Search Results

Search found 10547 results on 422 pages for 'extending classes'.

Page 377/422 | < Previous Page | 373 374 375 376 377 378 379 380 381 382 383 384  | Next Page >

  • Creating Custom Ajax Control Toolkit Controls

    - by Stephen Walther
    The goal of this blog entry is to explain how you can extend the Ajax Control Toolkit with custom Ajax Control Toolkit controls. I describe how you can create the two halves of an Ajax Control Toolkit control: the server-side control extender and the client-side control behavior. Finally, I explain how you can use the new Ajax Control Toolkit control in a Web Forms page. At the end of this blog entry, there is a link to download a Visual Studio 2010 solution which contains the code for two Ajax Control Toolkit controls: SampleExtender and PopupHelpExtender. The SampleExtender contains the minimum skeleton for creating a new Ajax Control Toolkit control. You can use the SampleExtender as a starting point for your custom Ajax Control Toolkit controls. The PopupHelpExtender control is a super simple custom Ajax Control Toolkit control. This control extender displays a help message when you start typing into a TextBox control. The animated GIF below demonstrates what happens when you click into a TextBox which has been extended with the PopupHelp extender. Here’s a sample of a Web Forms page which uses the control: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowPopupHelp.aspx.cs" Inherits="MyACTControls.Web.Default" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html > <head runat="server"> <title>Show Popup Help</title> </head> <body> <form id="form1" runat="server"> <div> <act:ToolkitScriptManager ID="tsm" runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblSSN" Text="SSN:" AssociatedControlID="txtSSN" runat="server" /> <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblPhone" Text="Phone Number:" AssociatedControlID="txtPhone" runat="server" /> <asp:TextBox ID="txtPhone" runat="server" /> <act:PopupHelpExtender id="ph2" TargetControlID="txtPhone" HelpText="Please enter your phone number." runat="server" /> </div> </form> </body> </html> In the page above, the PopupHelp extender is used to extend the functionality of the two TextBox controls. When focus is given to a TextBox control, the popup help message is displayed. An Ajax Control Toolkit control extender consists of two parts: a server-side control extender and a client-side behavior. For example, the PopupHelp extender consists of a server-side PopupHelpExtender control (PopupHelpExtender.cs) and a client-side PopupHelp behavior JavaScript script (PopupHelpBehavior.js). Over the course of this blog entry, I describe how you can create both the server-side extender and the client-side behavior. Writing the Server-Side Code Creating a Control Extender You create a control extender by creating a class that inherits from the abstract ExtenderControlBase class. For example, the PopupHelpExtender control is declared like this: public class PopupHelpExtender: ExtenderControlBase { } The ExtenderControlBase class is part of the Ajax Control Toolkit. This base class contains all of the common server properties and methods of every Ajax Control Toolkit extender control. The ExtenderControlBase class inherits from the ExtenderControl class. The ExtenderControl class is a standard class in the ASP.NET framework located in the System.Web.UI namespace. This class is responsible for generating a client-side behavior. The class generates a call to the Microsoft Ajax Library $create() method which looks like this: <script type="text/javascript"> $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); }); </script> The JavaScript $create() method is part of the Microsoft Ajax Library. The reference for this method can be found here: http://msdn.microsoft.com/en-us/library/bb397487.aspx This method accepts the following parameters: type – The type of client behavior to create. The $create() method above creates a client PopupHelpBehavior. Properties – Enables you to pass initial values for the properties of the client behavior. For example, the initial value of the HelpText property. This is how server property values are passed to the client. Events – Enables you to pass client-side event handlers to the client behavior. References – Enables you to pass references to other client components. Element – The DOM element associated with the client behavior. This will be the DOM element associated with the control being extended such as the txtSSN TextBox. The $create() method is generated for you automatically. You just need to focus on writing the server-side control extender class. Specifying the Target Control All Ajax Control Toolkit extenders inherit a TargetControlID property from the ExtenderControlBase class. This property, the TargetControlID property, points at the control that the extender control extends. For example, the Ajax Control Toolkit TextBoxWatermark control extends a TextBox, the ConfirmButton control extends a Button, and the Calendar control extends a TextBox. You must indicate the type of control which your extender is extending. You indicate the type of control by adding a [TargetControlType] attribute to your control. For example, the PopupHelp extender is declared like this: [TargetControlType(typeof(TextBox))] public class PopupHelpExtender: ExtenderControlBase { } The PopupHelp extender can be used to extend a TextBox control. If you try to use the PopupHelp extender with another type of control then an exception is thrown. If you want to create an extender control which can be used with any type of ASP.NET control (Button, DataView, TextBox or whatever) then use the following attribute: [TargetControlType(typeof(Control))] Decorating Properties with Attributes If you decorate a server-side property with the [ExtenderControlProperty] attribute then the value of the property gets passed to the control’s client-side behavior. The value of the property gets passed to the client through the $create() method discussed above. The PopupHelp control contains the following HelpText property: [ExtenderControlProperty] [RequiredProperty] public string HelpText { get { return GetPropertyValue("HelpText", "Help Text"); } set { SetPropertyValue("HelpText", value); } } The HelpText property determines the help text which pops up when you start typing into a TextBox control. Because the HelpText property is decorated with the [ExtenderControlProperty] attribute, any value assigned to this property on the server is passed to the client automatically. For example, if you declare the PopupHelp extender in a Web Form page like this: <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" />   Then the PopupHelpExtender renders the call to the the following Microsoft Ajax Library $create() method: $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); You can see this call to the JavaScript $create() method by selecting View Source in your browser. This call to the $create() method calls a method named set_HelpText() automatically and passes the value “Please enter your social security number”. There are several attributes which you can use to decorate server-side properties including: ExtenderControlProperty – When a property is marked with this attribute, the value of the property is passed to the client automatically. ExtenderControlEvent – When a property is marked with this attribute, the property represents a client event handler. Required – When a value is not assigned to this property on the server, an error is displayed. DefaultValue – The default value of the property passed to the client. ClientPropertyName – The name of the corresponding property in the JavaScript behavior. For example, the server-side property is named ID (uppercase) and the client-side property is named id (lower-case). IDReferenceProperty – Applied to properties which refer to the IDs of other controls. URLProperty – Calls ResolveClientURL() to convert from a server-side URL to a URL which can be used on the client. ElementReference – Returns a reference to a DOM element by performing a client $get(). The WebResource, ClientResource, and the RequiredScript Attributes The PopupHelp extender uses three embedded resources named PopupHelpBehavior.js, PopupHelpBehavior.debug.js, and PopupHelpBehavior.css. The first two files are JavaScript files and the final file is a Cascading Style sheet file. These files are compiled as embedded resources. You don’t need to mark them as embedded resources in your Visual Studio solution because they get added to the assembly when the assembly is compiled by a build task. You can see that these files get embedded into the MyACTControls assembly by using Red Gate’s .NET Reflector tool: In order to use these files with the PopupHelp extender, you need to work with both the WebResource and the ClientScriptResource attributes. The PopupHelp extender includes the following three WebResource attributes. [assembly: WebResource("PopupHelp.PopupHelpBehavior.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.debug.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.css", "text/css", PerformSubstitution = true)] These WebResource attributes expose the embedded resource from the assembly so that they can be accessed by using the ScriptResource.axd or WebResource.axd handlers. The first parameter passed to the WebResource attribute is the name of the embedded resource and the second parameter is the content type of the embedded resource. The PopupHelp extender also includes the following ClientScriptResource and ClientCssResource attributes: [ClientScriptResource("MyACTControls.PopupHelpBehavior", "PopupHelp.PopupHelpBehavior.js")] [ClientCssResource("PopupHelp.PopupHelpBehavior.css")] Including these attributes causes the PopupHelp extender to request these resources when you add the PopupHelp extender to a page. If you open View Source in a browser which uses the PopupHelp extender then you will see the following link for the Cascading Style Sheet file: <link href="/WebResource.axd?d=0uONMsWXUuEDG-pbJHAC1kuKiIMteQFkYLmZdkgv7X54TObqYoqVzU4mxvaa4zpn5H9ch0RDwRYKwtO8zM5mKgO6C4WbrbkWWidKR07LD1d4n4i_uNB1mHEvXdZu2Ae5mDdVNDV53znnBojzCzwvSw2&amp;t=634417392021676003" type="text/css" rel="stylesheet" /> You also will see the following script include for the JavaScript file: <script src="/ScriptResource.axd?d=pIS7xcGaqvNLFBvExMBQSp_0xR3mpDfS0QVmmyu1aqDUjF06TrW1jVDyXNDMtBHxpRggLYDvgFTWOsrszflZEDqAcQCg-hDXjun7ON0Ol7EXPQIdOe1GLMceIDv3OeX658-tTq2LGdwXhC1-dE7_6g2&amp;t=ffffffff88a33b59" type="text/javascript"></script> The JavaScrpt file returned by this request to ScriptResource.axd contains the combined scripts for any and all Ajax Control Toolkit controls in a page. By default, the Ajax Control Toolkit combines all of the JavaScript files required by a page into a single JavaScript file. Combining files in this way really speeds up how quickly all of the JavaScript files get delivered from the web server to the browser. So, by default, there will be only one ScriptResource.axd include for all of the JavaScript files required by a page. If you want to disable Script Combining, and create separate links, then disable Script Combining like this: <act:ToolkitScriptManager ID="tsm" runat="server" CombineScripts="false" /> There is one more important attribute used by Ajax Control Toolkit extenders. The PopupHelp behavior uses the following two RequirdScript attributes to load the JavaScript files which are required by the PopupHelp behavior: [RequiredScript(typeof(CommonToolkitScripts), 0)] [RequiredScript(typeof(PopupExtender), 1)] The first parameter of the RequiredScript attribute represents either the string name of a JavaScript file or the type of an Ajax Control Toolkit control. The second parameter represents the order in which the JavaScript files are loaded (This second parameter is needed because .NET attributes are intrinsically unordered). In this case, the RequiredScript attribute will load the JavaScript files associated with the CommonToolkitScripts type and the JavaScript files associated with the PopupExtender in that order. The PopupHelp behavior depends on these JavaScript files. Writing the Client-Side Code The PopupHelp extender uses a client-side behavior written with the Microsoft Ajax Library. Here is the complete code for the client-side behavior: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { Type.registerNamespace('MyACTControls'); MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); Sys.registerComponent(MyACTControls.PopupHelpBehavior, { name: "popupHelp" }); } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })();   In the following sections, we’ll discuss how this client-side behavior works. Wrapping the Behavior for the Script Loader The behavior is wrapped with the following script: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { // Behavior Content } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })(); This code is required by the Microsoft Ajax Library Script Loader. You need this code if you plan to use a behavior directly from client-side code and you want to use the Script Loader. If you plan to only use your code in the context of the Ajax Control Toolkit then you can leave out this code. Registering a JavaScript Namespace The PopupHelp behavior is declared within a namespace named MyACTControls. In the code above, this namespace is created with the following registerNamespace() method: Type.registerNamespace('MyACTControls'); JavaScript does not have any built-in way of creating namespaces to prevent naming conflicts. The Microsoft Ajax Library extends JavaScript with support for namespaces. You can learn more about the registerNamespace() method here: http://msdn.microsoft.com/en-us/library/bb397723.aspx Creating the Behavior The actual Popup behavior is created with the following code. MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; The code above has two parts. The first part of the code is used to define the constructor function for the PopupHelp behavior. This is a factory method which returns an instance of a PopupHelp behavior: MyACTControls.PopupHelpBehavior = function (element) { } The second part of the code modified the prototype for the PopupHelp behavior: MyACTControls.PopupHelpBehavior.prototype = { } Any code which is particular to a single instance of the PopupHelp behavior should be placed in the constructor function. For example, the default value of the _helpText field is assigned in the constructor function: this._helpText = "Help Text"; Any code which is shared among all instances of the PopupHelp behavior should be added to the PopupHelp behavior’s prototype. For example, the public HelpText property is added to the prototype: get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, Registering a JavaScript Class After you create the PopupHelp behavior, you must register the behavior as a class by using the Microsoft Ajax registerClass() method like this: MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); This call to registerClass() registers PopupHelp behavior as a class which derives from the base Sys.Extended.UI.BehaviorBase class. Like the ExtenderControlBase class on the server side, the BehaviorBase class on the client side contains method used by every behavior. The documentation for the BehaviorBase class can be found here: http://msdn.microsoft.com/en-us/library/bb311020.aspx The most important methods and properties of the BehaviorBase class are the following: dispose() – Use this method to clean up all resources used by your behavior. In the case of the PopupHelp behavior, the dispose() method is used to remote the event handlers created by the behavior and disposed the Popup behavior. get_element() -- Use this property to get the DOM element associated with the behavior. In other words, the DOM element which the behavior extends. get_id() – Use this property to the ID of the current behavior. initialize() – Use this method to initialize the behavior. This method is called after all of the properties are set by the $create() method. Creating Debug and Release Scripts You might have noticed that the PopupHelp behavior uses two scripts named PopupHelpBehavior.js and PopupHelpBehavior.debug.js. However, you never create these two scripts. Instead, you only create a single script named PopupHelpBehavior.pre.js. The pre in PopupHelpBehavior.pre.js stands for preprocessor. When you build the Ajax Control Toolkit (or the sample Visual Studio Solution at the end of this blog entry), a build task named JSBuild generates the PopupHelpBehavior.js release script and PopupHelpBehavior.debug.js debug script automatically. The JSBuild preprocessor supports the following directives: #IF #ELSE #ENDIF #INCLUDE #LOCALIZE #DEFINE #UNDEFINE The preprocessor directives are used to mark code which should only appear in the debug version of the script. The directives are used extensively in the Microsoft Ajax Library. For example, the Microsoft Ajax Library Array.contains() method is created like this: $type.contains = function Array$contains(array, item) { //#if DEBUG var e = Function._validateParams(arguments, [ {name: "array", type: Array, elementMayBeNull: true}, {name: "item", mayBeNull: true} ]); if (e) throw e; //#endif return (indexOf(array, item) >= 0); } Notice that you add each of the preprocessor directives inside a JavaScript comment. The comment prevents Visual Studio from getting confused with its Intellisense. The release version, but not the debug version, of the PopupHelpBehavior script is also minified automatically by the Microsoft Ajax Minifier. The minifier is invoked by a build step in the project file. Conclusion The goal of this blog entry was to explain how you can create custom AJAX Control Toolkit controls. In the first part of this blog entry, you learned how to create the server-side portion of an Ajax Control Toolkit control. You learned how to derive a new control from the ExtenderControlBase class and decorate its properties with the necessary attributes. Next, in the second part of this blog entry, you learned how to create the client-side portion of an Ajax Control Toolkit control by creating a client-side behavior with JavaScript. You learned how to use the methods of the Microsoft Ajax Library to extend your client behavior from the BehaviorBase class. Download the Custom ACT Starter Solution

    Read the article

  • C#: System.Lazy&lt;T&gt; and the Singleton Design Pattern

    - by James Michael Hare
    So we've all coded a Singleton at one time or another.  It's a really simple pattern and can be a slightly more elegant alternative to global variables.  Make no mistake, Singletons can be abused and are often over-used -- but occasionally you find a Singleton is the most elegant solution. For those of you not familiar with a Singleton, the basic Design Pattern is that a Singleton class is one where there is only ever one instance of the class created.  This means that constructors must be private to avoid users creating their own instances, and a static property (or method in languages without properties) is defined that returns a single static instance. 1: public class Singleton 2: { 3: // the single instance is defined in a static field 4: private static readonly Singleton _instance = new Singleton(); 5:  6: // constructor private so users can't instantiate on their own 7: private Singleton() 8: { 9: } 10:  11: // read-only property that returns the static field 12: public static Singleton Instance 13: { 14: get 15: { 16: return _instance; 17: } 18: } 19: } This is the most basic singleton, notice the key features: Static readonly field that contains the one and only instance. Constructor is private so it can only be called by the class itself. Static property that returns the single instance. Looks like it satisfies, right?  There's just one (potential) problem.  C# gives you no guarantee of when the static field _instance will be created.  This is because the C# standard simply states that classes (which are marked in the IL as BeforeFieldInit) can have their static fields initialized any time before the field is accessed.  This means that they may be initialized on first use, they may be initialized at some other time before, you can't be sure when. So what if you want to guarantee your instance is truly lazy.  That is, that it is only created on first call to Instance?  Well, there's a few ways to do this.  First we'll show the old ways, and then talk about how .Net 4.0's new System.Lazy<T> type can help make the lazy-Singleton cleaner. Obviously, we could take on the lazy construction ourselves, but being that our Singleton may be accessed by many different threads, we'd need to lock it down. 1: public class LazySingleton1 2: { 3: // lock for thread-safety laziness 4: private static readonly object _mutex = new object(); 5:  6: // static field to hold single instance 7: private static LazySingleton1 _instance = null; 8:  9: // property that does some locking and then creates on first call 10: public static LazySingleton1 Instance 11: { 12: get 13: { 14: if (_instance == null) 15: { 16: lock (_mutex) 17: { 18: if (_instance == null) 19: { 20: _instance = new LazySingleton1(); 21: } 22: } 23: } 24:  25: return _instance; 26: } 27: } 28:  29: private LazySingleton1() 30: { 31: } 32: } This is a standard double-check algorithm so that you don't lock if the instance has already been created.  However, because it's possible two threads can go through the first if at the same time the first time back in, you need to check again after the lock is acquired to avoid creating two instances. Pretty straightforward, but ugly as all heck.  Well, you could also take advantage of the C# standard's BeforeFieldInit and define your class with a static constructor.  It need not have a body, just the presence of the static constructor will remove the BeforeFieldInit attribute on the class and guarantee that no fields are initialized until the first static field, property, or method is called.   1: public class LazySingleton2 2: { 3: // because of the static constructor, this won't get created until first use 4: private static readonly LazySingleton2 _instance = new LazySingleton2(); 5:  6: // Returns the singleton instance using lazy-instantiation 7: public static LazySingleton2 Instance 8: { 9: get { return _instance; } 10: } 11:  12: // private to prevent direct instantiation 13: private LazySingleton2() 14: { 15: } 16:  17: // removes BeforeFieldInit on class so static fields not 18: // initialized before they are used 19: static LazySingleton2() 20: { 21: } 22: } Now, while this works perfectly, I hate it.  Why?  Because it's relying on a non-obvious trick of the IL to guarantee laziness.  Just looking at this code, you'd have no idea that it's doing what it's doing.  Worse yet, you may decide that the empty static constructor serves no purpose and delete it (which removes your lazy guarantee).  Worse-worse yet, they may alter the rules around BeforeFieldInit in the future which could change this. So, what do I propose instead?  .Net 4.0 adds the System.Lazy type which guarantees thread-safe lazy-construction.  Using System.Lazy<T>, we get: 1: public class LazySingleton3 2: { 3: // static holder for instance, need to use lambda to construct since constructor private 4: private static readonly Lazy<LazySingleton3> _instance 5: = new Lazy<LazySingleton3>(() => new LazySingleton3()); 6:  7: // private to prevent direct instantiation. 8: private LazySingleton3() 9: { 10: } 11:  12: // accessor for instance 13: public static LazySingleton3 Instance 14: { 15: get 16: { 17: return _instance.Value; 18: } 19: } 20: } Note, you need your lambda to call the private constructor as Lazy's default constructor can only call public constructors of the type passed in (which we can't have by definition of a Singleton).  But, because the lambda is defined inside our type, it has access to the private members so it's perfect. Note how the Lazy<T> makes it obvious what you're doing (lazy construction), instead of relying on an IL generation side-effect.  This way, it's more maintainable.  Lazy<T> has many other uses as well, obviously, but I really love how elegant and readable it makes the lazy Singleton.

    Read the article

  • Parallelism in .NET – Part 1, Decomposition

    - by Reed
    The first step in designing any parallelized system is Decomposition.  Decomposition is nothing more than taking a problem space and breaking it into discrete parts.  When we want to work in parallel, we need to have at least two separate things that we are trying to run.  We do this by taking our problem and decomposing it into parts. There are two common abstractions that are useful when discussing parallel decomposition: Data Decomposition and Task Decomposition.  These two abstractions allow us to think about our problem in a way that helps leads us to correct decision making in terms of the algorithms we’ll use to parallelize our routine. To start, I will make a couple of minor points. I’d like to stress that Decomposition has nothing to do with specific algorithms or techniques.  It’s about how you approach and think about the problem, not how you solve the problem using a specific tool, technique, or library.  Decomposing the problem is about constructing the appropriate mental model: once this is done, you can choose the appropriate design and tools, which is a subject for future posts. Decomposition, being unrelated to tools or specific techniques, is not specific to .NET in any way.  This should be the first step to parallelizing a problem, and is valid using any framework, language, or toolset.  However, this gives us a starting point – without a proper understanding of decomposition, it is difficult to understand the proper usage of specific classes and tools within the .NET framework. Data Decomposition is often the simpler abstraction to use when trying to parallelize a routine.  In order to decompose our problem domain by data, we take our entire set of data and break it into smaller, discrete portions, or chunks.  We then work on each chunk in the data set in parallel. This is particularly useful if we can process each element of data independently of the rest of the data.  In a situation like this, there are some wonderfully simple techniques we can use to take advantage of our data.  By decomposing our domain by data, we can very simply parallelize our routines.  In general, we, as developers, should be always searching for data that can be decomposed. Finding data to decompose if fairly simple, in many instances.  Data decomposition is typically used with collections of data.  Any time you have a collection of items, and you’re going to perform work on or with each of the items, you potentially have a situation where parallelism can be exploited.  This is fairly easy to do in practice: look for iteration statements in your code, such as for and foreach. Granted, every for loop is not a candidate to be parallelized.  If the collection is being modified as it’s iterated, or the processing of elements depends on other elements, the iteration block may need to be processed in serial.  However, if this is not the case, data decomposition may be possible. Let’s look at one example of how we might use data decomposition.  Suppose we were working with an image, and we were applying a simple contrast stretching filter.  When we go to apply the filter, once we know the minimum and maximum values, we can apply this to each pixel independently of the other pixels.  This means that we can easily decompose this problem based off data – we will do the same operation, in parallel, on individual chunks of data (each pixel). Task Decomposition, on the other hand, is focused on the individual tasks that need to be performed instead of focusing on the data.  In order to decompose our problem domain by tasks, we need to think about our algorithm in terms of discrete operations, or tasks, which can then later be parallelized. Task decomposition, in practice, can be a bit more tricky than data decomposition.  Here, we need to look at what our algorithm actually does, and how it performs its actions.  Once we have all of the basic steps taken into account, we can try to analyze them and determine whether there are any constraints in terms of shared data or ordering.  There are no simple things to look for in terms of finding tasks we can decompose for parallelism; every algorithm is unique in terms of its tasks, so every algorithm will have unique opportunities for task decomposition. For example, say we want our software to perform some customized actions on startup, prior to showing our main screen.  Perhaps we want to check for proper licensing, notify the user if the license is not valid, and also check for updates to the program.  Once we verify the license, and that there are no updates, we’ll start normally.  In this case, we can decompose this problem into tasks – we have a few tasks, but there are at least two discrete, independent tasks (check licensing, check for updates) which we can perform in parallel.  Once those are completed, we will continue on with our other tasks. One final note – Data Decomposition and Task Decomposition are not mutually exclusive.  Often, you’ll mix the two approaches while trying to parallelize a single routine.  It’s possible to decompose your problem based off data, then further decompose the processing of each element of data based on tasks.  This just provides a framework for thinking about our algorithms, and for discussing the problem.

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Developer Training – Various Options for Maximum Benefit – Part 4

    - by pinaldave
    Developer Training - Importance and Significance - Part 1 Developer Training – Employee Morals and Ethics – Part 2 Developer Training – Difficult Questions and Alternative Perspective - Part 3 Developer Training – Various Options for Developer Training – Part 4 Developer Training – A Conclusive Summary- Part 5 If you have been reading this series, by now you are aware of all the pros and cons that can come along with training.  We’ve asked and answered hard questions, and investigated them “whys” and “hows” of training.  Now it is time to talk about all the different kinds of training that are out there! On Job Training The most common type of training is on the job training.  Everyone receives this kind of education – even experts who come in to consult have to be taught where the printer, pens, and copy machines are.  If you are thinking about more concrete topics, though, on the job training can be some of the easiest to come across.  Picture this: someone in the company whom you really admire is hard at work on a project.  You come up to them and ask to help them out – if they are a busy developer, the odds are that they will say “yes, please!”   If you phrase your question as an offer of help, you can receive training without ever putting someone in the awkward position of acting as a mentor.  However, some people may want the task of being a mentor.  It can never hurt to ask.  Most people will be more than willing to pass their knowledge along. Extreme Programming If your company and coworkers are willing, you can even investigate Extreme Programming.  This is a type of programming that allows small teams to quickly develop code and products that are released with almost immediate user feedback.  You can find more information at http://www.extremeprogramming.org/.  If this is something your company could use, suggest it to your supervisor.  Even if they say no, it will make it clear that you are a go-getter who is interested in new and exciting projects.  If the answer is yes, then you have the opportunity to get some of the best on the job training around. In Person Training Click on Image to Enlarge When you say the word “training,” most people’s minds go back to the classroom, an image they are familiar with.  While training doesn’t always have to be in a traditional setting, because it is so familiar it can also be the most valuable type of training.  There are many ways to get training through a live instructor.  Some companies may be willing to send a representative to you, where employees will get training, sometimes food and coffee, and a live instructor who can answer questions immediately.  Sometimes these trainers are also able to do consultations at the same time, which can invaluable to a company.  If you are the one to asks your supervisor for a training session that can also be turned into a consultation, you may stick in their minds as an incredibly dedicated employee.  If you can’t find a representative, local colleges can also be a good resource for free or cheap classes – or they may have representatives coming who are willing to take on a few more students. Benefits of On Demand Developer Training Of course, you can often get the best of all these types of training with online or On Demand training.  You can get the benefit of a live instructor who is willing to answer questions (although in this case, usually through e-mail or other online venues), there are often real-world examples to follow along – like on the job training – and best of all you can learn whenever you have the time or need.  Did a problem with your server come up at midnight when all your supervisors are safe at home and probably in bed?  No problem!  On Demand training is especially useful if you need to slow down, pause, or rewind a training session.  Not even a real-life instructor can do that! When I was writing this blog post, I felt that each of the subject, which I have covered can be blog posts of itself. However, I wanted to keep the the blog post concise and so touch based on three major training aspects 1) On Job Training 2) In Person Training and 3) Online training. Here is the question for you – is there any other kind of training methods available, which are effective and one should consider it? If yes, what are those, I may write a follow up blog post on the same subject next week. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Developer Training, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Windows Phone 7 development: Using isolated storage

    - by DigiMortal
    In my previous posting about Windows Phone 7 development I showed how to use WebBrowser control in Windows Phone 7. In this posting I make some other improvements to my blog reader application and I will show you how to use isolated storage to store information to phone. Why isolated storage? Isolated storage is place where your application can save its data and settings. The image on right (that I stole from MSDN library) shows you how application data store is organized. You have no other options to keep your files besides isolated storage because Windows Phone 7 does not allow you to save data directly to other file system locations. From MSDN: “Isolated storage enables managed applications to create and maintain local storage. The mobile architecture is similar to the Silverlight-based applications on Windows. All I/O operations are restricted to isolated storage and do not have direct access to the underlying operating system file system. Ultimately, this helps to provide security and prevents unauthorized access and data corruption.” Saving files from web to isolated storage I updated my RSS-reader so it reads RSS from web only if there in no local file with RSS. User can update RSS-file by clicking a button. Also file is created when application starts and there is no RSS-file. Why I am doing this? I want my application to be able to work also offline. As my code needs some more refactoring I provide it with some next postings about Windows Phone 7. If you want it sooner then please leave me a comment here. Here is the code for my RSS-downloader that downloads RSS-feed and saves it to isolated storage file calles rss.xml. public class RssDownloader {     private string _url;     private string _fileName;       public delegate void DownloadCompleteDelegate();     public event DownloadCompleteDelegate DownloadComplete;       public RssDownloader(string url, string fileName)     {         _url = url;         _fileName = fileName;     }       public void Download()     {         var request = (HttpWebRequest)WebRequest.Create(_url);         var result = (IAsyncResult)request.BeginGetResponse(ResponseCallback, request);            }       private void ResponseCallback(IAsyncResult result)     {         var request = (HttpWebRequest)result.AsyncState;         var response = request.EndGetResponse(result);           using(var stream = response.GetResponseStream())         using(var reader = new StreamReader(stream))         using(var appStorage = IsolatedStorageFile.GetUserStoreForApplication())         using(var file = appStorage.OpenFile("rss.xml", FileMode.OpenOrCreate))         using(var writer = new StreamWriter(file))         {             writer.Write(reader.ReadToEnd());         }           if (DownloadComplete != null)             DownloadComplete();     } } Of course I modified RSS-source for my application to use rss.xml file from isolated storage. As isolated storage files also base on streams we can use them everywhere where streams are expected. Reading isolated storage files As isolated storage files are opened as streams you can read them like usual files in your usual applications. The next code fragment shows you how to open file from isolated storage and how to read it using XmlReader. Previously I used response stream in same place. using(var appStorage = IsolatedStorageFile.GetUserStoreForApplication()) using(var file = appStorage.OpenFile("rss.xml", FileMode.Open)) {     var reader = XmlReader.Create(file);                      // more code } As you can see there is nothing complex. If you have worked with System.IO namespace objects then you will find isolated storage classes and methods to be very similar to these. Also mention that application storage and isolated storage files must be disposed after you are not using them anymore.

    Read the article

  • Form, function and complexity in rule processing

    - by Charles Young
    Tim Bass posted on ‘Orwellian Event Processing’. I was involved in a heated exchange in the comments, and he has more recently published a post entitled ‘Disadvantages of Rule-Based Systems (Part 1)’. Whatever the rights and wrongs of our exchange, it clearly failed to generate any agreement or understanding of our different positions. I don't particularly want to promote further argument of that kind, but I do want to take the opportunity of offering a different perspective on rule-processing and an explanation of my comments. For me, the ‘red rag’ lay in Tim’s claim that “...rules alone are highly inefficient for most classes of (not simple) problems” and a later paragraph that appears to equate the simplicity of form (‘IF-THEN-ELSE’) with simplicity of function.   It is not the first time Tim has expressed these views and not the first time I have responded to his assertions.   Indeed, Tim has a long history of commenting on the subject of complex event processing (CEP) and, less often, rule processing in ‘robust’ terms, often asserting that very many other people’s opinions on this subject are mistaken.   In turn, I am of the opinion that, certainly in terms of rule processing, which is an area in which I have a specific interest and knowledge, he is often mistaken. There is no simple answer to the fundamental question ‘what is a rule?’ We use the word in a very fluid fashion in English. Likewise, the term ‘rule processing’, as used widely in IT, is equally difficult to define simplistically. The best way to envisage the term is as a ‘centre of gravity’ within a wider domain. That domain contains many other ‘centres of gravity’, including CEP, statistical analytics, neural networks, natural language processing and so much more. Whole communities tend to gravitate towards and build themselves around some of these centres. The term 'rule processing' is associated with many different technology types, various software products, different architectural patterns, the functional capability of many applications and services, etc. There is considerable variation amongst these different technologies, techniques and products. Very broadly, a common theme is their ability to manage certain types of processing and problem solving through declarative, or semi-declarative, statements of propositional logic bound to action-based consequences. It is generally important to be able to decouple these statements from other parts of an overall system or architecture so that they can be managed and deployed independently.  As a centre of gravity, ‘rule processing’ is no island. It exists in the context of a domain of discourse that is, itself, highly interconnected and continuous.   Rule processing does not, for example, exist in splendid isolation to natural language processing.   On the contrary, an on-going theme of rule processing is to find better ways to express rules in natural language and map these to executable forms.   Rule processing does not exist in splendid isolation to CEP.   On the contrary, an event processing agent can reasonably be considered as a rule engine (a theme in ‘Power of Events’ by David Luckham).   Rule processing does not live in splendid isolation to statistical approaches such as Bayesian analytics. On the contrary, rule processing and statistical analytics are highly synergistic.   Rule processing does not even live in splendid isolation to neural networks. For example, significant research has centred on finding ways to translate trained nets into explicit rule sets in order to support forms of validation and facilitate insight into the knowledge stored in those nets. What about simplicity of form?   Many rule processing technologies do indeed use a very simple form (‘If...Then’, ‘When...Do’, etc.)   However, it is a fundamental mistake to equate simplicity of form with simplicity of function.   It is absolutely mistaken to suggest that simplicity of form is a barrier to the efficient handling of complexity.   There are countless real-world examples which serve to disprove that notion.   Indeed, simplicity of form is often the key to handling complexity. Does rule processing offer a ‘one size fits all’. No, of course not.   No serious commentator suggests it does.   Does the design and management of large knowledge bases, expressed as rules, become difficult?   Yes, it can do, but that is true of any large knowledge base, regardless of the form in which knowledge is expressed.   The measure of complexity is not a function of rule set size or rule form.  It tends to be correlated more strongly with the size of the ‘problem space’ (‘search space’) which is something quite different.   Analysis of the problem space and the algorithms we use to search through that space are, of course, the very things we use to derive objective measures of the complexity of a given problem. This is basic computer science and common practice. Sailing a Dreadnaught through the sea of information technology and lobbing shells at some of the islands we encounter along the way does no one any good.   Building bridges and causeways between islands so that the inhabitants can collaborate in open discourse offers hope of real progress.

    Read the article

  • Feedback on "market manipulation", a peripheral game mechanic for a satirical MMO

    - by BerndBrot
    This question asks for feedback on a specific game-mechanic. Since there is not one right feedback on a game mechanic, I tried to provide enough context and guidelines to still make it possible for users to rate answers and to accept an answer as the best answer (following these criteria from Writer.SE's meta website). Please comment if you have any suggestions on how I could improve the question in that regard. So, let's begin with the game itself and some of its elements which are relevant for this question. Context I'm working on a satirical, text-based multiplayer adventure and role-playing game set in modern-day London. The game resolves around the concept of sin and features a myriad of (venomous) allusions to all the things that go wrong in this world. Players can choose between character classes like bullshit artist (consultant), bankster, lawyer, mobster, celebrity, politician, etc. In order to complete the game, the player has to live so sinfully with regard to any of the seven deadly sins that a demon is willing to offer them a contract of sponsorship. On their quest to live a sinful live, characters explore more and more locations of modern-day London (on a GoogleMap), fight "monsters" like insurance sales agents or Jehovah's Witnesses, and complete quests, like building a PowerPoint presentation out of marketing buzz words or keeping up a number of substance abuse effects in order to progress on the gluttony path. Battles are turn based with both combatants having a deck of cards, with which they try to make their enemy give in to temptations of all sorts. Tempted enemies sometimes become contacts (an item drop mechanic), which can be exploited for various benefits, depending on their area of influence (finance, underworld, bureaucracy, etc.), level of influence, and kind of sway that the player has over them (bribed, seduced, threatened, etc.) Once a contract has been exploited, the player loses that contact. Most actions require turns. Turns are limited, but refill each day. Criteria A number of peripheral game mechanics are supposed to represent real world abuses and mischief in a humorous way integrate real world data and events to strengthen the feeling of relevance of the game's humor with regard to real world problems add fun ways of interacting with other players add ways for players to express themselves through game-play Market manipulation is one such peripheral game mechanic and should fulfill all of these goals. Market manipulation This is my initial design of the mechanic: Players can enter the London Stock Exchange (LSE) (without paying a turn) LSE displays the stock prices of a number of companies in industries like weapons or tobacco as well as some derivatives based on wheat and corn. The stock prices are calculated based on the actual stock prices of these companies and derivatives (in real time) any market manipulations that were conducted by the players any market corrections of the system Players can buy and sell shares with cash, a resource in the game, at current in-game market value (without paying a turn). Players can manipulate the market, i.e. let the price of a share either rise or fall, by some amount, over a certain period of time. Manipulating the market requires 1 turn A contact in the financial sector (see above). The higher the level of influence of the contact, the stronger the effect of the manipulation on the stock price, and/or the shorter it takes for the manipulation to manifest itself. Market manipulation also adds a crime to the player's record. (There are a multitude of ways to take care of that, but it is still another "cost" of market manipulations.) The system continuously corrects market manipulations by letting the in-game prices converge towards their real world counterparts at a rate of 2% of the difference between the two per hour. Because of this market correction mechanism, pushing up prices (and screwing down prices) becomes increasingly difficult the higher (lower) the price already is. Whenever food prices reach a certain level, in-game stories are posted about hunger catastrophes happening somewhere far, far away (maybe with links to real world news stories). Whenever a player sells a certain number of shares with a sufficiently high margin, they are mentioned in that day's in-game financial news. Since the number of stock options is very limited, players will inevitably collide in their efforts to manipulate the market in their favor. Hopefully, it will also be a fun side-arena for guilds and covenants to fight each other. Question(s) What do you think of this mechanism given the criteria for peripheral game mechanics that I specified for my game? Do you have any ideas how the mechanic could be improved with regard to these criteria (or otherwise)? Could it be improved to allow for more expressive game-play, or involve an allusion to some other real world madness (like short selling, leveraging, or some other banking magic)? Are there any game-theoretic problems with this mechanic, like maybe certain dominant individual strategies that, collectively, lead to every player profiting and thus eliminating the idea of market manipulation PVP? Also, if you like (or dislike) this question, feel free to participate in the discussion on GDSE meta: "Should we be more lax with regard to SE's question/answer format to make game design questions possible?"

    Read the article

  • WebLogic Server Performance and Tuning: Part I - Tuning JVM

    - by Gokhan Gungor
    Each WebLogic Server instance runs in its own dedicated Java Virtual Machine (JVM) which is their runtime environment. Every Admin Server in any domain executes within a JVM. The same also applies for Managed Servers. WebLogic Server can be used for a wide variety of applications and services which uses the same runtime environment and resources. Oracle WebLogic ships with 2 different JVM, HotSpot and JRocket but you can choose which JVM you want to use. JVM is designed to optimize itself however it also provides some startup options to make small changes. There are default values for its memory and garbage collection. In real world, you will not want to stick with the default values provided by the JVM rather want to customize these values based on your applications which can produce large gains in performance by making small changes with the JVM parameters. We can tell the garbage collector how to delete garbage and we can also tell JVM how much space to allocate for each generation (of java Objects) or for heap. Remember during the garbage collection no other process is executed within the JVM or runtime, which is called STOP THE WORLD which can affect the overall throughput. Each JVM has its own memory segment called Heap Memory which is the storage for java Objects. These objects can be grouped based on their age like young generation (recently created objects) or old generation (surviving objects that have lived to some extent), etc. A java object is considered garbage when it can no longer be reached from anywhere in the running program. Each generation has its own memory segment within the heap. When this segment gets full, garbage collector deletes all the objects that are marked as garbage to create space. When the old generation space gets full, the JVM performs a major collection to remove the unused objects and reclaim their space. A major garbage collect takes a significant amount of time and can affect system performance. When we create a managed server either on the same machine or on remote machine it gets its initial startup parameters from $DOMAIN_HOME/bin/setDomainEnv.sh/cmd file. By default two parameters are set:     Xms: The initial heapsize     Xmx: The max heapsize Try to set equal initial and max heapsize. The startup time can be a little longer but for long running applications it will provide a better performance. When we set -Xms512m -Xmx1024m, the physical heap size will be 512m. This means that there are pages of memory (in the state of the 512m) that the JVM does not explicitly control. It will be controlled by OS which could be reserve for the other tasks. In this case, it is an advantage if the JVM claims the entire memory at once and try not to spend time to extend when more memory is needed. Also you can use -XX:MaxPermSize (Maximum size of the permanent generation) option for Sun JVM. You should adjust the size accordingly if your application dynamically load and unload a lot of classes in order to optimize the performance. You can set the JVM options/heap size from the following places:     Through the Admin console, in the Server start tab     In the startManagedWeblogic script for the managed servers     $DOMAIN_HOME/bin/startManagedWebLogic.sh/cmd     JAVA_OPTIONS="-Xms1024m -Xmx1024m" ${JAVA_OPTIONS}     In the setDomainEnv script for the managed servers and admin server (domain wide)     USER_MEM_ARGS="-Xms1024m -Xmx1024m" When there is free memory available in the heap but it is too fragmented and not contiguously located to store the object or when there is actually insufficient memory we can get java.lang.OutOfMemoryError. We should create Thread Dump and analyze if that is possible in case of such error. The second option we can use to produce higher throughput is to garbage collection. We can roughly divide GC algorithms into 2 categories: parallel and concurrent. Parallel GC stops the execution of all the application and performs the full GC, this generally provides better throughput but also high latency using all the CPU resources during GC. Concurrent GC on the other hand, produces low latency but also low throughput since it performs GC while application executes. The JRockit JVM provides some useful command-line parameters that to control of its GC scheme like -XgcPrio command-line parameter which takes the following options; XgcPrio:pausetime (To minimize latency, parallel GC) XgcPrio:throughput (To minimize throughput, concurrent GC ) XgcPrio:deterministic (To guarantee maximum pause time, for real time systems) Sun JVM has similar parameters (like  -XX:UseParallelGC or -XX:+UseConcMarkSweepGC) to control its GC scheme. We can add -verbosegc -XX:+PrintGCDetails to monitor indications of a problem with garbage collection. Try configuring JVM’s of all managed servers to execute in -server mode to ensure that it is optimized for a server-side production environment.

    Read the article

  • SSAS Compare: an intern’s journey

    - by Red Gate Software BI Tools Team
    About a month ago, David mentioned an intern working in the BI Tools Team. That intern happens to be me! In five weeks’ time, I’ll start my second year of Computer Science at the University of Cambridge and be a full-time student again, but for the past eight weeks, I’ve been living a completely different life. As Jon mentioned before, the teams here at Red Gate are small and everyone (including the interns!) is responsible for the product as a whole. I’ve attended planning sessions, UX tests, daily meetings, and everything else a full-time member of the team would; I had as much say in where we would go next with the product as anyone; I was able to see that what I was doing was an important part of the product from the feedback we got in the UX tests. All these things almost made me forget that this is just an internship and not my full-time job. First steps at Red Gate Being based in Cambridge, Red Gate has many Cambridge university graduates working for them. They also hire some Cambridge undergraduates for internships each summer. With its popularity with university graduates and its great working environment, Red Gate has managed to build up a great reputation. When I thought of doing an internship here in Cambridge, Red Gate just seemed to be the obvious choice for my first real work experience. On my first day at Red Gate, David, the lead developer for SSAS Compare, helped me settle in and explained what I’d be doing. My task was to improve the user experience of displaying differences between MDX scripts by syntax highlighting, script formatting, and improving the difference identification in the first place. David suggested how I should approach the problem, but left all the details and design decisions to me. That was when I realised how much independence and responsibility I’d have. What I’ve done If you launch the latest version of SSAS Compare and drill down to an MDX script difference, you can see the changes that have been made. In earlier versions, you could only see the scripts in plain text on both sides — either in black or grey, depending on whether they were the same or not. However, you couldn’t see exactly where the scripts were different, which was especially annoying when the two scripts were large – as they often are. Furthermore, if parts of the two scripts were formatted differently, they seemed to be different but were actually the same, which caused even more confusion and made it difficult to see where the differences were. All these issues have been fixed now. The two scripts are automatically formatted by the tool so that if two things are syntactically equivalent, they look the same – including case differences in keywords! The actual difference is highlighted in grey, which makes them easy to spot. The difference identification has been improved as well, so two scripts aren’t identified as different if there’s just a difference in meaningless whitespace characters, or when you have “select” on one side and “SELECT” on the other. We also have syntax highlighting, which makes it easier to read the scripts. How I did it In order to do the formatting properly, we decided to parse the MDX scripts. After some investigation into parser builders, I decided to go with the GOLD Parser builder and the bsn-goldparser .NET engine. GOLD Parser builder provides a fairly nice GUI to write, build, and test grammar in. We also liked the idea of separating the grammar building from parsing a text. The bsn-goldparser is one of many .NET engines for GOLD, and although it doesn’t support the newest features of GOLD Parser, it has “the ability to map semantic action classes to terminals or reduction rules, so that a completely functional semantic AST can be created directly without intermediate token AST representation, and without the need for glue code.” That makes it much easier for us to change the implementation in our program when we change the grammar. As bsn-goldparser is open source, and I wanted some more features in it, I contributed two new features which have now been merged to the project. Unfortunately, there wasn’t an MDX grammar written for GOLD already, so I had to write it myself. I was referencing MSDN to get the formal grammar specification, but the specification was all over the place, so it wasn’t that easy to implement and find. We’re aware that we don’t yet fully support all valid MDX, so sometimes you’ll just see the MDX script difference displayed the old way. In that case, there is some grammar construct we don’t yet recognise. If you come across something SSAS Compare doesn’t recognise, we’d love to hear about it so we can add it to our grammar. When some MDX script gets parsed, a tree is produced. That tree can then be processed into a list of inlines which deal with the correct formatting and can be outputted to the screen. Doing all this has led me to many new technologies and projects I haven’t worked with before. This was my first experience with C# and Visual Studio, although I have done things in Java before. I have learnt how to unit test with NUnit, how to do dependency injection with Ninject, how to source-control code with SVN and Mercurial, how to build with TeamCity, how to use GOLD, and many other things. What’s coming next Sadly, my internship comes to an end this week, so there will be less development on MDX difference view for a while. But the team is going to work on marking the differences better and making it consistent with difference indication in the top part of comparison window, and will keep adding support for more MDX grammar so you can see the differences easily in every comparison you make. So long! And maybe I’ll see you next summer!

    Read the article

  • Trace File Source Adapter

    The Trace File Source adapter is a useful addition to your SSIS toolbox.  It allows you to read 2005 and 2008 profiler traces stored as .trc files and read them into the Data Flow.  From there you can perform filtering and analysis using the power of SSIS. There is no need for a SQL Server connection this just uses the trace file. Example Usages Cache warming for SQL Server Analysis Services Reading the flight recorder Find out the longest running queries on a server Analyze statements for CPU, memory by user or some other criteria you choose Properties The Trace File Source adapter has two properties, both of which combine to control the source trace file that is read at runtime. SQL Server 2005 and SQL Server 2008 trace files are supported for both the Database Engine (SQL Server) and Analysis Services. The properties are managed by the Editor form or can be set directly from the Properties Grid in Visual Studio. Property Type Description AccessMode Enumeration This property determines how the Filename property is interpreted. The values available are: DirectInput Variable Filename String This property holds the path for trace file to load (*.trc). The value is either a full path, or the name of a variable which contains the full path to the trace file, depending on the AccessMode property. Trace Column Definition Hopefully the majority of you can skip this section entirely, but if you encounter some problems processing a trace file this may explain it and allow you to fix the problem. The component is built upon the trace management API provided by Microsoft. Unfortunately API methods that expose the schema of a trace file have known issues and are unreliable, put simply the data often differs from what was specified. To overcome these limitations the component uses  some simple XML files. These files enable the trace column data types and sizing attributes to be overridden. For example SQL Server Profiler or TMO generated structures define EventClass as an integer, but the real value is a string. TraceDataColumnsSQL.xml  - SQL Server Database Engine Trace Columns TraceDataColumnsAS.xml    - SQL Server Analysis Services Trace Columns The files can be found in the %ProgramFiles%\Microsoft SQL Server\100\DTS\PipelineComponents folder, e.g. "C:\Program Files\Microsoft SQL Server\100\DTS\PipelineComponents\TraceDataColumnsSQL.xml" "C:\Program Files\Microsoft SQL Server\100\DTS\PipelineComponents\TraceDataColumnsAS.xml" If at runtime the component encounters a type conversion or sizing error it is most likely due to a discrepancy between the column definition as reported by the API and the actual value encountered. Whilst most common issues have already been fixed through these files we have implemented specific exception traps to direct you to the files to enable you to fix any further issues due to different usage or data scenarios that we have not tested. An example error that you can fix through these files is shown below. Buffer exception writing value to column 'Column Name'. The string value is 999 characters in length, the column is only 111. Columns can be overridden by the TraceDataColumns XML files in "C:\Program Files\Microsoft SQL Server\100\DTS\PipelineComponents\TraceDataColumnsAS.xml". Installation The component is provided as an MSI file which you can download and run to install it. This simply places the files on disk in the correct locations and also installs the assemblies in the Global Assembly Cache as per Microsoft’s recommendations. You may need to restart the SQL Server Integration Services service, as this caches information about what components are installed, as well as restarting any open instances of Business Intelligence Development Studio (BIDS) / Visual Studio that you may be using to build your SSIS packages. Finally you will have to add the transformation to the Visual Studio toolbox manually. Right-click the toolbox, and select Choose Items.... Select the SSIS Data Flow Items tab, and then check the Trace File Source transformation in the Choose Toolbox Items window. This process has been described in detail in the related FAQ entry for How do I install a task or transform component? We recommend you follow best practice and apply the current Microsoft SQL Server Service pack to your SQL Server servers and workstations. Please note that the Microsoft Trace classes used in the component are not supported on 64-bit platforms. To use the Trace File Source on a 64-bit host you need to ensure you have the 32-bit (x86) tools available, and the way you execute your package is setup to use them, please see the help topic 64-bit Considerations for Integration Services for more details. Downloads Trace Sources for SQL Server 2005 -- Trace Sources for SQL Server 2008 Version History SQL Server 2008 Version 2.0.0.382 - SQL Sever 2008 public release. (9 Apr 2009) SQL Server 2005 Version 1.0.0.321 - SQL Server 2005 public release. (18 Nov 2008) -- Screenshots

    Read the article

  • ViewBag dynamic in ASP.NET MVC 3 - RC 2

    - by hajan
    Earlier today Scott Guthrie announced the ASP.NET MVC 3 - Release Candidate 2. I installed the new version right after the announcement since I was eager to see the new features. Among other cool features included in this release candidate, there is a new ViewBag dynamic which can be used to pass data from Controllers to Views same as you use ViewData[] dictionary. What is great and nice about ViewBag (despite the name) is that its a dynamic type which means you can dynamically get/set values and add any number of additional fields without need of strongly-typed classes. In order to see the difference, please take a look at the following examples. Example - Using ViewData Controller public ActionResult Index() {     List<string> colors = new List<string>();     colors.Add("red");     colors.Add("green");     colors.Add("blue");                 ViewData["listColors"] = colors;     ViewData["dateNow"] = DateTime.Now;     ViewData["name"] = "Hajan";     ViewData["age"] = 25;     return View(); } View (ASPX View Engine) <p>     My name is     <b><%: ViewData["name"] %></b>,     <b><%: ViewData["age"] %></b> years old.     <br />         I like the following colors: </p> <ul id="colors"> <% foreach (var color in ViewData["listColors"] as List<string>){ %>     <li>        <font color="<%: color %>"><%: color %></font>    </li> <% } %> </ul> <p>     <%: ViewData["dateNow"] %> </p> (I know the code might look cleaner with Razor View engine, but it doesn’t matter right? ;) ) Example - Using ViewBag Controller public ActionResult Index() {     List<string> colors = new List<string>();     colors.Add("red");     colors.Add("green");     colors.Add("blue");     ViewBag.ListColors = colors; //colors is List     ViewBag.DateNow = DateTime.Now;     ViewBag.Name = "Hajan";     ViewBag.Age = 25;     return View(); } You see the difference? View (ASPX View Engine) <p>     My name is     <b><%: ViewBag.Name %></b>,     <b><%: ViewBag.Age %></b> years old.     <br />         I like the following colors: </p> <ul id="colors"> <% foreach (var color in ViewBag.ListColors) { %>     <li>         <font color="<%: color %>"><%: color %></font>     </li> <% } %> </ul> <p>     <%: ViewBag.DateNow %> </p> In my example now I don’t need to cast ViewBag.ListColors as List<string> since ViewBag is dynamic type! On the other hand the ViewData[“key”] is object.I would like to note that if you use ViewData["ListColors"] = colors; in your Controller, you can retrieve it in the View by using ViewBag.ListColors. And the result in both cases is Hope you like it! Regards, Hajan

    Read the article

  • Book Review: Oracle ADF Real World Developer’s Guide

    - by Frank Nimphius
    Recently PACKT Publishing published "Oracle ADF Real World Developer’s Guide" by Jobinesh Purushothaman, a product manager in our team. Though already the sixth book dedicated to Oracle ADF, it has a lot of great information in it that none of the previous books covered, making it a safe buy even for those who own the other books published by Oracle Press (McGrwHill) and PACKT Publishing. More than the half of the "Oracle ADF Real World Developer’s Guide" book is dedicated to Oracle ADF Business Components in a depth and clarity that allows you to feel the expertise that Jobinesh gained in this area. If you enjoy Jobinesh blog (http://jobinesh.blogspot.co.uk/) about Oracle ADF, then, no matter what expert you are in Oracle ADF, this book makes you happy as it provides you with detail information you always wished to have. If you are new to Oracle ADF, then this book alone doesn't get you flying, but, if you have some Java background, accelerates your learning big, big, big times. Chapter 1 is an introduction to Oracle ADF and not only explains the layers but also how it compares to plain Java EE solutions (page 13). If you are new to Oracle JDeveloper and ADF, then at the end of this chapter you know how to start JDeveloper and begin your ADF development Chapter 2 starts with what Jobinesh really is good at: ADF Business Components. In this chapter you learn about the architecture ingredients of ADF Business Components: View Objects, View Links, Associations, Entities, Row Sets, Query Collections and Application Modules. This chapter also provides a introduction to ADFBC SDO services, as well as sequence diagrams for what happens when you execute queries or commit updates. Chapter 3 is dedicated to entity objects and  is one of many chapters in this book you will enjoy and never want to miss. Jobinesh explains the artifacts that make up an entity object, how to work with entities and resource bundles, and many advanced topics, including inheritance, change history tracking, custom properties, validation and cursor handling.  Chapter 4 - you guessed it - is all about View objects. Comparable to entities, you learn about the XM files and classes that make a view object, as well as how to define and work with queries. List-of-values, inheritance, polymorphism, bind variables and data filtering are interesting - and important topics that follow. Again the chapter provides helpful sequence diagrams for you to understand what happens internally within a view object. Chapter 5 focuses on advanced view object and entity object topics, like lifecycle callback methods and when you want to override them. This chapter is a good digest of Jobinesh's blog entries (which most ADF developers have in their bookmark list). Really worth reading ! Chapter 6 then is bout Application Modules. Beside of what application modules are, this chapter covers important topics like properties, passivation, activation, application module pooling, how and where to write custom logic. In addition you learn about the AM lifecycle and request sequence. Chapter 7 is about the ADF binding layer. If you are new to Oracle ADF and got lost in the more advanced ADF Business Components chapters, then this chapter is where you get back into the game. In very easy terms, Jobinesh explains what the ADF binding is, how it fits into the JSF request lifecycle and what are the metadata file involved. Chapter 8 then goes into building data bound web user interfaces. In this chapter you get the basics of JavaServer Faces (e.g. managed beans) and learn about the interaction between the JSF UI and the ADF binding layer. Later this chapter provides advanced solutions for working with tree components and list of values. Chapter 9 introduces bounded task flows and ADF controller. This is a chapter you want to read if you are new to ADF of have started. Experts don't find anything new here, which doesn't mean that it is not worth reading it (I for example, enjoyed the controller talk very much) Chapter 10 is an advanced coverage of bounded task flow and talks about contextual events  Chapter 11 is another highlight and explains error handling, trains, transactions and more. I can only recommend you read this chapter. I am aware of many documents that cover exception handling in Oracle ADF (and my Oracle Magazine article for January/February 2013 does the same), but none that covers it in such a great depth. Chapter 12 covers ADF best practices, which is a great round-up of all the tips provided in this book (without Jobinesh to repeat himself). Its all cool stuff that helps you with your ADF projects. In summary, "Oracle ADF Real World Developer’s Guide" by Jobinesh Purushothaman is a great book and addition for all Oracle ADF developers and those who want to become one. Frank

    Read the article

  • LLBLGen Pro v3.5 has been released!

    - by FransBouma
    Last weekend we released LLBLGen Pro v3.5! Below the list of what's new in this release. Of course, not everything is on this list, like the large amount of work we put in refactoring the runtime framework. The refactoring was necessary because our framework has two paradigms which are added to the framework at a different time, and from a design perspective in the wrong order (the paradigm we added first, SelfServicing, should have been built on top of Adapter, the other paradigm, which was added more than a year after the first released version). The refactoring made sure the framework re-uses more code across the two paradigms (they already shared a lot of code) and is better prepared for the future. We're not done yet, but refactoring a massive framework like ours without breaking interfaces and existing applications is ... a bit of a challenge ;) To celebrate the release of v3.5, we give every customer a 30% discount! Use the coupon code NR1ORM with your order :) The full list of what's new: Designer Rule based .NET Attribute definitions. It's now possible to specify a rule using fine-grained expressions with an attribute definition to define which elements of a given type will receive the attribute definition. Rules can be assigned to attribute definitions on the project level, to make it even easier to define attribute definitions in bulk for many elements in the project. More information... Revamped Project Settings dialog. Multiple project related properties and settings dialogs have been merged into a single dialog called Project Settings, which makes it easier to configure the various settings related to project elements. It also makes it easier to find features previously not used  by many (e.g. type conversions) More information... Home tab with Quick Start Guides. To make new users feel right at home, we added a home tab with quick start guides which guide you through four main use cases of the designer. System Type Converters. Many common conversions have been implemented by default in system type converters so users don't have to develop their own type converters anymore for these type conversions. Bulk Element Setting Manipulator. To change setting values for multiple project elements, it was a little cumbersome to do that without a lot of clicking and opening various editors. This dialog makes changing settings for multiple elements very easy. EDMX Importer. It's now possible to import entity model data information from an existing Entity Framework EDMX file. Other changes and fixes See for the full list of changes and fixes the online documentation. LLBLGen Pro Runtime Framework WCF Data Services (OData) support has been added. It's now possible to use your LLBLGen Pro runtime framework powered domain layer in a WCF Data Services application using the VS.NET tools for WCF Data Services. WCF Data Services is a Microsoft technology for .NET 4 to expose your domain model using OData. More information... New query specification and execution API: QuerySpec. QuerySpec is our new query specification and execution API as an alternative to Linq and our more low-level API. It's build, like our Linq provider, on top of our lower-level API. More information... SQL Server 2012 support. The SQL Server DQE allows paging using the new SQL Server 2012 style. More information... System Type converters. For a common set of types the LLBLGen Pro runtime framework contains built-in type conversions so you don't need to write your own type converters anymore. Public/NonPublic property support. It's now possible to mark a field / navigator as non-public which is reflected in the runtime framework as an internal/friend property instead of a public property. This way you can hide properties from the public interface of a generated class and still access it through code added to the generated code base. FULL JOIN support. It's now possible to perform FULL JOIN joins using the native query api and QuerySpec. It's left to the developer to check whether the used target database supports FULL (OUTER) JOINs. Using a FULL JOIN with entity fetches is not recommended, and should only be used when both participants in the join aren't the target of the fetch. Dependency Injection Tracing. It's now possible to enable tracing on dependency injection. Enable tracing at level '4' on the traceswitch 'ORMGeneral'. This will emit trace information about which instance of which type got an instance of type T injected into property P. Entity Instances in projections in Linq. It's now possible to return an entity instance in a custom Linq projection. It's now also possible to pass this instance to a method inside the query projection. Inheritance fully supported in this construct. Entity Framework support The Entity Framework has been updated in the recent year with code-first support and a new simpler context api: DbContext (with DbSet). The amount of code to generate is smaller and the context simpler. LLBLGen Pro v3.5 comes with support for DbContext and DbSet and generates code which utilizes these new classes. NHibernate support NHibernate v3.2+ built-in proxy factory factory support. By default the built-in ProxyFactoryFactory is selected. FluentNHibernate Session Manager uses 1.2 syntax. Fluent NHibernate mappings generate a SessionManager which uses the v1.2 syntax for the ProxyFactoryFactory location Optionally emit schema / catalog name in mappings Two settings have been added which allow the user to control whether the catalog name and/or schema name as known in the project in the designer is emitted into the mappings.

    Read the article

  • New .NET Library for Accessing the Survey Monkey API

    - by Ben Emmett
    I’ve used Survey Monkey’s API for a while, and though it’s pretty powerful, there’s a lot of boilerplate each time it’s used in a new project, and the json it returns needs a bunch of processing to be able to use the raw information. So I’ve finally got around to releasing a .NET library you can use to consume the API more easily. The main advantages are: Only ever deal with strongly-typed .NET objects, making everything much more robust and a lot faster to get going Automatically handles things like rate-limiting and paging through results Uses combinations of endpoints to get all relevant data for you, and processes raw response data to map responses to questions To start, either install it using NuGet with PM> Install-Package SurveyMonkeyApi (easier option), or grab the source from https://github.com/bcemmett/SurveyMonkeyApi if you prefer to build it yourself. You’ll also need to have signed up for a developer account with Survey Monkey, and have both your API key and an OAuth token. A simple usage would be something like: string apiKey = "KEY"; string token = "TOKEN"; var sm = new SurveyMonkeyApi(apiKey, token); List<Survey> surveys = sm.GetSurveyList(); The surveys object is now a list of surveys with all the information available from the /surveys/get_survey_list API endpoint, including the title, id, date it was created and last modified, language, number of questions / responses, and relevant urls. If there are more than 1000 surveys in your account, the library pages through the results for you, making multiple requests to get a complete list of surveys. All the filtering available in the API can be controlled using .NET objects. For example you might only want surveys created in the last year and containing “pineapple” in the title: var settings = new GetSurveyListSettings { Title = "pineapple", StartDate = DateTime.Now.AddYears(-1) }; List<Survey> surveys = sm.GetSurveyList(settings); By default, whenever optional fields can be requested with a response, they will all be fetched for you. You can change this behaviour if for some reason you explicitly don’t want the information, using var settings = new GetSurveyListSettings { OptionalData = new GetSurveyListSettingsOptionalData { DateCreated = false, AnalysisUrl = false } }; Survey Monkey’s 7 read-only endpoints are supported, and the other 4 which make modifications to data might be supported in the future. The endpoints are: Endpoint Method Object returned /surveys/get_survey_list GetSurveyList() List<Survey> /surveys/get_survey_details GetSurveyDetails() Survey /surveys/get_collector_list GetCollectorList() List<Collector> /surveys/get_respondent_list GetRespondentList() List<Respondent> /surveys/get_responses GetResponses() List<Response> /surveys/get_response_counts GetResponseCounts() Collector /user/get_user_details GetUserDetails() UserDetails /batch/create_flow Not supported Not supported /batch/send_flow Not supported Not supported /templates/get_template_list Not supported Not supported /collectors/create_collector Not supported Not supported The hierarchy of objects the library can return is Survey List<Page> List<Question> QuestionType List<Answer> List<Item> List<Collector> List<Response> Respondent List<ResponseQuestion> List<ResponseAnswer> Each of these classes has properties which map directly to the names of properties returned by the API itself (though using PascalCasing which is more natural for .NET, rather than the snake_casing used by SurveyMonkey). For most users, Survey Monkey imposes a rate limit of 2 requests per second, so by default the library leaves at least 500ms between requests. You can request higher limits from them, so if you want to change the delay between requests just use a different constructor: var sm = new SurveyMonkeyApi(apiKey, token, 200); //200ms delay = 5 reqs per sec There’s a separate cap of 1000 requests per day for each API key, which the library doesn’t currently enforce, so if you think you’ll be in danger of exceeding that you’ll need to handle it yourself for now.  To help, you can see how many requests the current instance of the SurveyMonkeyApi object has made by reading its RequestsMade property. If the library encounters any errors, including communicating with the API, it will throw a SurveyMonkeyException, so be sure to handle that sensibly any time you use it to make calls. Finally, if you have a survey (or list of surveys) obtained using GetSurveyList(), the library can automatically fill in all available information using sm.FillMissingSurveyInformation(surveys); For each survey in the list, it uses the other endpoints to fill in the missing information about the survey’s question structure, respondents, and responses. This results in at least 5 API calls being made per survey, so be careful before passing it a large list. It also joins up the raw response information to the survey’s question structure, so that for each question in a respondent’s set of replies, you can access a ProcessedAnswer object. For example, a response to a dropdown question (from the /surveys/get_responses endpoint) might be represented in json as { "answers": [ { "row": "9384627365", } ], "question_id": "615487516" } Separately, the question’s structure (from the /surveys/get_survey_details endpoint) might have several possible answers, one of which might look like { "text": "Fourth item in dropdown list", "visible": true, "position": 4, "type": "row", "answer_id": "9384627365" } The library understands how this mapping works, and uses that to give you the following ProcessedAnswer object, which first describes the family and type of question, and secondly gives you the respondent’s answers as they relate to the question. Survey Monkey has many different question types, with 11 distinct data structures, each of which are supported by the library. If you have suggestions or spot any bugs, let me know in the comments, or even better submit a pull request .

    Read the article

  • Testing Mobile Websites with Adobe Shadow

    - by dwahlin
    It’s no surprise that mobile development is all the rage these days. With all of the new mobile devices being released nearly every day the ability for developers to deliver mobile solutions is more important than ever. Nearly every developer or company I’ve talked to recently about mobile development in training classes, at conferences, and on consulting projects says that they need to find a solution to get existing websites into the mobile space. Although there are several different frameworks out there that can be used such as jQuery Mobile, Sencha Touch, jQTouch, and others, how do you test how your site renders on iOS, Android, Blackberry, Windows Phone, and the variety of mobile form factors out there? Although there are different virtual solutions that can be used including Electric Plum for iOS, emulators, browser plugins for resizing the laptop/desktop browser, and more, at some point you need to test on as many physical devices as possible. This can be extremely challenging and quite time consuming though especially when you consider that you have to manually enter URLs into devices and click links on each one to drill-down into sites. Adobe Labs just released a product called Adobe Shadow (thanks to Kurt Sprinzl for letting me know about it) that significantly simplifies testing sites on physical devices, debugging problems you find, and even making live modifications to HTML and CSS content while viewing a site on the device to see how rendering changes. You can view a page in your laptop/desktop browser and have it automatically pushed to all of your devices without actually touching the device (a huge time saver). See a problem with a device? Locate it using the free Chrome extension, pull up inspection tools (based on the Chrome Developer tools) and make live changes through Chrome that appear on the respective device so that it’s easy to identify how problems can be resolved. I’ve been using Adobe Shadow and am very impressed with the amount of time saved and the different features that it offers. In the rest of the post I’ll walk through how to get it installed, get it started, and use it to view and debug pages.   Getting Adobe Shadow Installed The following steps can be used to get Adobe Shadow installed: 1. Download and install Adobe Shadow on your laptop/desktop 2. Install the Adobe Shadow extension for Chrome 3. Install the Adobe Shadow app on all of your devices (you can find it in various app stores) 4. Connect your devices to Wifi. Make sure they’re on the same network that your laptop/desktop machine is on   Getting Adobe Shadow Started Once Adobe Shadow is installed, you’ll need to get it running on your laptop/desktop and on all your mobile devices. The following steps walk through that process: 1. Start the Adobe Shadow application on your laptop/desktop 2. Start the Adobe Shadow app on each of your mobile devices 3. Locate the laptop/desktop name in the list that’s shown on each mobile device: 4. Select the laptop/desktop name and a passcode will be shown: 5. Open the Adobe Shadow Chrome extension on the laptop/desktop and enter the passcode for the given device: Using Adobe Shadow to View and Modify Pages Once Adobe Shadow is up and running on your laptop/desktop and on all of your mobile devices you can navigate to a page in Chrome on the laptop/desktop and it will automatically be pushed out to all connected mobile devices. If you have 5 mobile devices setup they’ll all navigate to the page displayed in Chrome (pretty awesome!). This makes it super easy to see how a given page looks on your iPad, Android device, etc. without having to touch the device itself. If you find a problem with a page on a device you can select the device in the Chrome Adobe Shadow extension on your laptop/desktop and select the remote inspector icon (it’s the < > icon): This will pull up the Adobe Shadow remote debugging window which contains the standard Chrome Developer tool tabs such as Elements, Resources, Network, etc. Click on the Elements tab to see the HTML rendered for the target device and then drill into the respective HTML content, CSS styles, etc. As HTML elements are selected in the Adobe Shadow debugging tool they’ll be highlighted on the device itself just like they would if you were debugging a page directly in Chrome with the developer tools. Here’s an example from my Android device that shows how the page looks on the device as I select different HTML elements on the laptop/desktop: Conclusion I’m really impressed with what I’ve to this point from Adobe Shadow. Controlling pages that display on devices directly from my laptop/desktop is a big time saver and the ability to remotely see changes made through the Chrome Developer Tools (on my laptop/desktop) really pushes the tool over the top. If you’re developing mobile applications it’s definitely something to check out. It’s currently free to download and use. For additional details check out the video below:  

    Read the article

  • Invariant code contracts – using class-wide contracts

    - by DigiMortal
    It is possible to define invariant code contracts for classes. Invariant contracts should always hold true whatever member of class is called. In this posting I will show you how to use invariant code contracts so you understand how they work and how they should be tested. This is my randomizer class I am using to demonstrate code contracts. I added one method for invariant code contracts. Currently there is one contract that makes sure that random number generator is not null. public class Randomizer {     private IRandomGenerator _generator;       private Randomizer() { }       public Randomizer(IRandomGenerator generator)     {         _generator = generator;     }       public int GetRandomFromRangeContracted(int min, int max)     {         Contract.Requires<ArgumentOutOfRangeException>(             min < max,             "Min must be less than max"         );           Contract.Ensures(             Contract.Result<int>() >= min &&             Contract.Result<int>() <= max,             "Return value is out of range"         );           return _generator.Next(min, max);     }       [ContractInvariantMethod]     private void ObjectInvariant()     {         Contract.Invariant(_generator != null);     } } Invariant code contracts are define in methods that have ContractInvariantMethod attribute. Some notes: It is good idea to define invariant methods as private. Don’t call invariant methods from your code because code contracts system does not allow it. Invariant methods are defined only as place where you can keep invariant contracts. Invariant methods are called only when call to some class member is made! The last note means that having invariant method and creating Randomizer object with null as argument does not automatically generate exception. We have to call at least one method from Randomizer class. Here is the test for generator. You can find more about contracted code testing from my posting Code Contracts: Unit testing contracted code. There is also explained why the exception handling in test is like it is. [TestMethod] [ExpectedException(typeof(Exception))] public void Should_fail_if_generator_is_null() {     try     {         var randomizer = new Randomizer(null);         randomizer.GetRandomFromRangeContracted(1, 4);     }     catch (Exception ex)     {         throw new Exception(ex.Message, ex);     } } Try out this code – with unit tests or with test application to see that invariant contracts are checked as soon as you call some member of Randomizer class.

    Read the article

  • How to build Open JavaFX for Android.

    - by PictureCo
    Here's a short recipe for baking JavaFX for Android dalvik. We will need just a few ingredients but each one requires special care. So let's get down to the business.  SourcesThe first ingredient is an open JavaFX repository. This should be piece of cake. As always there's a catch. You probably know that dalvik is jdk6 compatible  and also that certain APIs are missing comparing to good old java vm from Oracle.  Fortunately there is a repository which is a backport of regular OpenJFX to jdk7 and going from jdk7 to jdk6 is possible. The first thing to do is to clone or download the repository from https://bitbucket.org/narya/jfx78. Main page of the project says "It works in some cases" so we will presume that it will work in most cases As I've said dalvik vm misses some APIs which would lead to a build failures. To get them use another compatibility repository which is available on GitHub https://github.com/robovm/robovm-jfx78-compat. Download the zip and unzip sources into jfx78/modules/base.We need also a javafx binary stubs. Use jfxrt.jar from jdk8.The last thing to download are freetype sources from http://freetype.org. These will be necessary for native font rendering. Toolchain setup I have to point out that these instructions were tested only on linux. I suppose they will work with minimal changes also on Mac OS. I also presume that you were able to build open JavaFX. That means all tools like ant, gradle, gcc and jdk8 have been installed and are working all right. In addition to this you will need to download and install jdk7, Android SDK and Android NDK for native code compilation.  Installing all of them will take some time. Don't forget to put them in your path. export ANDROID_SDK=/opt/android-sdk-linux export ANDROID_NDK=/opt/android-ndk-r9b export JAVA_HOME=/opt/jdk1.7.0 export PATH=$JAVA_HOME/bin:$ANDROID_SDK/tools:$ANDROID_SDK/platform-tools:$ANDROID_NDK FreetypeUnzip freetype release sources first. We will have to cross compile them for arm. Firstly we will create a standalone toolchain for cross compiling installed in ~/work/ndk-standalone-19. $ANDROID_NDK/build/tools/make-standalone-toolchain.sh  --platform=android-19 --install-dir=~/work/ndk-standalone-19 After the standalone toolchain has been created cross compile freetype with following script: export TOOLCHAIN=~/work/freetype/ndk-standalone-19 export PATH=$TOOLCHAIN/bin:$PATH export FREETYPE=`pwd` ./configure --host=arm-linux-androideabi --prefix=$FREETYPE/install --without-png --without-zlib --enable-shared sed -i 's/\-version\-info \$(version_info)/-avoid-version/' builds/unix/unix-cc.mk make make install It will compile and install freetype library into $FREETYPE/install. We will link to this install dir later on. It would be possible also to link openjfx font support dynamically against skia library available on Android which already contains freetype. It creates smaller result but can have compatibility problems. Patching Download patches javafx-android-compat.patch + android-tools.patch and patch jfx78 repository. I recommend to have look at patches. First one android-compat.patch updates openjfx build script, removes dependency on SharedSecret classes and updates LensLogger to remove dependency on jdk specific PlatformLogger. Second one android-tools.patch creates helper script in android-tools. The script helps to setup javaFX Android projects. Building Now is time to try the build. Run following script: JAVA_HOME=/opt/jdk1.7.0 JDK_HOME=/opt/jdk1.7.0 ANDROID_SDK=/opt/android-sdk-linux ANDROID_NDK=/opt/android-ndk-r9b PATH=$JAVA_HOME/bin:$ANDROID_SDK/tools:$ANDROID_SDK/platform-tools:$ANDROID_NDK:$PATH gradle -PDEBUG -PDALVIK_VM=true -PBINARY_STUB=~/work/binary_stub/linux/rt/lib/ext/jfxrt.jar \ -PFREETYPE_DIR=~/work/freetype/install -PCOMPILE_TARGETS=android If everything went all right the output is in build/android-sdk Create first JavaFX Android project Use gradle script int android-tools. The script sets the project structure for you.   Following command creates Android HelloWorld project which links to a freshly built javafx runtime and to a HelloWorld application. NAME is a name of Android project. DIR where to create our first project. PACKAGE is package name required by Android. It has nothing to do with a packaging of javafx application. JFX_SDK points to our recently built runtime. JFX_APP points to dist directory of javafx application. (where all application jars sit) JFX_MAIN is fully qualified name of a main class. gradle -PDEBUG -PDIR=/home/user/work -PNAME=HelloWorld -PPACKAGE=com.helloworld \ -PJFX_SDK=/home/user/work/jfx78/build/android-sdk -PJFX_APP=/home/user/NetBeansProjects/HelloWorld/dist \ -PJFX_MAIN=com.helloworld.HelloWorld createProject Now cd to the created project and use it like any other android project. ant clean, debug, uninstall, installd will work. I haven't tried it from any IDE Eclipse nor Netbeans. Special thanks to Stefan Fuchs and Daniel Zwolenski for the repositories used in this blog post.

    Read the article

  • What is the most efficient way to convert to binary and back in C#?

    - by Saad Imran.
    I'm trying to write a general purpose socket server for a game I'm working on. I know I could very well use already built servers like SmartFox and Photon, but I wan't to go through the pain of creating one myself for learning purposes. I've come up with a BSON inspired protocol to convert the the basic data types, their arrays, and a special GSObject to binary and arrange them in a way so that it can be put back together into object form on the client end. At the core, the conversion methods utilize the .Net BitConverter class to convert the basic data types to binary. Anyways, the problem is performance, if I loop 50,000 times and convert my GSObject to binary each time it takes about 5500ms (the resulting byte[] is just 192 bytes per conversion). I think think this would be way too slow for an MMO that sends 5-10 position updates per second with a 1000 concurrent users. Yes, I know it's unlikely that a game will have a 1000 users on at the same time, but like I said earlier this is supposed to be a learning process for me, I want to go out of my way and build something that scales well and can handle at least a few thousand users. So yea, if anyone's aware of other conversion techniques or sees where I'm loosing performance I would appreciate the help. GSBitConverter.cs This is the main conversion class, it adds extension methods to main datatypes to convert to the binary format. It uses the BitConverter class to convert the base types. I've shown only the code to convert integer and integer arrays, but the rest of the method are pretty much replicas of those two, they just overload the type. public static class GSBitConverter { public static byte[] ToGSBinary(this short value) { return BitConverter.GetBytes(value); } public static byte[] ToGSBinary(this IEnumerable<short> value) { List<byte> bytes = new List<byte>(); short length = (short)value.Count(); bytes.AddRange(length.ToGSBinary()); for (int i = 0; i < length; i++) bytes.AddRange(value.ElementAt(i).ToGSBinary()); return bytes.ToArray(); } public static byte[] ToGSBinary(this bool value); public static byte[] ToGSBinary(this IEnumerable<bool> value); public static byte[] ToGSBinary(this IEnumerable<byte> value); public static byte[] ToGSBinary(this int value); public static byte[] ToGSBinary(this IEnumerable<int> value); public static byte[] ToGSBinary(this long value); public static byte[] ToGSBinary(this IEnumerable<long> value); public static byte[] ToGSBinary(this float value); public static byte[] ToGSBinary(this IEnumerable<float> value); public static byte[] ToGSBinary(this double value); public static byte[] ToGSBinary(this IEnumerable<double> value); public static byte[] ToGSBinary(this string value); public static byte[] ToGSBinary(this IEnumerable<string> value); public static string GetHexDump(this IEnumerable<byte> value); } Program.cs Here's the the object that I'm converting to binary in a loop. class Program { static void Main(string[] args) { GSObject obj = new GSObject(); obj.AttachShort("smallInt", 15); obj.AttachInt("medInt", 120700); obj.AttachLong("bigInt", 10900800700); obj.AttachDouble("doubleVal", Math.PI); obj.AttachStringArray("muppetNames", new string[] { "Kermit", "Fozzy", "Piggy", "Animal", "Gonzo" }); GSObject apple = new GSObject(); apple.AttachString("name", "Apple"); apple.AttachString("color", "red"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)1.5); GSObject lemon = new GSObject(); apple.AttachString("name", "Lemon"); apple.AttachString("color", "yellow"); apple.AttachBool("inStock", false); apple.AttachFloat("price", (float)0.8); GSObject apricoat = new GSObject(); apple.AttachString("name", "Apricoat"); apple.AttachString("color", "orange"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)1.9); GSObject kiwi = new GSObject(); apple.AttachString("name", "Kiwi"); apple.AttachString("color", "green"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)2.3); GSArray fruits = new GSArray(); fruits.AddGSObject(apple); fruits.AddGSObject(lemon); fruits.AddGSObject(apricoat); fruits.AddGSObject(kiwi); obj.AttachGSArray("fruits", fruits); Stopwatch w1 = Stopwatch.StartNew(); for (int i = 0; i < 50000; i++) { byte[] b = obj.ToGSBinary(); } w1.Stop(); Console.WriteLine(BitConverter.IsLittleEndian ? "Little Endian" : "Big Endian"); Console.WriteLine(w1.ElapsedMilliseconds + "ms"); } Here's the code for some of my other classes that are used in the code above. Most of it is repetitive. GSObject GSArray GSWrappedObject

    Read the article

  • The Year 2010, The Year of Change

    As I look back on the year of 2010, I could have never predicted the wonderful changes that have occurred for my wife and me. The beginning of this year started out as the 9th year that we lived in South Florida, and my fourth year working for DentalPlans.com as a software engineer/network admin. About 3 months in to the year I was given an excellent opportunity to work for MovieTickets.com in the software engineering department. This opportunity allowed me to gain experience with jQuery due to one of my projects was to reengineering MovieTickets.com existing Marketing Panel System. About 3 months after working at MovieTickets.com, my wife and I were offered an opportunity of a life time. I was offered a Job in a large background\information security company located in Nashville, TN as software engineer II.  I must note that after living in South Florida for 9 years, my wife and I really had a strong distaste for the South Florida life style and the general attitude/culture of the area. Even though we shared a strong dislike for the area in which we lived I must admit that it was a tough decision to leave MovieTickets.com because I was really doing well and I made some great new friends like Chris Catto, and Tyson Nero.  In fact, they introduced me to Local Microsoft User Groups, and software development podcast like DotNetRocks.com and Hanselminutes.com.  In addition, we also went to my first Microsoft launch down in Miami for Visual Studios 2010. I must admit it was a cool experience.  I truly hope to keep in touch with them to see how their careers grow, and I know they will. I must admit I was nervous and excited to start the next chapter in our live as I started up the 26 foot U-Haul truck and got on the road for Nashville from Boca Raton. I knew that the change was going to lead to new adventures and new opportunities that I could never imagine.  As we pulled in to the long driveway of our rental house, we knew that this was the right place for my wife and I. Natalie, my wife had actually come up to Nashville and within one week of my job offer had set up a nice rental home for us to restart our lives in TN.  I must admit that the wonderful southern hospitality took a bit to get use to due to the type of people we were used to dealing with on a regular basis. Our first 2 months seemed like we were living a dream because of our new area and the wonderful people we live around. So far my new job is going really well and I really like the people on my team and department. In fact after 6 months I am now in charge of all application builds for our new deployment process. I am also leading up a push for setting up of continuous integration within our new build process.  In addition to starting my new job, I was also offered a position as an adjust instructor at ITT Tech teaching course like VB.net, Java Script, Ajax, and database development. So far I have really like teaching at the college level.  Information technology has really been great for my life so I am really glad to be able to give back. That is actually why I started DotNetBlocks. This site allows me to document things I have learned as I work with technology, and allows others to borrow from my experiences.  I hope that this site can help others as others have helped me get where I am. Finally, I am glade to report that I only have 4 classes left for my master’s degree at Capella University. I am proud to announce that I am still on track to graduate with 3.91 GPA.  This last class was really a test because I had a crazy idea that I could work full time as a software engineer, teach two college courses as a first time teacher and also take an advanced masters class in application architecture. I have no idea how I actually survived, but I am really surprised how well I actually did. I was invited back to reach again at ITT Tech, and I passed my masters class with an “A”.  I have decided to take this next term off from my master’s program so that I do not get burned out.  Also, so that my new current employer will pay for more of my education, tuition reimbursement is an awesome benefit. This was my year 2010, how was yours?

    Read the article

  • JavaScript Class Patterns

    - by Liam McLennan
    To write object-oriented programs we need objects, and likely lots of them. JavaScript makes it easy to create objects: var liam = { name: "Liam", age: Number.MAX_VALUE }; But JavaScript does not provide an easy way to create similar objects. Most object-oriented languages include the idea of a class, which is a template for creating objects of the same type. From one class many similar objects can be instantiated. Many patterns have been proposed to address the absence of a class concept in JavaScript. This post will compare and contrast the most significant of them. Simple Constructor Functions Classes may be missing but JavaScript does support special constructor functions. By prefixing a call to a constructor function with the ‘new’ keyword we can tell the JavaScript runtime that we want the function to behave like a constructor and instantiate a new object containing the members defined by that function. Within a constructor function the ‘this’ keyword references the new object being created -  so a basic constructor function might be: function Person(name, age) { this.name = name; this.age = age; this.toString = function() { return this.name + " is " + age + " years old."; }; } var john = new Person("John Galt", 50); console.log(john.toString()); Note that by convention the name of a constructor function is always written in Pascal Case (the first letter of each word is capital). This is to distinguish between constructor functions and other functions. It is important that constructor functions be called with the ‘new’ keyword and that not constructor functions are not. There are two problems with the pattern constructor function pattern shown above: It makes inheritance difficult The toString() function is redefined for each new object created by the Person constructor. This is sub-optimal because the function should be shared between all of the instances of the Person type. Constructor Functions with a Prototype JavaScript functions have a special property called prototype. When an object is created by calling a JavaScript constructor all of the properties of the constructor’s prototype become available to the new object. In this way many Person objects can be created that can access the same prototype. An improved version of the above example can be written: function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { toString: function() { return this.name + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); In this version a single instance of the toString() function will now be shared between all Person objects. Private Members The short version is: there aren’t any. If a variable is defined, with the var keyword, within the constructor function then its scope is that function. Other functions defined within the constructor function will be able to access the private variable, but anything defined outside the constructor (such as functions on the prototype property) won’t have access to the private variable. Any variables defined on the constructor are automatically public. Some people solve this problem by prefixing properties with an underscore and then not calling those properties by convention. function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { _getName: function() { return this.name; }, toString: function() { return this._getName() + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); Note that the _getName() function is only private by convention – it is in fact a public function. Functional Object Construction Because of the weirdness involved in using constructor functions some JavaScript developers prefer to eschew them completely. They theorize that it is better to work with JavaScript’s functional nature than to try and force it to behave like a traditional class-oriented language. When using the functional approach objects are created by returning them from a factory function. An excellent side effect of this pattern is that variables defined with the factory function are accessible to the new object (due to closure) but are inaccessible from anywhere else. The Person example implemented using the functional object construction pattern is: var personFactory = function(name, age) { var privateVar = 7; return { toString: function() { return name + " is " + age * privateVar / privateVar + " years old."; } }; }; var john2 = personFactory("John Lennon", 40); console.log(john2.toString()); Note that the ‘new’ keyword is not used for this pattern, and that the toString() function has access to the name, age and privateVar variables because of closure. This pattern can be extended to provide inheritance and, unlike the constructor function pattern, it supports private variables. However, when working with JavaScript code bases you will find that the constructor function is more common – probably because it is a better approximation of mainstream class oriented languages like C# and Java. Inheritance Both of the above patterns can support inheritance but for now, favour composition over inheritance. Summary When JavaScript code exceeds simple browser automation object orientation can provide a powerful paradigm for controlling complexity. Both of the patterns presented in this article work – the choice is a matter of style. Only one question still remains; who is John Galt?

    Read the article

  • JavaScript Class Patterns

    - by Liam McLennan
    To write object-oriented programs we need objects, and likely lots of them. JavaScript makes it easy to create objects: var liam = { name: "Liam", age: Number.MAX_VALUE }; But JavaScript does not provide an easy way to create similar objects. Most object-oriented languages include the idea of a class, which is a template for creating objects of the same type. From one class many similar objects can be instantiated. Many patterns have been proposed to address the absence of a class concept in JavaScript. This post will compare and contrast the most significant of them. Simple Constructor Functions Classes may be missing but JavaScript does support special constructor functions. By prefixing a call to a constructor function with the ‘new’ keyword we can tell the JavaScript runtime that we want the function to behave like a constructor and instantiate a new object containing the members defined by that function. Within a constructor function the ‘this’ keyword references the new object being created -  so a basic constructor function might be: function Person(name, age) { this.name = name; this.age = age; this.toString = function() { return this.name + " is " + age + " years old."; }; } var john = new Person("John Galt", 50); console.log(john.toString()); Note that by convention the name of a constructor function is always written in Pascal Case (the first letter of each word is capital). This is to distinguish between constructor functions and other functions. It is important that constructor functions be called with the ‘new’ keyword and that not constructor functions are not. There are two problems with the pattern constructor function pattern shown above: It makes inheritance difficult The toString() function is redefined for each new object created by the Person constructor. This is sub-optimal because the function should be shared between all of the instances of the Person type. Constructor Functions with a Prototype JavaScript functions have a special property called prototype. When an object is created by calling a JavaScript constructor all of the properties of the constructor’s prototype become available to the new object. In this way many Person objects can be created that can access the same prototype. An improved version of the above example can be written: function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { toString: function() { return this.name + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); In this version a single instance of the toString() function will now be shared between all Person objects. Private Members The short version is: there aren’t any. If a variable is defined, with the var keyword, within the constructor function then its scope is that function. Other functions defined within the constructor function will be able to access the private variable, but anything defined outside the constructor (such as functions on the prototype property) won’t have access to the private variable. Any variables defined on the constructor are automatically public. Some people solve this problem by prefixing properties with an underscore and then not calling those properties by convention. function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { _getName: function() { return this.name; }, toString: function() { return this._getName() + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); Note that the _getName() function is only private by convention – it is in fact a public function. Functional Object Construction Because of the weirdness involved in using constructor functions some JavaScript developers prefer to eschew them completely. They theorize that it is better to work with JavaScript’s functional nature than to try and force it to behave like a traditional class-oriented language. When using the functional approach objects are created by returning them from a factory function. An excellent side effect of this pattern is that variables defined with the factory function are accessible to the new object (due to closure) but are inaccessible from anywhere else. The Person example implemented using the functional object construction pattern is: var john = new Person("John Galt", 50); console.log(john.toString()); var personFactory = function(name, age) { var privateVar = 7; return { toString: function() { return name + " is " + age * privateVar / privateVar + " years old."; } }; }; var john2 = personFactory("John Lennon", 40); console.log(john2.toString()); Note that the ‘new’ keyword is not used for this pattern, and that the toString() function has access to the name, age and privateVar variables because of closure. This pattern can be extended to provide inheritance and, unlike the constructor function pattern, it supports private variables. However, when working with JavaScript code bases you will find that the constructor function is more common – probably because it is a better approximation of mainstream class oriented languages like C# and Java. Inheritance Both of the above patterns can support inheritance but for now, favour composition over inheritance. Summary When JavaScript code exceeds simple browser automation object orientation can provide a powerful paradigm for controlling complexity. Both of the patterns presented in this article work – the choice is a matter of style. Only one question still remains; who is John Galt?

    Read the article

  • Silverlight Cream for February 26, 2011 -- #1052

    - by Dave Campbell
    In this Issue: Mark Monster, Gill Cleeren, Pencho Popadiyn, Kevin Dockx, Joost van Schaik, Jesse Liberty, John Papa, Jeremy Likness, Arik Poznanski(-2-), Page Brooks, Deborah Kurata, Mike Snow, Alfred Astort, Samuel Jack, XAMLNinja, and Shawn Wildermuth. Above the Fold: Silverlight: "Asynchronous Callbacks with Rx" Jesse Liberty WP7: "Phoney Windows Phone 7 Project Now Available!" Shawn Wildermuth MVVM: "Validating our ViewModel" Mark Monster Shoutouts: Shawn Wildermuth has a video up of his FadingMessage class to show it off: Introducing Phoney's FadingMessage Class From SilverlightCream.com: Validating our ViewModel Mark Monster discusses Validation in his latest post... using INotifyDataErrorInfo and his own implementation of a ViewModel base that supports it and INPC. Getting ready for Microsoft Silverlight Exam 70-506 (Part 7) Gill Cleeren hits part 7 of his series at SilverlightShow on a great walk through Silverlight and getting ready for the exam. This is the final part and concentrates on deploying apps. Windows Phone 7–Creating Custom Keyboard Pencho Popadiyn has a post at SilverlightShow discussing problems with WP7 keyboards in his native Bulgaria, and his solution to the problem... create his own. 360 Degrees Feedback by Kevin Dockx Kevin Dockx produced a white paper for his company about an employee review solution they did in Silverlight. The white paper is available, and SilverlightShow interviewd Kevin to answer questions about the app. Extended Windows Phone 7 page for handling rotation, focused element updates and back key press Looks like Joost van Schaik has a few posts I've missed... and I'm not going to get to them all today! ... this one is about the base class he uses for WP7 apps... a bunch of utilities he uses... definitely worth a look (and a take). Asynchronous Callbacks with Rx Jesse Liberty has his 8th post in the Rx series up and this one's on Asynchronous Callbacks... if you haven't seen this before, you should definitely look into it... cool stuff, Jesse! Silverlight TV 63: Exploring National Instruments' App Using Data and Business Features John Papa has Silverlight TV number 63 up and is talking to Steve Lasker about National Instruments and their Lab View product. Great demo and discussion. Jounce Part 11: Debugging MEF Jeremy Likness's latest (number 11) in his series on his MVVM framework Jounce is out, and he's discussing how to debug MEF, which Jounce handles nicely through the logging he provides... and you can use it externally to Jounce. Get Twitter Trends on Windows Phone 7 Arik Poznanski has a couple Twitter for WP7 posts up... first is one for pulling Twitter trends from whatthetrend.com... plus the code to do it. Searching Twitter on Windows Phone 7 In his next post, Arik Poznanski shows how to search twitter from your WP7 ... again with code. Tiled Background Control in Silverlight Page Brooks shows how to get a tiled background control in Silverlight ... did you know there was one in the JetPack them? Silverlight Charting: Displaying Data Above the Column Deborah Kurata continues her charting posts with this one displaying the column value above the column. I like this... it has a clean look and all the data is available at a glance. Silverlight: Tasks on the Win7 Mobile Phone Mike Snow has a list of the WP7 tasks available and an example of using them... looks like a pretty good reference! 10 of 10 - Aesthetics and alignment matter Alfred Astort discusses aesthetics and WP7 dev... looks like it's the same as any app development, but if you're not doing it, you should be. Simon Squared – We have Multi-player: Days 4, 5 and (ahem!) 6 Samuel Jack details the completion of his multi-player game for WP7 utilizing Azure, in the hour-by-hour detail he's done the rest... plus a video of the final product! Who ate all the pies!! XAMLNinja has a very good discussion/link set of Charting posts all leading up to a portrait-only version of charting for WP7 with labels that looks looks great Phoney Windows Phone 7 Project Now Available! Shawn Wildermuth has a collection of classes he always uses with WP7 dev, and he's sharing them with all of us a "Phoney" Tools project on Codeplex... and now has a NuGet project also. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • A Quick Primer on SharePoint Customization

    - by PeterBrunone
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} This one goes out to all the people who have been asked to change the way a SharePoint site looks.  Management wants to know how long it will take, and you can whip that out by tomorrow, right?  If you don't have time to prepare a treatise on what's involved, or if you just want to lend some extra weight to your case by quoting a blogger who was an MVP for seven years, then dive right in; this post is for you. There are three main components of SharePoint visual customization:   1)       Theme – A theme encompasses all the standardized text formatting and coloring (borders, fonts, etc), including the background images of various sections. All told, there could be around 50 images involved, and a few hundred CSS (style) classes.  Installing a theme once it’s been created is no great feat.  Given the number of pieces, of course, creating a new theme could take anywhere from a day to a week… once decisions have been made about the desired appearance. 2)      Master Page – A master page provides the framework for page layout.  This includes all the top and side menus, where content shows up, et cetera.  Master pages have been around for a long time in ASP.NET (Microsoft’s web development platform), and they do require some .NET programming knowledge.  Beyond that, in SharePoint, there are a few dozen controls which the system expects find on a given page.  They’re not all used at once, but if they’re not there when they’re needed, chaos ensues.  Estimating a custom master page is difficult, as it depends on the level of customization.  I’ve been on projects where I was brought in simply to fix some problems and add a few finishing touches, and it took 2-3 weeks.  Master page customization requires a large amount of testing time to make sure that the HTML, JavaScript, CSS, and control placement all work well together. 3)      Individual page layout – Each page (ideally) uses a master page for its template, but within the content areas defined by the master page, web parts can be added, removed, and configured from within the browser.  The wireframe that Brent provided could most likely be completed simply by manipulating the content on the home page in this fashion, and we had allowed about a day of effort for the task.  If needed, further functionality can be provided by an experienced ASP.NET developer; custom forms are a common example.  This of course is a bit more in-depth than simple content manipulation and could take several days per page (or more; there’s really no way to quantify this without a set of requirements).   That’s basically it.  To recap:  Fonts and coloring are done with themes, and can take anywhere from a day to a week to create (not counting creative time); required technical skills include HTML, CSS, and image manipulation.  Templated layout is done with master pages, and generally requires a developer familiar with both ASP.NET and SharePoint in particular; it can have far-reaching consequences depending on the complexity of the changes, and could add weeks or months to a project.  Page layout can be as simple as content manipulation in the web browser, taking a few hours per page, or it can involve more detail, like custom forms, and can require programming expertise and significantly more development time.

    Read the article

  • Using the Static Code Analysis feature of Visual Studio (Premium/Ultimate) to find memory leakage problems

    - by terje
    Memory for managed code is handled by the garbage collector, but if you use any kind of unmanaged code, like native resources of any kind, open files, streams and window handles, your application may leak memory if these are not properly handled.  To handle such resources the classes that own these in your application should implement the IDisposable interface, and preferably implement it according to the pattern described for that interface. When you suspect a memory leak, the immediate impulse would be to start up a memory profiler and start digging into that.   However, before you follow that impulse, do a Static Code Analysis run with a ruleset tuned to finding possible memory leaks in your code.  If you get any warnings from this, fix them before you go on with the profiling. How to use a ruleset In Visual Studio 2010 (Premium and Ultimate editions) you can define your own rulesets containing a list of Static Code Analysis checks.   I have defined the memory checks as shown in the lists below as ruleset files, which can be downloaded – see bottom of this post.  When you get them, you can easily attach them to every project in your solution using the Solution Properties dialog. Right click the solution, and choose Properties at the bottom, or use the Analyze menu and choose “Configure Code Analysis for Solution”: In this dialog you can now choose the Memorycheck ruleset for every project you want to investigate.  Pressing Apply or Ok opens every project file and changes the projects code analysis ruleset to the one we have specified here. How to define your own ruleset  (skip this if you just download my predefined rulesets) If you want to define the ruleset yourself, open the properties on any project, choose Code Analysis tab near the bottom, choose any ruleset in the drop box and press Open Clear out all the rules by selecting “Source Rule Sets” in the Group By box, and unselect the box Change the Group By box to ID, and select the checks you want to include from the lists below. Note that you can change the action for each check to either warning, error or none, none being the same as unchecking the check.   Now go to the properties window and set a new name and description for your ruleset. Then save (File/Save as) the ruleset using the new name as its name, and use it for your projects as detailed above. It can also be wise to add the ruleset to your solution as a solution item. That way it’s there if you want to enable Code Analysis in some of your TFS builds.   Running the code analysis In Visual Studio 2010 you can either do your code analysis project by project using the context menu in the solution explorer and choose “Run Code Analysis”, you can define a new solution configuration, call it for example Debug (Code Analysis), in for each project here enable the Enable Code Analysis on Build   In Visual Studio Dev-11 it is all much simpler, just go to the Solution root in the Solution explorer, right click and choose “Run code analysis on solution”.     The ruleset checks The following list is the essential and critical memory checks.  CheckID Message Can be ignored ? Link to description with fix suggestions CA1001 Types that own disposable fields should be disposable No  http://msdn.microsoft.com/en-us/library/ms182172.aspx CA1049 Types that own native resources should be disposable Only if the pointers assumed to point to unmanaged resources point to something else  http://msdn.microsoft.com/en-us/library/ms182173.aspx CA1063 Implement IDisposable correctly No  http://msdn.microsoft.com/en-us/library/ms244737.aspx CA2000 Dispose objects before losing scope No  http://msdn.microsoft.com/en-us/library/ms182289.aspx CA2115 1 Call GC.KeepAlive when using native resources See description  http://msdn.microsoft.com/en-us/library/ms182300.aspx CA2213 Disposable fields should be disposed If you are not responsible for release, of if Dispose occurs at deeper level  http://msdn.microsoft.com/en-us/library/ms182328.aspx CA2215 Dispose methods should call base class dispose Only if call to base happens at deeper calling level  http://msdn.microsoft.com/en-us/library/ms182330.aspx CA2216 Disposable types should declare a finalizer Only if type does not implement IDisposable for the purpose of releasing unmanaged resources  http://msdn.microsoft.com/en-us/library/ms182329.aspx CA2220 Finalizers should call base class finalizers No  http://msdn.microsoft.com/en-us/library/ms182341.aspx Notes: 1) Does not result in memory leak, but may cause the application to crash   The list below is a set of optional checks that may be enabled for your ruleset, because the issues these points too often happen as a result of attempting to fix up the warnings from the first set.   ID Message Type of fault Can be ignored ? Link to description with fix suggestions CA1060 Move P/invokes to NativeMethods class Security No http://msdn.microsoft.com/en-us/library/ms182161.aspx CA1816 Call GC.SuppressFinalize correctly Performance Sometimes, see description http://msdn.microsoft.com/en-us/library/ms182269.aspx CA1821 Remove empty finalizers Performance No http://msdn.microsoft.com/en-us/library/bb264476.aspx CA2004 Remove calls to GC.KeepAlive Performance and maintainability Only if not technically correct to convert to SafeHandle http://msdn.microsoft.com/en-us/library/ms182293.aspx CA2006 Use SafeHandle to encapsulate native resources Security No http://msdn.microsoft.com/en-us/library/ms182294.aspx CA2202 Do not dispose of objects multiple times Exception (System.ObjectDisposedException) No http://msdn.microsoft.com/en-us/library/ms182334.aspx CA2205 Use managed equivalents of Win32 API Maintainability and complexity Only if the replace doesn’t provide needed functionality http://msdn.microsoft.com/en-us/library/ms182365.aspx CA2221 Finalizers should be protected Incorrect implementation, only possible in MSIL coding No http://msdn.microsoft.com/en-us/library/ms182340.aspx   Downloadable ruleset definitions I have defined three rulesets, one called Inmeta.Memorycheck with the rules in the first list above, and Inmeta.Memorycheck.Optionals containing the rules in the second list, and the last one called Inmeta.Memorycheck.All containing the sum of the two first ones.  All three rulesets can be found in the  zip archive  “Inmeta.Memorycheck” downloadable from here.   Links to some other resources relevant to Static Code Analysis MSDN Magazine Article by Mickey Gousset on Static Code Analysis in VS2010 MSDN :  Analyzing Managed Code Quality by Using Code Analysis, root of the documentation for this Preventing generated code from being analyzed using attributes Online training course on Using Code Analysis with VS2010 Blogpost by Tatham Oddie on custom code analysis rules How to write custom rules, from Microsoft Code Analysis Team Blog Microsoft Code Analysis Team Blog

    Read the article

< Previous Page | 373 374 375 376 377 378 379 380 381 382 383 384  | Next Page >