Search Results

Search found 1215 results on 49 pages for 'recursive acronym'.

Page 37/49 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • iPhone: Get value in multi-dimentional array

    - by Nic Hubbard
    I have an array that is many levels deep and I am wondering what is the best way to get one of the child element values that is deep in my array. I assume I need to use a recursive method, but what is the best way to do this? Or is there a faster way to do this? The array comes from an XML Parser that I am using which builds everything into an array like this (using NSLog to show the structure): { children = ( { children = ( { children = ( { children = ( ); data = 12; element = AssetID; } ); data = ""; element = "ns1:GetUserIdByUsernameResponse"; } ); data = ""; element = "SOAP-ENV:Body"; } ); data = ""; element = "SOAP-ENV:Envelope"; } What I would like to get at is the AssetID data, which in this case is 12.

    Read the article

  • Finding a Eulerian Tour

    - by user590903
    I am trying to solve a problem on Udacity described as follows: # Find Eulerian Tour # # Write a function that takes in a graph # represented as a list of tuples # and return a list of nodes that # you would follow on an Eulerian Tour # # For example, if the input graph was # [(1, 2), (2, 3), (3, 1)] # A possible Eulerian tour would be [1, 2, 3, 1] I came up with the following solution, which, while not as elegant as some of the recursive algorithms, does seem to work within my test case. def find_eulerian_tour(graph): tour = [] start_vertex = graph[0][0] tour.append(start_vertex) while len(graph) > 0: current_vertex = tour[len(tour) - 1] for edge in graph: if current_vertex in edge: if edge[0] == current_vertex: current_vertex = edge[1] else: current_vertex = edge[0] graph.remove(edge) tour.append(current_vertex) break return tour graph = [(1, 2), (2, 3), (3, 1)] print find_eulerian_tour(graph) >> [1, 2, 3, 1] However, when submitting this, I get rejected by the grader. I am doing something wrong? I can't see any errors.

    Read the article

  • Converting keys of an array/object-tree to lowercase

    - by tstenner
    Im currently optimizing a PHP application and found one function being called around 10-20k times, so I'd thought I'd start optimization there. function keysToLower($obj) { if(!is_object($obj) && !is_array($obj)) return $obj; foreach($obj as $key=>$element) { $element=keysToLower($element); if(is_object($obj)) { $obj->{strtolower($key)}=$element; if(!ctype_lower($key)) unset($obj->{$key}); } else if(is_array($obj) && ctype_upper($key)) { $obj[strtolower($key)]=$element; unset($obj[$key]); } } return $obj; } Most of the time is spent in recursive calls (which are quite slow in PHP), but I don't see any way to convert it to a loop. What would you do?

    Read the article

  • Millionth number in the serie 2 3 4 6 9 13 19 28 42 63 ... ?

    - by HH
    It takes about minute to achieve 3000 in my comp but I need to know the millionth number in the serie. The definition is recursive so I cannot see any shortcuts except to calculate everything before the millionth number. How can you fast calculate millionth number in the serie? Serie Def n_{i+1} = \floor{ 3/2 * n_{i} } and n_{0}=2. Interestingly, only one site list the serie according to Goolge: this one. Too slow Bash code #!/bin/bash function serie { n=$( echo "3/2*$n" | bc -l | tr '\n' ' ' | sed -e 's@\\@@g' -e 's@ @@g' ); # bc gives \ at very large numbers, sed-tr for it n=$( echo $n/1 | bc ) #DUMMY FLOOR func } n=2 nth=1 while [ true ]; #$nth -lt 500 ]; do serie $n # n gets new value in the function throught global value echo $nth $n nth=$( echo $nth + 1 | bc ) #n++ done

    Read the article

  • maching strings

    - by kiran
    Write two functions, called countSubStringMatch and countSubStringMatchRecursive that take two arguments, a key string and a target string. These functions iteratively and recursively count the number of instances of the key in the target string. You should complete definitions for def countSubStringMatch(target,key): and def countSubStringMatchRecursive (target, key): For the remaining problems, we are going to explore other substring matching ideas. These problems can be solved with either an iterative function or a recursive one. You are welcome to use either approach, though you may find iterative approaches more intuitive in these cases of matching linear structures.

    Read the article

  • vb.net checkboxes. Need to populate from database and also help in designing

    - by redr
    i have this requirement and since im new to vb.net dont really have much of idea how to do this. I have 20 checkboxes with dropdowns and textbox with it. the example is - table tr td checkbox -- textbox -- dropdownlist /td /tr tr td chk1 txtbox1 ddl1 /td /tr tr td chk2 txtbox2 ddl2 /td /tr and so on. the above structure shall be in one row of a table. does anyone know how to design this in code recursive and also how to take the checkbox data from here and send it to db table for records insert, update and select. thanks

    Read the article

  • What's the fastest way to get directory and subdirs size on unix using Perl?

    - by ivicas
    I am using Perl stat() function to get the size of directory and its subdirectories. I have a list of about 20 parent directories which have few thousand recursive subdirs and every subdir has few hundred records. Main computing part of script looks like this: sub getDirSize { my $dirSize = 0; my @dirContent = <*>; my $sizeOfFilesInDir = 0; foreach my $dirContent (@dirContent) { if (-f $dirContent) { my $size = (stat($dirContent))[7]; $dirSize += $size; } elsif (-d $dirContent) { $dirSize += getDirSize($dirContent); } } return $dirSize; } The script is executing for more than one hour and I want to make it faster. I was trying with the shell du command, but the output of du (transfered to bytes) is not accurate. And it is also quite time consuming. I am working on HP-UNIX 11i v1.

    Read the article

  • python-wordmatching

    - by challarao
    Write two functions, called countSubStringMatch and countSubStringMatchRecursive that take two arguments, a key string and a target string. These functions iteratively and recursively count the number of instances of the key in the target string. You should complete definitions for def countSubStringMatch(target,key): and def countSubStringMatchRecursive (target, key): For the remaining problems, we are going to explore other substring matching ideas. These problems can be solved with either an iterative function or a recursive one. You are welcome to use either approach, though you may find iterative approaches more intuitive in these cases of matching linear structures.

    Read the article

  • Delete files in C# that windows does not want me to delete?

    - by user315881
    At my company, we are writing a script to take care of simple tasks that we usually would do by hand. I am using c# to delete profiles in c:\documents and settings\, except a few. These will simply be left alone. The problem is that even with code that sets the files to normal and marks the admin user as an owner, they won't delete. They say that the quick launch folder has access denied. I am using a recursive permissions change method and I know that it works. Same thing with file attributes. Why won't it work? How do I fix this?

    Read the article

  • What's some simple F# code that generates the .tail IL instruction?

    - by kld2010
    I'd like to see the .tail IL instruction, but the simple recursive functions using tail calls that I've been writing are apparently optimized into loops. I'm actually guessing on this, as I'm not entirely sure what a loop looks like in Reflector. I definitely don't see any .tail opcodes though. I have "Generate tail calls" checked in my project's properties. I've also tried both Debug and Release builds in Reflector. The code I used is from Programming F# by Chris Smith, page 190: let factorial x = // Keep track of both x and an accumulator value (acc) let rec tailRecursiveFactorial x acc = if x <= 1 then acc else tailRecursiveFactorial (x - 1) (acc * x) tailRecursiveFactorial x 1 Can anyone suggest some simple F# code which will indeed generate .tail?

    Read the article

  • Ignoring specific differences in diff

    - by naumcho
    When doing recursive diffs I want to ignore expected differences/translations - is there a way to do that with standard unix tools? E.g. file1: 1 ... 2 /path/to/something/ver1/blah/blah 3 /path/to/something/ver1/blah/blah 4 ... file2: 1 ... 2 /path/to/something/ver2/blah/blah 3 /path/to/something/ver3/blah/blah 4 ... I want to be able to do something like: diff file1 file2 --ignore-transltion "ver1>ver2" This should show only show me that line 3 is different Does anyone know of a good way to do that? I can easily write a perl script to do it but i will end up re-implementing most of the rest of the functionality of 'diff'. Update: My goal is to run this on directories with different versions of the same files with "diff -r" so I can spot unexpected differences in versions.

    Read the article

  • Delete from empty table taking forver

    - by Will
    Hello, I have an empty table that previously had a large amount of rows. The table has about 10 columns and indexes on many of them, as well as indexes on multiple columns. DELETE FROM item WHERE 1=1 This takes approximately 40 seconds to complete SELECT * FROM item this takes 4 seconds. The execution plan of SELECT * FROM ITEM shows the following; SQL> select * from midas_item; no rows selected Elapsed: 00:00:04.29 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=19 Card=123 Bytes=73 80) 1 0 TABLE ACCESS (FULL) OF 'MIDAS_ITEM' (Cost=19 Card=123 Byte s=7380) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 5263 consistent gets 5252 physical reads 0 redo size 1030 bytes sent via SQL*Net to client 372 bytes received via SQL*Net from client 1 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 0 rows processed any idea why these would be taking so long and how to fix it would be greatly appreciated!!

    Read the article

  • Writing out to a file in scheme

    - by Ceelos
    The goal of this is to check if the character taken into account is a number or operand and then output it into a list which will be written out to a txt file. I'm wondering which process would be more efficient, whether to do it as I stated above (writing it to a list and then writing that list out into a file) or being writing out into a txt file right from the procedure. I'm new with scheme so I apologize if I am not using the correct terminology (define input '("3" "+" "4")) (define check (if (number? (car input)) (write this out to a list or directly to a file) (check the rest of file))) Another question I had in mind, how can I make it so that the check process is recursive? I know it's a lot of asking but I've getting a little frustrated with checking out the methods that I have found on other sites. I really appreciate the help!

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • HPC Server Dynamic Job Scheduling: when jobs spawn jobs

    - by JoshReuben
    HPC Job Types HPC has 3 types of jobs http://technet.microsoft.com/en-us/library/cc972750(v=ws.10).aspx · Task Flow – vanilla sequence · Parametric Sweep – concurrently run multiple instances of the same program, each with a different work unit input · MPI – message passing between master & slave tasks But when you try go outside the box – job tasks that spawn jobs, blocking the parent task – you run the risk of resource starvation, deadlocks, and recursive, non-converging or exponential blow-up. The solution to this is to write some performance monitoring and job scheduling code. You can do this in 2 ways: manually control scheduling - allocate/ de-allocate resources, change job priorities, pause & resume tasks , restrict long running tasks to specific compute clusters Semi-automatically - set threshold params for scheduling. How – Control Job Scheduling In order to manage the tasks and resources that are associated with a job, you will need to access the ISchedulerJob interface - http://msdn.microsoft.com/en-us/library/microsoft.hpc.scheduler.ischedulerjob_members(v=vs.85).aspx This really allows you to control how a job is run – you can access & tweak the following features: max / min resource values whether job resources can grow / shrink, and whether jobs can be pre-empted, whether the job is exclusive per node the creator process id & the job pool timestamp of job creation & completion job priority, hold time & run time limit Re-queue count Job progress Max/ min Number of cores, nodes, sockets, RAM Dynamic task list – can add / cancel jobs on the fly Job counters When – poll perf counters Tweaking the job scheduler should be done on the basis of resource utilization according to PerfMon counters – HPC exposes 2 Perf objects: Compute Clusters, Compute Nodes http://technet.microsoft.com/en-us/library/cc720058(v=ws.10).aspx You can monitor running jobs according to dynamic thresholds – use your own discretion: Percentage processor time Number of running jobs Number of running tasks Total number of processors Number of processors in use Number of processors idle Number of serial tasks Number of parallel tasks Design Your algorithms correctly Finally , don’t assume you have unlimited compute resources in your cluster – design your algorithms with the following factors in mind: · Branching factor - http://en.wikipedia.org/wiki/Branching_factor - dynamically optimize the number of children per node · cutoffs to prevent explosions - http://en.wikipedia.org/wiki/Limit_of_a_sequence - not all functions converge after n attempts. You also need a threshold of good enough, diminishing returns · heuristic shortcuts - http://en.wikipedia.org/wiki/Heuristic - sometimes an exhaustive search is impractical and short cuts are suitable · Pruning http://en.wikipedia.org/wiki/Pruning_(algorithm) – remove / de-prioritize unnecessary tree branches · avoid local minima / maxima - http://en.wikipedia.org/wiki/Local_minima - sometimes an algorithm cant converge because it gets stuck in a local saddle – try simulated annealing, hill climbing or genetic algorithms to get out of these ruts   watch out for rounding errors – http://en.wikipedia.org/wiki/Round-off_error - multiple iterations can in parallel can quickly amplify & blow up your algo ! Use an epsilon, avoid floating point errors,  truncations, approximations Happy Coding !

    Read the article

  • A Small Utility to Delete Files recursively by Date

    - by Rick Strahl
    It's funny, but for me the following seems to be a recurring theme: Every few months or years I end up with a host of files on my server that need pruning selectively and often under program control. Today I realized that my SQL Server logs on my server were really piling up and nearly ran my backup drive out of drive space. So occasionally I need to check on that server drive and clean out files. Now with a bit of work this can be done with PowerShell or even a complicated DOS batch file, but heck, to me it's always easier to just create a small Console application that handles this sort of thing with a full command line parser and a few extra options, plus in the end I end up with code that I can actually modify and add features to as is invariably the case. No more searching for a script each time :-) So for my typical copy needs the requirements are: Need to recursively delete files Need to be able to specify a filespec (ie. *.bak) Be able to specify a cut off date before which to delete files And it'd be nice to have an option to send files to the Recycle bin just in case for operator error :-)(and yes that came in handy as I blew away my entire database backup folder by accident - oops!) The end result is a small Console file copy utility that I popped up on Github: https://github.com/RickStrahl/DeleteFiles The source code is up there along with the binary file you can just run. Creating DeleteFiles It's pretty easy to create a simple utility like DeleteFiles of course, so I'm not going to spend any talking about how it works. You can check it out in the repository or download and compile it. The nice thing about using a full programming language like C over something like PowerShell or batch file is that you can make short work of the recursive tree walking that's required to make this work. There's very little code, but there's also a very small, self-contained command line parser in there that might be useful that can be plugged into any project - I've been using it quite a bit for just about any Console application I've been building. If you're like me and don't have the patience or the persistence (that funky syntax requires some 'sticking with it' that I simply can't get over) to get into Powershell coding, having an executable file that I can just copy around or keep in my Utility directory is the only way I'll ever get to reuse this functionality without going on a wild search each time :-) Anyway, hope some of you might find this useful. © Rick Strahl, West Wind Technologies, 2005-2012Posted in Windows  CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • List of Commonly Used Value Types in XNA Games

    - by Michael B. McLaughlin
    Most XNA programmers are concerned about generating garbage. More specifically about allocating GC-managed memory (GC stands for “garbage collector” and is both the name of the class that provides access to the garbage collector and an acronym for the garbage collector (as a concept) itself). Two of the major target platforms for XNA (Windows Phone 7 and Xbox 360) use variants of the .NET Compact Framework. On both variants, the GC runs under various circumstances (Windows Phone 7 and Xbox 360). Of concern to XNA programmers is the fact that it runs automatically after a fixed amount of GC-managed memory has been allocated (currently 1MB on both systems). Many beginning XNA programmers are unaware of what constitutes GC-managed memory, though. So here’s a quick overview. In .NET, there are two different “types” of types: value types and reference types. Only reference types are managed by the garbage collector. Value types are not managed by the garbage collector and are instead managed in other ways that are implementation dependent. For purposes of XNA programming, the important point is that they are not managed by the GC and thus do not, by themselves, increment that internal 1 MB allocation counter. (n.b. Structs are value types. If you have a struct that has a reference type as a member, then that reference type, when instantiated, will still be allocated in the GC-managed memory and will thus count against the 1 MB allocation counter. Putting it in a struct doesn’t change the fact that it gets allocated on the GC heap, but the struct itself is created outside of the GC’s purview). Both value types and reference types use the keyword ‘new’ to allocate a new instance of them. Sometimes this keyword is hidden by a method which creates new instances for you, e.g. XmlReader.Create. But the important thing to determine is whether or not you are dealing with a value types or a reference type. If it’s a value type, you can use the ‘new’ keyword to allocate new instances of that type without incrementing the GC allocation counter (except as above where it’s a struct with a reference type in it that is allocated by the constructor, but there are no .NET Framework or XNA Framework value types that do this so it would have to be a struct you created or that was in some third-party library you were using for that to even become an issue). The following is a list of most all of value types you are likely to use in a generic XNA game: AudioCategory (used with XACT; not available on WP7) AvatarExpression (Xbox 360 only, but exposed on Windows to ease Xbox development) bool BoundingBox BoundingSphere byte char Color DateTime decimal double any enum (System.Enum itself is a class, but all enums are value types such that there are no GC allocations for enums) float GamePadButtons GamePadCapabilities GamePadDPad GamePadState GamePadThumbSticks GamePadTriggers GestureSample int IntPtr (rarely but occasionally used in XNA) KeyboardState long Matrix MouseState nullable structs (anytime you see, e.g. int? something, that ‘?’ denotes a nullable struct, also called a nullable type) Plane Point Quaternion Ray Rectangle RenderTargetBinding sbyte (though I’ve never seen it used since most people would just use a short) short TimeSpan TouchCollection TouchLocation TouchPanelCapabilities uint ulong ushort Vector2 Vector3 Vector4 VertexBufferBinding VertexElement VertexPositionColor VertexPositionColorTexture VertexPositionNormalTexture VertexPositionTexture Viewport So there you have it. That’s not quite a complete list, mind you. For example: There are various structs in the .NET framework you might make use of. I left out everything from the Microsoft.Xna.Framework.Graphics.PackedVector namespace, since everything in there ventures into the realm of advanced XNA programming anyway (n.b. every single instantiable thing in that namespace is a struct and thus a value type; there are also two interfaces but interfaces cannot be instantiated at all and thus don’t figure in to this discussion). There are so many enums you’re likely to use (PlayerIndex, SpriteSortMode, SpriteEffects, SurfaceFormat, etc.) that including them would’ve flooded the list and reduced its utility. So I went with “any enum” and trust that you can figure out what the enums are (and it’s rare to use ‘new’ with an enum anyway). That list also doesn’t include any of the pre-defined static instances of some of the classes (e.g. BlendState.AlphaBlend, BlendState.Opaque, etc.) which are already allocated such that using them doesn’t cause any new allocations and therefore doesn’t increase that 1 MB counter. That list also has a few misleading things. VertexElement, VertexPositionColor, and all the other vertex types are structs. But you’re only likely to ever use them as an array (for use with VertexBuffer or DynamicVertexBuffer), and all arrays are reference types (even arrays of value types such as VertexPositionColor[ ] or int[ ]). * So that’s it for now. The note below may be a bit confusing (it deals with how the GC works and how arrays are managed in .NET). If so, you can probably safely ignore it for now but feel free to ask any questions regardless. * Arrays of value types (where the value type doesn’t contain any reference type members) are much faster for the GC to examine than arrays of reference types, so there is a definite benefit to using arrays of value types where it makes sense. But creating arrays of value types does cause the GC’s allocation counter to increase. Indeed, allocating a large array of a value type is one of the quickest ways to increment the allocation counter since a .NET array is a sequential block of memory. An array of reference types is just a sequential block of references (typically 4 bytes each) while an array of value types is a sequential block of instances of that type. So for an array of Vector3s it would be 12 bytes each since each float is 4 bytes and there are 3 in a Vector3; for an array of VertexPositionNormalTexture structs it would typically be 32 bytes each since it has two Vector3s and a Vector2. (Note that there are a few additional bytes taken up in the creation of an array, typically 12 but sometimes 16 or possibly even more, which depend on the implementation details of the array type on the particular platform the code is running on).

    Read the article

  • ming 0.4.2 compilation errors on Ubuntu 12.04 when installing from source code

    - by gmuhammad
    I am trying to install ming 0.4.2 from source code and it was compilable before on Ubuntu 10.04, but now it' giving following compilation errors when I try to install using command sudo make install (libpng is already installed). /bin/bash ../libtool --tag=CC --mode=link gcc -g -O2 -Wall -DSWF_LITTLE_ENDIAN -o img2swf img2swf.o ../src/libming.la libtool: link: gcc -g -O2 -Wall -DSWF_LITTLE_ENDIAN -o .libs/img2swf img2swf.o ../src/.libs/libming.so gcc -DHAVE_CONFIG_H -I. -I../src -I../src -g -O2 -Wall -DSWF_LITTLE_ENDIAN -MT png2dbl.o -MD -MP -MF .deps/png2dbl.Tpo -c -o png2dbl.o png2dbl.c png2dbl.c: In function ‘readPNG’: png2dbl.c:64:8: warning: ignoring return value of ‘fread’, declared with attribute warn_unused_result [-Wunused-result] mv -f .deps/png2dbl.Tpo .deps/png2dbl.Po /bin/bash ../libtool --tag=CC --mode=link gcc -g -O2 -Wall -DSWF_LITTLE_ENDIAN -o png2dbl png2dbl.o ../src/libming.la libtool: link: gcc -g -O2 -Wall -DSWF_LITTLE_ENDIAN -o .libs/png2dbl png2dbl.o ../src/.libs/libming.so png2dbl.o: In function `readPNG': /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:69: undefined reference to `png_create_read_struct' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:74: undefined reference to `png_create_info_struct' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:82: undefined reference to `png_create_info_struct' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:97: undefined reference to `png_init_io' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:98: undefined reference to `png_set_sig_bytes' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:99: undefined reference to `png_read_info' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:101: undefined reference to `png_get_IHDR' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:127: undefined reference to `png_get_valid' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:156: undefined reference to `png_read_update_info' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:158: undefined reference to `png_get_IHDR' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:162: undefined reference to `png_get_channels' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:187: undefined reference to `png_get_rowbytes' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:194: undefined reference to `png_read_image' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:128: undefined reference to `png_set_expand' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:135: undefined reference to `png_set_strip_16' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:143: undefined reference to `png_set_gray_to_rgb' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:151: undefined reference to `png_set_filler' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:125: undefined reference to `png_set_packing' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:107: undefined reference to `png_get_valid' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:117: undefined reference to `png_get_PLTE' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:78: undefined reference to `png_destroy_read_struct' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:92: undefined reference to `png_destroy_read_struct' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:86: undefined reference to `png_destroy_read_struct' png2dbl.o: In function `writeDBL': /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:278: undefined reference to `floor' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:280: undefined reference to `compress2' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:278: undefined reference to `floor' /home/gmuhammad/Downloads/ming-0.4.2/util/png2dbl.c:280: undefined reference to `compress2' collect2: ld returned 1 exit status make[1]: *** [png2dbl] Error 1 make[1]: Leaving directory `/home/gmuhammad/Downloads/ming-0.4.2/util' make: *** [install-recursive] Error 1

    Read the article

  • How do you keep code with continuations/callbacks readable?

    - by Heinzi
    Summary: Are there some well-established best-practice patterns that I can follow to keep my code readable in spite of using asynchronous code and callbacks? I'm using a JavaScript library that does a lot of stuff asynchronously and heavily relies on callbacks. It seems that writing a simple "load A, load B, ..." method becomes quite complicated and hard to follow using this pattern. Let me give a (contrived) example. Let's say I want to load a bunch of images (asynchronously) from a remote web server. In C#/async, I'd write something like this: disableStartButton(); foreach (myData in myRepository) { var result = await LoadImageAsync("http://my/server/GetImage?" + myData.Id); if (result.Success) { myData.Image = result.Data; } else { write("error loading Image " + myData.Id); return; } } write("success"); enableStartButton(); The code layout follows the "flow of events": First, the start button is disabled, then the images are loaded (await ensures that the UI stays responsive) and then the start button is enabled again. In JavaScript, using callbacks, I came up with this: disableStartButton(); var count = myRepository.length; function loadImage(i) { if (i >= count) { write("success"); enableStartButton(); return; } myData = myRepository[i]; LoadImageAsync("http://my/server/GetImage?" + myData.Id, function(success, data) { if (success) { myData.Image = data; } else { write("error loading image " + myData.Id); return; } loadImage(i+1); } ); } loadImage(0); I think the drawbacks are obvious: I had to rework the loop into a recursive call, the code that's supposed to be executed in the end is somewhere in the middle of the function, the code starting the download (loadImage(0)) is at the very bottom, and it's generally much harder to read and follow. It's ugly and I don't like it. I'm sure that I'm not the first one to encounter this problem, so my question is: Are there some well-established best-practice patterns that I can follow to keep my code readable in spite of using asynchronous code and callbacks?

    Read the article

  • Error compiling GLib in Ubuntu 14.04 (trying to install GimpShop)

    - by Nicolás Salvarrey
    I'm kinda new in Linux, so please take it easy on the most complicated stuff. I'm trying to install GimpShop. Installation guide asks me to install GLib first, and when I try to compile it using the make command I get errors. When I run the ./configure --prefix=/usr command, I get this: checking for a BSD-compatible install... /usr/bin/install -c checking whether build environment is sane... yes checking for gawk... no checking for mawk... mawk checking whether make sets $(MAKE)... yes checking whether to enable maintainer-specific portions of Makefiles... no checking build system type... x86_64-unknown-linux-gnu checking host system type... x86_64-unknown-linux-gnu checking for the BeOS... no checking for Win32... no checking whether to enable garbage collector friendliness... no checking whether to disable memory pools... no checking for gcc... gcc checking for C compiler default output file name... a.out checking whether the C compiler works... yes checking whether we are cross compiling... no checking for suffix of executables... checking for suffix of object files... o checking whether we are using the GNU C compiler... yes checking whether gcc accepts -g... yes checking for gcc option to accept ANSI C... none needed checking for style of include used by make... GNU checking dependency style of gcc... gcc3 checking for c++... no checking for g++... no checking for gcc... gcc checking whether we are using the GNU C++ compiler... no checking whether gcc accepts -g... no checking dependency style of gcc... gcc3 checking for gcc option to accept ANSI C... none needed checking for a BSD-compatible install... /usr/bin/install -c checking for special C compiler options needed for large files... no checking for _FILE_OFFSET_BITS value needed for large files... no checking for _LARGE_FILES value needed for large files... no checking for pkg-config... /usr/bin/pkg-config checking for gawk... (cached) mawk checking for perl5... no checking for perl... perl checking for indent... no checking for perl... /usr/bin/perl checking for iconv_open... yes checking how to run the C preprocessor... gcc -E checking for egrep... grep -E checking for ANSI C header files... yes checking for sys/types.h... yes checking for sys/stat.h... yes checking for stdlib.h... yes checking for string.h... yes checking for memory.h... yes checking for strings.h... yes checking for inttypes.h... yes checking for stdint.h... yes checking for unistd.h... yes checking locale.h usability... yes checking locale.h presence... yes checking for locale.h... yes checking for LC_MESSAGES... yes checking libintl.h usability... yes checking libintl.h presence... yes checking for libintl.h... yes checking for ngettext in libc... yes checking for dgettext in libc... yes checking for bind_textdomain_codeset... yes checking for msgfmt... /usr/bin/msgfmt checking for dcgettext... yes checking for gmsgfmt... /usr/bin/msgfmt checking for xgettext... /usr/bin/xgettext checking for catalogs to be installed... am ar az be bg bn bs ca cs cy da de el en_CA en_GB eo es et eu fa fi fr ga gl gu he hi hr id is it ja ko lt lv mk mn ms nb ne nl nn no or pa pl pt pt_BR ro ru sk sl sq sr sr@ije sr@Latn sv ta tl tr uk vi wa xh yi zh_CN zh_TW checking for a sed that does not truncate output... /bin/sed checking for ld used by gcc... /usr/bin/ld checking if the linker (/usr/bin/ld) is GNU ld... yes checking for /usr/bin/ld option to reload object files... -r checking for BSD-compatible nm... /usr/bin/nm -B checking whether ln -s works... yes checking how to recognise dependent libraries... pass_all checking dlfcn.h usability... yes checking dlfcn.h presence... yes checking for dlfcn.h... yes checking for g77... no checking for f77... no checking for xlf... no checking for frt... no checking for pgf77... no checking for fort77... no checking for fl32... no checking for af77... no checking for f90... no checking for xlf90... no checking for pgf90... no checking for epcf90... no checking for f95... no checking for fort... no checking for xlf95... no checking for ifc... no checking for efc... no checking for pgf95... no checking for lf95... no checking for gfortran... no checking whether we are using the GNU Fortran 77 compiler... no checking whether accepts -g... no checking the maximum length of command line arguments... 32768 checking command to parse /usr/bin/nm -B output from gcc object... ok checking for objdir... .libs checking for ar... ar checking for ranlib... ranlib checking for strip... strip checking if gcc static flag works... yes checking if gcc supports -fno-rtti -fno-exceptions... no checking for gcc option to produce PIC... -fPIC checking if gcc PIC flag -fPIC works... yes checking if gcc supports -c -o file.o... yes checking whether the gcc linker (/usr/bin/ld -m elf_x86_64) supports shared libraries... yes checking whether -lc should be explicitly linked in... no checking dynamic linker characteristics... GNU/Linux ld.so checking how to hardcode library paths into programs... immediate checking whether stripping libraries is possible... yes checking if libtool supports shared libraries... yes checking whether to build shared libraries... yes checking whether to build static libraries... no configure: creating libtool appending configuration tag "CXX" to libtool appending configuration tag "F77" to libtool checking for extra flags to get ANSI library prototypes... none needed checking for extra flags for POSIX compliance... none needed checking for ANSI C header files... (cached) yes checking for vprintf... yes checking for _doprnt... no checking for working alloca.h... yes checking for alloca... yes checking for atexit... yes checking for on_exit... yes checking for char... yes checking size of char... 1 checking for short... yes checking size of short... 2 checking for long... yes checking size of long... 8 checking for int... yes checking size of int... 4 checking for void *... yes checking size of void *... 8 checking for long long... yes checking size of long long... 8 checking for __int64... no checking size of __int64... 0 checking for format to printf and scanf a guint64... %llu checking for an ANSI C-conforming const... yes checking if malloc() and friends prototypes are gmem.h compatible... no checking for growing stack pointer... yes checking for __inline... yes checking for __inline__... yes checking for inline... yes checking if inline functions in headers work... yes checking for ISO C99 varargs macros in C... yes checking for ISO C99 varargs macros in C++... no checking for GNUC varargs macros... yes checking for GNUC visibility attribute... yes checking whether byte ordering is bigendian... no checking dirent.h usability... yes checking dirent.h presence... yes checking for dirent.h... yes checking float.h usability... yes checking float.h presence... yes checking for float.h... yes checking limits.h usability... yes checking limits.h presence... yes checking for limits.h... yes checking pwd.h usability... yes checking pwd.h presence... yes checking for pwd.h... yes checking sys/param.h usability... yes checking sys/param.h presence... yes checking for sys/param.h... yes checking sys/poll.h usability... yes checking sys/poll.h presence... yes checking for sys/poll.h... yes checking sys/select.h usability... yes checking sys/select.h presence... yes checking for sys/select.h... yes checking for sys/types.h... (cached) yes checking sys/time.h usability... yes checking sys/time.h presence... yes checking for sys/time.h... yes checking sys/times.h usability... yes checking sys/times.h presence... yes checking for sys/times.h... yes checking for unistd.h... (cached) yes checking values.h usability... yes checking values.h presence... yes checking for values.h... yes checking for stdint.h... (cached) yes checking sched.h usability... yes checking sched.h presence... yes checking for sched.h... yes checking langinfo.h usability... yes checking langinfo.h presence... yes checking for langinfo.h... yes checking for nl_langinfo... yes checking for nl_langinfo and CODESET... yes checking whether we are using the GNU C Library 2.1 or newer... yes checking stddef.h usability... yes checking stddef.h presence... yes checking for stddef.h... yes checking for stdlib.h... (cached) yes checking for string.h... (cached) yes checking for setlocale... yes checking for size_t... yes checking size of size_t... 8 checking for the appropriate definition for size_t... unsigned long checking for lstat... yes checking for strerror... yes checking for strsignal... yes checking for memmove... yes checking for mkstemp... yes checking for vsnprintf... yes checking for stpcpy... yes checking for strcasecmp... yes checking for strncasecmp... yes checking for poll... yes checking for getcwd... yes checking for nanosleep... yes checking for vasprintf... yes checking for setenv... yes checking for unsetenv... yes checking for getc_unlocked... yes checking for readlink... yes checking for symlink... yes checking for C99 vsnprintf... yes checking whether printf supports positional parameters... yes checking for signed... yes checking for long long... (cached) yes checking for long double... yes checking for wchar_t... yes checking for wint_t... yes checking for size_t... (cached) yes checking for ptrdiff_t... yes checking for inttypes.h... yes checking for stdint.h... yes checking for snprintf... yes checking for C99 snprintf... yes checking for sys_errlist... yes checking for sys_siglist... yes checking for sys_siglist declaration... yes checking for fd_set... yes, found in sys/types.h checking whether realloc (NULL,) will work... yes checking for nl_langinfo (CODESET)... yes checking for OpenBSD strlcpy/strlcat... no checking for an implementation of va_copy()... yes checking for an implementation of __va_copy()... yes checking whether va_lists can be copied by value... no checking for dlopen... no checking for NSLinkModule... no checking for dlopen in -ldl... yes checking for dlsym in -ldl... yes checking for RTLD_GLOBAL brokenness... no checking for preceeding underscore in symbols... no checking for dlerror... yes checking for the suffix of shared libraries... .so checking for gspawn implementation... gspawn.lo checking for GIOChannel implementation... giounix.lo checking for platform-dependent source... checking whether to compile timeloop... yes checking if building for some Win32 platform... no checking for thread implementation... posix checking thread related cflags... -pthread checking for sched_get_priority_min... yes checking thread related libraries... -pthread checking for localtime_r... yes checking for posix getpwuid_r... yes checking size of pthread_t... 8 checking for pthread_attr_setstacksize... yes checking for minimal/maximal thread priority... sched_get_priority_min(SCHED_OTHER)/sched_get_priority_max(SCHED_OTHER) checking for pthread_setschedparam... yes checking for posix yield function... sched_yield checking size of pthread_mutex_t... 40 checking byte contents of PTHREAD_MUTEX_INITIALIZER... 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 checking whether to use assembler code for atomic operations... x86_64 checking value of POLLIN... 1 checking value of POLLOUT... 4 checking value of POLLPRI... 2 checking value of POLLERR... 8 checking value of POLLHUP... 16 checking value of POLLNVAL... 32 checking for EILSEQ... yes configure: creating ./config.status config.status: creating glib-2.0.pc config.status: creating glib-2.0-uninstalled.pc config.status: creating gmodule-2.0.pc config.status: creating gmodule-no-export-2.0.pc config.status: creating gmodule-2.0-uninstalled.pc config.status: creating gthread-2.0.pc config.status: creating gthread-2.0-uninstalled.pc config.status: creating gobject-2.0.pc config.status: creating gobject-2.0-uninstalled.pc config.status: creating glib-zip config.status: creating glib-gettextize config.status: creating Makefile config.status: creating build/Makefile config.status: creating build/win32/Makefile config.status: creating build/win32/dirent/Makefile config.status: creating glib/Makefile config.status: creating glib/libcharset/Makefile config.status: creating glib/gnulib/Makefile config.status: creating gmodule/Makefile config.status: creating gmodule/gmoduleconf.h config.status: creating gobject/Makefile config.status: creating gobject/glib-mkenums config.status: creating gthread/Makefile config.status: creating po/Makefile.in config.status: creating docs/Makefile config.status: creating docs/reference/Makefile config.status: creating docs/reference/glib/Makefile config.status: creating docs/reference/glib/version.xml config.status: creating docs/reference/gobject/Makefile config.status: creating docs/reference/gobject/version.xml config.status: creating tests/Makefile config.status: creating tests/gobject/Makefile config.status: creating m4macros/Makefile config.status: creating config.h config.status: config.h is unchanged config.status: executing depfiles commands config.status: executing default-1 commands config.status: executing glibconfig.h commands config.status: glibconfig.h is unchanged config.status: executing chmod-scripts commands nsalvarrey@Delleuze:~/glib-2.6.3$ ^C nsalvarrey@Delleuze:~/glib-2.6.3$ And then, with the make command, I get this: galias.h:83:39: error: 'g_ascii_digit_value' aliased to undefined symbol 'IA__g_ascii_digit_value' extern __typeof (g_ascii_digit_value) g_ascii_digit_value __attribute((alias("IA__g_ascii_digit_value"), visibility("default"))); ^ In file included from garray.c:35:0: galias.h:31:35: error: 'g_allocator_new' aliased to undefined symbol 'IA__g_allocator_new' extern __typeof (g_allocator_new) g_allocator_new __attribute((alias("IA__g_allocator_new"), visibility("default"))); ^ make[4]: *** [garray.lo] Error 1 make[4]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[3]: *** [all-recursive] Error 1 make[3]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[2]: *** [all] Error 2 make[2]: se sale del directorio «/home/nsalvarrey/glib-2.6.3/glib» make[1]: *** [all-recursive] Error 1 make[1]: se sale del directorio «/home/nsalvarrey/glib-2.6.3» make: *** [all] Error 2 nsalvarrey@Delleuze:~/glib-2.6.3$ (it's actually a lot longer) Can somebody help me?

    Read the article

  • Is there an appropriate coding style for implementing an algorithm during an interview?

    - by GlenPeterson
    I failed an interview question in C years ago about converting hex to decimal by not exploiting the ASCII table if (inputDigitByte > 9) hex = inputDigitByte - 'a'. The rise of Unicode has made this question pretty silly, but the point was that the interviewer valued raw execution speed above readability and error handling. They tell you to review algorithms textbooks to prepare for these interviews, yet these same textbooks tend to favor the implementation with the fewest lines of code, even if it has to rely on magic numbers (like "infinity") and a slower, more memory-intensive implementation (like a linked list instead of an array) to do that. I don't know what is right. Coding an algorithm within the space of an interview has at least 3 constraints: time to code, elegance/readability, and efficiency of execution. What trade-offs are appropriate for interview code? How much do you follow the textbook definition of an algorithm? Is it better to eliminate recursion, unroll loops, and use arrays for efficiency? Or is it better to use recursion and special values like "infinity" or Integer.MAX_VALUE to reduce the number of lines of code needed to write the algorithm? Interface: Make a very self-contained, bullet-proof interface, or sloppy and fast? On the one extreme, the array to be sorted might be a public static variable. On the other extreme, it might need to be passed to each method, allowing methods to be called individually from different threads for different purposes. Is it appropriate to use a linked-list data structure for items that are traversed in one direction vs. using arrays and doubling the size when the array is full? Implementing a singly-linked list during the interview is often much faster to code and easier remember for recursive algorithms like MergeSort. Thread safety - just document that it's unsafe, or say so verbally? How much should the interviewee be looking for opportunities for parallel processing? Is bit shifting appropriate? x / 2 or x >> 1 Polymorphism, type safety, and generics? Comments? Variable and method names: qs(a, p, q, r) vs: quickSort(theArray, minIdx, partIdx, maxIdx) How much should you use existing APIs? Obviously you can't use a java.util.HashMap to implement a hash-table, but what about using a java.util.List to accumulate your sorted results? Are there any guiding principals that would answer these and other questions, or is the guiding principal to ask the interviewer? Or maybe this should be the basis of a discussion while writing the code? If an interviewer can't or won't answer one of these questions, are there any tips for coaxing the information out of them?

    Read the article

  • MiniMax function throws null pointer exception

    - by Sven
    I'm working on a school project, I have to build a tic tac toe game with the AI based on the MiniMax algorithm. The two player mode works like it should. I followed the code example on http://ethangunderson.com/blog/minimax-algorithm-in-c/. The only thing is that I get a NullPointer Exception when I run the code. And I can't wrap my finger around it. I placed a comment in the code where the exception is thrown. The recursive call is returning a null pointer, what is very strange because it can't.. When I place a breakpoint on the null return with the help of a if statement, then I see that there ARE still 2 to 3 empty places.. I probably overlooking something. Hope someone can tell me what I'm doing wrong. Here is the MiniMax code (the tic tac toe code is not important): /* * To change this template, choose Tools | Templates * and open the template in the editor. */ package MiniMax; import Game.Block; import Game.Board; import java.util.ArrayList; public class MiniMax { public static Place getBestMove(Board gameBoard, Block.TYPE player) { Place bestPlace = null; ArrayList<Place> emptyPlaces = gameBoard.getEmptyPlaces(); Board newBoard; //loop trough all the empty places for(Place emptyPlace : emptyPlaces) { newBoard = gameBoard.clone(); newBoard.setBlock(emptyPlace.getRow(), emptyPlace.getCell(), player); //no game won and still room to move if(newBoard.getWinner() == Block.TYPE.NONE && newBoard.getEmptyPlaces().size() > 0) { //is an node (has children) Place tempPlace = getBestMove(newBoard, invertPlayer(player)); //ERROR is thrown here! tempPlace is null. emptyPlace.setScore(tempPlace.getScore()); } else { //is an leaf if(newBoard.getWinner() == Block.TYPE.NONE) { emptyPlace.setScore(0); } else if(newBoard.getWinner() == Block.TYPE.X) { emptyPlace.setScore(-1); } else if(newBoard.getWinner() == Block.TYPE.O) { emptyPlace.setScore(1); } //if this move is better then our prev move, take it! if((bestPlace == null) || (player == Block.TYPE.X && emptyPlace.getScore() < bestPlace.getScore()) || (player == Block.TYPE.O && emptyPlace.getScore() > bestPlace.getScore())) { bestPlace = emptyPlace; } } } //This should never be null, but it does.. return bestPlace; } private static Block.TYPE invertPlayer(Block.TYPE player) { if(player == Block.TYPE.X) { return Block.TYPE.O; } return Block.TYPE.X; } }

    Read the article

  • Organizing Git repositories with common nested sub-modules

    - by André Caron
    I'm a big fan of Git sub-modules. I like to be able to track a dependency along with its version, so that you can roll-back to a previous version of your project and have the corresponding version of the dependency to build safely and cleanly. Moreover, it's easier to release our libraries as open source projects as the history for libraries is separate from that of the applications that depend on them (and which are not going to be open sourced). I'm setting up workflow for multiple projects at work, and I was wondering how it would be if we took this approach a bit of an extreme instead of having a single monolithic project. I quickly realized there is a potential can of worms in really using sub-modules. Supposing a pair of applications: studio and player, and dependent libraries core, graph and network, where dependencies are as follows: core is standalone graph depends on core (sub-module at ./libs/core) network depdends on core (sub-module at ./libs/core) studio depends on graph and network (sub-modules at ./libs/graph and ./libs/network) player depends on graph and network (sub-modules at ./libs/graph and ./libs/network) Suppose that we're using CMake and that each of these projects has unit tests and all the works. Each project (including studio and player) must be able to be compiled standalone to perform code metrics, unit testing, etc. The thing is, a recursive git submodule fetch, then you get the following directory structure: studio/ studio/libs/ (sub-module depth: 1) studio/libs/graph/ studio/libs/graph/libs/ (sub-module depth: 2) studio/libs/graph/libs/core/ studio/libs/network/ studio/libs/network/libs/ (sub-module depth: 2) studio/libs/network/libs/core/ Notice that core is cloned twice in the studio project. Aside from this wasting disk space, I have a build system problem because I'm building core twice and I potentially get two different versions of core. Question How do I organize sub-modules so that I get the versioned dependency and standalone build without getting multiple copies of common nested sub-modules? Possible solution If the the library dependency is somewhat of a suggestion (i.e. in a "known to work with version X" or "only version X is officially supported" fashion) and potential dependent applications or libraries are responsible for building with whatever version they like, then I could imagine the following scenario: Have the build system for graph and network tell them where to find core (e.g. via a compiler include path). Define two build targets, "standalone" and "dependency", where "standalone" is based on "dependency" and adds the include path to point to the local core sub-module. Introduce an extra dependency: studio on core. Then, studio builds core, sets the include path to its own copy of the core sub-module, then builds graph and network in "dependency" mode. The resulting folder structure looks like: studio/ studio/libs/ (sub-module depth: 1) studio/libs/core/ studio/libs/graph/ studio/libs/graph/libs/ (empty folder, sub-modules not fetched) studio/libs/network/ studio/libs/network/libs/ (empty folder, sub-modules not fetched) However, this requires some build system magic (I'm pretty confident this can be done with CMake) and a bit of manual work on the part of version updates (updating graph might also require updating core and network to get a compatible version of core in all projects). Any thoughts on this?

    Read the article

  • Creating SharePoint sites from xml using Powershell

    - by Norgean
    It is frequently useful to create / delete web applications in a development environment. If you need to create a structure, this can quickly become tedious. Enter Powershell, xml and recursive functions. Create the structure in xml. Something like: <Sites>     <Site Name="Test 1" Url="Test1" />     <Site Name="Test 2" Url="Test2" >         <Site Name="Test 2 1" Url="Test21" >             <Site Name="Test 2 1 1" Url="Test211" />             <Site Name="Test 2 1 2" Url="Test212" />         </Site>     </Site>     <Site Name="Test 3" Url="Test3" >         <Site Name="Test 3 1" Url="Test31" />         <Site Name="Test 3 2" Url="Test32" />         <Site Name="Test 3 3" Url="Test33" >             <Site Name="Test 3 3 1" Url="Test331" />             <Site Name="Test 3 3 2" Url="Test332" />         </Site>         <Site Name="Test 3 4" Url="Test34" />     </Site> </Sites> Read this structure in Powershell, and recursively create the sites. Oh, and have cool progress dialogs, too. $snap = Get-PSSnapin | Where-Object { $_.Name -eq "Microsoft.SharePoint.Powershell" } if ($snap -eq $null) {     Add-PSSnapin "Microsoft.SharePoint.Powershell" } function CreateSites($baseUrl, $sites, [int]$progressid) {     $sitecount = $sites.ChildNodes.Count     $counter = 0     foreach ($site in $sites.Site)     {         Write-Progress -ID $progressid -Activity "Creating sites" -status "Creating $($site.Name)" -percentComplete ($counter / $sitecount*100)         $counter = $counter + 1         Write-Host "Creating $($site.Name) $($baseUrl)/$($site.Url)"         New-SPWeb -Url "$($baseUrl)/$($site.Url)" -AddToQuickLaunch:$false -AddToTopNav:$false -Confirm:$false -Name "$($site.Name)" -Template "STS#0" -UseParentTopNav:$true         if ($site.ChildNodes.Count -gt 0)         {             CreateSites "$($baseUrl)/$($site.Url)" $site ($progressid +1)         }         Write-Progress -ID $progressid -Activity "Creating sites" -status "Creating $($site.Name)" -Completed     } } # read an xml file $xml = [xml](Get-Content "C:\Projects\Powershell\sites.xml") $xml.PreserveWhitespace = $false CreateSites "http://$($env:computername)" $xml.Sites 1 Easy! Sensible real life implementations will also include templateid in the xml, will check for existence of a site before creating it, etc.

    Read the article

  • Finding work as a college student

    - by lightburst
    I'm a 3rd year CS student. I'm currently really, really, bored and tired of cheap school programming(I go to a fairly respectable(albeit not top) university in my country, but, really, it's not MIT) so I've been thinking about getting a part-time dev job for a long while now. I'm not some hotshot programmer or anything, but "Add/Delete XYZ class objects to list" or "Do this web feature/pattern in PHP" does get old after a few semesters. I also only learned(heard?) of programming when I entered college, so the duration of me being in contact with any code is short. I can't really apply as an intern as I have not accumulated the necessary credits yet to do that so I was thinking of selling myself as a part-time dev. I still need to go to school, and don't want to subject myself to living two lives. Plus, I think I'd have better chances considering my lack of things to write on the resume. The only language I know at heart is C (I've written several pointer-oriented stuff on my freshman year, which is apparently pretty leet(for some reason), or so Joel says. That sort of boosted my morale a bit) but I've worked with several other languages only for the sake of course work such as C#/Java/PHP/ASM. My only user-worthy project was a recursive quicksort simulator I wrote for class using GTK+ that used a textbox to output the progress. I also have not taken the compiler theory class yet, or my thesis. All that being said, I wonder if any legitimate software company(big or small) would hire somebody like me considering all that. If there are companies that do accept anybody like me, would I be doing programming or maybe just be a tester or something? Would anybody hire me as a dev at all? I know I don't have much(not even a degree) but what I lack in experience, I compensate with interest? I am less interested in websites and 'management' software(no offense or anything. also, most of the places here ONLY have those), and more into 'process driven'(I'm not sure how to call it) and system software. I have my eyes on a startup that sells basically an extension of Google Drive, but I feel like I'm too 'risky' for them. Oh, I'm also 19 if that means anything. We're not K-12 so kids go to college earlier than in the US.

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >