Search Results

Search found 3101 results on 125 pages for 'packet filtering'.

Page 37/125 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • OpenPGP Signing

    - by singpolyma
    I'm reading RFC4880 in an attempt to produce an implementatdion of a subset of OpenPGP (RSA signatures) using http://phpseclib.sourceforge.net/. I have the publickey and compression-literal-signature packets parsed out. I can extract n and e and feed them to Crypt_RSA to construct a verifier. I tell it I'm using sha256. It then needs a "message" and a " signature" parametre. I get the signature data out of the signature packet no problem. The question I have is: what is "message"? According to sec tion 5.2.4 it's some combination of the literal data packet(s?) (their bodies or the whole packet?) and the "hashed" subpackets. Do I just concat all the data packets and the hashed packets together in the order they appear?

    Read the article

  • Does it make sense to have more than one UDP Datagram socket on standby? Are "simultaneous" packets

    - by Gubatron
    I'm coding a networking application on Android. I'm thinking of having a single UDP port and Datagram socket that receives all the datagrams that are sent to it and then have different processing queues for these messages. I'm doubting if I should have a second or third UDP socket on standby. Some messages will be very short (100bytes or so), but others will have to transfer files. My concern is, will the Android kernel drop the small messages if it's too busy handling the bigger ones? Update "The latter function calls sock_queue_rcv_skb() (in sock.h), which queues the UDP packet on the socket's receive buffer. If no more space is left on the buffer, the packet is discarded. Filtering also is performed by this function, which calls sk_filter() just like TCP did. Finally, data_ready() is called, and UDP packet reception is completed."

    Read the article

  • How come ftp protocol produces transmission errors sometimes if the data is using TCP, which is checksummed?

    - by Cray
    Every once in a while, downloading (especially large) files through ftp will produce errors. I am guessing that's also partly the reason why all major sites are publishing external checksums along with their downloads. How is this possible if ftp goes through TCP, which has checksum inbuilt and resends data if it is transmitted corruptly? One could argue that this is due to the short length of the CRC in the TCP protocol (which is 16bit I think, or something like that), and the collisions are simply happening too often. but 1) for this to be true, not only must there be a CRC collision, but also the random network error must modify both the CRC in the packet, and the packet itself so that the CRC will be valid for the new packet... Even with 16 bitCRC, is that so likely? 2) There are seemingly not many errors in, say, browsing the web which also goes through TCPIP.

    Read the article

  • What happens with TCP packets between two Socket.BeginReceive calls?

    - by Rodrigo
    I have a doubt about socket programming. I am developing a TCP packet sniffer. I am using Socket.BeginAccept, Socket.BeginReceive to capture every packet, but when a packet is received I have to process something. It is a fast operation, but would take some milliseconds, and then call BeginReceive again. My question is, what would happen if some packets are sent while I am processing, and haven't called BeginReceive? Are packets lost, or are they buffered internally? Is there a limit?

    Read the article

  • Why packets injected with libpcap are duplicated?

    - by r0u1i
    I'm using sharppcap in order to send packets as part of a monitoring system. Usually it works well but I've encountered the strangest bug on a hosted vista machine and I would like your help. On that virtual vista machine, injected packets are duplicated. That is, if I send a ping request using libpcap, it somehow gets duplicated and I get two requests on the destination machine. The two requests are almost identical byte-wise, and the only difference between them is that the second packet's TTL field is one minus the original packet's value. Using wireshark I can see the packet gets duplicated before it (and its clone) leave the vista machine. The problem is manifested even when using other tools for injecting packets using libpcap (namely PlayCap). Any ideas?

    Read the article

  • C: Cannot declare pointer inside if statement

    - by echedey lorenzo
    Hi, I have a pointer which points to a function. I would like to: if (mode == 0) { const unsigned char *packet = read_serial_packet(src, &len); } else { const unsigned char *packet = read_network_packet(fd, &len); } But I cannot do it because my compiler complains when I first use the pointer later in the code. error: 'packet' undeclared (first use in this function) This is strange. It worked without the if statement, but now I need my program to be able to get data from different sources. Isn't it possible to do this? I think so. If it isn't, is there any other simple way to get what I am trying? Thanks a lot.

    Read the article

  • Avoid copying of data between user and kernel space and vice-versa

    - by bala1486
    Hello, I am developing a active messaging protocol for parallel computation that replaces TCP/IP. My goal is to decrease the latency of a packet. Since the environment is a LAN, i can replace TCP/IP with simpler protocol to reduce the packet latency. I am not writing any device driver and i am just trying to replace the TCP/IP stack with something simpler. Now I wanted to avoid copying of a packet's data from user space to kernel space and vice-versa. I heard of the mmap(). Is it the best way to do this? If yes, it will be nice if you can give links to some examples. I am a linux newbie and i really appreciate your help.. Thank you... Thanks, Bala

    Read the article

  • reassembling http packets with perl and parsing it

    - by johnny2
    I am using net::pcap module to capture packets with this filter: dst $my_host and dst port 80 inside the net::pcap::loop i use the below callback function: net::pcap::loop($pcap_t,-1,\my_callback,'') where my_callback look like this : my_callback { my ($user_data, $header, $packet) = @_; # Strip ethernet IP and TCP my $ether_data = NetPacket::Ethernet::strip($packet); my $ip = NetPacket::IP->decode($ether_data); my $tcp = NetPacket::TCP->decode($ip->{'data'}); } could someone help me how can i assemble the http packets to one packet and extract its header .

    Read the article

  • Substring extraction using bash shell scripting and awk

    - by rohanbk
    So, I have a file called 'dummy' which contains the string: "There is 100% packet loss at node 1". I also have a small script that I want to use to grab the percentage from this file. The script is below. result=`grep 'packet loss' dummy` | awk '{ first=match($0,"[0-9]+%") last=match($0," packet loss") s=substr($0,first,last-first) print s}' echo $result I want the value of $result to basically be 100% in this case. But for some reason, it just prints out a blank string. Can anyone help me?

    Read the article

  • OpenSSL: SessionTicket TLS extension problem

    - by rursw1
    Hello, I'm using an application which uses OpenSSL for client TLS side. We upgrade the OpenSSL version from 0.9.8e to 0.9.8k. And then TLS doesn't work... Wireshark shows that the new version (with OpenSSL 0.9.8k) sends the client hello packet with a SessionTicket extension - and the server side responds with a fatal internal error. The previous version sends an almost identical hello packet, but without the SessionTicket ext. When I replaced TLSv1_client_method with SSLv23_client_method, everything worked fine - the sent client hello packet was a SSLv2 one (In the sniffer) without any extension (as it wasn't TLS but SSL?) Is there a better way to disable this extension or to solve the problem in another way? Thanks in advance, rursw1

    Read the article

  • data path (travel) of tcp data from "write" syscall downto I/O registers programming

    - by osgx
    Hello Is there a good overview of tcp data path in Linux (2.6, not 2.4 if the path actually differ)? Where is a packet on different stages of tcp/ip stack handling? How packet is packed to tcp segment, then ip packet. How it is transmitted to network card? (with series of I/O regs write and DMA?) Is it transmitted to network card in the "write" syscall handler (with some deep callstack) or is it transmitted at some other moment?

    Read the article

  • Implementing Tagging using Core Data on the iPhone

    - by Jonathan Penn
    I have an application that uses CoreData and I'm trying to figure out the best way to implement tagging and filtering by tag. For my purposes, if I was doing this in raw SQLite I would only need three tables, tags, item_tags and of course my items table. Then filtering would be as simple as joining between the three tables where only items are related to the given tags. Quite straightforward. But, is there a way to do this in CoreData and utilizing NSFetchedResultsController? It doesn't seem that NSPredicate give you the ability to filter through joins. NSPredicate's aren't full SQL anyway so I'm probably barking up the wrong tree there. I'm trying to avoid reimplementing my app using SQLite without CoreData since I'm enjoying the performance CoreData gives me in other areas. Yes, I did consider (and built a test implementation) diving into the raw SQLite that CoreData generates, but that's not future proof and I want to avoid that, too. Has anyone else tried to tackle tagging/filtering with CoreData in a UITableView with NSFetchedResultsController

    Read the article

  • Incremental build with continuous integration server

    - by altern
    Does any of the continuous integration servers support incremental builds or filtering mechanism? For example, I want to configure some kind of filtering (as I call it) so that committing file to the specific folder will not cause full (clean) build triggering, but will cause only incremental build. By 'incremental build' I mean process that will put only committed files to the required place and all application would not need to be rebuilt from scratch. Working with images is good example of the case when we need such filtering and thus incremental builds: why do we need to rebuild whole application if only images have been changed? What we need to do is just place images to the dedicated place on server.

    Read the article

  • highlight text in 2 textboxes at the same time

    - by user1907736
    I am trying to create a packet analyzer for an online game using C# and I am new to c#. I have 2 RichTextBoxes, 1 shows the packet in bytes and the other one shows the packet in ANSI. Here is what I want to achieve: When I select(highlight) data in the byte text box, I want the corresponding data in the ANSI text box to also be highlighted. (and vice-versa) When I change data in the 1 of the textboxes, I want the corresponding data in the other textbox to also be changed. How do I do these?

    Read the article

  • Boost ASIO read X bytes synchroniously into a vector

    - by xeross
    Hey, I've been attempting to write a client/server app with boost now, so far it sends and receives but I can't seem to just read X bytes into a vector. If I use the following code vector<uint8_t> buf; for (;;) { buf.resize(4); boost::system::error_code error; size_t len = socket.read_some(boost::asio::buffer(buf), error); if (error == boost::asio::error::eof) break; // Connection closed cleanly by peer. else if (error) throw boost::system::system_error(error); // Some other error. } And the packet is bigger then 4 bytes then it seems it keeps writing into those 4 bytes until the entire packet has been received, however I want it to fetch 4 bytes, then allow me to parse them, and then get the rest of the packet. Can anyone provide me with a working example, or at least a pointer on how to make it work properly ? Regards, Xeross

    Read the article

  • How are files (especially audio files) organized internally?

    - by mystify
    I try to grok that: Apple is talking about "packets" in audio files, and there is a fancy function called AudioFileReadPackets which takes a lot of arguments. One of them specifies the "start packet", and another one the number of packets which you want to read. So I imagine an audio file to look like this, internally: It's made up of a lot of packets. If it's an audio file which has an variable bit rate format, then every packet may have a different size. If the file has an constant bit rate format, then every packet is the same size. So an audio file is like a truck full of boxes, and every box contains some interesting stuff. Is that correct? Does it apply to any kind of file? Is this how files actually look like?

    Read the article

  • Send regular keyboard samples OR keyboard state changes over network

    - by Ciaran
    Building a multi player asteroids game where ships compete with each other. Using UDP. Wanted to minimize traffic sent to server. Which would you do: Send periodic keyboard state samples every from client every to match server physics update rate e.g. 50 times per second. Highly resilient to packet loss and other reliabilty problems. Out of date packets disacarded by server. Generates a lot of unnuecessary traffic. Only send keyboard state when it changes (key up, key down). Radically less traffic sent from client to server. However, UDP can lose packets without you being informed. So the latter method could result in the vital packet never being resent unless I detect and resend this in a timely manner.

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • SQL SERVER – Guest Posts – Feodor Georgiev – The Context of Our Database Environment – Going Beyond the Internal SQL Server Waits – Wait Type – Day 21 of 28

    - by pinaldave
    This guest post is submitted by Feodor. Feodor Georgiev is a SQL Server database specialist with extensive experience of thinking both within and outside the box. He has wide experience of different systems and solutions in the fields of architecture, scalability, performance, etc. Feodor has experience with SQL Server 2000 and later versions, and is certified in SQL Server 2008. In this article Feodor explains the server-client-server process, and concentrated on the mutual waits between client and SQL Server. This is essential in grasping the concept of waits in a ‘global’ application plan. Recently I was asked to write a blog post about the wait statistics in SQL Server and since I had been thinking about writing it for quite some time now, here it is. It is a wide-spread idea that the wait statistics in SQL Server will tell you everything about your performance. Well, almost. Or should I say – barely. The reason for this is that SQL Server is always a part of a bigger system – there are always other players in the game: whether it is a client application, web service, any other kind of data import/export process and so on. In short, the SQL Server surroundings look like this: This means that SQL Server, aside from its internal waits, also depends on external waits and settings. As we can see in the picture above, SQL Server needs to have an interface in order to communicate with the surrounding clients over the network. For this communication, SQL Server uses protocol interfaces. I will not go into detail about which protocols are best, but you can read this article. Also, review the information about the TDS (Tabular data stream). As we all know, our system is only as fast as its slowest component. This means that when we look at our environment as a whole, the SQL Server might be a victim of external pressure, no matter how well we have tuned our database server performance. Let’s dive into an example: let’s say that we have a web server, hosting a web application which is using data from our SQL Server, hosted on another server. The network card of the web server for some reason is malfunctioning (think of a hardware failure, driver failure, or just improper setup) and does not send/receive data faster than 10Mbs. On the other end, our SQL Server will not be able to send/receive data at a faster rate either. This means that the application users will notify the support team and will say: “My data is coming very slow.” Now, let’s move on to a bit more exciting example: imagine that there is a similar setup as the example above – one web server and one database server, and the application is not using any stored procedure calls, but instead for every user request the application is sending 80kb query over the network to the SQL Server. (I really thought this does not happen in real life until I saw it one day.) So, what happens in this case? To make things worse, let’s say that the 80kb query text is submitted from the application to the SQL Server at least 100 times per minute, and as often as 300 times per minute in peak times. Here is what happens: in order for this query to reach the SQL Server, it will have to be broken into a of number network packets (according to the packet size settings) – and will travel over the network. On the other side, our SQL Server network card will receive the packets, will pass them to our network layer, the packets will get assembled, and eventually SQL Server will start processing the query – parsing, allegorizing, generating the query execution plan and so on. So far, we have already had a serious network overhead by waiting for the packets to reach our Database Engine. There will certainly be some processing overhead – until the database engine deals with the 80kb query and its 20 subqueries. The waits you see in the DMVs are actually collected from the point the query reaches the SQL Server and the packets are assembled. Let’s say that our query is processed and it finally returns 15000 rows. These rows have a certain size as well, depending on the data types returned. This means that the data will have converted to packages (depending on the network size package settings) and will have to reach the application server. There will also be waits, however, this time you will be able to see a wait type in the DMVs called ASYNC_NETWORK_IO. What this wait type indicates is that the client is not consuming the data fast enough and the network buffers are filling up. Recently Pinal Dave posted a blog on Client Statistics. What Client Statistics does is captures the physical flow characteristics of the query between the client(Management Studio, in this case) and the server and back to the client. As you see in the image, there are three categories: Query Profile Statistics, Network Statistics and Time Statistics. Number of server roundtrips–a roundtrip consists of a request sent to the server and a reply from the server to the client. For example, if your query has three select statements, and they are separated by ‘GO’ command, then there will be three different roundtrips. TDS Packets sent from the client – TDS (tabular data stream) is the language which SQL Server speaks, and in order for applications to communicate with SQL Server, they need to pack the requests in TDS packets. TDS Packets sent from the client is the number of packets sent from the client; in case the request is large, then it may need more buffers, and eventually might even need more server roundtrips. TDS packets received from server –is the TDS packets sent by the server to the client during the query execution. Bytes sent from client – is the volume of the data set to our SQL Server, measured in bytes; i.e. how big of a query we have sent to the SQL Server. This is why it is best to use stored procedures, since the reusable code (which already exists as an object in the SQL Server) will only be called as a name of procedure + parameters, and this will minimize the network pressure. Bytes received from server – is the amount of data the SQL Server has sent to the client, measured in bytes. Depending on the number of rows and the datatypes involved, this number will vary. But still, think about the network load when you request data from SQL Server. Client processing time – is the amount of time spent in milliseconds between the first received response packet and the last received response packet by the client. Wait time on server replies – is the time in milliseconds between the last request packet which left the client and the first response packet which came back from the server to the client. Total execution time – is the sum of client processing time and wait time on server replies (the SQL Server internal processing time) Here is an illustration of the Client-server communication model which should help you understand the mutual waits in a client-server environment. Keep in mind that a query with a large ‘wait time on server replies’ means the server took a long time to produce the very first row. This is usual on queries that have operators that need the entire sub-query to evaluate before they proceed (for example, sort and top operators). However, a query with a very short ‘wait time on server replies’ means that the query was able to return the first row fast. However a long ‘client processing time’ does not necessarily imply the client spent a lot of time processing and the server was blocked waiting on the client. It can simply mean that the server continued to return rows from the result and this is how long it took until the very last row was returned. The bottom line is that developers and DBAs should work together and think carefully of the resource utilization in the client-server environment. From experience I can say that so far I have seen only cases when the application developers and the Database developers are on their own and do not ask questions about the other party’s world. I would recommend using the Client Statistics tool during new development to track the performance of the queries, and also to find a synchronous way of utilizing resources between the client – server – client. Here is another example: think about similar setup as above, but add another server to the game. Let’s say that we keep our media on a separate server, and together with the data from our SQL Server we need to display some images on the webpage requested by our user. No matter how simple or complicated the logic to get the images is, if the images are 500kb each our users will get the page slowly and they will still think that there is something wrong with our data. Anyway, I don’t mean to get carried away too far from SQL Server. Instead, what I would like to say is that DBAs should also be aware of ‘the big picture’. I wrote a blog post a while back on this topic, and if you are interested, you can read it here about the big picture. And finally, here are some guidelines for monitoring the network performance and improving it: Run a trace and outline all queries that return more than 1000 rows (in Profiler you can actually filter and sort the captured trace by number of returned rows). This is not a set number; it is more of a guideline. The general thought is that no application user can consume that many rows at once. Ask yourself and your fellow-developers: ‘why?’. Monitor your network counters in Perfmon: Network Interface:Output queue length, Redirector:Network errors/sec, TCPv4: Segments retransmitted/sec and so on. Make sure to establish a good friendship with your network administrator (buy them coffee, for example J ) and get into a conversation about the network settings. Have them explain to you how the network cards are setup – are they standalone, are they ‘teamed’, what are the settings – full duplex and so on. Find some time to read a bit about networking. In this short blog post I hope I have turned your attention to ‘the big picture’ and the fact that there are other factors affecting our SQL Server, aside from its internal workings. As a further reading I would still highly recommend the Wait Stats series on this blog, also I would recommend you have the coffee break conversation with your network admin as soon as possible. This guest post is written by Feodor Georgiev. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL

    Read the article

  • 12.04lts: no network internet

    - by dgermann
    Friends-- Cannot connect reliably to ethernet nor at all to Internet: Symptoms: About 2 weeks ago did an upgrade. Have not been able to connect to ethernet nor Internet. Today, for example, boot up this System76 laptop and there was no network connection. Did sudo mount -a and got some internal network connectivity: doug@ubuntu:/sam$ ping earth PING earth (192.168.0.201) 56(84) bytes of data. 64 bytes from earth (192.168.0.201): icmp_req=1 ttl=64 time=0.160 ms 64 bytes from earth (192.168.0.201): icmp_req=2 ttl=64 time=0.177 ms 64 bytes from earth (192.168.0.201): icmp_req=3 ttl=64 time=0.159 ms ^C --- earth ping statistics --- 3 packets transmitted, 3 received, 0% packet loss, time 1998ms rtt min/avg/max/mdev = 0.159/0.165/0.177/0.013 ms doug@ubuntu:/sam$ ping doug2 PING doug (192.168.0.4) 56(84) bytes of data. ^C --- doug ping statistics --- 3 packets transmitted, 0 received, 100% packet loss, time 1999ms doug@ubuntu:/sam$ ping sharon PING sharon (192.168.0.111) 56(84) bytes of data. 64 bytes from sharon (192.168.0.111): icmp_req=1 ttl=128 time=0.276 ms ^C --- sharon ping statistics --- 6 packets transmitted, 1 received, 83% packet loss, time 5031ms rtt min/avg/max/mdev = 0.276/0.276/0.276/0.000 ms doug@ubuntu:/sam$ ping 192.168.0.1 PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data. ^C --- 192.168.0.1 ping statistics --- 6 packets transmitted, 0 received, 100% packet loss, time 4999ms doug@ubuntu:/sam$ ping earth PING earth (192.168.0.201) 56(84) bytes of data. ^C --- earth ping statistics --- 5 packets transmitted, 0 received, 100% packet loss, time 4032ms doug@ubuntu:/sam$ ping yahoo.com ping: unknown host yahoo.com doug@ubuntu:/sam$ ping ubuntu.com ping: unknown host ubuntu.com doug@ubuntu:/sam$ ping 8.8.8.8 PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data. ^C --- 8.8.8.8 ping statistics --- 14 packets transmitted, 0 received, 100% packet loss, time 13103ms Note that earth is the cifs server, and one time pinging it worked, later failed. Clues: doug@ubuntu:/sam$ grep -i eth /var/log/syslog |tail Aug 23 15:32:46 ubuntu kernel: [ 5328.070401] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:32:48 ubuntu kernel: [ 5330.651139] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=19090 PROTO=2 Aug 23 15:34:51 ubuntu kernel: [ 5453.072279] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:34:55 ubuntu kernel: [ 5457.085433] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16137 PROTO=2 Aug 23 15:36:56 ubuntu kernel: [ 5578.074492] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:37:00 ubuntu kernel: [ 5582.359006] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16150 PROTO=2 Aug 23 15:39:01 ubuntu kernel: [ 5703.074410] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:39:03 ubuntu kernel: [ 5705.070122] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16163 PROTO=2 Aug 23 15:41:06 ubuntu kernel: [ 5828.074387] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 Aug 23 15:41:13 ubuntu kernel: [ 5835.319941] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=23298 PROTO=2 doug@ubuntu:/sam$ ifconfig -a eth0 Link encap:Ethernet HWaddr [BLANKED] inet addr:192.168.0.7 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::21b:fcff:fe29:9dfc/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:3961 errors:0 dropped:0 overruns:0 frame:0 TX packets:2007 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:991204 (991.2 KB) TX bytes:252908 (252.9 KB) Interrupt:16 Base address:0xec00 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:2190 errors:0 dropped:0 overruns:0 frame:0 TX packets:2190 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:168052 (168.0 KB) TX bytes:168052 (168.0 KB) wlan0 Link encap:Ethernet HWaddr 00:19:d2:72:5a:0c UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) doug@ubuntu:/sam$ iwconfig lo no wireless extensions. wlan0 IEEE 802.11abg ESSID:off/any Mode:Managed Access Point: Not-Associated Tx-Power=15 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off eth0 no wireless extensions. doug@ubuntu:/sam$ lsmod Module Size Used by des_generic 21191 0 md4 12523 0 nls_iso8859_1 12617 1 nls_cp437 12751 1 vfat 17308 1 fat 55605 1 vfat usb_storage 39646 1 dm_crypt 22528 1 joydev 17393 0 snd_hda_codec_analog 75395 1 snd_hda_intel 32719 2 pcmcia 39826 0 snd_hda_codec 109562 2 snd_hda_codec_analog,snd_hda_intel snd_hwdep 13276 1 snd_hda_codec ip6t_LOG 16846 4 xt_hl 12465 6 ip6t_rt 12473 3 snd_pcm 80916 2 snd_hda_intel,snd_hda_codec nf_conntrack_ipv6 13581 7 nf_defrag_ipv6 13175 1 nf_conntrack_ipv6 ipt_REJECT 12512 1 ipt_LOG 12783 5 xt_limit 12541 12 xt_tcpudp 12531 21 xt_addrtype 12596 4 snd_seq_midi 13132 0 xt_state 12514 14 ip6table_filter 12711 1 ip6_tables 22528 3 ip6t_LOG,ip6t_rt,ip6table_filter nf_conntrack_netbios_ns 12585 0 nf_conntrack_broadcast 12541 1 nf_conntrack_netbios_ns nf_nat_ftp 12595 0 nf_nat 24959 1 nf_nat_ftp nf_conntrack_ipv4 19084 9 nf_nat nf_defrag_ipv4 12649 1 nf_conntrack_ipv4 nf_conntrack_ftp 13183 1 nf_nat_ftp nf_conntrack 73847 8 nf_conntrack_ipv6,xt_state,nf_conntrack_netbios_ns,nf_conntrack_broadcast,nf_nat_ftp,nf_nat,nf_conntrack_ipv4,nf_conntrack_ftp iptable_filter 12706 1 ip_tables 18106 1 iptable_filter snd_rawmidi 25424 1 snd_seq_midi psmouse 86982 0 x_tables 22011 13 ip6t_LOG,xt_hl,ip6t_rt,ipt_REJECT,ipt_LOG,xt_limit,xt_tcpudp,xt_addrtype,xt_state,ip6table_filter,ip6_tables,iptable_filter,ip_tables arc4 12473 2 r592 17808 0 snd_seq_midi_event 14475 1 snd_seq_midi memstick 15857 1 r592 yenta_socket 27465 0 serio_raw 13027 0 pcmcia_rsrc 18367 1 yenta_socket iwl3945 73186 0 pcmcia_core 21511 3 pcmcia,yenta_socket,pcmcia_rsrc iwl_legacy 71334 1 iwl3945 snd_seq 51592 2 snd_seq_midi,snd_seq_midi_event mac80211 436493 2 iwl3945,iwl_legacy snd_timer 28931 2 snd_pcm,snd_seq snd_seq_device 14172 3 snd_seq_midi,snd_rawmidi,snd_seq rfcomm 38139 0 bnep 17830 2 parport_pc 32114 0 bluetooth 158447 10 rfcomm,bnep ppdev 12849 0 cfg80211 178877 3 iwl3945,iwl_legacy,mac80211 asus_laptop 23693 0 sparse_keymap 13658 1 asus_laptop input_polldev 13648 1 asus_laptop nls_utf8 12493 6 cifs 258037 10 snd 62218 13 snd_hda_codec_analog,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_rawmidi,snd_seq,snd_timer,snd_seq_device soundcore 14635 1 snd mac_hid 13077 0 snd_page_alloc 14108 2 snd_hda_intel,snd_pcm lp 17455 0 parport 40930 3 parport_pc,ppdev,lp i915 428418 3 firewire_ohci 40172 0 sdhci_pci 18324 0 sdhci 28241 1 sdhci_pci firewire_core 56940 1 firewire_ohci crc_itu_t 12627 1 firewire_core r8169 56396 0 drm_kms_helper 45466 1 i915 drm 197641 4 i915,drm_kms_helper i2c_algo_bit 13199 1 i915 video 19115 1 i915 doug@ubuntu:/sam$ dmesg |grep eth [ 0.116936] i2c-core: driver [aat2870] using legacy suspend method [ 0.116939] i2c-core: driver [aat2870] using legacy resume method [ 1.453811] r8169 0000:03:07.0: eth0: RTL8169sb/8110sb at 0xf840ec00, [BLANKED], XID 10000000 IRQ 16 [ 1.453815] r8169 0000:03:07.0: eth0: jumbo features [frames: 7152 bytes, tx checksumming: ok] [ 25.681231] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 154.037318] r8169 0000:03:07.0: eth0: link down [ 154.037329] r8169 0000:03:07.0: eth0: link down [ 154.037596] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 155.583162] r8169 0000:03:07.0: eth0: link up [ 155.583366] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 156.637048] r8169 0000:03:07.0: eth0: link down [ 156.637066] r8169 0000:03:07.0: eth0: link down [ 156.637339] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 156.773699] r8169 0000:03:07.0: eth0: link down [ 156.773983] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 158.456181] r8169 0000:03:07.0: eth0: link up [ 158.456378] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 159.364468] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 162.384496] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=38877 PROTO=2 [ 166.272457] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 166.422333] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=40695 PROTO=2 [ 168.736049] eth0: no IPv6 routers present [ 183.572472] r8169 0000:03:07.0: eth0: link down [ 183.572490] r8169 0000:03:07.0: eth0: link down [ 183.572934] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 185.204801] r8169 0000:03:07.0: eth0: link up [ 185.205005] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 3620.680451] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3621.068431] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3624.912973] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=9118 PROTO=2 [ 3631.088069] eth0: no IPv6 routers present [ 3703.062980] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3703.465330] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=9210 PROTO=2 [ 3828.062951] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3833.617772] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=9749 PROTO=2 [ 3953.062920] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 3955.675129] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=15983 PROTO=2 [ 4078.062922] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4078.386319] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=15997 PROTO=2 [ 4203.062899] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4203.559241] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16011 PROTO=2 [ 4328.062833] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4328.930922] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16027 PROTO=2 [ 4453.062811] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4453.950224] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16039 PROTO=2 [ 4578.062742] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4580.626432] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=13738 PROTO=2 [ 4703.062704] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4706.310170] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=15942 PROTO=2 [ 4828.062707] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4832.174324] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16505 PROTO=2 [ 4953.062628] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 4961.469282] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16090 PROTO=2 [ 5078.062552] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5080.776462] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=17239 PROTO=2 [ 5203.070394] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5205.358134] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=17665 PROTO=2 [ 5328.070401] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5330.651139] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=19090 PROTO=2 [ 5453.072279] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5457.085433] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16137 PROTO=2 [ 5578.074492] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5582.359006] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16150 PROTO=2 [ 5703.074410] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5705.070122] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED]--- SRC=192.168.0.10 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=16163 PROTO=2 [ 5828.074387] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED][BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5835.319941] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED][BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=23298 PROTO=2 [ 5953.074429] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED][BLANKED]--- SRC=192.168.0.1 DST=224.0.0.1 LEN=32 TOS=0x00 PREC=0xC0 TTL=1 ID=0 DF PROTO=2 [ 5961.925481] [UFW BLOCK] IN=eth0 OUT= MAC=[BLANKED][BLANKED]--- SRC=192.168.0.5 DST=224.0.0.251 LEN=32 TOS=0x00 PREC=0x00 TTL=1 ID=24261 PROTO=2 doug@ubuntu:/sam$ lspci -nnk |grep -iA2 eth 03:07.0 Ethernet controller [0200]: Realtek Semiconductor Co., Ltd. RTL8169 PCI Gigabit Ethernet Controller [10ec:8169] (rev 10) Subsystem: ASUSTeK Computer Inc. Device [1043:11e5] Kernel driver in use: r8169 doug@ubuntu:/sam$ route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 192.168.0.1 0.0.0.0 UG 0 0 0 eth0 169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0 192.168.0.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0 doug@ubuntu:/sam$ nm-tool NetworkManager Tool State: connected (global) - Device: eth0 [Ifupdown (eth0)] ---------------------------------------------- Type: Wired Driver: r8169 State: connected Default: yes HW Address: [BLANKED] Capabilities: Carrier Detect: yes Speed: 100 Mb/s Wired Properties Carrier: on IPv4 Settings: Address: 192.168.0.7 Prefix: 24 (255.255.255.0) Gateway: 192.168.0.1 DNS: 192.168.0.1 - Device: wlan0 ---------------------------------------------------------------- Type: 802.11 WiFi Driver: iwl3945 State: disconnected Default: no HW Address: 00:19:D2:72:5A:0C Capabilities: Wireless Properties WEP Encryption: yes WPA Encryption: yes WPA2 Encryption: yes Wireless Access Points ATT592: Infra, 30:60:23:76:FE:60, Freq 2437 MHz, Rate 54 Mb/s, Strength 24 WPA WPA2 doug@ubuntu:/sam$ nslookup ubuntu.com ;; connection timed out; no servers could be reached doug@ubuntu:/sam$ dig ubuntuforums.org ; <<>> DiG 9.8.1-P1 <<>> ubuntuforums.org ;; global options: +cmd ;; connection timed out; no servers could be reached doug@ubuntu:/sam$ sudo ifconfig eth0 up doug@ubuntu:/sam$ dhcpcd eth0 The program 'dhcpcd' can be found in the following packages: * dhcpcd * dhcpcd5 Try: sudo apt-get install <selected package> doug@ubuntu:/sam$ lspci -k 00:00.0 Host bridge: Intel Corporation Mobile 945GM/PM/GMS, 943/940GML and 945GT Express Memory Controller Hub (rev 03) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: agpgart-intel 00:02.0 VGA compatible controller: Intel Corporation Mobile 945GM/GMS, 943/940GML Express Integrated Graphics Controller (rev 03) Subsystem: ASUSTeK Computer Inc. Device 1252 Kernel driver in use: i915 Kernel modules: intelfb, i915 00:02.1 Display controller: Intel Corporation Mobile 945GM/GMS/GME, 943/940GML Express Integrated Graphics Controller (rev 03) Subsystem: ASUSTeK Computer Inc. Device 1252 00:1b.0 Audio device: Intel Corporation NM10/ICH7 Family High Definition Audio Controller (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:1c.0 PCI bridge: Intel Corporation NM10/ICH7 Family PCI Express Port 1 (rev 02) Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.1 PCI bridge: Intel Corporation NM10/ICH7 Family PCI Express Port 2 (rev 02) Kernel driver in use: pcieport Kernel modules: shpchp 00:1d.0 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #1 (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: uhci_hcd 00:1d.1 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #2 (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: uhci_hcd 00:1d.2 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #3 (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: uhci_hcd 00:1d.3 USB controller: Intel Corporation NM10/ICH7 Family USB UHCI Controller #4 (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: uhci_hcd 00:1d.7 USB controller: Intel Corporation NM10/ICH7 Family USB2 EHCI Controller (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: ehci_hcd 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev e2) 00:1f.0 ISA bridge: Intel Corporation 82801GBM (ICH7-M) LPC Interface Bridge (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel modules: leds-ss4200, iTCO_wdt, intel-rng 00:1f.1 IDE interface: Intel Corporation 82801G (ICH7 Family) IDE Controller (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: ata_piix 00:1f.3 SMBus: Intel Corporation NM10/ICH7 Family SMBus Controller (rev 02) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel modules: i2c-i801 02:00.0 Network controller: Intel Corporation PRO/Wireless 3945ABG [Golan] Network Connection (rev 02) Subsystem: Intel Corporation PRO/Wireless 3945ABG Network Connection Kernel driver in use: iwl3945 Kernel modules: iwl3945 03:01.0 CardBus bridge: Ricoh Co Ltd RL5c476 II (rev b3) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: yenta_cardbus Kernel modules: yenta_socket 03:01.1 FireWire (IEEE 1394): Ricoh Co Ltd R5C552 IEEE 1394 Controller (rev 08) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: firewire_ohci Kernel modules: firewire-ohci 03:01.2 SD Host controller: Ricoh Co Ltd R5C822 SD/SDIO/MMC/MS/MSPro Host Adapter (rev 17) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: sdhci-pci Kernel modules: sdhci-pci 03:01.3 System peripheral: Ricoh Co Ltd R5C592 Memory Stick Bus Host Adapter (rev 08) Subsystem: ASUSTeK Computer Inc. Device 1297 Kernel driver in use: r592 Kernel modules: r592 03:07.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8169 PCI Gigabit Ethernet Controller (rev 10) Subsystem: ASUSTeK Computer Inc. Device 11e5 Kernel driver in use: r8169 Kernel modules: r8169 doug@ubuntu:/sam$ Things I have tried: sudo start network-manager: no help gksudo gedit /etc/network/interfaces changed line to iface eth0 inet dhcp: no help gksudo gedit /etc/NetworkManager/NetworkManager.conf, I changed managed=false to managed=true. Then sudo service network-manager restart: no help: network is unreachable sudo pkill -9 NetworkManager: no help gksudo gedit /etc/resolve.conf added line nameseriver 8.8.8.8: no help I know very little about networking; to date this has simply worked. Thanks for your help! :- Doug.

    Read the article

  • Parallelism in .NET – Part 8, PLINQ’s ForAll Method

    - by Reed
    Parallel LINQ extends LINQ to Objects, and is typically very similar.  However, as I previously discussed, there are some differences.  Although the standard way to handle simple Data Parellelism is via Parallel.ForEach, it’s possible to do the same thing via PLINQ. PLINQ adds a new method unavailable in standard LINQ which provides new functionality… LINQ is designed to provide a much simpler way of handling querying, including filtering, ordering, grouping, and many other benefits.  Reading the description in LINQ to Objects on MSDN, it becomes clear that the thinking behind LINQ deals with retrieval of data.  LINQ works by adding a functional programming style on top of .NET, allowing us to express filters in terms of predicate functions, for example. PLINQ is, generally, very similar.  Typically, when using PLINQ, we write declarative statements to filter a dataset or perform an aggregation.  However, PLINQ adds one new method, which provides a very different purpose: ForAll. The ForAll method is defined on ParallelEnumerable, and will work upon any ParallelQuery<T>.  Unlike the sequence operators in LINQ and PLINQ, ForAll is intended to cause side effects.  It does not filter a collection, but rather invokes an action on each element of the collection. At first glance, this seems like a bad idea.  For example, Eric Lippert clearly explained two philosophical objections to providing an IEnumerable<T>.ForEach extension method, one of which still applies when parallelized.  The sole purpose of this method is to cause side effects, and as such, I agree that the ForAll method “violates the functional programming principles that all the other sequence operators are based upon”, in exactly the same manner an IEnumerable<T>.ForEach extension method would violate these principles.  Eric Lippert’s second reason for disliking a ForEach extension method does not necessarily apply to ForAll – replacing ForAll with a call to Parallel.ForEach has the same closure semantics, so there is no loss there. Although ForAll may have philosophical issues, there is a pragmatic reason to include this method.  Without ForAll, we would take a fairly serious performance hit in many situations.  Often, we need to perform some filtering or grouping, then perform an action using the results of our filter.  Using a standard foreach statement to perform our action would avoid this philosophical issue: // Filter our collection var filteredItems = collection.AsParallel().Where( i => i.SomePredicate() ); // Now perform an action foreach (var item in filteredItems) { // These will now run serially item.DoSomething(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This would cause a loss in performance, since we lose any parallelism in place, and cause all of our actions to be run serially. We could easily use a Parallel.ForEach instead, which adds parallelism to the actions: // Filter our collection var filteredItems = collection.AsParallel().Where( i => i.SomePredicate() ); // Now perform an action once the filter completes Parallel.ForEach(filteredItems, item => { // These will now run in parallel item.DoSomething(); }); This is a noticeable improvement, since both our filtering and our actions run parallelized.  However, there is still a large bottleneck in place here.  The problem lies with my comment “perform an action once the filter completes”.  Here, we’re parallelizing the filter, then collecting all of the results, blocking until the filter completes.  Once the filtering of every element is completed, we then repartition the results of the filter, reschedule into multiple threads, and perform the action on each element.  By moving this into two separate statements, we potentially double our parallelization overhead, since we’re forcing the work to be partitioned and scheduled twice as many times. This is where the pragmatism comes into play.  By violating our functional principles, we gain the ability to avoid the overhead and cost of rescheduling the work: // Perform an action on the results of our filter collection .AsParallel() .Where( i => i.SomePredicate() ) .ForAll( i => i.DoSomething() ); The ability to avoid the scheduling overhead is a compelling reason to use ForAll.  This really goes back to one of the key points I discussed in data parallelism: Partition your problem in a way to place the most work possible into each task.  Here, this means leaving the statement attached to the expression, even though it causes side effects and is not standard usage for LINQ. This leads to my one guideline for using ForAll: The ForAll extension method should only be used to process the results of a parallel query, as returned by a PLINQ expression. Any other usage scenario should use Parallel.ForEach, instead.

    Read the article

  • Which LAN card / module combinations proven to work with Wake on LAN

    - by pablomo
    I've got a 12.04 headless server that I've been trying to get to work with wake-on-lan. The card is Marvel 88E8053 using the sky2 module. Although WOL is enabled in BIOS and ethtool shows the card as WOL enabled, it refuses to wake when I send the magic packet. I have verified that the packet is being received OK when the machine is on. The machine does wake OK from a BIOS alarm which suggests it is a network card issue. I've seen reference to bugs in sky2 that mean WOL fails in recent versions of Ubuntu (and have tried a module conf file as suggested here but to no avail) So I am thinking the best bet is to replace the ethernet card with one that definitely works with WOL in 12.04 - please could you post your card make and model no if you are using it successfully?

    Read the article

  • What is the most efficient way to blur in a shader?

    - by concernedcitizen
    I'm currently working on screen space reflections. I have perfectly reflective mirror-like surfaces working, and I now need to use a blur to make the reflection on surfaces with a low specular gloss value look more diffuse. I'm having difficulty deciding how to apply the blur, though. My first idea was to just sample a lower mip level of the screen rendertarget. However, the rendertarget uses SurfaceFormat.HalfVector4 (for HDR effects), which means XNA won't allow linear filtering. Point filtering looks horrible and really doesn't give the visual cue that I want. I've thought about using some kind of Box/Gaussian blur, but this would not be ideal. I've already thrashed the texture cache in the raymarching phase before the blur even occurs (a worst case reflection could be 32 samples per pixel), and the blur kernel to make the reflections look sufficiently diffuse would be fairly large. Does anyone have any suggestions? I know it's doable, as Photon Workshop achieved the effect in Unity.

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >