Search Results

Search found 5741 results on 230 pages for 'azure vm'.

Page 38/230 | < Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >

  • How to add a VM Server to a VM Domain when the host is not on that domain.

    - by Charlie
    I have created A VM running Windows Server 2008 R2, using VMWare. I have configured this as a domain controller running a Windows Server 2008 domain. I have also created another VM running Windows Server 2008 R2. The HOST machine is using Windows 7 Professional 64 bit. When I try to add the second VM into the domain that the first is the DC for it fails as the VM cannot contact the DC. Simple question really. What have I missed? Is it something to do with the configuration on the Host machine? What do I need to do to enable this scenario? Thanks

    Read the article

  • Hyper-V R2 as a VM on another virtual OS

    - by Tim
    I am trying to perform Microsoft Platform testing for a vendor application. The problem I have is that it requires the test be done on Windows Server 2008 as a VM on Hyper-V R2. Currently, I have access to a virtual server with just Hyper-V and also have access to an ESXi server. The crazy idea (which may just show how little I know about how virtualization technology works) is to install Hyper-V R2 as a VM onto one of these other servers. Then create a VM for Windows Server 2008 on this Hyper-V R2 VM. I can not just upgrade the current Hyper-V server as the VMs currently running would need to be taken off-line and are system critical (and I don't have rights to perform this upgrade). Has anyone tried this? Will this even work?

    Read the article

  • VM guest cloning.

    - by davidyuz
    I am able to make a copy of my existing VM guest folder and another folder on my datasource (trying to clone this vm to a new vm). However, I can't seem to add a way to add it to the inventory so that I could start it up. Any suggestion on this matter? I'm using ESX4 Thanks David.

    Read the article

  • Second vm not connecting to internet KVM

    - by potsed
    I cannot connect a second VM to the internet. I have two VM's set up and running, the first vm can connect to the Internet fine, the second does not even get a ping through. They are both set up in the same way with the same base packages but different secondary packages. Different sized disks etc. I am a noob with VM and perhaps I am missing something very simple. Like maybe that they have the same mac address or something. They are both using a bridged connection. Any help would be appreciated, and if you need logs please let me know which ones.

    Read the article

  • ESXi VM NTP Server

    - by jstorch
    Hello all. We need to setup an internal NTP server. Because this server will pretty much ONLY be a time server I was thinking of just creating a VM for it. However, Googling around it appears that there there might be serious clock drifting issues with VM servers. So, is running our NTP server in a VM a completely dumb idea? Thanks, John

    Read the article

  • Bridged VM guest does not get IPv6 prefix

    - by Arne
    I have a similar problem and setup as described in IPv6 does not work over bridge. My host get a IPv6 prefix but the guest VM only gets a local fe80-prefix. Using tcpdump I can see that solicit messages are going out from the guest but the host (ubuntu-server) doesn't seem to respond: arne@ubuntu-server:/var/log$ sudo tcpdump -i br0 host fe80::5054:00ff:fe4d:9ae0 tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on br0, link-type EN10MB (Ethernet), capture size 65535 bytes 14:31:15.314419 IP6 fe80::5054:ff:fe4d:9ae0 > ff02::16: HBH ICMP6, multicast listener report v2, 4 group record(s), length 88 14:31:15.322337 IP6 fe80::5054:ff:fe4d:9ae0 > ff02::16: HBH ICMP6, multicast listener report v2, 1 group record(s), length 28 14:31:15.502374 IP6 fe80::5054:ff:fe4d:9ae0 > ff02::16: HBH ICMP6, multicast listener report v2, 1 group record(s), length 28 14:31:15.743894 IP6 fe80::5054:ff:fe4d:9ae0.dhcpv6-client > ff02::1:2.dhcpv6-server: dhcp6 solicit 14:31:15.802389 IP6 fe80::5054:ff:fe4d:9ae0 > ff02::16: HBH ICMP6, multicast listener report v2, 4 group record(s), length 88 14:31:17.906580 IP6 fe80::5054:ff:fe4d:9ae0.dhcpv6-client > ff02::1:2.dhcpv6-server: dhcp6 solicit I had a firewall issue which I fixed by adding the following (copied from similar IPv4 before.rules settings) to /etc/ufw/before6.rules at the end before the commit statement: # allow bridging (for KVM) -I FORWARD -m physdev --physdev-is-bridged -j ACCEPT I am running the host on a Ubuntu 14.04 server so I guess I could have used dnsmasq but I didn't find any howto for it so I used radvd (which had to be installed) with the following configuration in /etc/radvd.conf: interface br0 { AdvSendAdvert on; AdvLinkMTU 1480; prefix 2a01:79d:xxx::/64 { AdvOnLink on; AdvAutonomous on; }; }; This didn't help though so I guess I must have configured it wrong? Any help appreciated. Br, Arne PS: I wish the Ubuntu documentation included how to configure virtualization to work with IPv6

    Read the article

  • Functional Languages that compile to Android's Dalvik VM?

    - by Berin Loritsch
    I have a software problem that fits the functional approach to programming, but the target market will be on the Android OS. I ask because there are functional languages that compile to Java's VM, but Dalvik bytecode != Java bytecode. Alternatively, do you know if the dx utility can intelligently convert the .class files generated from functional languages like Scala? Edit: In order to add a bit more helpfulness to the community, and also to help me choose better, can I refine the question a bit? Have you used any alternate languages with Dalvik? Which ones? What are some "gotchas" (problems) that I might run into? Is performance acceptable? By that, I mean the application still feels responsive to the user. I've never done mobile phone development, but I grew up on constrained devices and I'm under no illusion that there is a cost to using non-standard languages with the platform. I just need to know if the cost is such that I should shoe-horn my approach into default language (i.e. apply functional principles in the OOP language).

    Read the article

  • Virtualbox errors out when creating or opening VM

    - by user106986
    I installed Virtual-box about a week ago and now every time I either try to start a VM or create a new one I get the error listed below. I am in the vboxusers group. I completely uninstalled and re-installed the application without any change in the error. When I run the command below I receive "command not found". Then when I try to install dkms they systems says it is already installed. Right now I have removed the application and any files and would love to re-install the application again to get it working. I remove the application using: sudo apt-get remove virtualbox* --purge Any ideas? Kernel driver not installed (rc=-1908) The VirtualBox Linux kernel driver (vboxdrv) is either not loaded or there is a permission problem with /dev/vboxdrv. Please reinstall the kernel module by executing '/etc/init.d/vboxdrv setup' as root. If it is available in your distribution, you should install the DKMS package first. This package keeps track of Linux kernel changes and recompiles the vboxdrv kernel module if necessary. Result Code: NS_ERROR_FAILURE (0x80004005) Component: Machine Interface: IMachine {5eaa9319-62fc-4b0a-843c-0cb1940f8a91}

    Read the article

  • Transactional Messaging in the Windows Azure Service Bus

    - by Alan Smith
    Introduction I’m currently working on broadening the content in the Windows Azure Service Bus Developer Guide. One of the features I have been looking at over the past week is the support for transactional messaging. When using the direct programming model and the WCF interface some, but not all, messaging operations can participate in transactions. This allows developers to improve the reliability of messaging systems. There are some limitations in the transactional model, transactions can only include one top level messaging entity (such as a queue or topic, subscriptions are no top level entities), and transactions cannot include other systems, such as databases. As the transaction model is currently not well documented I have had to figure out how things work through experimentation, with some help from the development team to confirm any questions I had. Hopefully I’ve got the content mostly correct, I will update the content in the e-book if I find any errors or improvements that can be made (any feedback would be very welcome). I’ve not had a chance to look into the code for transactions and asynchronous operations, maybe that would make a nice challenge lab for my Windows Azure Service Bus course. Transactional Messaging Messaging entities in the Windows Azure Service Bus provide support for participation in transactions. This allows developers to perform several messaging operations within a transactional scope, and ensure that all the actions are committed or, if there is a failure, none of the actions are committed. There are a number of scenarios where the use of transactions can increase the reliability of messaging systems. Using TransactionScope In .NET the TransactionScope class can be used to perform a series of actions in a transaction. The using declaration is typically used de define the scope of the transaction. Any transactional operations that are contained within the scope can be committed by calling the Complete method. If the Complete method is not called, any transactional methods in the scope will not commit.   // Create a transactional scope. using (TransactionScope scope = new TransactionScope()) {     // Do something.       // Do something else.       // Commit the transaction.     scope.Complete(); }     In order for methods to participate in the transaction, they must provide support for transactional operations. Database and message queue operations typically provide support for transactions. Transactions in Brokered Messaging Transaction support in Service Bus Brokered Messaging allows message operations to be performed within a transactional scope; however there are some limitations around what operations can be performed within the transaction. In the current release, only one top level messaging entity, such as a queue or topic can participate in a transaction, and the transaction cannot include any other transaction resource managers, making transactions spanning a messaging entity and a database not possible. When sending messages, the send operations can participate in a transaction allowing multiple messages to be sent within a transactional scope. This allows for “all or nothing” delivery of a series of messages to a single queue or topic. When receiving messages, messages that are received in the peek-lock receive mode can be completed, deadlettered or deferred within a transactional scope. In the current release the Abandon method will not participate in a transaction. The same restrictions of only one top level messaging entity applies here, so the Complete method can be called transitionally on messages received from the same queue, or messages received from one or more subscriptions in the same topic. Sending Multiple Messages in a Transaction A transactional scope can be used to send multiple messages to a queue or topic. This will ensure that all the messages will be enqueued or, if the transaction fails to commit, no messages will be enqueued.     An example of the code used to send 10 messages to a queue as a single transaction from a console application is shown below.   QueueClient queueClient = messagingFactory.CreateQueueClient(Queue1);   Console.Write("Sending");   // Create a transaction scope. using (TransactionScope scope = new TransactionScope()) {     for (int i = 0; i < 10; i++)     {         // Send a message         BrokeredMessage msg = new BrokeredMessage("Message: " + i);         queueClient.Send(msg);         Console.Write(".");     }     Console.WriteLine("Done!");     Console.WriteLine();       // Should we commit the transaction?     Console.WriteLine("Commit send 10 messages? (yes or no)");     string reply = Console.ReadLine();     if (reply.ToLower().Equals("yes"))     {         // Commit the transaction.         scope.Complete();     } } Console.WriteLine(); messagingFactory.Close();     The transaction scope is used to wrap the sending of 10 messages. Once the messages have been sent the user has the option to either commit the transaction or abandon the transaction. If the user enters “yes”, the Complete method is called on the scope, which will commit the transaction and result in the messages being enqueued. If the user enters anything other than “yes”, the transaction will not commit, and the messages will not be enqueued. Receiving Multiple Messages in a Transaction The receiving of multiple messages is another scenario where the use of transactions can improve reliability. When receiving a group of messages that are related together, maybe in the same message session, it is possible to receive the messages in the peek-lock receive mode, and then complete, defer, or deadletter the messages in one transaction. (In the current version of Service Bus, abandon is not transactional.)   The following code shows how this can be achieved. using (TransactionScope scope = new TransactionScope()) {       while (true)     {         // Receive a message.         BrokeredMessage msg = q1Client.Receive(TimeSpan.FromSeconds(1));         if (msg != null)         {             // Wrote message body and complete message.             string text = msg.GetBody<string>();             Console.WriteLine("Received: " + text);             msg.Complete();         }         else         {             break;         }     }     Console.WriteLine();       // Should we commit?     Console.WriteLine("Commit receive? (yes or no)");     string reply = Console.ReadLine();     if (reply.ToLower().Equals("yes"))     {         // Commit the transaction.         scope.Complete();     }     Console.WriteLine(); }     Note that if there are a large number of messages to be received, there will be a chance that the transaction may time out before it can be committed. It is possible to specify a longer timeout when the transaction is created, but It may be better to receive and commit smaller amounts of messages within the transaction. It is also possible to complete, defer, or deadletter messages received from more than one subscription, as long as all the subscriptions are contained in the same topic. As subscriptions are not top level messaging entities this scenarios will work. The following code shows how this can be achieved. try {     using (TransactionScope scope = new TransactionScope())     {         // Receive one message from each subscription.         BrokeredMessage msg1 = subscriptionClient1.Receive();         BrokeredMessage msg2 = subscriptionClient2.Receive();           // Complete the message receives.         msg1.Complete();         msg2.Complete();           Console.WriteLine("Msg1: " + msg1.GetBody<string>());         Console.WriteLine("Msg2: " + msg2.GetBody<string>());           // Commit the transaction.         scope.Complete();     } } catch (Exception ex) {     Console.WriteLine(ex.Message); }     Unsupported Scenarios The restriction of only one top level messaging entity being able to participate in a transaction makes some useful scenarios unsupported. As the Windows Azure Service Bus is under continuous development and new releases are expected to be frequent it is possible that this restriction may not be present in future releases. The first is the scenario where messages are to be routed to two different systems. The following code attempts to do this.   try {     // Create a transaction scope.     using (TransactionScope scope = new TransactionScope())     {         BrokeredMessage msg1 = new BrokeredMessage("Message1");         BrokeredMessage msg2 = new BrokeredMessage("Message2");           // Send a message to Queue1         Console.WriteLine("Sending Message1");         queue1Client.Send(msg1);           // Send a message to Queue2         Console.WriteLine("Sending Message2");         queue2Client.Send(msg2);           // Commit the transaction.         Console.WriteLine("Committing transaction...");         scope.Complete();     } } catch (Exception ex) {     Console.WriteLine(ex.Message); }     The results of running the code are shown below. When attempting to send a message to the second queue the following exception is thrown: No active Transaction was found for ID '35ad2495-ee8a-4956-bbad-eb4fedf4a96e:1'. The Transaction may have timed out or attempted to span multiple top-level entities such as Queue or Topic. The server Transaction timeout is: 00:01:00..TrackingId:947b8c4b-7754-4044-b91b-4a959c3f9192_3_3,TimeStamp:3/29/2012 7:47:32 AM.   Another scenario where transactional support could be useful is when forwarding messages from one queue to another queue. This would also involve more than one top level messaging entity, and is therefore not supported.   Another scenario that developers may wish to implement is performing transactions across messaging entities and other transactional systems, such as an on-premise database. In the current release this is not supported.   Workarounds for Unsupported Scenarios There are some techniques that developers can use to work around the one top level entity limitation of transactions. When sending two messages to two systems, topics and subscriptions can be used. If the same message is to be sent to two destinations then the subscriptions would have the default subscriptions, and the client would only send one message. If two different messages are to be sent, then filters on the subscriptions can route the messages to the appropriate destination. The client can then send the two messages to the topic in the same transaction.   In scenarios where a message needs to be received and then forwarded to another system within the same transaction topics and subscriptions can also be used. A message can be received from a subscription, and then sent to a topic within the same transaction. As a topic is a top level messaging entity, and a subscription is not, this scenario will work.

    Read the article

  • Windows Azure AppFabric: ServiceBus Queue WPF Sample

    - by xamlnotes
    The latest version of the AppFabric ServiceBus now has support for queues and topics. Today I will show you a bit about using queues and also talk about some of the best practices in using them. If you are just getting started, you can check out this site for more info on Windows Azure. One of the 1st things I thought if when Azure was announced back when was how we handle fault tolerance. Web sites hosted in Azure are no much of an issue unless they are using SQL Azure and then you must account for potential fault or latency issues. Today I want to talk a bit about ServiceBus and how to handle fault tolerance.  And theres stuff like connecting to the servicebus and so on you have to take care of. To demonstrate some of the things you can do, let me walk through this sample WPF app that I am posting for you to download. To start off, the application is going to need things like the servicenamespace, issuer details and so forth to make everything work.  To facilitate this I created settings in the wpf app for all of these items. Then I mapped a static class to them and set the values when the program loads like so: StaticElements.ServiceNamespace = Convert.ToString(Properties.Settings.Default["ServiceNamespace"]); StaticElements.IssuerName = Convert.ToString(Properties.Settings.Default["IssuerName"]); StaticElements.IssuerKey = Convert.ToString(Properties.Settings.Default["IssuerKey"]); StaticElements.QueueName = Convert.ToString(Properties.Settings.Default["QueueName"]);   Now I can get to each of these elements plus some other common values or instances directly from the StaticElements class. Now, lets look at the application.  The application looks like this when it starts:   The blue graphic represents the queue we are going to use.  The next figure shows the form after items were added and the queue stats were updated . You can see how the queue has grown: To add an item to the queue, click the Add Order button which displays the following dialog: After you fill in the form and press OK, the order is published to the ServiceBus queue and the form closes. The application also allows you to read the queued items by clicking the Process Orders button. As you can see below, the form shows the queued items in a list and the  queue has disappeared as its now empty. In real practice we normally would use a Windows Service or some other automated process to subscribe to the queue and pull items from it. I created a class named ServiceBusQueueHelper that has the core queue features we need. There are three public methods: * GetOrCreateQueue – Gets an instance of the queue description if the queue exists. if not, it creates the queue and returns a description instance. * SendMessageToQueue = This method takes an order instance and sends it to the queue. The call to the queue is wrapped in the ExecuteAction method from the Transient Fault Tolerance Framework and handles all the retry logic for the queue send process. * GetOrderFromQueue – Grabs an order from the queue and returns a typed order from the queue. It also marks the message complete so the queue can remove it.   Now lets turn to the WPF window code (MainWindow.xaml.cs). The constructor contains the 4 lines shown about to setup the static variables and to perform other initialization tasks. The next few lines setup certain features we need for the ServiceBus: TokenProvider credentials = TokenProvider.CreateSharedSecretTokenProvider(StaticElements.IssuerName, StaticElements.IssuerKey); Uri serviceUri = ServiceBusEnvironment.CreateServiceUri("sb", StaticElements.ServiceNamespace, string.Empty); StaticElements.CurrentNamespaceManager = new NamespaceManager(serviceUri, credentials); StaticElements.CurrentMessagingFactory = MessagingFactory.Create(serviceUri, credentials); The next two lines update the queue name label and also set the timer to 20 seconds.             QueueNameLabel.Content = StaticElements.QueueName;             _timer.Interval = TimeSpan.FromSeconds(20);             Next I call the UpdateQueueStats to initialize the UI for the queue:             UpdateQueueStats();             _timer.Tick += new EventHandler(delegate(object s, EventArgs a)                         {                      UpdateQueueStats();                  });             _timer.Start();         } The UpdateQueueStats method shown below. You can see that it uses the GetOrCreateQueue method mentioned earlier to grab the queue description, then it can get the MessageCount property.         private void UpdateQueueStats()         {             _queueDescription = _serviceBusQueueHelper.GetOrCreateQueue();             QueueCountLabel.Content = "(" + _queueDescription.MessageCount + ")";             long count = _queueDescription.MessageCount;             long queueWidth = count * 20;             QueueRectangle.Width = queueWidth;             QueueTickCount += 1;             TickCountlabel.Content = QueueTickCount.ToString();         }   The ReadQueueItemsButton_Click event handler calls the GetOrderFromQueue method and adds the order to the listbox. If you look at the SendQueueMessageController, you can see the SendMessage method that sends an order to the queue. Its pretty simple as it just creates a new CustomerOrderEntity instance,fills it and then passes it to the SendMessageToQueue. As you can see, all of our interaction with the queue is done through the helper class (ServiceBusQueueHelper). Now lets dig into the helper class. First, before you create anything like this, download the Transient Fault Handling Framework. Microsoft provides this free and they also provide the C# source. Theres a great article that shows how to use this framework with ServiceBus. I included the entire ServiceBusQueueHelper class in List 1. Notice the using statements for TransientFaultHandling: using Microsoft.AzureCAT.Samples.TransientFaultHandling; using Microsoft.AzureCAT.Samples.TransientFaultHandling.ServiceBus; The SendMessageToQueue in Listing 1 shows how to use the async send features of ServiceBus with them wrapped in the Transient Fault Handling Framework.  It is not much different than plain old ServiceBus calls but it sure makes it easy to have the fault tolerance added almost for free. The GetOrderFromQueue uses the standard synchronous methods to access the queue. The best practices article walks through using the async approach for a receive operation also.  Notice that this method makes a call to Receive to get the message then makes a call to GetBody to get a new strongly typed instance of CustomerOrderEntity to return. Listing 1 using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.AzureCAT.Samples.TransientFaultHandling; using Microsoft.AzureCAT.Samples.TransientFaultHandling.ServiceBus; using Microsoft.ServiceBus; using Microsoft.ServiceBus.Messaging; using System.Xml.Serialization; using System.Diagnostics; namespace WPFServicebusPublishSubscribeSample {     class ServiceBusQueueHelper     {         RetryPolicy currentPolicy = new RetryPolicy<ServiceBusTransientErrorDetectionStrategy>(RetryPolicy.DefaultClientRetryCount);         QueueClient currentQueueClient;         public QueueDescription GetOrCreateQueue()         {                        QueueDescription queue = null;             bool createNew = false;             try             {                 // First, let's see if a queue with the specified name already exists.                 queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.GetQueue(StaticElements.QueueName); });                 createNew = (queue == null);             }             catch (MessagingEntityNotFoundException)             {                 // Looks like the queue does not exist. We should create a new one.                 createNew = true;             }             // If a queue with the specified name doesn't exist, it will be auto-created.             if (createNew)             {                 try                 {                     var newqueue = new QueueDescription(StaticElements.QueueName);                     queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.CreateQueue(newqueue); });                 }                 catch (MessagingEntityAlreadyExistsException)                 {                     // A queue under the same name was already created by someone else,                     // perhaps by another instance. Let's just use it.                     queue = currentPolicy.ExecuteAction<QueueDescription>(() => { return StaticElements.CurrentNamespaceManager.GetQueue(StaticElements.QueueName); });                 }             }             currentQueueClient = StaticElements.CurrentMessagingFactory.CreateQueueClient(StaticElements.QueueName);             return queue;         }         public void SendMessageToQueue(CustomerOrderEntity Order)         {             BrokeredMessage msg = null;             GetOrCreateQueue();             // Use a retry policy to execute the Send action in an asynchronous and reliable fashion.             currentPolicy.ExecuteAction             (                 (cb) =>                 {                     // A new BrokeredMessage instance must be created each time we send it. Reusing the original BrokeredMessage instance may not                     // work as the state of its BodyStream cannot be guaranteed to be readable from the beginning.                     msg = new BrokeredMessage(Order);                     // Send the event asynchronously.                     currentQueueClient.BeginSend(msg, cb, null);                 },                 (ar) =>                 {                     try                     {                         // Complete the asynchronous operation.                         // This may throw an exception that will be handled internally by the retry policy.                         currentQueueClient.EndSend(ar);                     }                     finally                     {                         // Ensure that any resources allocated by a BrokeredMessage instance are released.                         if (msg != null)                         {                             msg.Dispose();                             msg = null;                         }                     }                 },                 (ex) =>                 {                     // Always dispose the BrokeredMessage instance even if the send                     // operation has completed unsuccessfully.                     if (msg != null)                     {                         msg.Dispose();                         msg = null;                     }                     // Always log exceptions.                     Trace.TraceError(ex.Message);                 }             );         }                 public CustomerOrderEntity GetOrderFromQueue()         {             CustomerOrderEntity Order = new CustomerOrderEntity();             QueueClient myQueueClient = StaticElements.CurrentMessagingFactory.CreateQueueClient(StaticElements.QueueName, ReceiveMode.PeekLock);             BrokeredMessage message;             ServiceBusQueueHelper serviceBusQueueHelper = new ServiceBusQueueHelper();             QueueDescription queueDescription;             queueDescription = serviceBusQueueHelper.GetOrCreateQueue();             if (queueDescription.MessageCount > 0)             {                 message = myQueueClient.Receive(TimeSpan.FromSeconds(90));                 if (message != null)                 {                     try                     {                         Order = message.GetBody<CustomerOrderEntity>();                         message.Complete();                     }                     catch (Exception ex)                     {                         throw ex;                     }                 }                 else                 {                     throw new Exception("Did not receive the messages");                 }             }             return Order;         }     } } I will post a link to the download demo in a separate post soon.

    Read the article

  • SQL Sharding and SQL Azure&hellip;

    - by Dave Noderer
    Herve Roggero has just published a paper that outlines patterns for scaling using SQL Azure and the Blue Syntax (he and Scott Klein’s company) sharding api. You can find the paper at: http://www.bluesyntax.net/files/EnzoFramework.pdf Herve and Scott have also just released an Apress book Pro SQL Azure. The idea of being able to split (shard) database operations automatically and control them from a web based management console is very appealing. These ideas have been talked about for a long time and implemented in thousands of very custom ways that have been costly, complicated and fragile. Now, there is light at the end of the tunnel. Scaling database access will become easier and move into the mainstream of application development. The main cost is using an api whenever accessing the database. The api will direct the query to the correct database(s) which may be located locally or in the cloud. It is inevitable that the api will change in the future, perhaps incorporated into a Microsoft offering. Even if this is the case, your application has now been architected to utilize these patterns and details of the actual api will be less important. Herve does a great job of laying out the concepts which every developer and architect should be familiar with!

    Read the article

  • TechEd 2012: Dude Where&rsquo;s My Azure

    - by Tim Murphy
    It has been a fun first morning at TechEd North America.  They keynote was both informative and entertaining.  Some of the high points included a walk through of Windows Server 2012 and its new Hyper-V capabilities and use of ODX (offloaded data transfer).  Between seeing stats like being able to being able run a Hyper-V VM with 1TB of memory and watching ODX move a 10GB file at a rate of 1GB per second was really impressive. The fun started when Scott Guthrie was doing his keynote demo and popped up an iPhone emulator from Visual Studio.  There is just something wrong with that picture and the WPDev community agreed.  This was followed by an iPad emulator and by that time the groans across Twitter were rolling. Later in the morning The Gu kept us laughing in the Azure Foundations session when he name a server Dude (I believe a suggestion from the crowd).  After that I thought I was watching the turtle in Finding Nemo.  Duuuuude! In the expo area the line for the Windows Phone booth was ridiculous.  Granted this is a Microsoft event and is sure to be full of MS fan boys, but the only other time I have seen that much enthusiasm for Windows Phones in one place was on the flight down. I am sure there will be a lot more to get excited about over the next few days.  Stay tuned. del.icio.us Tags: TechEd 2012,TechEd North America,Windows Phone,Azure,Scott Guthrie

    Read the article

  • Backing up SQL Azure

    - by Herve Roggero
    That's it!!! After many days and nights... and an amazing set of challenges, I just released the Enzo Backup for SQL Azure BETA product (http://www.bluesyntax.net). Clearly, that was one of the most challenging projects I have done so far. Why??? Because to create a highly redundant system, expecting failures at all times for an operation that could take anywhere from a couple of minutes to a couple of hours, and still making sure that the operation completes at some point was remarkably challenging. Some routines have more error trapping that actual code... Here are a few things I had to take into account: Exponential Backoff (explained in another post) Dual dynamic determination of number of rows to backup  Dynamic reduction of batch rows used to restore the data Implementation of a flexible BULK Insert API that the tool could use Implementation of a custom Storage REST API to handle automatic retries Automatic data chunking based on blob sizes Compression of data Implementation of the Task Parallel Library at multiple levels including deserialization of Azure Table rows and backup/restore operations Full or Partial Restore operations Implementation of a Ghost class to serialize/deserialize data tables And that's just a partial list... I will explain what some of those mean in future blob posts. A lot of the complexities had to do with implementing a form of retry logic, depending on the resource and the operation.

    Read the article

  • WordPress is now nicely supported on SQL Server (and SQL Azure for that matter)

    - by Eric Nelson
    WordPress is enormously popular for blogs and full websites thanks to an awesome eco system which has built up around it, the simplicity (relatively) of getting it up and running plus the flexibility to “bend it” in all sorts of directions. When I say bend, check out the following which are all WordPress sites My “back up blog” http://iupdateable.wordpress.com/  My groups “odd site” :) http://ubelly.com My favourite “cheap games” site http://www.frugalgaming.co.uk/  WordPress users typically run their sites on Linux and MySQL, although PHP (the language in which WordPress is written) can be happily run on Windows. Both fine technologies in their own right, but for me (and probably a fair few others) I would love to use WordPress but with the technologies I know best (aka Windows, IIS and SQL Server). However, that has proven to be actually rather tricky in practice to get working – until now. Earlier last month OmniTI released a patch for WordPress which provides SQL Server and SQL Azure support.  In parallel with that some fine folks inside Microsoft have also created http://wordpress.visitmix.com which contains information about running WordPress on the Microsoft platform with a particular focus on SQL Server and SQL Azure.  Top stuff! To run WordPress with SQL Server: Download and Install the WordPress on SQL Server Distro/Patch And then you will quite likely need to migrate: Check out how to Migrate to Windows and SQL Server by Zach Owens who is moving his blog to Windows and SQL Server Enjoy Related Links Running PHP on IIS on Windows http://php.iis.net/  If PHP is not your thing, then the following Blog engines are .NET based BlogEngine http://www.dotnetblogengine.net/ DasBlog http://www.dasblog.info/ Subtext http://subtextproject.com/ (which happens to power http://geekswithblogs.net where my main blog is http://geekswithblogs.net/iupdateable)

    Read the article

  • New Version Demonstration VM BIC2g 2013-04 Partner Edition

    - by Mike.Hallett(at)Oracle-BI&EPM
    Normal 0 false false false EN-GB X-NONE X-NONE MicrosoftInternetExplorer4 This Oracle Business Intelligence Linux VM virtual appliance (“BIC2g”) was developed to support Oracle OBI & BI-Apps sales and Oracle partners in product demonstrations, training activities and POC activities. It is available on ftp.oracle.com (see the deployment guide and “BIC2g 2013-04 Partner Edition Readme” pdf from the link below) and is available for OPN member partners. This BIC2g image is based on OBIEE v. 11.1.1.7. with Essbase and Essbase Studio Server started when starting BI. It also contains: Updated BI-Apps Cross Functional Demo (date advanced from 2011 to 2013), including DAC 11.1.1.6.4, Informatica 9.0.1 and is configured for a load against EBS R12. Both the 7.9.6.3 rpd/catalog and the 7.9.6.4 rpd/catalog versions of BI-Apps are provided. Updated integrated Essbase - BI Apps - EBS Demo (date advanced from 2009 to 2013. Re-configured BI Apps Data Sets to remove VPD (simplification) and greatly improved performance. Note that this image is identical to Oracle’s internal BI demonstration image, except that Endeca has been removed pending Endeca latest version availability on OTN. Once it is available on OTN we will provide a replacement that contains Endeca. Some of the screen shots in the “Readme”.pdf shows Endeca, but it is not on this (2013-04) image. The FTP access details and password are shown at the bottom of the page @ BI Solutions Engineering Partner Portal. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US;}

    Read the article

  • Magic Quadrant for x86 Server Virtualization Infrastructure

    - by Cinzia Mascanzoni
    The 2012 Gartner MQ for x86 Server Virtualization has just published.  KEY TAKEAWAYS - Oracle is in the “Challengers” quadrant. - This is a significant “jump” above the x-axis (from the “Niche” quadrant) during previous years - The move into the “Challengers” quadrant was possible for 3 primary reasons - 1) strength of the Oracle VM 3.0 release - 2) integrated management capabilities - 3) solid customer momentum during past year - Gartner even specifically states that Oracle VM use is growing amongst VMware customers Read the full report here.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Blob container creation exception ...

    - by Egon
    I get an exception every time I try to create a container for the blob using the following code blobStorageType = storageAccInfo.CreateCloudBlobClient(); ContBlob = blobStorageType.GetContainerReference(containerName); //everything fine till here ; next line creates an exception ContBlob.CreateIfNotExist(); Microsoft.WindowsAzure.StorageClient.StorageClientException was unhandled Message="One of the request inputs is out of range." Source="Microsoft.WindowsAzure.StorageClient" StackTrace: at Microsoft.WindowsAzure.StorageClient.Tasks.Task1.get_Result() at Microsoft.WindowsAzure.StorageClient.Tasks.Task1.ExecuteAndWait() at Microsoft.WindowsAzure.StorageClient.TaskImplHelper.ExecuteImplWithRetry[T](Func2 impl, RetryPolicy policy) at Microsoft.WindowsAzure.StorageClient.CloudBlobContainer.CreateIfNotExist(BlobRequestOptions options) at Microsoft.WindowsAzure.StorageClient.CloudBlobContainer.CreateIfNotExist() at WebRole1.BlobFun..ctor() in C:\Users\cloud\Documents\Visual Studio 2008\Projects\CloudBlob\WebRole1\BlobFun.cs:line 58 at WebRole1.BlobFun.calling1() in C:\Users\cloud\Documents\Visual Studio 2008\Projects\CloudBlob\WebRole1\BlobFun.cs:line 29 at AzureBlobTester.Program.Main(String[] args) in C:\Users\cloud\Documents\Visual Studio 2008\Projects\CloudBlob\AzureBlobTester\Program.cs:line 19 at System.AppDomain._nExecuteAssembly(Assembly assembly, String[] args) at System.AppDomain.ExecuteAssembly(String assemblyFile, Evidence assemblySecurity, String[] args) at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly() at System.Threading.ThreadHelper.ThreadStart_Context(Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ThreadHelper.ThreadStart() InnerException: System.Net.WebException Message="The remote server returned an error: (400) Bad Request." Source="System" StackTrace: at System.Net.HttpWebRequest.EndGetResponse(IAsyncResult asyncResult) at Microsoft.WindowsAzure.StorageClient.EventHelper.ProcessWebResponse(WebRequest req, IAsyncResult asyncResult, EventHandler1 handler, Object sender) InnerException: Do you guys knw what is it that I am doing wrong ?

    Read the article

  • SQL SERVER – Advanced Data Quality Services with Melissa Data – Azure Data Market

    - by pinaldave
    There has been much fanfare over the new SQL Server 2012, and especially around its new companion product Data Quality Services (DQS). Among the many new features is the addition of this integrated knowledge-driven product that enables data stewards everywhere to profile, match, and cleanse data. In addition to the homegrown rules that data stewards can design and implement, there are also connectors to third party providers that are hosted in the Azure Datamarket marketplace.  In this review, I leverage SQL Server 2012 Data Quality Services, and proceed to subscribe to a third party data cleansing product through the Datamarket to showcase this unique capability. Crucial Questions For the purposes of the review, I used a database I had in an Excel spreadsheet with name and address information. Upon a cursory inspection, there are miscellaneous problems with these records; some addresses are missing ZIP codes, others missing a city, and some records are slightly misspelled or have unparsed suites. With DQS, I can easily add a knowledge base to help standardize my values, such as for state abbreviations. But how do I know that my address is correct? And if my address is not correct, what should it be corrected to? The answer lies in a third party knowledge base by the acknowledged USPS certified address accuracy experts at Melissa Data. Reference Data Services Within DQS there is a handy feature to actually add reference data from many different third-party Reference Data Services (RDS) vendors. DQS simplifies the processes of cleansing, standardizing, and enriching data through custom rules and through service providers from the Azure Datamarket. A quick jump over to the Datamarket site shows me that there are a handful of providers that offer data directly through Data Quality Services. Upon subscribing to these services, one can attach a DQS domain or composite domain (fields in a record) to a reference data service provider, and begin using it to cleanse, standardize, and enrich that data. Besides what I am looking for (address correction and enrichment), it is possible to subscribe to a host of other services including geocoding, IP address reference, phone checking and enrichment, as well as name parsing, standardization, and genderization.  These capabilities extend the data quality that DQS has natively by quite a bit. For my current address correction review, I needed to first sign up to a reference data provider on the Azure Data Market site. For this example, I used Melissa Data’s Address Check Service. They offer free one-month trials, so if you wish to follow along, or need to add address quality to your own data, I encourage you to sign up with them. Once I subscribed to the desired Reference Data Provider, I navigated my browser to the Account Keys within My Account to view the generated account key, which I then inserted into the DQS Client – Configuration under the Administration area. Step by Step to Guide That was all it took to hook in the subscribed provider -Melissa Data- directly to my DQS Client. The next step was for me to attach and map in my Reference Data from the newly acquired reference data provider, to a domain in my knowledge base. On the DQS Client home screen, I selected “New Knowledge Base” under Knowledge Base Management on the left-hand side of the home screen. Under New Knowledge Base, I typed a Name and description of my new knowledge base, then proceeded to the Domain Management screen. Here I established a series of domains (fields) and then linked them all together as a composite domain (record set). Using the Create Domain button, I created the following domains according to the fields in my incoming data: Name Address Suite City State Zip I added a Suite column in my domain because Melissa Data has the ability to return missing Suites based on last name or company. And that’s a great benefit of using these third party providers, as they have data that the data steward would not normally have access to. The bottom line is, with these third party data providers, I can actually improve my data. Next, I created a composite domain (fulladdress) and added the (field) domains into the composite domain. This essentially groups our address fields together in a record to facilitate the full address cleansing they perform. I then selected my newly created composite domain and under the Reference Data tab, added my third party reference data provider –Melissa Data’s Address Check- and mapped in each domain that I had to the provider’s Schema. Now that my composite domain has been married to the Reference Data service, I can take the newly published knowledge base and create a project to cleanse and enrich my data. My next task was to create a new Data Quality project, mapping in my data source and matching it to the appropriate domain column, and then kick off the verification process. It took just a few minutes with some progress indicators indicating that it was working. When the process concluded, there was a helpful set of tabs that place the response records into categories: suggested; new; invalid; corrected (automatically); and correct. Accepting the suggestions provided by  Melissa Data allowed me to clean up all the records and flag the invalid ones. It is very apparent that DQS makes address data quality simplistic for any IT professional. Final Note As I have shown, DQS makes data quality very easy. Within minutes I was able to set up a data cleansing and enrichment routine within my data quality project, and ensure that my address data was clean, verified, and standardized against real reference data. As reviewed here, it’s easy to see how both SQL Server 2012 and DQS work to take what used to require a highly skilled developer, and empower an average business or database person to consume external services and clean data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Utility, T SQL, Technology Tagged: DQS

    Read the article

  • Writing an ASP.Net Web based TFS Client

    - by Glav
    So one of the things I needed to do was write an ASP.Net MVC based application for our senior execs to manage a set of arbitrary attributes against stories, bugs etc to be able to attribute whether the item was related to Research and Development, and if so, what kind. We are using TFS Azure and don’t have the option of custom templates. I have decided on using a string based field within the template that is not very visible and which we don’t use to write a small set of custom which will determine the research and development association. However, this string munging on the field is not very user friendly so we need a simple tool that can display attributes against items in a simple dropdown list or something similar. Enter a custom web app that accesses our TFS items in Azure (Note: We are also using Visual Studio 2012) Now TFS Azure uses your Live ID and it is not really possible to easily do this in a server based app where no interaction is available. Even if you capture the Live ID credentials yourself and try to submit them to TFS Azure, it wont work. Bottom line is that it is not straightforward nor obvious what you have to do. In fact, it is a real pain to find and there are some answers out there which don’t appear to be answers at all given they didn’t work in my scenario. So for anyone else who wants to do this, here is a simple breakdown on what you have to do: Go here and get the “TFS Service Credential Viewer”. Install it, run it and connect to your TFS instance in azure and create a service account. Note the username and password exactly as it presents it to you. This is the magic identity that will allow unattended, programmatic access. Without this step, don’t bother trying to do anything else. In your MVC app, reference the following assemblies from “C:\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\ReferenceAssemblies\v2.0”: Microsoft.TeamFoundation.Client.dll Microsoft.TeamFoundation.Common.dll Microsoft.TeamFoundation.VersionControl.Client.dll Microsoft.TeamFoundation.VersionControl.Common.dll Microsoft.TeamFoundation.WorkItemTracking.Client.DataStoreLoader.dll Microsoft.TeamFoundation.WorkItemTracking.Client.dll Microsoft.TeamFoundation.WorkItemTracking.Common.dll If hosting this in Internet Information Server, for the application pool this app runs under, you will need to enable 32 Bit support. You also have to allow the TFS client assemblies to store a cache of files on your system. If you don’t do this, you will authenticate fine, but then get an exception saying that it is unable to access the cache at some directory path when you query work items. You can set this up by adding the following to your web.config, in the <appSettings> element as shown below: <appSettings> <!-- Add reference to TFS Client Cache --> <add key="WorkItemTrackingCacheRoot" value="C:\windows\temp" /> </appSettings> With all that in place, you can write the following code: var token = new Microsoft.TeamFoundation.Client.SimpleWebTokenCredential("{you-service-account-name", "{your-service-acct-password}"); var clientCreds = new Microsoft.TeamFoundation.Client.TfsClientCredentials(token); var currentCollection = new TfsTeamProjectCollection(new Uri(“https://{yourdomain}.visualstudio.com/defaultcollection”), clientCreds); TfsConfigurationServercurrentCollection.EnsureAuthenticated(); In the above code, not the URL contains the “defaultcollection” at the end of the URL. Obviously replace {yourdomain} with whatever is defined for your TFS in Azure instance. In addition, make sure the service user account and password that was generated in the first step is substituted in here. Note: If something is not right, the “EnsureAuthenticated()” call will throw an exception with the message being you are not authorised. If you forget the “defaultcollection” on the URL, it will still fail but with a message saying you are not authorised. That is, a similar but different exception message. And that is it. You can then query the collection using something like: var service = currentCollection.GetService<WorkItemStore>(); var proj = service.Projects[0]; var allQueries = proj.StoredQueries; for (int qcnt = 0; qcnt < allQueries.Count; qcnt++) {     var query = allQueries[qcnt];     var queryDesc = string.format(“Query found named: {0}”,query.Name); } You get the idea. If you search around, you will find references to the ServiceIdentityCredentialProvider which is referenced in this article. I had no luck with this method and it all looked too hard since it required an extra KB article and other magic sauce. So I hope that helps. This article certainly would have helped me save a boat load of time and frustration.

    Read the article

  • Great opportunity to try Windows Azure over the next 7 days if you are a UK developer &ndash; act to

    - by Eric Nelson
    Are you a UK based developer who has been put off from trying out the Windows Azure Platform? Were you concerned that you needed to hand over credit card details even to use the introductory offer? Or concerned about how many charges you might run up as you played with “elastic computing”. Then we might have just what you need. 7 Days of access to the Windows Azure Platform – for FREE (expires June 6th 2010) If you are accepted, you will be given a Windows Azure Platfom subscription that will enable you to create Windows Azure hosted services and storage accounts, SQL Azure databases and AppFabric services without any fear of being charged between now and Sunday the 6th of June 2010. No credit card is required. Important: At the end of Sunday your subscription and all your code and data you have uploaded will be deleted. It is your responsibility to keep local copies of your code and data. Apply now To apply for this offer you need to: email ukdev AT microsoft.com with a subject line that starts “UKAZURETRAIL:” (This must  be present) In the email you need to demonstrate you are UK based (.uk email alias or address or… be creative) And you must include 30 to 100 words explaining What your interest is in the Windows Azure Platform and Cloud Computing What you would use the 7 days to explore Some notes (please read!): We have a limited number of these offers to give away on a first come, first served basis (subject to meeting the above criteria). We plan to process all request asap – but there is a UK bank holiday weekend looming. We will do our best to process all by Tues afternoon (which would still give you 5 days of access) There will be no specific support for this offer. We will not be processing any requests that arrive after Tuesday 1st. In case you were wondering, there is no equivalent offer for developer outside of the UK. This offer is a direct result of UK based training we are currently doing which has some spare Azure capacity which we wanted to make best use of. Sorry in advance if you based outside of the UK. Related Links: If you are UK based, you should also join the UK Windows Azure Platform community http://ukazure.ning.com Microsoft UK Windows Azure Platform page

    Read the article

  • Diving into OpenStack Network Architecture - Part 2 - Basic Use Cases

    - by Ronen Kofman
      rkofman Normal rkofman 4 138 2014-06-05T03:38:00Z 2014-06-05T05:04:00Z 3 2735 15596 Oracle Corporation 129 36 18295 12.00 Clean Clean false false false false EN-US X-NONE HE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} In the previous post we reviewed several network components including Open vSwitch, Network Namespaces, Linux Bridges and veth pairs. In this post we will take three simple use cases and see how those basic components come together to create a complete SDN solution in OpenStack. With those three use cases we will review almost the entire network setup and see how all the pieces work together. The use cases we will use are: 1.       Create network – what happens when we create network and how can we create multiple isolated networks 2.       Launch a VM – once we have networks we can launch VMs and connect them to networks. 3.       DHCP request from a VM – OpenStack can automatically assign IP addresses to VMs. This is done through local DHCP service controlled by OpenStack Neutron. We will see how this service runs and how does a DHCP request and response look like. In this post we will show connectivity, we will see how packets get from point A to point B. We first focus on how a configured deployment looks like and only later we will discuss how and when the configuration is created. Personally I found it very valuable to see the actual interfaces and how they connect to each other through examples and hands on experiments. After the end game is clear and we know how the connectivity works, in a later post, we will take a step back and explain how Neutron configures the components to be able to provide such connectivity.  We are going to get pretty technical shortly and I recommend trying these examples on your own deployment or using the Oracle OpenStack Tech Preview. Understanding these three use cases thoroughly and how to look at them will be very helpful when trying to debug a deployment in case something does not work. Use case #1: Create Network Create network is a simple operation it can be performed from the GUI or command line. When we create a network in OpenStack the network is only available to the tenant who created it or it could be defined as “shared” and then it can be used by all tenants. A network can have multiple subnets but for this demonstration purpose and for simplicity we will assume that each network has exactly one subnet. Creating a network from the command line will look like this: # neutron net-create net1 Created a new network: +---------------------------+--------------------------------------+ | Field                     | Value                                | +---------------------------+--------------------------------------+ | admin_state_up            | True                                 | | id                        | 5f833617-6179-4797-b7c0-7d420d84040c | | name                      | net1                                 | | provider:network_type     | vlan                                 | | provider:physical_network | default                              | | provider:segmentation_id  | 1000                                 | | shared                    | False                                | | status                    | ACTIVE                               | | subnets                   |                                      | | tenant_id                 | 9796e5145ee546508939cd49ad59d51f     | +---------------------------+--------------------------------------+ Creating a subnet for this network will look like this: # neutron subnet-create net1 10.10.10.0/24 Created a new subnet: +------------------+------------------------------------------------+ | Field            | Value                                          | +------------------+------------------------------------------------+ | allocation_pools | {"start": "10.10.10.2", "end": "10.10.10.254"} | | cidr             | 10.10.10.0/24                                  | | dns_nameservers  |                                                | | enable_dhcp      | True                                           | | gateway_ip       | 10.10.10.1                                     | | host_routes      |                                                | | id               | 2d7a0a58-0674-439a-ad23-d6471aaae9bc           | | ip_version       | 4                                              | | name             |                                                | | network_id       | 5f833617-6179-4797-b7c0-7d420d84040c           | | tenant_id        | 9796e5145ee546508939cd49ad59d51f               | +------------------+------------------------------------------------+ We now have a network and a subnet, on the network topology view this looks like this: Now let’s dive in and see what happened under the hood. Looking at the control node we will discover that a new namespace was created: # ip netns list qdhcp-5f833617-6179-4797-b7c0-7d420d84040c   The name of the namespace is qdhcp-<network id> (see above), let’s look into the namespace and see what’s in it: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00     inet 127.0.0.1/8 scope host lo     inet6 ::1/128 scope host        valid_lft forever preferred_lft forever 12: tap26c9b807-7c: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN     link/ether fa:16:3e:1d:5c:81 brd ff:ff:ff:ff:ff:ff     inet 10.10.10.3/24 brd 10.10.10.255 scope global tap26c9b807-7c     inet6 fe80::f816:3eff:fe1d:5c81/64 scope link        valid_lft forever preferred_lft forever   We see two interfaces in the namespace, one is the loopback and the other one is an interface called “tap26c9b807-7c”. This interface has the IP address of 10.10.10.3 and it will also serve dhcp requests in a way we will see later. Let’s trace the connectivity of the “tap26c9b807-7c” interface from the namespace.  First stop is OVS, we see that the interface connects to bridge  “br-int” on OVS: # ovs-vsctl show 8a069c7c-ea05-4375-93e2-b9fc9e4b3ca1     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-ex         Port br-ex             Interface br-ex                 type: internal     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port "tap26c9b807-7c"             tag: 1             Interface "tap26c9b807-7c"                 type: internal         Port br-int             Interface br-int                 type: internal     ovs_version: "1.11.0"   In the picture above we have a veth pair which has two ends called “int-br-eth2” and "phy-br-eth2", this veth pair is used to connect two bridge in OVS "br-eth2" and "br-int". In the previous post we explained how to check the veth connectivity using the ethtool command. It shows that the two are indeed a pair: # ethtool -S int-br-eth2 NIC statistics:      peer_ifindex: 10 . .   #ip link . . 10: phy-br-eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 . . Note that “phy-br-eth2” is connected to a bridge called "br-eth2" and one of this bridge's interfaces is the physical link eth2. This means that the network which we have just created has created a namespace which is connected to the physical interface eth2. eth2 is the “VM network” the physical interface where all the virtual machines connect to where all the VMs are connected. About network isolation: OpenStack supports creation of multiple isolated networks and can use several mechanisms to isolate the networks from one another. The isolation mechanism can be VLANs, VxLANs or GRE tunnels, this is configured as part of the initial setup in our deployment we use VLANs. When using VLAN tagging as an isolation mechanism a VLAN tag is allocated by Neutron from a pre-defined VLAN tags pool and assigned to the newly created network. By provisioning VLAN tags to the networks Neutron allows creation of multiple isolated networks on the same physical link.  The big difference between this and other platforms is that the user does not have to deal with allocating and managing VLANs to networks. The VLAN allocation and provisioning is handled by Neutron which keeps track of the VLAN tags, and responsible for allocating and reclaiming VLAN tags. In the example above net1 has the VLAN tag 1000, this means that whenever a VM is created and connected to this network the packets from that VM will have to be tagged with VLAN tag 1000 to go on this particular network. This is true for namespace as well, if we would like to connect a namespace to a particular network we have to make sure that the packets to and from the namespace are correctly tagged when they reach the VM network. In the example above we see that the namespace interface “tap26c9b807-7c” has vlan tag 1 assigned to it, if we examine OVS we see that it has flows which modify VLAN tag 1 to VLAN tag 1000 when a packet goes to the VM network on eth2 and vice versa. We can see this using the dump-flows command on OVS for packets going to the VM network we see the modification done on br-eth2: #  ovs-ofctl dump-flows br-eth2 NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18669.401s, table=0, n_packets=857, n_bytes=163350, idle_age=25, priority=4,in_port=2,dl_vlan=1 actions=mod_vlan_vid:1000,NORMAL  cookie=0x0, duration=165108.226s, table=0, n_packets=14, n_bytes=1000, idle_age=5343, hard_age=65534, priority=2,in_port=2 actions=drop  cookie=0x0, duration=165109.813s, table=0, n_packets=1671, n_bytes=213304, idle_age=25, hard_age=65534, priority=1 actions=NORMAL   For packets coming from the interface to the namespace we see the following modification: #  ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4):  cookie=0x0, duration=18690.876s, table=0, n_packets=1610, n_bytes=210752, idle_age=1, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL  cookie=0x0, duration=165130.01s, table=0, n_packets=75, n_bytes=3686, idle_age=4212, hard_age=65534, priority=2,in_port=1 actions=drop  cookie=0x0, duration=165131.96s, table=0, n_packets=863, n_bytes=160727, idle_age=1, hard_age=65534, priority=1 actions=NORMAL   To summarize we can see that when a user creates a network Neutron creates a namespace and this namespace is connected through OVS to the “VM network”. OVS also takes care of tagging the packets from the namespace to the VM network with the correct VLAN tag and knows to modify the VLAN for packets coming from VM network to the namespace. Now let’s see what happens when a VM is launched and how it is connected to the “VM network”. Use case #2: Launch a VM Launching a VM can be done from Horizon or from the command line this is how we do it from Horizon: Attach the network: And Launch Once the virtual machine is up and running we can see the associated IP using the nova list command : # nova list +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | ID                                   | Name         | Status | Task State | Power State | Networks        | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ | 3707ac87-4f5d-4349-b7ed-3a673f55e5e1 | Oracle Linux | ACTIVE | None       | Running     | net1=10.10.10.2 | +--------------------------------------+--------------+--------+------------+-------------+-----------------+ The nova list command shows us that the VM is running and that the IP 10.10.10.2 is assigned to this VM. Let’s trace the connectivity from the VM to VM network on eth2 starting with the VM definition file. The configuration files of the VM including the virtual disk(s), in case of ephemeral storage, are stored on the compute node at/var/lib/nova/instances/<instance-id>/. Looking into the VM definition file ,libvirt.xml,  we see that the VM is connected to an interface called “tap53903a95-82” which is connected to a Linux bridge called “qbr53903a95-82”: <interface type="bridge">       <mac address="fa:16:3e:fe:c7:87"/>       <source bridge="qbr53903a95-82"/>       <target dev="tap53903a95-82"/>     </interface>   Looking at the bridge using the brctl show command we see this: # brctl show bridge name     bridge id               STP enabled     interfaces qbr53903a95-82          8000.7e7f3282b836       no              qvb53903a95-82                                                         tap53903a95-82    The bridge has two interfaces, one connected to the VM (“tap53903a95-82 “) and another one ( “qvb53903a95-82”) connected to “br-int” bridge on OVS: # ovs-vsctl show 83c42f80-77e9-46c8-8560-7697d76de51c     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2"                 type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"     Bridge br-int         Port br-int             Interface br-int                 type: internal         Port "int-br-eth2"             Interface "int-br-eth2"         Port "qvo53903a95-82"             tag: 3             Interface "qvo53903a95-82"     ovs_version: "1.11.0"   As we showed earlier “br-int” is connected to “br-eth2” on OVS using the veth pair int-br-eth2,phy-br-eth2 and br-eth2 is connected to the physical interface eth2. The whole flow end to end looks like this: VM è tap53903a95-82 (virtual interface)è qbr53903a95-82 (Linux bridge) è qvb53903a95-82 (interface connected from Linux bridge to OVS bridge br-int) è int-br-eth2 (veth one end) è phy-br-eth2 (veth the other end) è eth2 physical interface. The purpose of the Linux Bridge connecting to the VM is to allow security group enforcement with iptables. Security groups are enforced at the edge point which are the interface of the VM, since iptables nnot be applied to OVS bridges we use Linux bridge to apply them. In the future we hope to see this Linux Bridge going away rules.  VLAN tags: As we discussed in the first use case net1 is using VLAN tag 1000, looking at OVS above we see that qvo41f1ebcf-7c is tagged with VLAN tag 3. The modification from VLAN tag 3 to 1000 as we go to the physical network is done by OVS  as part of the packet flow of br-eth2 in the same way we showed before. To summarize, when a VM is launched it is connected to the VM network through a chain of elements as described here. During the packet from VM to the network and back the VLAN tag is modified. Use case #3: Serving a DHCP request coming from the virtual machine In the previous use cases we have shown that both the namespace called dhcp-<some id> and the VM end up connecting to the physical interface eth2  on their respective nodes, both will tag their packets with VLAN tag 1000.We saw that the namespace has an interface with IP of 10.10.10.3. Since the VM and the namespace are connected to each other and have interfaces on the same subnet they can ping each other, in this picture we see a ping from the VM which was assigned 10.10.10.2 to the namespace: The fact that they are connected and can ping each other can become very handy when something doesn’t work right and we need to isolate the problem. In such case knowing that we should be able to ping from the VM to the namespace and back can be used to trace the disconnect using tcpdump or other monitoring tools. To serve DHCP requests coming from VMs on the network Neutron uses a Linux tool called “dnsmasq”,this is a lightweight DNS and DHCP service you can read more about it here. If we look at the dnsmasq on the control node with the ps command we see this: dnsmasq --no-hosts --no-resolv --strict-order --bind-interfaces --interface=tap26c9b807-7c --except-interface=lo --pid-file=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/pid --dhcp-hostsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host --dhcp-optsfile=/var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/opts --leasefile-ro --dhcp-range=tag0,10.10.10.0,static,120s --dhcp-lease-max=256 --conf-file= --domain=openstacklocal The service connects to the tap interface in the namespace (“--interface=tap26c9b807-7c”), If we look at the hosts file we see this: # cat  /var/lib/neutron/dhcp/5f833617-6179-4797-b7c0-7d420d84040c/host fa:16:3e:fe:c7:87,host-10-10-10-2.openstacklocal,10.10.10.2   If you look at the console output above you can see the MAC address fa:16:3e:fe:c7:87 which is the VM MAC. This MAC address is mapped to IP 10.10.10.2 and so when a DHCP request comes with this MAC dnsmasq will return the 10.10.10.2.If we look into the namespace at the time we initiate a DHCP request from the VM (this can be done by simply restarting the network service in the VM) we see the following: # ip netns exec qdhcp-5f833617-6179-4797-b7c0-7d420d84040c tcpdump -n 19:27:12.191280 IP 0.0.0.0.bootpc > 255.255.255.255.bootps: BOOTP/DHCP, Request from fa:16:3e:fe:c7:87, length 310 19:27:12.191666 IP 10.10.10.3.bootps > 10.10.10.2.bootpc: BOOTP/DHCP, Reply, length 325   To summarize, the DHCP service is handled by dnsmasq which is configured by Neutron to listen to the interface in the DHCP namespace. Neutron also configures dnsmasq with the combination of MAC and IP so when a DHCP request comes along it will receive the assigned IP. Summary In this post we relied on the components described in the previous post and saw how network connectivity is achieved using three simple use cases. These use cases gave a good view of the entire network stack and helped understand how an end to end connection is being made between a VM on a compute node and the DHCP namespace on the control node. One conclusion we can draw from what we saw here is that if we launch a VM and it is able to perform a DHCP request and receive a correct IP then there is reason to believe that the network is working as expected. We saw that a packet has to travel through a long list of components before reaching its destination and if it has done so successfully this means that many components are functioning properly. In the next post we will look at some more sophisticated services Neutron supports and see how they work. We will see that while there are some more components involved for the most part the concepts are the same. @RonenKofman

    Read the article

  • StorageClientException: The specified message does not exist?

    - by Aaron
    I have a simple video encoding worker role that pulls messages from a queue encodes a video then uploads the video to storage. Everything seems to be working but occasionally when deleting the message after I am done encoding and uploading I get a "StorageClientException: The specified message does not exist." Although the video is processed, I believe the message is reappearing in the queue because it's not being deleted correctly. Is it possible that another instance of the Worker role is processing and deleting the message? Doesn't the GetMessage() prevent other worker roles from picking up the same message? Am I doing something wrong in the setup of my queue? What could be causing this message to not be found on delete? some code... //onStart() queue setup var queueStorage = _storageAccount.CreateCloudQueueClient(); _queue = queueStorage.GetQueueReference(QueueReference); queueStorage.RetryPolicy = RetryPolicies.Retry(5, new TimeSpan(0, 5, 0)); _queue.CreateIfNotExist(); public override void Run() { while (true) { try { var msg = _queue.GetMessage(new TimeSpan(0, 5, 0)); if (msg != null) { EncodeIt(msg); PostIt(msg); _queue.DeleteMessage(msg); } else { Thread.Sleep(WaitTime); } } catch (StorageClientException exception) { BlobTrace.Write(exception.ToString()); Thread.Sleep(WaitTime); } } }

    Read the article

  • Sweden Azure Group with Michele Laroux Bustamente &amp; Maartin Balliauw Thursday 22nd May

    - by Alan Smith
    Originally posted on: http://geekswithblogs.net/asmith/archive/2014/05/19/156418.aspxSweden Azure Group (SWAG) has the privilege of welcoming Michele Laroux Bustamente and Maartin Balliauw to present sessions at our meeting this Thursday. Michele and Maartin are two of the world’s leading experts in Cloud Computing and Azure, and will be taking time out from their busy schedules to share their ideas with us, and answer any questions. Knowit Stockholm are kindly hosting the event at their offices, and providing food and refreshments. It should be a great evening. You can register for the event here. Azure Q & A - Michele Leroux Bustamante In this interactive Q & A session Michele Leroux Bustamante will be on hand to share her wealth of experience on Azure related issues. If you are new to Azure and wanting some tips to get started, or an experienced developer needing to negotiate the legal and political protocols related to Cloud Computing Michele will have been there, done that, and be willing to share her experiences. This session will be entirely driven by that attendees, so please come prepared with questions. Reducing latency on the web with the Windows Azure CDN – Maarten Balliauw Serving up content on the Internet is something our web sites do daily. But are we doing this in the fastest way possible? How are users in faraway countries experiencing our apps? Why do we have three webservers serving the same content over and over again? In this session, we’ll explore the Windows Azure Content Delivery Network or CDN, a service which makes it easy to serve up blobs, videos and other content from servers close to our users. We’ll explore simple file serving as well as some more advanced, dynamic edge caching scenarios. Michele Leroux Bustamante Michele Leroux Bustamante is CIO at Solliance (solliance.net), cofounder of Snapboard (snapboard.com), and is recognized as a Microsoft Regional Director and MVP. Michele is a thought leader with over 20 years specializing in building scalable and secure end-to-end system design, identity and access management, and cloud computing technologies – for companies of all sizes. In recent years Michele has also helped launch several startup business ventures and has been a mentor to startups in several accelerator programs – providing both technical and business guidance. Michele shares her experiences through presentations and keynotes all over the world, and has been publishing regularly in technology journals. Maarten Balliauw Maarten Balliauw is a Technical Evangelist at JetBrains. His interests are all web: ASP.NET MVC, PHP and Windows Azure. He’s a Microsoft Most Valuable Professional (MVP) for Azure and an ASPInsider. He has published many articles in both PHP and .NET literature such as MSDN magazine and PHP architect. Maarten is a frequent speaker at various national and international events such as MIX (Las Vegas), TechDays, DPC, …

    Read the article

  • Q&amp;A: Does it make sense to run a personal blog on the Windows Azure Platform?

    - by Eric Nelson
    I keep seeing people wanting to do this (or something very similar) and then being surprised at how much it might cost them if they went with Windows Azure. Time for a Q&A. Short answer: No, definitely not. Madness, sheer madness. (Hopefully that was clear enough) Longer answer: No because It would cost you a heck of a lot more than just about any other approach to running a blog. A site that can easily be run on a shared hosting solution (as many blogs do today) does not require the rich capabilities of Windows Azure. Capabilities such as simplified deployed and management, dedicated resources, elastic resources, “unlimited” storage etc. It is simply not the type of application the Windows Azure Platform has been designed for. Related Links: Q&A- How can I calculate the TCO and ROI when considering the Windows Azure Platform? Q&A- When do I get charged for compute hours on Windows Azure? Q&A- What are the UK prices for the Windows Azure Platform

    Read the article

< Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >