Search Results

Search found 26297 results on 1052 pages for 'unit test'.

Page 37/1052 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • Black box test cases for insertion procedure

    - by AJ
    insertion_procedure (int a[], int p [], int N) { int i,j,k; for (i=0; i<=N; i++) p[i] = i; for (i=2; i<=N; i++) { k = p[i]; j = 1; while (a[p[j-1]] > a[k]) {p[j] = p[j-1]; j--} p[j] = k; } } What would be few good test cases for this particular insertion procedure?

    Read the article

  • Working effectively unit tests / Anyone tried the in-assembly approach?

    - by CodingCrapper
    I'm trying to re-introduce unit testing into my team as our current coverage is very poor. Our system is quite large 40+ projects/assemblies. We current use a project named [SystemName].Test.csproj were all the test code is dumped and organised to represent the namespaces using folders. This approach is not very scalable and makes it difficult to find tests. I've been thinking about added a Tests folder to each project, this would put the unit tests "in the developers face" and make them easy to find. The downside is the Production release code would contain references to nunit, nmocks as well as the test code and test data.... Has anyone tried this approach? How is everyone else working with unit tests on large projects? Having a Tests project per "real" project/assembly would introduce too many new projs. Thanks in advance

    Read the article

  • How to configure a OCUnit test bundle for a framework?

    - by GuidoMB
    I've been developing a Mac OS X framework and I want to use OCUnit in my XCode 3.2.1 project. I've followed several tutorials on how to configure a OCUnit test bundle. The problem is that when I create a test case that uses a function that is defined in one of the framework's sources, I get a building error telling me that the symbol is not found. I made the test bundle dependent of my project's target as the tutorial said, but that doesn't seem to be problem. First I thought that I could solve this problem by dragging the framework's source files into the compile sources section within the Test bundle target, but then all the symbols referenced from that source file started to show up in the build errors, so that seems to not be a good solution/idea. How can I configure my unit test bundle so it builds properly?

    Read the article

  • How can I unit test an Android Activity that acts on Accelerometer?

    - by Corey Sunwold
    I am starting with an Activity based off of this ShakeActivity and I want to write some unit tests for it. I have written some small unit tests for Android activities before but I'm not sure where to start here. I want to feed the accelerometer some different values and test how the activity responds to it. For now I'm keeping it simple and just updating a private int counter variable and a TextView when a "shake" event happens. So my question largely boils down to this: How can I send fake data to the accelerometer from a unit test?

    Read the article

  • Working effectively with unit tests / Anyone tried the in-assembly approach?

    - by CodingCrapper
    I'm trying to re-introduce unit testing into my team as our current coverage is very poor. Our system is quite large 40+ projects/assemblies. We current use a project named [SystemName].Test.csproj were all the test code is dumped and organised to represent the namespaces using folders. This approach is not very scalable and makes it difficult to find tests. I've been thinking about added a Tests folder to each project, this would put the unit tests "in the developers face" and make them easy to find. The downside is the Production release code would contain references to nunit, nmocks as well as the test code and test data.... Has anyone tried this approach? How is everyone else working with unit tests on large projects? Having a Tests project per "real" project/assembly would introduce too many new projs. Thanks in advance

    Read the article

  • Does Ruby/Rails require more unit testing than say a PHP app?

    - by Blankman
    I don't find the unit testing push in the PHP market like I see/read in the ruby/rails arena. Could one just as easily NOT unit test in ruby/rails as in php, or is ruby just too bendable and breakable that it "more" recommended to test in ruby than in php? Meaning there are large code bases like vBulletin, and from what I can tell, they don't unit test. I hope you understand what I am asking here, not the pros/cons of testing, or whether one should test or not, but rather, does one language need to be tested more than another? maybe its easy to write buggy code, or break during refactoring etc.

    Read the article

  • NullPointerException with static variables

    - by tomekK
    I just hit very strange (to me) behaviour of java. I have following classes: public abstract class Unit { public static final Unit KM = KMUnit.INSTANCE; public static final Unit METERS = MeterUnit.INSTANCE; protected Unit() { } public abstract double getValueInUnit(double value, Unit unit); protected abstract double getValueInMeters(double value); } And: public class KMUnit extends Unit { public static final Unit INSTANCE = new KMUnit(); private KMUnit() { } //here are abstract methods overriden } public class MeterUnit extends Unit { public static final Unit INSTANCE = new MeterUnit(); private MeterUnit() { } ///abstract methods overriden } And my test case: public class TestMetricUnits extends TestCase { @Test public void testConversion() { System.out.println("Unit.METERS: " + Unit.METERS); System.out.println("Unit.KM: " + Unit.KM); double meters = Unit.KM.getValueInUnit(102.11, Unit.METERS); assertEquals(0.10211, meters, 0.00001); } } 1) MKUnit and MeterUnit are both singletons initialized statically, so during class loading. Constructors are private, so they can't be initialized anywhere else. 2) Unit class contains static final references to MKUnit.INSTANCE and MeterUnit.INSTANCE I would expect that: KMUnit class is loaded and instance is created. MeterUnit class is loaded and instance is created. Unit class is loaded and both KM and METERS variable are initialized, they are final so they cant be changed. But when I run my test case in console with maven my result is: T E S T S Running de.audi.echargingstations.tests.TestMetricUnits Unit.METERS: m Unit.KM: null Tests run: 3, Failures: 0, Errors: 1, Skipped: 0, Time elapsed: 0.089 sec <<< FAILURE! - in de.audi.echargingstations.tests.TestMetricUnits testConversion(de.audi.echargingstations.tests.TestMetricUnits) Time elapsed: 0.011 sec <<< ERROR! java.lang.NullPointerException: null at de.audi.echargingstations.tests.TestMetricUnits.testConversion(TestMetricUnits.java:29) Results : Tests in error: TestMetricUnits.testConversion:29 NullPointer And the funny part is that, when I run this test from eclipse via JUnit runner everything is fine, I have no NullPointerException and in console I have: Unit.METERS: m Unit.KM: km So the question is: what can be the reason that KM variable in Unit is null (and in the same time METERS is not null)

    Read the article

  • Timeout Considerations for Solicit Response – Part 2

    - by Michael Stephenson
    To follow up a previous article about timeouts and how they can affect your application I have extended the sample we were using to include WCF. I will execute some test scenarios and discuss the results. The sample We begin by consuming exactly the same web service which is sitting on a remote server. This time I have created a .net 3.5 application which will consume the web service using the basichttp binding. To show you the configuration for the consumption of this web service please refer to the below diagram. You can see like before we also have the connectionManagement element in the configuration file. I have added a WCF service reference (also using the asynchronous proxy methods) and have the below code sample in the application which will asynchronously make the web service calls and handle the responses on a call back method invoked by a delegate. If you have read the previous article you will notice that the code is almost the same.   Sample 1 – WCF with Default Timeouts In this test I set about recreating the same scenario as previous where we would run the test but this time using WCF as the messaging component. For the first test I would use the default configuration settings which WCF had setup when we added a reference to the web service. The timeout values for this test are: closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"   The Test We simulated 21 calls to the web service Test Results The client-side trace is as follows:   The server-side trace is as follows: Some observations on the results are as follows: The timeouts happened quicker than in the previous tests because some calls were timing out before they attempted to connect to the server The first few calls that timed out did actually connect to the server and did execute successfully on the server   Test 2 – Increase Open Connection Timeout & Send Timeout In this test I wanted to increase both the send and open timeout values to try and give everything a chance to go through. The timeout values for this test are: closeTimeout="00:01:00" openTimeout="00:10:00" receiveTimeout="00:10:00" sendTimeout="00:10:00"   The Test We simulated 21 calls to the web service   Test Results The client side trace for this test was   The server-side trace for this test was: Some observations on this test are: This test proved if the timeouts are high enough everything will just go through   Test 3 – Increase just the Send Timeout In this test we wanted to increase just the send timeout. The timeout values for this test are: closeTimeout="00:01:00" openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:10:00"   The Test We simulated 21 calls to the web service   Test Results The below is the client side trace The below is the server side trace Some observations on this test are: In this test from both the client and server perspective everything ran through fine The open connection timeout did not seem to have any effect   Test 4 – Increase Just the Open Connection Timeout In this test I wanted to validate the change to the open connection setting by increasing just this on its own. The timeout values for this test are: closeTimeout="00:01:00" openTimeout="00:10:00" receiveTimeout="00:10:00" sendTimeout="00:01:00"   The Test We simulated 21 calls to the web service Test Results The client side trace was The server side trace was Some observations on this test are: In this test you can see that the open connection which relates to opening the channel timeout increase was not the thing which stopped the calls timing out It's the send of data which is timing out On the server you can see that the successful few calls were fine but there were also a few calls which hit the server but timed out on the client You can see that not all calls hit the server which was one of the problems with the WSE and ASMX options   Test 5 – Smaller Increase in Send Timeout In this test I wanted to make a smaller increase to the send timeout than previous just to prove that it was the key setting which was controlling what was timing out. The timeout values for this test are: openTimeout="00:01:00" receiveTimeout="00:10:00" sendTimeout="00:02:30"   The Test We simulated 21 calls to the web service Test Results The client side trace was   The server side trace was Some observations on this test are: You can see that most of the calls got through fine On the client you can see that call 20 timed out but still hit the server and executed fine.   Summary At this point between the two articles we have quite a lot of scenarios showing the different way the timeout setting have played into our original performance issue, and now we can see how WCF could offer an improved way to handle the problem. To summarise the differences in the timeout properties for the three technology stacks: ASMX The timeout value only applies to the execution time of your request on the server. The timeout does not consider how long your code might be waiting client side to get a connection. WSE The timeout value includes both the time to obtain a connection and also the time to execute the request. A timeout will not be thrown as an error until an attempt to connect to the server is made. This means a 40 second timeout setting may not throw the error until 60 seconds when the connection to the server is made. If the connection to the server is made you should be aware that your message will be processed and you should design for this. WCF The WCF send timeout is the setting most equivalent to the settings we were looking at previously. Like WSE this setting the counter includes the time to get a connection as well as the time to execute on a server. Unlike WSE and ASMX an error will be thrown as soon as the send timeout from making your call from user code has elapsed regardless of whether we are waiting for a connection or have an open connection to the server. This may to a user appear to have better latency in getting an error response compared to WSE or ASMX.

    Read the article

  • Visual Studio Load Testing using Windows Azure

    - by Tarun Arora
    In my opinion the biggest adoption barrier in performance testing on smaller projects is not the tooling but the high infrastructure and administration cost that comes with this phase of testing. Only if a reusable solution was possible and infrastructure management wasn’t as expensive, adoption would certainly spike. It certainly is possible if you bring Visual Studio and Windows Azure into the equation. It is possible to run your test rig in the cloud without getting tangled in SCVMM or Lab Management. All you need is an active Azure subscription, Windows Azure endpoint enabled developer workstation running visual studio ultimate on premise, windows azure endpoint enabled worker roles on azure compute instances set up to run as test controllers and test agents. My test rig is running SQL server 2012 and Visual Studio 2012 RC agents. The beauty is that the solution is reusable, you can open the azure project, change the subscription and certificate, click publish and *BOOM* in less than 15 minutes you could have your own test rig running in the cloud. In this blog post I intend to show you how you can use the power of Windows Azure to effectively abstract the administration cost of infrastructure management and lower the total cost of Load & Performance Testing. As a bonus, I will share a reusable solution that you can use to automate test rig creation for both VS 2010 agents as well as VS 2012 agents. Introduction The slide show below should help you under the high level details of what we are trying to achive... Leveraging Azure for Performance Testing View more PowerPoint from Avanade Scenario 1 – Running a Test Rig in Windows Azure To start off with the basics, in the first scenario I plan to discuss how to, - Automate deployment & configuration of Windows Azure Worker Roles for Test Controller and Test Agent - Automate deployment & configuration of SQL database on Test Controller on the Test Controller Worker Role - Scaling Test Agents on demand - Creating a Web Performance Test and a simple Load Test - Managing Test Controllers right from Visual Studio on Premise Developer Workstation - Viewing results of the Load Test - Cleaning up - Have the above work in the shape of a reusable solution for both VS2010 and VS2012 Test Rig Scenario 2 – The scaled out Test Rig and sharing data using SQL Azure A scaled out version of this implementation would involve running multiple test rigs running in the cloud, in this scenario I will show you how to sync the load test database from these distributed test rigs into one SQL Azure database using Azure sync. The selling point for this scenario is being able to collate the load test efforts from across the organization into one data store. - Deploy multiple test rigs using the reusable solution from scenario 1 - Set up and configure Windows Azure Sync - Test SQL Azure Load Test result database created as a result of Windows Azure Sync - Cleaning up - Have the above work in the shape of a reusable solution for both VS2010 and VS2012 Test Rig The Ingredients Though with an active MSDN ultimate subscription you would already have access to everything and more, you will essentially need the below to try out the scenarios, 1. Windows Azure Subscription 2. Windows Azure Storage – Blob Storage 3. Windows Azure Compute – Worker Role 4. SQL Azure Database 5. SQL Data Sync 6. Windows Azure Connect – End points 7. SQL 2012 Express or SQL 2008 R2 Express 8. Visual Studio All Agents 2012 or Visual Studio All Agents 2010 9. A developer workstation set up with Visual Studio 2012 – Ultimate or Visual Studio 2010 – Ultimate 10. Visual Studio Load Test Unlimited Virtual User Pack. Walkthrough To set up the test rig in the cloud, the test controller, test agent and SQL express installers need to be available when the worker role set up starts, the easiest and most efficient way is to pre upload the required software into Windows Azure Blob storage. SQL express, test controller and test agent expose various switches which we can take advantage of including the quiet install switch. Once all the 3 have been installed the test controller needs to be registered with the test agents and the SQL database needs to be associated to the test controller. By enabling Windows Azure connect on the machines in the cloud and the developer workstation on premise we successfully create a virtual network amongst the machines enabling 2 way communication. All of the above can be done programmatically, let’s see step by step how… Scenario 1 Video Walkthrough–Leveraging Windows Azure for performance Testing Scenario 2 Work in progress, watch this space for more… Solution If you are still reading and are interested in the solution, drop me an email with your windows live id. I’ll add you to my TFS preview project which has a re-usable solution for both VS 2010 and VS 2012 test rigs as well as guidance and demo performance tests.   Conclusion Other posts and resources available here. Possibilities…. Endless!

    Read the article

  • How to organize integrity tests and code unit tests?

    - by karlthorwald
    I have several files with code testing code (which uses a "unittest" class). Later I found it would be nice to test database integrity also. I put this into a separate directory tree. (Things like the keys have correct format, parent and child nodes are pointing correctly and such.) I use the same unittest class for the integrity tests. Now I wonder if it makes really sense to keep this separate. To test the integrity of data I often duplicate parts of code that I use to test the code that handles the data. But it is not the same. The code tests use test databases (that get deleted after each test) and the integrity tests connect to the live data and analyze it. The integrity tests I want to call from cron and send an alarm if something happens in the live database. How would you handle that? Are there standards for such a setup? What is your experience? My tendency is to put everything in the same file, which would result in the code tests also being executed by the cron on the production environment.

    Read the article

  • How to fake Azure Table Storage in .NET for Unit Testing?

    - by Erick T
    I am working on a system that uses Azure Table Storage. In other systems (e.g., SQL, File based, etc), I can write a fake that allows me to test my data persistence logic. However, I can't see an easy way to create a fake for the Azure Table Service. I could create a new IIS project that behaves the same way, but that isn't a good way to write a unit test, it is more of an integration test. Any thoughts on how to unit test data access code that uses the Azure Table Storage client? Thanks, Erick

    Read the article

  • How to organize live data integrity tests and code unit tests?

    - by karlthorwald
    I have several files with code testing code (which uses a "unittest" class). Later I found it would be nice to test database integrity also. I put this into a separate directory tree. (Things like the keys have correct format, parent and child nodes are pointing correctly and such.) I use the same unittest class for the integrity tests. Now I wonder if it makes really sense to keep this separate. To test the integrity of data I often duplicate parts of code that I use to test the code that handles the data. But it is not the same. The code tests use test databases (that get deleted after each test) and the integrity tests connect to the live data and analyze it. The integrity tests I want to call from cron and send an alarm if something happens in the live database. How would you handle that? Are there standards for such a setup? What is your experience? My tendency is to put everything in the same file, which would result in the code tests also being executed by the cron on the production environment.

    Read the article

  • Is it possible to unit test methods that rely on NHibernate Detached Criteria?

    - by Aim Kai
    I have tried to use Moq to unit test a method on a repository that uses the DetachedCriteria class. But I come up against a problem whereby I cannot actually mock the internal Criteria object that is built inside. Is there any way to mock detached criteria? Test Method [Test] [Category("UnitTest")] public void FindByNameSuccessTest() { //Mock hibernate here var sessionMock = new Mock<ISession>(); var sessionManager = new Mock<ISessionManager>(); var queryMock = new Mock<IQuery>(); var criteria = new Mock<ICriteria>(); var sessionIMock = new Mock<NHibernate.Engine.ISessionImplementor>(); var expectedRestriction = new Restriction {Id = 1, Name="Test"}; //Set up expected returns sessionManager.Setup(m => m.OpenSession()).Returns(sessionMock.Object); sessionMock.Setup(x => x.GetSessionImplementation()).Returns(sessionIMock.Object); queryMock.Setup(x => x.UniqueResult<SopRestriction>()).Returns(expectedRestriction); criteria.Setup(x => x.UniqueResult()).Returns(expectedRestriction); //Build repository var rep = new TestRepository(sessionManager.Object); //Call repostitory here to get list var returnR = rep.FindByName("Test"); Assert.That(returnR.Id == expectedRestriction.Id); } Repository Class public class TestRepository { protected readonly ISessionManager SessionManager; public virtual ISession Session { get { return SessionManager.OpenSession(); } } public TestRepository(ISessionManager sessionManager) { } public SopRestriction FindByName(string name) { var criteria = DetachedCriteria.For<Restriction>().Add<Restriction>(x => x.Name == name) return criteria.GetExecutableCriteria(Session).UniqueResult<T>(); } } Note I am using "NHibernate.LambdaExtensions" and "Castle.Facilities.NHibernateIntegration" here as well. Any help would be gratefully appreciated.

    Read the article

  • Understanding how software testing works and what to test.

    - by RHaguiuda
    Intro: I've seen lots of topics here on SO about software testing and other terms I don't understand. Problem: As a beginner developer I, unfortunately, have no idea how software testing works, not even how to test a simple function. This is a shame, but thats the truth. I also hope this question can help others beginners developers too. Question: Can you help me to understand this subject a little bit more? Maybe some questions to start would help: When I develop a function, how should I test it? For example: when working with a sum function, should I test every input value possible or just some limits? How about testing functions with strings as parameters? In a big program, do I have to test every single piece of code of it? When you guys program do you test every code written? How automated test works and how can I try one? How tools for automated testing works and what they do? I`ve heard about unit testing. Can I have a brief explanation on this? What is a testing framework? If possible please post some code with examples to clarify the ideas. Any help on this topic is very welcome! Thanks.

    Read the article

  • Getting Assert to work in Visual C++ Unit Tests?

    - by garsh0p
    I'm using Visual Studio 2008's built in testing framework in my Visual C++ project. I'm adding a new Test Project, then a new Unit Test. However, I can't use any of the functions provided by Assert. Assert shows up in the Intellisense, but I can't do anything with it. I've done unit tests fine in Visual C#. Am I forgetting to do anything? EDIT: There isn't much code because everything I'm doing is auto-generated by Visual Studio 2008. Here are the steps I'm doing: File - New Project - Visual C++ - General - Empty Project Right click solution in Solution Explorer - Add - New Project... Visual C++ - Test - Test Project Open UnitTest1.cpp (auto-generated) Go to TestMethod1() From here, when I try to use the Assert class (like Assert.AreEqual), I can't do it. If I do the same in a Visual C# project, it works fine.

    Read the article

  • How to know if your Unit Test Fixture is “right-sized”?

    - by leeand00
    How do you know if you "Test Fixture" is right-sized. And by "Test Fixture" I mean a class with a bunch of tests in it. One thing that I've always noticed with my test fixtures is that they get to be kind of verbose; seeing as they could also be not verbose enough, how do you get a sense of when your unit tests are the right size? My assumption is that (at least in the context of web development) you should have one test fixture class per page. I know of a good quote for this and it's: "Perfection is achieved, not when there is nothing left to add, but when there is nothing left to remove." - Antoine de Saint-Exupery.

    Read the article

  • how can protected members of base class be accessed during unit test?

    - by amateur
    I am creating a unit test in mstest with rhino mocks. I have a class A that inherits class B. I am testing class A and create an instance of it for my test. The class it inherits, "B", has some protected methods and protected properties that I would like to access for the benefit of my tests. For example, validate that a protected property on my base class has the expected value. Any ideas how I might access these protected properties of class B during my test?

    Read the article

  • Converting time period strings to value/unit pair

    - by randomtoor
    I need to parse the contents of a string that represents a time period. The format of the string is value/unit, e.g.: 1s, 60min, 24h. I would separate the actual value (an int) and unit (a str) to separated variables. At the moment I do it like this: def validate_time(time): binsize = time.strip() unit = re.sub('[0-9]','',binsize) if unit not in ['s','m','min','h','l']: print "Error: unit {0} is not valid".format(unit) sys.exit(2) tmp = re.sub('[^0-9]','',binsize) try: value = int(tmp) except ValueError: print "Error: {0} is not valid".format(time) sys.exit(2) return value,unit However, it is not ideal as things like 1m0 are also (wrongly) validated (value=10,unit=m). What is the best way to validate/parse this input?

    Read the article

  • How to configure Visual Studio 2010 code coverage for ASP.NET MVC unit tests

    - by DigiMortal
    I just got Visual Studio 2010 code coverage work with ASP.NET MVC application unit tests. Everything is simple after you have spent some time with forums, blogs and Google. To save your valuable time I wrote this posting to guide you through the process of making code coverage work with ASP.NET MVC application unit tests. After some fighting with Visual Studio I got everything to work as expected. I am still not very sure why users must deal with this mess, but okay – I survived it. Before you start configuring Visual Studio I expect your solution meets the following needs: there are at least one library that will be tested, there is at least on library that contains tests to be run, there are some classes and some tests for them, and, of course, you are using version of Visual Studio 2010 that supports tests (I have Visual Studio 2010 Ultimate). Now open the following screenshot to separate windows and follow the steps given below. Visual Studio 2010 Test Settings window. Click on image to see it at original size.  Double click on Local.testsettings under Solution Items. Test settings window will be opened. Select “Data and Diagnostics” from left pane. Mark checkboxes “ASP.NET Profiler” and “Code Coverage”. Move cursor to “Code Coverage” line and press Configure button or make double click on line. Assemblies selection window will be opened. Mark checkboxes that are located before assemblies about what you want code coverage reports and apply settings. Save your project and close Visual Studio. Run Visual Studio as Administrator and run tests. NB! Select Test => Run => Tests in Current Context from menu. When tests are run you can open code coverage results by selecting Test => Windows => Code Coverage Results from menu. Here you can see my example test results. Visual Studio 2010 Test Results window. All my tests passed this time. :) Click on image to see it at original size.  And here are the code coverage results. Visual Studio 2101 Code Coverage Results. I need a lot more tests for sure. Click on image to see it at original size.  As you can see everything was pretty simple. But it took me sometime to figure out how to get everything work as expected. Problems? You may face some problems when making code coverage work. Here is my short list of possible problems. Make sure you have all assemblies available for code coverage. In some cases it needs more libraries to be referenced as you currently have. By example, I had to add some more Enterprise Library assemblies to my project. You can use EventViewer to discover errors that where given during testing. Make sure you selected all testable assemblies from Code Coverage settings like shown above. Otherwise you may get empty results. Tests with code coverage are slower because we need ASP.NET profiler. If your machine slows down then try to free more resources.

    Read the article

  • Test-Drive ASP.NET MVC Review

    - by Ben Griswold
    A few years back I started dallying with test-driven development, but I never fully committed to the practice. This wasn’t because I didn’t believe in the value of TDD; it was more a matter of not completely understanding how to incorporate “test first” into my everyday development. Back in my web forms days, I could point fingers at the framework for my ignorance and laziness. After all, web forms weren’t exactly designed for testability so who could blame me for not embracing TDD in those conditions, right? But when I switched to ASP.NET MVC and quickly found myself fresh out of excuses and it became instantly clear that it was time to get my head around red-green-refactor once and for all or I would regretfully miss out on one of the biggest selling points the new framework had to offer. I have previously written about how I learned ASP.NET MVC. It was primarily hands on learning but I did read a couple of ASP.NET MVC books along the way. The books I read dedicated a chapter or two to TDD and they certainly addressed the benefits of TDD and how MVC was designed with testability in mind, but TDD was merely an afterthought compared to, well, teaching one how to code the model, view and controller. This approach made some sense, and I learned a bunch about MVC from those books, but when it came to TDD the books were just a teaser and an opportunity missed.  But then I got lucky – Jonathan McCracken contacted me and asked if I’d review his book, Test-Drive ASP.NET MVC, and it was just what I needed to get over the TDD hump. As the title suggests, Test-Drive ASP.NET MVC takes a different approach to learning MVC as it focuses on testing right from the very start. McCracken wastes no time and swiftly familiarizes us with the framework by building out a trivial Quote-O-Matic application and then dedicates the better part of his book to testing first – first by explaining TDD and then coding a full-featured Getting Organized application inspired by David Allen’s popular book, Getting Things Done. If you are a learn-by-example kind of coder (like me), you will instantly appreciate and enjoy McCracken’s style – its fast-moving, pragmatic and focused on only the most relevant information required to get you going with ASP.NET MVC and TDD. The book continues with the test-first theme but McCracken moves away from the sample application and incorporates other practical skills like persisting models with NHibernate, leveraging Inversion of Control with the IControllerFactory and building a RESTful web service. What I most appreciated about this section was McCracken’s use of and praise for open source libraries like Rhino Mocks, SQLite and StructureMap (to name just a few) and productivity tools like ReSharper, Web Platform Installer and ASP.NET SQL Server Setup Wizard.  McCracken’s emphasis on real world, pragmatic development was clearly demonstrated in every tool choice, straight-forward code block and developer tip. Whether one is already familiar with the tools/tips or not, McCracken’s thought process is easily understood and appreciated. The final section of the book walks the reader through security and deployment – everything from error handling and logging with ELMAH, to ASP.NET Health Monitoring, to using MSBuild with automated builds, to the deployment  of ASP.NET MVC to various web environments. These chapters, like those prior, offer enough information and explanation to simply help you get the job done.  Do I believe Test-Drive ASP.NET MVC will turn you into an expert MVC developer overnight?  Well, no.  I don’t think any book can make that claim.  If that were possible, I think book list prices would skyrocket!  That said, Test-Drive ASP.NET MVC provides a solid foundation and a unique (and dare I say necessary) approach to learning ASP.NET MVC.  Along the way McCracken shares loads of very practical software development tips and references numerous tools and libraries. The bottom line is it’s a great ASP.NET MVC primer – if you’re new to ASP.NET MVC it’s just what you need to get started.  Do I believe Test-Drive ASP.NET MVC will give you everything you need to start employing TDD in your everyday development?  Well, I used to think that learning TDD required a lot of practice and, if you’re lucky enough, the guidance of a mentor or coach.  I used to think that one couldn’t learn TDD from a book alone. Well, I’m still no pro, but I’m testing first now and Jonathan McCracken and his book, Test-Drive ASP.NET MVC, played a big part in making this happen.  If you are an MVC developer and a TDD newb, Test-Drive ASP.NET MVC is just the book for you.

    Read the article

  • Test descriptions/name, say what the test is? or what it means when it fails?

    - by xenoterracide
    The API docs for Test::More::ok is ok($got eq $expected, $test_name); right now in one of my apps I have $test_name print what the test is testing. So for example in one of my tests I have set this to 'filename exists'. What I realized after I got a bug report recently, and realized that the only time I ever see this message is when the test is failing, if the test is failing that means the file doesn't exist. In your opinion, do you think these $test_name's should say what the test means if successful? what it means if it failed? or do you think it should say something else? please explain why?

    Read the article

  • Can you recommend a good test plan template?

    - by Ethel Evans
    Can you recommend a good test plan template for an agile testing team? I know there are templates for testing on the web and have already looked at some found by search engines, but I could really use something lightweight and something that has already been tried by skilled testers and is known to work well. Many templates I've seen give me the feeling that writing test documents is expected to be a third of the work that those testers are doing, but my team really prefers to use less documentation and more actual test writing. We use a wiki for documentation, so an approach that lends itself to living documents would be great. My hope is that using a more structured approach to test planning will increase the usefulness of my test plan while reducing the effort to create it by allowing me to think about the tests, and not the format and structure of the plan. My workplace does not have something already on hand, so whatever I start doing might be adopted by the company.

    Read the article

  • Code Behaviour via Unit Tests

    - by Dewald Galjaard
    Normal 0 false false false EN-ZA X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Some four months ago my car started acting up. Symptoms included a sputtering as my car’s computer switched between gears intermittently. Imagine building up speed, then when you reach 80km/h the car magically and mysteriously decide to switch back to third or even second gear. Clearly it was confused! I managed to track down a technician, an expert in his field to help me out. As he fitted his handheld computer to some hidden port under the dash, he started to explain “These cars are quite intelligent, you know. When they sense something is wrong they run in a restrictive program which probably account for how you managed to drive here in the first place...”  I was surprised and thought this was certainly going to be an interesting test drive. The car ran smoothly down the first couple of stretches as the technician ran through routine checks. Then he said “Ok, all looking good. We need to start testing aspects of the gearbox. Inside the gearbox there are a couple of sensors. One of them is a speed sensor which talks to the computer, which in turn will decide which gear to switch to. The restrictive program avoid these sensors altogether and allow the computer to obtain its input from other [non-affected] sources”. Then, as soon as he forced the speed sensor to come back online the symptoms and ill behaviour re-emerged... What an incredible analogy for getting into a discussion on unit testing software? Besides I should probably put my ill fortune to some good use, right? This example provide a lot of insight into how and why we should conduct unit tests when writing code. More importantly, it captures what is easily and unfortunately often the most overlooked goal of writing unit tests by those new to the art and those who oppose it alike - The goal of writing unit tests is to test the behaviour of our code under predefined conditions. Although it is very possible to test the intrinsic workings of each and every component in your code, writing several tests for each method in practise will soon prove to be an exhausting and ultimately fruitless exercise given the certain and ever changing nature of business requirements. Consequently it is true and quite possible whilst conducting proper unit tests, to call any single method several times as you examine and contemplate different scenarios. Let’s write some code to demonstrate what I mean. In my example I make use of the Moq framework and NUnit to create my tests. Truly you can use whatever you’re comfortable with. First we’ll create an ISpeedSensor interface. This is to represent the speed sensor located in the gearbox.  Then we’ll create a Gearbox class which we’ll pass to a constructor when we instantiate an object of type Computer. All three are described below.   ISpeedSensor.cs namespace AutomaticVehicle {     public interface ISpeedSensor     {         int ReportCurrentSpeed();     } }   Gearbox.cs namespace AutomaticVehicle {      public class Gearbox     {         private ISpeedSensor _speedSensor;           public Gearbox( ISpeedSensor gearboxSpeedSensor )         {             _speedSensor = gearboxSpeedSensor;         }         /// <summary>         /// This method obtain it's reading from the speed sensor.         /// </summary>         /// <returns></returns>         public int ReportCurrentSpeed()         {             return _speedSensor.ReportCurrentSpeed();         }     } } Computer.cs namespace AutomaticVehicle {     public class Computer     {         private Gearbox _gearbox;         public Computer( Gearbox gearbox )         {                     }          public int GetCurrentSpeed()         {             return _gearbox.ReportCurrentSpeed( );         }     } } Since this post is about Unit testing, that is exactly what we’ll create next. Create a second project in your solution. I called mine AutomaticVehicleTests and I immediately referenced the respective nunit, moq and AutomaticVehicle dll’s. We’re going to write a test to examine what happens inside the Computer class. ComputerTests.cs namespace AutomaticVehicleTests {     [TestFixture]     public class ComputerTests     {         [Test]         public void Computer_Gearbox_SpeedSensor_DoesThrow()         {             // Mock ISpeedSensor in gearbox             Mock< ISpeedSensor > speedSensor = new Mock< ISpeedSensor >( );             speedSensor.Setup( n => n.ReportCurrentSpeed() ).Throws<Exception>();             Gearbox gearbox = new Gearbox( speedSensor.Object );               // Create Computer instance to test it's behaviour  towards an exception in gearbox             Computer carComputer = new Computer( gearbox );             // For simplicity let’s assume for now the car only travels at 60 km/h.             Assert.AreEqual( 60, carComputer.GetCurrentSpeed( ) );          }     } }   What is happening in this test? We have created a mocked object using the ISpeedsensor interface which we've passed to our Gearbox object. Notice that I created the mocked object using an interface, not the implementation. I’ll talk more about this in future posts but in short I do this to accentuate the fact that I'm not not really concerned with how SpeedSensor work internally at this particular point in time. Next I’ve gone ahead and created a scenario where I’ve declared the speed sensor in Gearbox to be faulty by forcing it to throw an exception should we ask Gearbox to report on its current speed. Sneaky, sneaky. This test is a simulation of how things may behave in the real world. Inevitability things break, whether it’s caused by mechanical failure, some logical error on your part or a fellow developer which didn’t consult the documentation (or the lack thereof ) - whether you’re calling a speed sensor, making a call to a database, calling a web service or just trying to write a file to disk. It’s a scenario I’ve created and this test is about how the code within the Computer instance will behave towards any such error as I’ve depicted. Now, if you’ve followed closely in my final assert method you would have noticed I did something quite unexpected. I might be getting ahead of myself now but I’m testing to see if the value returned is equal to what I expect it to be under perfect conditions – I’m not testing to see if an error has been thrown! Why is that? Well, in short this is TDD. Test Driven Development is about first writing your test to define the result we want, then to go back and change the implementation within your class to obtain the desired output (I need to make sure I can drive back to the repair shop. Remember? ) So let’s go ahead and run our test as is. It’s fails miserably... Good! Let’s go back to our Computer class and make a small change to the GetCurrentSpeed method.   Computer.cs public int GetCurrentSpeed() {   try   {     return _gearbox.ReportCurrentSpeed( );   }   catch   {     RunRestrictiveProgram( );   } }     This is a simple solution, I know, but it does provide a way to allow for different behaviour. You’re more than welcome to provide an implementation for RunRestrictiveProgram should you feel the need to. It's not within the scope of this post or related to the point I'm trying to make. What is important is to notice how the focus has shifted in our approach from how things can break - to how things behave when broken.   Happy coding!

    Read the article

  • Is there a better way to organize my module tests that avoids an explosion of new source files?

    - by luser droog
    I've got a neat (so I thought) way of having each of my modules produce a unit-test executable if compiled with the -DTESTMODULE flag. This flag guards a main() function that can access all static data and functions in the module, without #including a C file. From the README: -- Modules -- The various modules were written and tested separately before being coupled together to achieve the necessary basic functionality. Each module retains its unit-test, its main() function, guarded by #ifdef TESTMODULE. `make test` will compile and execute all the unit tests, producing copious output, but importantly exitting with an appropriate success or failure code, so the `make test` command will fail if any of the tests fail. Module TOC __________ test obj src header structures CONSTANTS ---- --- --- --- -------------------- m m.o m.c m.h mfile mtab TABSZ s s.o s.c s.h stack STACKSEGSZ v v.o v.c v.h saverec_ f.o f.c f.h file ob ob.o ob.c ob.h object ar ar.o ar.c ar.h array st st.o st.c st.h string di di.o di.c di.h dichead dictionary nm nm.o nm.c nm.h name gc gc.o gc.c gc.h garbage collector itp itp.c itp.h context osunix.o osunix.c osunix.h unix-dependent functions It's compile by a tricky bit of makefile, m:m.c ob.h ob.o err.o $(CORE) itp.o $(OP) cc $(CFLAGS) -DTESTMODULE $(LDLIBS) -o $@ $< err.o ob.o s.o ar.o st.o v.o di.o gc.o nm.o itp.o $(OP) f.o where the module is compiled with its own C file plus every other object file except itself. But it's creating difficulties for the kindly programmer who offered to write the Autotools files for me. So the obvious way to make it "less weird" would be to bust-out all the main functions into separate source files. But, but ... Do I gotta?

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >