao.impl.jpa.ConopsUserDao" lazy-init="true" /> <bean id="menuItemDao" class="mil.navy.ndms.conops.common.dao.impl.jpa.MenuItemDao" lazy-init="true" /> <!-- enables interpretation of the @Required annotation to ensure that dependency injection actually occures --> <bean class="org.springframework.beans.factory.annotation.RequiredAnnotationBeanPostProcessor"/> <!-- enables interpretation of the @PersistenceUnit/@PersistenceContext annotations providing convenient access to EntityManagerFactory/EntityManager --> <bean class="org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor"/> <!-- transaction manager for use with a single JPA EntityManagerFactory for transactional data access to a single datasource --> <bean id="jpaTransactionManager" class="org.springframework.orm.jpa.JpaTransactionManager"> <property name="entityManagerFactory" ref="entityManagerFactory"/> </bean> <!-- enables interpretation of the @Transactional annotation for declerative transaction managment using the specified JpaTransactionManager --> <tx:annotation-driven transaction-manager="jpaTransactionManager" proxy-target-class="false"/> </beans> Now, when I try to run this, I get the following: SEVERE: Caught exception while allowing TestExecutionListener [org.springframework.test.context.support.DependencyInjectionTestExecutionListener@fa60fa6] to prepare test instance [null(mil.navy.ndms.conops.common.dao.impl.MenuItem_Junit4_JPATest)] org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'mil.navy.ndms.conops.common.dao.impl.MenuItem_Junit4_JPATest': Injection of resource fields failed; nested exception is java.lang.IllegalStateException: Specified field type [interface javax.persistence.EntityManagerFactory] is incompatible with resource type [javax.persistence.EntityManager] at org.springframework.context.annotation.CommonAnnotationBeanPostProcessor.postProcessAfterInstantiation(CommonAnnotationBeanPostProcessor.java:292) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.populateBean(AbstractAutowireCapableBeanFactory.java:959) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.autowireBeanProperties(AbstractAutowireCapableBeanFactory.java:329) at org.springframework.test.context.support.DependencyInjectionTestExecutionListener.injectDependencies(DependencyInjectionTestExecutionListener.java:110) at org.springframework.test.context.support.DependencyInjectionTestExecutionListener.prepareTestInstance(DependencyInjectionTestExecutionListener.java:75) at org.springframework.test.context.TestContextManager.prepareTestInstance(TestContextManager.java:255) at org.springframework.test.context.junit4.SpringJUnit4ClassRunner.createTest(SpringJUnit4ClassRunner.java:93) at org.springframework.test.context.junit4.SpringJUnit4ClassRunner.invokeTestMethod(SpringJUnit4ClassRunner.java:130) at org.junit.internal.runners.JUnit4ClassRunner.runMethods(JUnit4ClassRunner.java:61) at org.junit.internal.runners.JUnit4ClassRunner$1.run(JUnit4ClassRunner.java:54) at org.junit.internal.runners.ClassRoadie.runUnprotected(ClassRoadie.java:34) at org.junit.internal.runners.ClassRoadie.runProtected(ClassRoadie.java:44) at org.junit.internal.runners.JUnit4ClassRunner.run(JUnit4ClassRunner.java:52) at org.eclipse.jdt.internal.junit4.runner.JUnit4TestReference.run(JUnit4TestReference.java:45) at org.eclipse.jdt.internal.junit.runner.TestExecution.run(TestExecution.java:38) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:460) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.runTests(RemoteTestRunner.java:673) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.run(RemoteTestRunner.java:386) at org.eclipse.jdt.internal.junit.runner.RemoteTestRunner.main(RemoteTestRunner.java:196) Caused by: java.lang.IllegalStateException: Specified field type [interface javax.persistence.EntityManagerFactory] is incompatible with resource type [javax.persistence.EntityManager] at org.springframework.beans.factory.annotation.InjectionMetadata$InjectedElement.checkResourceType(InjectionMetadata.java:159) at org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor$PersistenceElement.(PersistenceAnnotationBeanPostProcessor.java:559) at org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor$1.doWith(PersistenceAnnotationBeanPostProcessor.java:359) at org.springframework.util.ReflectionUtils.doWithFields(ReflectionUtils.java:492) at org.springframework.util.ReflectionUtils.doWithFields(ReflectionUtils.java:469) at org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor.findPersistenceMetadata(PersistenceAnnotationBeanPostProcessor.java:351) at org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor.postProcessMergedBeanDefinition(PersistenceAnnotationBeanPostProcessor.java:296) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.applyMergedBeanDefinitionPostProcessors(AbstractAutowireCapableBeanFactory.java:745) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.doCreateBean(AbstractAutowireCapableBeanFactory.java:448) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory$1.run(AbstractAutowireCapableBeanFactory.java:409) at java.security.AccessController.doPrivileged(AccessController.java:219) at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.createBean(AbstractAutowireCapableBeanFactory.java:380) at org.springframework.beans.factory.support.AbstractBeanFactory$1.getObject(AbstractBeanFactory.java:264) at org.springframework.beans.factory.support.DefaultSingletonBeanRegistry.getSingleton(DefaultSingletonBeanRegistry.java:221) at org.springframework.beans.factory.support.AbstractBeanFactory.doGetBean(AbstractBeanFactory.java:261) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:185) at org.springframework.beans.factory.support.AbstractBeanFactory.getBean(AbstractBeanFactory.java:168) at org.springframework.context.annotation.CommonAnnotationBeanPostProcessor.autowireResource(CommonAnnotationBeanPostProcessor.java:435) at org.springframework.context.annotation.CommonAnnotationBeanPostProcessor.getResource(CommonAnnotationBeanPostProcessor.java:409) at org.springframework.context.annotation.CommonAnnotationBeanPostProcessor$ResourceElement.getResourceToInject(CommonAnnotationBeanPostProcessor.java:537) at org.springframework.beans.factory.annotation.InjectionMetadata$InjectedElement.inject(InjectionMetadata.java:180) at org.springframework.beans.factory.annotation.InjectionMetadata.injectFields(InjectionMetadata.java:105) at org.springframework.context.annotation.CommonAnnotationBeanPostProcessor.postProcessAfterInstantiation(CommonAnnotationBeanPostProcessor.java:289) ... 18 more It seems to be telling me that its attempting to store an EntityManager object into an EntityManagerFactory field, but I don't understand how or why. My DAO classes accept both an EntityManager and EntityManagerFactory via the @PersistenceContext attribute, and they work find if I load them up and run them without the @ContextConfiguration attribute (i.e. if I just use the XmlApplcationContext to load the DAO and the EntityManagerFactory directly in setUp ()). Any insights would be appreciated. Thanks. --Steve

    Read the article

  • SQL SERVER – Auto Complete and Format T-SQL Code – Devart SQL Complete

    - by pinaldave
    Some people call it laziness, some will call it efficiency, some think it is the right thing to do. At any rate, tools are meant to make a job easier, and I like to use various tools. If we consider the history of the world, if we all wanted to keep traditional practices, we would have never invented the wheel.  But as time progressed, people wanted convenience and efficiency, which then led to laziness. Wanting a more efficient way to do something is not inherently lazy.  That’s how I see any efficiency tools. A few days ago I found Devart SQL Complete.  It took less than a minute to install, and after installation it just worked without needing any tweaking.  Once I started using it I was impressed with how fast it formats SQL code – you can write down any terms or even copy and paste.  You can start typing right away, and it will complete keywords, object names, and fragmentations. It completes statement expressions.  How many times do we write insert, update, delete?  Take this example: to alter a stored procedure name, we don’t remember the code written in it, you have to write it over again, or go back to SQL Server Studio Manager to create and alter which is very difficult.  With SQL Complete , you can write “alter stored procedure,” and it will finish it for you, and you can modify as needed. I love to write code, and I love well-written code.  When I am working with clients, and I find people whose code have not been written properly, I feel a little uncomfortable.  It is difficult to deal with code that is in the wrong case, with no line breaks, no white spaces, improper indents, and no text wrapping.  The worst thing to encounter is code that goes all the way to the right side, and you have to scroll a million times because there are no breaks or indents.  SQL Complete will take care of this for you – if a developer is too lazy for proper formatting, then Devart’s SQL formatter tool will make them better, not lazier. SQL Management Studio gives information about your code when you hover your mouse over it, however SQL Complete goes further in it, going into the work table, and the current rate idea, too. It gives you more information about the parameters; and last but not least, it will just take you to the help file of code navigation.  It will open object explorer in a document viewer.  You can start going through the various properties of your code – a very important thing to do. Here are are interesting Intellisense examples: 1) We are often very lazy to expand *however, when we are using SQL Complete we can just mouse over the * and it will give us all the the column names and we can select the appropriate columns. 2) We can put the cursor after * and it will give us option to expand it to all the column names by pressing the Tab key. 3) Here is one more Intellisense feature I really liked it. I always alias my tables and I always select the alias with special logic. When I was using SQL Complete I selected just a tablename (without schema name) and…(just like below image) … and it autocompleted the schema and alias name (the way I needed it). I believe using SQL Complete we can work faster.  It supports all versions of SQL Server, and works SQL formatting.  Many businesses perform code review and have code standards, so why not use an efficiency tool on everyone’s computer and make sure the code is written correctly from the first time?  If you’re interested in this tool, there are free editions available.  If you like it, you can buy it.  I bought it because it works.  I love it, and I want to hear all your opinions on it, too. You can get the product for FREE.  Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Utility, T SQL, Technology

    Read the article

  • Challenge 19 – An Explanation of a Query

    - by Dave Ballantyne
    I have received a number of requests for an explanation of my winning query of TSQL Challenge 19. This involved traversing a hierarchy of employees and rolling a count of orders from subordinates up to superiors. The first concept I shall address is the hierarchyId , which is constructed within the CTE called cteTree.   cteTree is a recursive cte that will expand the parent-child hierarchy of the personnel in the table @emp.  One useful feature with a recursive cte is that data can be ‘passed’ from the parent to the child data.  The hierarchyId column is similar to the hierarchyId data type that was introduced in SQL Server 2008 and represents the position of the person within the organisation. Let us start with a simplistic example Albert manages Bob and Eddie.  Bob manages Carl and Dave. The hierarchyId will represent each person’s position in this relationship in a single field.  In this simple example we could append the userID together into a varchar field as detailed below. This will enable us to select a branch of the tree by filtering using Where hierarchyId  ‘1,2%’ to select Bob and all his subordinates.  Naturally, this is not comprehensive enough to provide a full solution, but as opposed to concatenating the Id’s together into a varchar datatyped column, we can apply the same theory to a varbinary.  By CASTing the ID’s into a datatype of varbinary(4) ,4 is used as 4 bytes of data are used to store an integer and building a hierarchyId  from those.  For example: The important point to bear in mind for later in the query is that the binary data generated is 'byte order comparable'. ie We can ORDER a dataset with it and the resulting data, will be in the order required. Now, would probably be a good time to download the example file and, after the cte ‘cteTree’, uncomment the line ‘select * from cteTree’.  Mark this and all prior code and execute.  This will show you how this theory directly relates to the actual challenge data.  The only deviation from the above, is that instead of using the ID of an employee, I have used the row_number() ranking function to order each level by LastName,Firstname.  This enables me to order by the HierarchyId in the final result set so that the result set is in the required order. Your output should be something like the below.  Notice also the ‘Level’ Column that contains the depth that the employee is within the tree.  I would encourage you to ‘play’ with the query, change the order in the row_number() or the length of the cast in the hierarchyId to see how that effects the outcome.  The next cte, ‘cteTreeWithOrderCount’, is a join between cteTree and the @ord table, and COUNT’s the number of orders per employee.  A LEFT JOIN is employed here to account for the occasion where an employee has made no sales.   Executing a ‘Select * from cteTreeWithOrderCount’ will return the result set as below.  The order here is unimportant as this is only a staging point of the data and only the final result set in a cte chain needs an Order by clause, unless TOP is utilised. cteExplode joins the above result set to the tally table (Nums) for Level Occurances.  So, if level is 2 then 2 rows are required.  This is done to expand the dataset, to create a new column (PathInc), which is the (n+1) integers contained within the heirarchyid.  For example, with the data for Robert King as given above, the below 3 rows will be returned. From this you can see that the pathinc column now contains the values for Andrew Fuller and Steven Buchanan who are Robert King’s superiors within the tree.    Finally cteSumUp, sums the orders for each person and their subordinates using the PathInc generated above, and the final select does the final simple mathematics and filters to restrict the result set to only the ‘original’ row per employee.

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >