Search Results

Search found 1193 results on 48 pages for 'decimal'.

Page 38/48 | < Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >

  • How to insert sub root node in xml file

    - by pravakar
    Hi guys hope all are doing good. I want to create one sub root node in my xml file like, <CapitalJobsList xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <JobAds> -- element to create <JobAd> <AdvertiserDetails> <AdvertiserId>718508549</AdvertiserId> <AdvertiserName>ABC</AdvertiserName> </AdvertiserDetails> <ConsultantDetails> <ContactName>Naga Divakar</ContactName> <ContactPhone>6239 7755</ContactPhone> <ContactEmail>[email protected]</ContactEmail> <ContactFax>12345678912</ContactFax> </ConsultantDetails> <JobAdDetails> <DateEntered>2009-10-03T21:09:35.500</DateEntered> <AdvertiserJobRef>83754865</AdvertiserJobRef> <Title>IT Operations Manager</Title> <DescriptionShort>Large scale/exciting projects Mentor and manage o...</DescriptionShort> <Description>Large scale/exciting projects Mentor and manage others Management/technical mix This is a fantastic opportunity to join a high profile client who is active across both the commercial and Government domain. As the IT Operations Manager you will be responsible for leading and mentoring a small team of Infrastructure Engineers to ensure the availability and performance of the IT infrastructure. You w</Description> <SalaryMin>0.00</SalaryMin> <SalaryMax>0.00</SalaryMax> <WorkType xsi:nil="true" /> <Location>) as [JobAd/JobAdDetails/Bullets], isnull(Job</Location> <PostCode>2600</PostCode> <ClosingDate>2009-11-01T00:00:00</ClosingDate> <Keywords xsi:nil="true" /> <ApplyEmail xsi:nil="true" /> <ApplyURL>http://jobview.careerone.com.au/GetJob.aspx?JobID=83754865</ApplyURL> </JobAdDetails> <JobAdOptions> <BlindPost xsi:nil="true" /> <AdFormatType xsi:nil="true" /> <AdTemplateName xsi:nil="true" /> <ShowContactDetails xsi:nil="true" /> <ShowSalary xsi:nil="true" /> <HasVideo xsi:nil="true" /> <ResumeRequired>1</ResumeRequired> <ResidentsOnly>0</ResidentsOnly> </JobAdOptions> <CategoryList> <Category xsi:nil="true" /> </CategoryList> <RegionsList> <Region>ACT</Region> </RegionsList> <LevelsList> <Level xsi:nil="true" /> </LevelsList> </JobAd> <JobAd> <AdvertiserDetails> <AdvertiserId>718508549</AdvertiserId> <AdvertiserName>ABC</AdvertiserName> </AdvertiserDetails> <ConsultantDetails> <ContactName>Naga Divakar</ContactName> <ContactPhone>6239 7755</ContactPhone> <ContactEmail>[email protected]</ContactEmail> <ContactFax>12345678912</ContactFax> </ConsultantDetails> <JobAdDetails> <DateEntered>2009-10-03T21:09:35.530</DateEntered> <AdvertiserJobRef>83731488</AdvertiserJobRef> <Title>SAP Developers Required in Canberra - 12 month contract</Title> <DescriptionShort>My client, a large government department in Canbe...</DescriptionShort> <Description>My client, a large government department in Canberra, seeks two SAP Developers for 12 month ongoing contracts. Two SAP Developers Required Expert level ABAP programming skills Large SAP landscape - SAP R/3, SAP Web, SAP BI, SAP ITS My client, a large government department in Canberra, seeks two SAP Developers for 12 month ongoing contracts. My client is a large government department in Canberra, a</Description> <SalaryMin>0.00</SalaryMin> <SalaryMax>0.00</SalaryMax> <WorkType xsi:nil="true" /> <Location>) as [JobAd/JobAdDetails/Bullets], isnull(Job</Location> <PostCode>2600</PostCode> <ClosingDate>2009-11-01T00:00:00</ClosingDate> <Keywords xsi:nil="true" /> <ApplyEmail xsi:nil="true" /> <ApplyURL>http://jobview.careerone.com.au/GetJob.aspx?JobID=83731488</ApplyURL> </JobAdDetails> <JobAdOptions> <BlindPost xsi:nil="true" /> <AdFormatType xsi:nil="true" /> <AdTemplateName xsi:nil="true" /> <ShowContactDetails xsi:nil="true" /> <ShowSalary xsi:nil="true" /> <HasVideo xsi:nil="true" /> <ResumeRequired>1</ResumeRequired> <ResidentsOnly>0</ResidentsOnly> </JobAdOptions> <CategoryList> <Category xsi:nil="true" /> </CategoryList> <RegionsList> <Region>ACT</Region> </RegionsList> <LevelsList> <Level xsi:nil="true" /> </LevelsList> </JobAd> </JobAds> </CapitalJobsList> I have used the sql query for xml path like: select r.advid as [JobAd/AdvertiserDetails/AdvertiserId], CompanyName as [JobAd/AdvertiserDetails/AdvertiserName], firstname +'' ''+ lastname as [JobAd/ConsultantDetails/ContactName], WorkPhone as [JobAd/ConsultantDetails/ContactPhone], AdvEmail as [JobAd/ConsultantDetails/ContactEmail], FaxNo as [JobAd/ConsultantDetails/ContactFax], Job_CreatedDate as [JobAd/JobAdDetails/DateEntered], Job_Id as [JobAd/JobAdDetails/AdvertiserJobRef], Job_Title as [JobAd/JobAdDetails/Title], substring(Job_Description,0,50)+''...'' as [JobAd/JobAdDetails/DescriptionShort], Job_Description as [JobAd/JobAdDetails/Description], CONVERT(DECIMAL(10,2),MinSalary) as [JobAd/JobAdDetails/SalaryMin], CONVERT(DECIMAL(10,2),MaxSalary) as [JobAd/JobAdDetails/SalaryMax], Job_Type as [JobAd/JobAdDetails/WorkType], isnull(Job_Bullets,'') as [JobAd/JobAdDetails/Bullets], isnull(Job_Location,'') as [JobAd/JobAdDetails/Location], Job_PostCode as [JobAd/JobAdDetails/PostCode], Job_ExpireDate as [JobAd/JobAdDetails/ClosingDate], Job_Keywords as [JobAd/JobAdDetails/Keywords], ApplyEmail as [JobAd/JobAdDetails/ApplyEmail], Job_BrandURL+Job_Id as [JobAd/JobAdDetails/ApplyURL], BlindPost as [JobAd/JobAdOptions/BlindPost], AdFormatType as [JobAd/JobAdOptions/AdFormatType], AdTemplateName as [JobAd/JobAdOptions/AdTemplateName], ShowContactDetails as [JobAd/JobAdOptions/ShowContactDetails], ShowSalary as [JobAd/JobAdOptions/ShowSalary], HasVideo as [JobAd/JobAdOptions/HasVideo], ResumeRequired as [JobAd/JobAdOptions/ResumeRequired], ResidentsOnly as [JobAd/JobAdOptions/ResidentsOnly], Job_Category as [JobAd/CategoryList/Category], Job_Location_State as [JobAd/RegionsList/Region], [Level] as [JobAd/LevelsList/Level] from DR_Adv_Registration r, DR_CareerOne_ACTJobs j where r.Advid = j.Advid and job_location_city like(''%'+''+ @City +''+'%'') and job_location_state in('''+ @State +''') and job_status=1 for xml path(''''), Root(''CapitalJobsList''),ELEMENTS XSINIL So, suggest me how to get the sub root node. Thanks in advance

    Read the article

  • Checking partition alignment with PowerCLI

    - by Julian
    I'm trying to verify that the file system partitions within each of the servers I'm working on are aligned correctly. I've got the following script that when I've tried running will either claim that all virtual servers are aligned or not aligned based on which if statement I use (one is commented out): $myArr = @() $vms = get-vm | where {$_.PowerState -eq "PoweredOn" -and $_.Guest.OSFullName -match "Microsoft Windows*" } | sort name foreach($vm in $vms){ $wmi = get-wmiobject -class "win32_DiskPartition" -namespace "root\CIMV2" -ComputerName $vm foreach ($partition in $wmi){ $Details = "" | Select-Object VMName, Partition, Status #if (($partition.startingoffset % 65536) -isnot [decimal]){ if ($partition.startingoffSet -eq "65536"){ $Details.VMName = $partition.SystemName $Details.Partition = $partition.Name $Details.Status = "Partition aligned" } else{ $Details.VMName = $partition.SystemName $Details.Partition = $partition.Name $Details.Status = "Partition not aligned" } $myArr += $Details } } $myArr | Export-CSV -NoTypeInformation "C:\users\myself\Documents\Scripts\PartitionAlignment.csv" Would anyone know what is wrong with my code? I'm still learning about partitions so I'm not sure how I need to check the starting off-set number to verify alignment. EDIT: $myArr = @() $vms = get-vm | where {$_.PowerState -eq "PoweredOn" -and $_.Guest.OSFullName -match "Microsoft Windows*" } | sort name $wmi = get-wmiobject -class "win32_DiskPartition" -namespace "root\CIMV2" -ComputerName $vm #foreach ($_ In Get-WMIObject Win32_DiskPartition | Select Name, BlockSize, NumberOfBlocks, StartingOffSet, @{n='Alignment'; e={$_.StartingOffSet/$_.BlockSize}}) {$_} foreach ($wmi| Select Name, BlockSize, NumberOfBlocks, StartingOffSet, @{n='Alignment'; e={$_.StartingOffSet/$_.BlockSize}}) {$_}

    Read the article

  • Delete cell content in Libre (Open) Office based on the cell value

    - by take2
    I have a huge csv file (tens of thousands of rows) that I need to filter based on different criteria. After trying to find a proper CSV editor, I decided to use LibreOffice Calc. CSVed is great, but it doesn't support neither UTF-8 nor macros for advanced filtering. So, there are 4 columns, 3 of which contain numbers (with decimal numbers) and 1 of which contains text. I'm trying to find a way to delete rows with a macro code. I can achieve the desired behavior with filters too, but it's annoying to type all of the filtering values over and over again and there doesn't seem to be a way to export the filter and us it repeatedly. These rows should be deleted: The ones that don't contain certain words in textual column (column A). There are a few thousand different words used in that column and I want to keep only the rows that contain one of about 30 words in that column. Additionally, the number is the other columns should be bigger than 3.8 (column B), 4.5 (column C) and smaller than 20 (column C). The row-deletion type is "Shift up". Hopefully I have explained it well. Thanks a lot in advance for your help!

    Read the article

  • sql server uninstallation issue

    - by angel
    I'm unable to remove SQL Server 2008 sp1 completely from my system. I'm using windows 7 ultimate. Everytime I try uninstalling it i get the following error. How can I remove it? here is the log: Overall summary: Final result: Failed: see details below Exit code (Decimal): -2068643839 Exit facility code: 1203 Exit error code: 1 Exit message: Failed: see details below Start time: 2013-06-24 21:10:38 End time: 2013-06-24 21:21:17 Requested action: Uninstall Log with failure: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20130624_210908\sql_rs_Cpu64_1.log Exception help link: http://go.microsoft.com/fwlink?LinkId=20476&ProdName=Microsoft+SQL+Server&EvtSrc=setup.rll&EvtID=50000&ProdVer=10.0.1600.22 Machine Properties: Machine name: ABHI-PC Machine processor count: 4 OS version: Windows Vista OS service pack: Service Pack 1 OS region: United States OS language: English (United States) OS architecture: x64 Process architecture: 64 Bit OS clustered: No Product features discovered: Product Instance Instance ID Feature Language Edition Version Clustered Sql Server 2008 MSSQLSERVER MSRS10.MSSQLSERVER Reporting Services 1033 Enterprise Edition 10.0.1600.22 No Sql Server 2008 Management Tools - Basic 10.0.1600.22 No Package properties: Description: SQL Server Database Services 2008 SQLProductFamilyCode: {628F8F38-600E-493D-9946-F4178F20A8A9} ProductName: SQL2008 Type: RTM Version: 10 SPLevel: 0 Installation edition: ENTERPRISE User Input Settings: ACTION: Uninstall CONFIGURATIONFILE: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20130624_210908\ConfigurationFile.ini FEATURES: RS,SSMS,SNAC_SDK,CE_RUNTIME,CE_TOOLS,SNAC HELP: False INDICATEPROGRESS: False INSTANCEID: INSTANCENAME: MSSQLSERVER MEDIASOURCE: QUIET: False QUIETSIMPLE: False X86: False Configuration file: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20130624_210908\ConfigurationFile.ini Detailed results: Feature: SQL Client Connectivity Status: Skipped MSI status: Passed Configuration status: Passed Feature: SQL Client Connectivity SDK Status: Skipped MSI status: Passed Configuration status: Passed Feature: Reporting Services Status: Failed: see logs for details MSI status: Passed Configuration status: Failed: see details below Configuration error code: 0xFFD65603 Configuration error description: Input string was not in a correct format. Configuration log: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20130624_210908\Detail.txt Feature: SQL Compact Edition Tools Status: Passed MSI status: Passed Configuration status: Passed Feature: SQL Compact Edition Runtime Status: Skipped MSI status: Passed Configuration status: Passed Feature: Management Tools - Basic Status: Failed: see logs for details MSI status: Passed Configuration status: Passed Rules with failures: Global rules: There are no scenario-specific rules. Rules report file: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20130624_210908\SystemConfigurationCheck_Report.htm

    Read the article

  • Issues with "There is already an object named 'xxx' in the database'

    - by Hoser
    I'm fairly new to SQL so this may be an easy mistake, but I haven't been able to find a solid solution anywhere else. Problem is whenever I try to use my temp table, it tells me it cannot be used because there is already an object with that name. I frequently try switching up the names, and sometimes it'll let me work with the table for a little while, but it never lasts for long. Am I dropping the table incorrectly? Also, I've had people suggest to just use a permanent table, but this database does not allow me to do that. create table #RandomTableName(NameOfObject varchar(50), NameOfCounter varchar(50), SampledValue decimal) select vPerformanceRule.ObjectName, vPerformanceRule.CounterName, Perf.vPerfRaw.SampleValue into #RandomTableName from vPerformanceRule, vPerformanceRuleInstance, Perf.vPerfRaw where (ObjectName like 'Processor' AND CounterName like '% Processor Time') OR(ObjectName like 'System' AND CounterName like 'Processor Queue Length') OR(ObjectName like 'Memory' AND CounterName like 'Pages/Sec') OR(ObjectName like 'Physical Disk' AND CounterName like 'Avg. Disk Queue Length') OR(ObjectName like 'Physical Disk' AND CounterName like 'Avg. Disk sec/Read') OR(ObjectName like 'Physical Disk' and CounterName like '% Disk Time') OR(ObjectName like 'Logical Disk' and CounterName like '% Free Space' AND SampleValue > 70 AND SampleValue < 100) order by ObjectName, SampleValue drop table #RandomTableName

    Read the article

  • Show (copy) data at "X" time and stop update

    - by Anka
    I have two sheets. In the first sheet, cell F4, I have 00:00:00 (countdown). G9, G10 and G11 are cells that receive live data (decimal numbers). In the second sheet, I have three cells linked from sheet1, G9 ='Sheet1'!G9, G10 ='Sheet1'!G10, G11 ='Sheet1'!G11 (which update themselves when data is modified in the first sheet). Now I want to set in sheet 2, (assume) cells B9, B10 and B11 to show me (copy) the values from G9, G10 and G11 from sheet 1 when the countdown was 00:00:05 (5 seconds before Start) and not update again if the data changes in the cell it pulled the data from. Like G9 ='Sheet1'!G9 at 00:00:05 and stop here, do not update anything. OK? I can do a part, but the real problem is: I can not make it stop cells to update. Stand frozen, freeze, not move, calm .. however. I do not want to seem pretentious (but my knowledge in excel is limited), the most appropriate would be a formula, not macro or VBA, if possible. I want to post a picture but I can not because of my restrictions. Well, if this is not possible with a formula is just fine with (not really) VBA.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Subterranean IL: Pseudo custom attributes

    - by Simon Cooper
    Custom attributes were designed to make the .NET framework extensible; if a .NET language needs to store additional metadata on an item that isn't expressible in IL, then an attribute could be applied to the IL item to represent this metadata. For instance, the C# compiler uses DecimalConstantAttribute and DateTimeConstantAttribute to represent compile-time decimal or datetime constants, which aren't allowed in pure IL, and FixedBufferAttribute to represent fixed struct fields. How attributes are compiled Within a .NET assembly are a series of tables containing all the metadata for items within the assembly; for instance, the TypeDef table stores metadata on all the types in the assembly, and MethodDef does the same for all the methods and constructors. Custom attribute information is stored in the CustomAttribute table, which has references to the IL item the attribute is applied to, the constructor used (which implies the type of attribute applied), and a binary blob representing the arguments and name/value pairs used in the attribute application. For example, the following C# class: [Obsolete("Please use MyClass2", true)] public class MyClass { // ... } corresponds to the following IL class definition: .class public MyClass { .custom instance void [mscorlib]System.ObsoleteAttribute::.ctor(string, bool) = { string('Please use MyClass2' bool(true) } // ... } and results in the following entry in the CustomAttribute table: TypeDef(MyClass) MemberRef(ObsoleteAttribute::.ctor(string, bool)) blob -> {string('Please use MyClass2' bool(true)} However, there are some attributes that don't compile in this way. Pseudo custom attributes Just like there are some concepts in a language that can't be represented in IL, there are some concepts in IL that can't be represented in a language. This is where pseudo custom attributes come into play. The most obvious of these is SerializableAttribute. Although it looks like an attribute, it doesn't compile to a CustomAttribute table entry; it instead sets the serializable bit directly within the TypeDef entry for the type. This flag is fully expressible within IL; this C#: [Serializable] public class MySerializableClass {} compiles to this IL: .class public serializable MySerializableClass {} For those interested, a full list of pseudo custom attributes is available here. For the rest of this post, I'll be concentrating on the ones that deal with P/Invoke. P/Invoke attributes P/Invoke is built right into the CLR at quite a deep level; there are 2 metadata tables within an assembly dedicated solely to p/invoke interop, and many more that affect it. Furthermore, all the attributes used to specify p/invoke methods in C# or VB have their own keywords and syntax within IL. For example, the following C# method declaration: [DllImport("mscorsn.dll", SetLastError = true)] [return: MarshalAs(UnmanagedType.U1)] private static extern bool StrongNameSignatureVerificationEx( [MarshalAs(UnmanagedType.LPWStr)] string wszFilePath, [MarshalAs(UnmanagedType.U1)] bool fForceVerification, [MarshalAs(UnmanagedType.U1)] ref bool pfWasVerified); compiles to the following IL definition: .method private static pinvokeimpl("mscorsn.dll" lasterr winapi) bool marshal(unsigned int8) StrongNameSignatureVerificationEx( string marshal(lpwstr) wszFilePath, bool marshal(unsigned int8) fForceVerification, bool& marshal(unsigned int8) pfWasVerified) cil managed preservesig {} As you can see, all the p/invoke and marshal properties are specified directly in IL, rather than using attributes. And, rather than creating entries in CustomAttribute, a whole bunch of metadata is emitted to represent this information. This single method declaration results in the following metadata being output to the assembly: A MethodDef entry containing basic information on the method Four ParamDef entries for the 3 method parameters and return type An entry in ModuleRef to mscorsn.dll An entry in ImplMap linking ModuleRef and MethodDef, along with the name of the function to import and the pinvoke options (lasterr winapi) Four FieldMarshal entries containing the marshal information for each parameter. Phew! Applying attributes Most of the time, when you apply an attribute to an element, an entry in the CustomAttribute table will be created to represent that application. However, some attributes represent concepts in IL that aren't expressible in the language you're coding in, and can instead result in a single bit change (SerializableAttribute and NonSerializedAttribute), or many extra metadata table entries (the p/invoke attributes) being emitted to the output assembly.

    Read the article

  • How to reproject a shapefile from WGS 84 to Spherical/Web Mercator projection.

    - by samkea
    Definitions: You will need to know the meaning of these terms below. I have given a small description to the acronyms but you can google and know more about them. #1:WGS-84- World Geodetic Systems (1984)- is a standard reference coordinate system used for Cartography, Geodesy and Navigation. #2: EPGS-European Petroleum Survey Group-was a scientific organization with ties to the European petroleum industry consisting of specialists working in applied geodesy, surveying, and cartography related to oil exploration. EPSG::4326 is a common coordinate reference system that refers to WGS84 as (latitude, longitude) pair coordinates in degrees with Greenwich as the central meridian. Any degree representation (e.g., decimal or DMSH: degrees minutes seconds hemisphere) may be used. Which degree representation is used must be declared for the user by the supplier of data. So, the Spherical/Web Mercator projection is referred to as EPGS::3785 which is renamed to EPSG:900913 by google for use in googlemaps. The associated CRS(Coordinate Reference System) for this is the "Popular Visualisation CRS / Mercator ". This is the kind of projection that is used by GoogleMaps, BingMaps,OSM,Virtual Earth, Deep Earth excetra...to show interactive maps over the web with thier nearly precise coordinates.  Reprojection: After reading alot about reprojecting my coordinates from the deepearth project on Codeplex, i still could not do it. After some help from a colleague, i got my ball rolling.This is how i did it. #1 You need to download and open your shapefile using Q-GIS; its the one with the biggest number of coordinate reference systems/ projections. #2 Use the plugins menu, and enable ftools and the WFS plugin. #3 Use the Vector menu--> Data Management Tools and choose define current projection. Enable, use predefined reference system and choose WGS 84 coodinate system. I am personally in zone 36, so i chose WGS84-UTM Zone 36N under ( Projected Coordinate Systems--> Universal Transverse Mercator) and click ok. #4 Now use the Vector menu--> Data Management Tools and choose export to new projection. The same dialog will pop-up. Now choose WGS 84 EPGS::4326 under Geodetic Coordinate Systems. My Input user Defined Spatial Reference System should looks like this: +proj=tmerc +lat_0=0 +lon_0=33 +k=0.9996 +x_0=500000 +y_0=200000 +ellps=WGS84 +datum=WGS84 +units=m +no_defs Your Output user Defined Spatial Reference System should look like this: +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs Browse for the place where the shapefile is going to be and give the shapefile a name(like origna_reprojected). If it prompts you to add the projected layer to the TOC, accept. There, you have your re-projected map with latitude and longitude pair of coordinates. #5 Now, this is not the actual Spherical/Web Mercator projection, but dont worry, this is where you have to stop. All the other custom web-mapping portals will pick this projection and transform it into EPGS::3785 or EPSG:900913 but the coordinates will still remain as the LatLon pair of the projected shapefile. If you want to test, a particular know point, Q-GIS has a lot of room for that. Go ahead and test it.

    Read the article

  • Backing up my Windows Home Server to the Cloud&hellip;

    - by eddraper
    Ok, here’s my scenario: Windows Home Server with a little over 3TB of storage.  This includes many years of our home network’s PC backups, music, videos, etcetera. I’d like to get a backup off-site, and the existing APIs and apps such as CloudBerry Labs WHS Backup service are making it easy.  Now, all it’s down to is vendor and the cost of the actual storage.   So,  I thought I’d take a lazy Saturday morning and do some research on this and get the ball rolling.  What I discovered stunned me…   First off, the pricing for just about everything was loaded with complexity.  I learned that it wasn’t just about storage… it was about network usage, requests, sites, replication, and on and on. I really don’t see this as rocket science.  I have a disk image.  I want to put it in the cloud.  I’m not going to be be using it but once daily for incremental backups.  Sounds like a common scenario.  Yes, if “things get real” and my server goes down, I will need to bring down a lot of data and utilize a fair amount of vendor infrastructure.  However, this may never happen.  Offsite storage is an insurance policy.   The complexity of the cost structures, perhaps by design, create an environment where it’s incredibly hard to model bottom line costs and compare vendor all-up pricing.  As it is a “lazy Saturday morning,” I’m not in the mood for such antics and I decide to shirk the endeavor entirely.  Thus, I decided to simply fire up calc.exe and do some a simple arithmetic model based on price per GB.  I shuddered at the results.  Certainly something was wrong… did I misplace a decimal point?  Then I discovered CloudBerry’s own calculator.   Nope, I hadn’t misplaced those decimals after all.  Check it out (pricing based on 3174 GB):   Amazon S3 $398.00 per month $4761 per year Azure $396.75 per month $4761 per year Google $380.88 per month $4570.56 per year   Conclusion: Rampant crack smoking at vendors.  Seriously.  Out. Of. Their. Minds. Now, to Amazon’s credit, vision, and outright common sense, they had one offering which directly addresses my scenario:   Amazon Glacier $31.74 per month $380.88 per year   hmmm… It’s on the table.  Let’s see what it would cost to just buy some drives, an enclosure and cart them over to a friend’s house.   2 x 2TB Drives from NewEgg.com $199.99   Enclosure $39.99     $239.98   Carting data to back and forth to friend’s within walking distance pain   Leave drive unplugged at friend’s $0 for electricity   Possible data loss No way I can come and go every day.     I think I’ll think on this a bit more…

    Read the article

  • MVC 2 jQuery Client-side Validation

    - by nmarun
    Well, I watched Phil Haack’s show What's New in Microsoft ASP.NET MVC 2 and was impressed about the client-side validation (starts at 17:45) that MVC 2 offers. I tried creating the same, but Phil does not show what .js files need to be included and also I was not able to find the source code for the application that he used. In order to find out the required JavaScript file references, I added all of the files in my application to the page and ran it. Of course it worked, but this is definitely not an optimum solution. By removing one at a time and testing the app, I’ve short-listed the following ones: 1: <script src="../../Scripts/jquery-1.4.1.min.js" type="text/javascript"></script 2: <script src="../../Scripts/MicrosoftAjax.js" type="text/javascript"></script> 3: <script src="../../Scripts/MicrosoftMvcValidation.js" type="text/javascript"></script> Now, a little about the feature itself. Say, I’m working with a Book application so my model will look something like: 1: public class Book 2: { 3: [HiddenInput(DisplayValue = false)] 4: public int BookId { get; set; } 5:  6: [DisplayName("Book Title")] 7: [Required(ErrorMessage = "Book title is required")] 8: [StringLength(20, ErrorMessage = "Must be under 20 characters")] 9: public string Title { get; set; } 10:  11: [Required(ErrorMessage = "Author is required")] 12: [StringLength(40, ErrorMessage = "Must be under 40 characters")] 13: public string Author { get; set; } 14:  15: public decimal Price { get; set; } 16: 17: [DisplayName("ISBN")] 18: [StringLength(13, ErrorMessage = "Must be 13 characters")] 19: public string Isbn { get; set; } 20: } This ensures that the data passed will be validated upon post. But what would happen if you add the line (along with the above mentioned .js files): 1: <% Html.EnableClientValidation(); %> Now, this acts as ‘on-the-fly’ or ‘real-time’ validation. Now, when the user types 20 characters for the Title, the error shows up right on the 21st character. Beautiful… and you do not have to create the JavaScript function(s) for this. They’re auto-magically created for you. (Doing a ‘View Source’ on the browser page shows you the JavaScript logic that goes on behind the scenes). I bumped into another post that shows how .net 4 allows us to create custom validation attributes: Dynamic Range validation in MVC 2. This will help us attach virtually any business logic to the model itself. Please see the source code I’ve worked with.

    Read the article

  • Guessing Excel Data Types

    - by AjarnMark
    Note to Self HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\Excel: TypeGuessRows = 0 means scan everything. Note to Others About 10 years ago I stumbled across this bit of information just when I needed it and it saved my project.  Then for some reason, a few years later when it would have been nice, but not critical, for some reason I could not find it again anywhere.  Well, now I have stumbled across it again, and to preserve my future self from nightmares and sudden baldness due to pulling my hair out, I have decided to blog it in the hopes that I can find it again this way. Here’s the story…  When you query data from an Excel spreadsheet, such as with old-fashioned DTS packages in SQL 2000 (my first reference) or simply with an OLEDB Data Adapter from ASP.NET (recent task) and if you are using the Microsoft Jet 4.0 driver (newer ones may deal with this differently) then you can get funny results where the query reports back that a cell value is null even when you know it contains data. What happens is that Excel doesn’t really have data types.  While you can format information in cells to appear like certain data types (e.g. Date, Time, Decimal, Text, etc.) that is not really defining the cell as being of a certain type like we think of when working with databases.  But, presumably, to make things more convenient for the user (programmer) when you issue a query against Excel, the query processor tries to guess what type of data is contained in each column and returns it in an appropriate manner.  This is all well and good IF your data is consistent in every row and matches what the processor guessed.  And, for efficiency’s sake, when the query processor is trying to figure out each column’s data type, it does so by analyzing only the first 8 rows of data (default setting). Now here’s the problem, suppose that your spreadsheet contains information about clothing, and one of the columns is Size.  Now suppose that in the first 8 rows, all of your sizes look like 32, 34, 18, 10, and so on, using numbers, but then, somewhere after the 8th row, you have some rows with sizes like S, M, L, XL.  What happens is that by examining only the first 8 rows, the query processor inferred that the column contained numerical data, and then when it hits the non-numerical data in later rows, it comes back blank.  Major bummer, and a real pain to track down if you don’t know that Excel is doing this, because you study the spreadsheet and say, “the data is RIGHT THERE!  WHY doesn’t the query see it?!?!”  And the hair-pulling begins. So, what’s a developer to do?  One option is to go to the registry setting noted above and change the DWORD value of TypeGuessRows from the default of 8 to 0 (zero).  Setting this value to zero will force Jet to scan every row in the spreadsheet before making its determination as to what type of data the column contains.  And that means that in the example above, it would have treated the column as a string rather than as numeric, and presto! your query now returns all of the values that you know are in there. Of course, there is a caveat… if you are querying large spreadsheets, making Jet scan every row can be quite a performance hit.  You could enter a different number (more than 8) that you believe is a better sampling of rows to make the guess, but you still have the possibility that every row scanned looks alike, but that later rows are different, and that you might get blanks when there really is data there.  That’s the type of gamble, I really don’t like to take with my data. Anyone with a better approach, or with experience with more recent drivers that have a better way of handling data types, please chime in!

    Read the article

  • SQL SERVER – A Puzzle Part 4 – Fun with SEQUENCE in SQL Server 2012 – Guess the Next Value

    - by pinaldave
    It seems like every weekend I get a new puzzle in my mind. Before continuing I suggest you read my previous posts here where I have shared earlier puzzles. A Puzzle – Fun with SEQUENCE in SQL Server 2012 – Guess the Next Value  A Puzzle Part 2 – Fun with SEQUENCE in SQL Server 2012 – Guess the Next Value A Puzzle Part 3 – Fun with SEQUENCE in SQL Server 2012 – Guess the Next Value After reading above three posts, I am very confident that you all will be ready for the next set of puzzles now. First execute the script which I have written here. Now guess what will be the next value as requested in the query. USE TempDB GO -- Create sequence CREATE SEQUENCE dbo.SequenceID AS DECIMAL(3,0) START WITH 1 INCREMENT BY -1 MINVALUE 1 MAXVALUE 3 CYCLE NO CACHE; GO SELECT next value FOR dbo.SequenceID; -- Guess the number SELECT next value FOR dbo.SequenceID; -- Clean up DROP SEQUENCE dbo.SequenceID; GO Please note that Starting value is 1, Increment value is the negative value of -1 and Minimum value is 3. Now let us first assume how this will work out. In our example of the sequence starting value is equal to 1 and decrement value is -1, this means the value should decrement from 1 to 0. However, the minimum value is 1. This means the value cannot further decrement at all. What will happen here? The natural assumption is that it should throw an error. How many of you are assuming about query will throw an ERROR? Well, you are WRONG! Do not blame yourself, it is my fault as I have told you only half of the story. Now if you have voted for error, let us continue running above code in SQL Server Management Studio. The above script will give the following output: Isn’t it interesting that instead of error out it is giving us result value 3. To understand the answer about the same, carefully observe the original syntax of creating SEQUENCE – there is a keyword CYCLE. This keyword cycles the values between the minimum and maximum value and when one of the range is exhausted it cycles the values from the other end of the cycle. As we have negative incremental value when query reaches to the minimum value or lower end it will cycle it from the maximum value. Here the maximum value is 3 so the next logical value is 3. If your business requirement is such that if sequence reaches the maximum or minimum value, it should throw an error, you should not use the keyword cycle, and it will behave as discussed. I hope, you are enjoying the puzzles as much as I am enjoying it. If you have any interesting puzzle to share, please do share with me and I will share this on blog with due credit to you. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Puzzle, SQL Query, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • Investigating on xVelocity (VertiPaq) column size

    - by Marco Russo (SQLBI)
      In January I published an article about how to optimize high cardinality columns in VertiPaq. In the meantime, VertiPaq has been rebranded to xVelocity: the official name is now “xVelocity in-memory analytics engine (VertiPaq)” but using xVelocity and VertiPaq when we talk about Analysis Services has the same meaning. In this post I’ll show how to investigate on columns size of an existing Tabular database so that you can find the most important columns to be optimized. A first approach can be looking in the DataDir of Analysis Services and look for the folder containing the database. Then, look for the biggest files in all subfolders and you will find the name of a file that contains the name of the most expensive column. However, this heuristic process is not very optimized. A better approach is using a DMV that provides the exact information. For example, by using the following query (open SSMS, open an MDX query on the database you are interested to and execute it) you will see all database objects sorted by used size in a descending way. SELECT * FROM $SYSTEM.DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS ORDER BY used_size DESC You can look at the first rows in order to understand what are the most expensive columns in your tabular model. The interesting data provided are: TABLE_ID: it is the name of the object – it can be also a dictionary or an index COLUMN_ID: it is the column name the object belongs to – you can also see ID_TO_POS and POS_TO_ID in case they refer to internal indexes RECORDS_COUNT: it is the number of rows in the column USED_SIZE: it is the used memory for the object By looking at the ration between USED_SIZE and RECORDS_COUNT you can understand what you can do in order to optimize your tabular model. Your options are: Remove the column. Yes, if it contains data you will never use in a query, simply remove the column from the tabular model Change granularity. If you are tracking time and you included milliseconds but seconds would be enough, round the data source column to the nearest second. If you have a floating point number but two decimals are good enough (i.e. the temperature), round the number to the nearest decimal is relevant to you. Split the column. Create two or more columns that have to be combined together in order to produce the original value. This technique is described in VertiPaq optimization article. Sort the table by that column. When you read the data source, you might consider sorting data by this column, so that the compression will be more efficient. However, this technique works better on columns that don’t have too many distinct values and you will probably move the problem to another column. Sorting data starting from the lower density columns (those with a few number of distinct values) and going to higher density columns (those with high cardinality) is the technique that provides the best compression ratio. After the optimization you should be able to reduce the used size and improve the count/size ration you measured before. If you are interested in a longer discussion about internal storage in VertiPaq and you want understand why this approach can save you space (and time), you can attend my 24 Hours of PASS session “VertiPaq Under the Hood” on March 21 at 08:00 GMT.

    Read the article

  • Investigating on xVelocity (VertiPaq) column size

    - by Marco Russo (SQLBI)
      In January I published an article about how to optimize high cardinality columns in VertiPaq. In the meantime, VertiPaq has been rebranded to xVelocity: the official name is now “xVelocity in-memory analytics engine (VertiPaq)” but using xVelocity and VertiPaq when we talk about Analysis Services has the same meaning. In this post I’ll show how to investigate on columns size of an existing Tabular database so that you can find the most important columns to be optimized. A first approach can be looking in the DataDir of Analysis Services and look for the folder containing the database. Then, look for the biggest files in all subfolders and you will find the name of a file that contains the name of the most expensive column. However, this heuristic process is not very optimized. A better approach is using a DMV that provides the exact information. For example, by using the following query (open SSMS, open an MDX query on the database you are interested to and execute it) you will see all database objects sorted by used size in a descending way. SELECT * FROM $SYSTEM.DISCOVER_STORAGE_TABLE_COLUMN_SEGMENTS ORDER BY used_size DESC You can look at the first rows in order to understand what are the most expensive columns in your tabular model. The interesting data provided are: TABLE_ID: it is the name of the object – it can be also a dictionary or an index COLUMN_ID: it is the column name the object belongs to – you can also see ID_TO_POS and POS_TO_ID in case they refer to internal indexes RECORDS_COUNT: it is the number of rows in the column USED_SIZE: it is the used memory for the object By looking at the ration between USED_SIZE and RECORDS_COUNT you can understand what you can do in order to optimize your tabular model. Your options are: Remove the column. Yes, if it contains data you will never use in a query, simply remove the column from the tabular model Change granularity. If you are tracking time and you included milliseconds but seconds would be enough, round the data source column to the nearest second. If you have a floating point number but two decimals are good enough (i.e. the temperature), round the number to the nearest decimal is relevant to you. Split the column. Create two or more columns that have to be combined together in order to produce the original value. This technique is described in VertiPaq optimization article. Sort the table by that column. When you read the data source, you might consider sorting data by this column, so that the compression will be more efficient. However, this technique works better on columns that don’t have too many distinct values and you will probably move the problem to another column. Sorting data starting from the lower density columns (those with a few number of distinct values) and going to higher density columns (those with high cardinality) is the technique that provides the best compression ratio. After the optimization you should be able to reduce the used size and improve the count/size ration you measured before. If you are interested in a longer discussion about internal storage in VertiPaq and you want understand why this approach can save you space (and time), you can attend my 24 Hours of PASS session “VertiPaq Under the Hood” on March 21 at 08:00 GMT.

    Read the article

  • What Counts For a DBA – Depth

    - by Louis Davidson
    SQL Server offers very simple interfaces to many of its features. Most people could open up SSMS, connect to a server, write a simple query and see the results. Even several of the core DBA tasks are deceptively straightforward. It doesn’t take a rocket scientist to perform a basic database backup or run a trace (even using the newfangled Extended Events!). However, appearances can be deceptive, and often times it is really important that a DBA understands not just the basics of how to perform a task, but why we do a task, and how that task works. As an analogy, consider a child walking into a darkened room. Most would know that they need to turn on the light, and how to do it, so they flick the switch. But what happens if light fails to shine forth. Most would immediately tell you that you need to consider changing the light bulb. So you hop in the car and take them to the local home store and instruct them to buy a replacement. Confronted with a 40 foot display of light bulbs, how will they decide which of the hundreds of types of bulbs, of different types, fittings, shapes, colors, power and efficiency ratings, is the right choice? Obviously the main lesson the child is going to learn this day is how to use their cell phone as a flashlight so they don’t have to ask for help the next time. Likewise, when the metaphorical toddlers who use your database server have issues, they will instinctively know something is wrong, and may even have some idea what caused it, but will have no depth of knowledge to figure out the right solution. That is where the DBA comes in and attempts to save the day. However, when one looks beneath the shiny UI, SQL Server has its own “40 foot display of light bulbs”, in the form of the tremendous number of tools and the often-bewildering amount of information they can present to the DBA, to help us find issues. Unfortunately, resorting to guesswork, to trying different “bulbs” over and over, hoping to stumble on the answer. This is where the right depth of knowledge goes a long way. If we need to write a SELECT statement, then knowing the syntax and where to find the data is not enough. Knowledge of indexes and query plans is essential. Without it, we might hit on a query that “works”, but we are basically still a user, not a programmer, because we have no real control over our platform. Is that level of knowledge deep enough? Probably not, since knowledge of the underlying metadata and structures would be very useful in helping us make sense of any query plan. Understanding the structure of an index makes the “key lookup” operator not sound like what you do when someone tapes your car key to the ceiling. So is even this level of understanding deep enough? Do we need to understand the memory architecture used to process the query? It might be a comforting level of knowledge, and will doubtless come in handy at some point, but is not strictly necessary in most cases. Beyond that lies (more or less) full knowledge of SQL language and the intricacies of every step the SQL Server engine takes to process our query. My personal theory is that, as a professional, our knowledge of a given task should extend, at a minimum, one level deeper than is strictly necessary to perform the task. Anything deeper can be left to the ridiculously smart, or obsessive, or both. As an example. tasked with storing an integer value between 0 and 99999999, it’s essential that I know that choosing an Integer over Decimal(8,0) will likely offer performance benefits. It is then useful that I also understand the value of adding a CHECK constraint, to make sure the values are valid to the desired range; and comforting that I know a little about the underlying processors, registers and computer math. Anything further, I leave to the likes of Joe Chang, whose recent blog post on the topic offers depth by the bucketful!  

    Read the article

  • Criminals and Other Illegal Characters

    - by Most Valuable Yak (Rob Volk)
    SQLTeam's favorite Slovenian blogger Mladen (b | t) had an interesting question on Twitter: http://www.twitter.com/MladenPrajdic/status/347057950470307841 I liked Kendal Van Dyke's (b | t) reply: http://twitter.com/SQLDBA/status/347058908801667072 And he was right!  This is one of those pretty-useless-but-sounds-interesting propositions that I've based all my presentations on, and most of my blog posts. If you read all the replies you'll see a lot of good suggestions.  I particularly like Aaron Bertrand's (b | t) idea of going into the Unicode character set, since there are over 65,000 characters available.  But how to find an illegal character?  Detective work? I'm working on the premise that if SQL Server will reject it as a name it would throw an error.  So all we have to do is generate all Unicode characters, rename a database with that character, and catch any errors. It turns out that dynamic SQL can lend a hand here: IF DB_ID(N'a') IS NULL CREATE DATABASE [a]; DECLARE @c INT=1, @sql NVARCHAR(MAX)=N'', @err NVARCHAR(MAX)=N''; WHILE @c<65536 BEGIN BEGIN TRY SET @sql=N'alter database ' + QUOTENAME(CASE WHEN @c=1 THEN N'a' ELSE NCHAR(@c-1) END) + N' modify name=' + QUOTENAME(NCHAR(@c)); RAISERROR(N'*** Trying %d',10,1,@c) WITH NOWAIT; EXEC(@sql); SET @c+=1; END TRY BEGIN CATCH SET @err=ERROR_MESSAGE(); RAISERROR(N'Ooops - %d - %s',10,1,@c,@err) WITH NOWAIT; BREAK; END CATCH END SET @sql=N'alter database ' + QUOTENAME(NCHAR(@c-1)) + N' modify name=[a]'; EXEC(@sql); The script creates a dummy database "a" if it doesn't already exist, and only tests single characters as a database name.  If you have databases with single character names then you shouldn't run this on that server. It takes a few minutes to run, but if you do you'll see that no errors are thrown for any of the characters.  It seems that SQL Server will accept any character, no matter where they're from.  (Well, there's one, but I won't tell you which. Actually there's 2, but one of them requires some deep existential thinking.) The output is also interesting, as quite a few codes do some weird things there.  I'm pretty sure it's due to the font used in SSMS for the messages output window, not all characters are available.  If you run it using the SQLCMD utility, and use the -o switch to output to a file, and -u for Unicode output, you can open the file in Notepad or another text editor and see the whole thing. I'm not sure what character I'd recommend to answer Mladen's question.  I think the standard tab (ASCII 9) is fine.  There's also several specific separator characters in the original ASCII character set (decimal 28-31). But of all the choices available in Unicode whitespace, I think my favorite would be the Mongolian Vowel Separator.  Or maybe the zero-width space. (that'll be fun to print!)  And since this is Mladen we're talking about, here's a good selection of "intriguing" characters he could use.

    Read the article

  • Send large JSON data to WCF Rest Service

    - by Christo Fur
    Hi I have a client web page that is sending a large json object to a proxy service on the same domain as the web page. The proxy (an ashx handler) then forwards the request to a WCF Rest Service. Using a WebClient object (standard .net object for making a http request) The JSON successfully arrives at the proxy via a jQuery POST on the client webpage. However, when the proxy forwards this to the WCF service I get a Bad Request - Error 400 This doesn't happen when the size of the json data is small The WCF service contract looks like this [WebInvoke(Method = "POST", BodyStyle = WebMessageBodyStyle.Wrapped, RequestFormat = WebMessageFormat.Json, ResponseFormat = WebMessageFormat.Json)] [OperationContract] CarConfiguration CreateConfiguration(CarConfiguration configuration); And the DataContract like this [DataContract(Namespace = "")] public class CarConfiguration { [DataMember(Order = 1)] public int CarConfigurationId { get; set; } [DataMember(Order = 2)] public int UserId { get; set; } [DataMember(Order = 3)] public string Model { get; set; } [DataMember(Order = 4)] public string Colour { get; set; } [DataMember(Order = 5)] public string Trim { get; set; } [DataMember(Order = 6)] public string ThumbnailByteData { get; set; } [DataMember(Order = 6)] public string Wheel { get; set; } [DataMember(Order = 7)] public DateTime Date { get; set; } [DataMember(Order = 8)] public List<string> Accessories { get; set; } [DataMember(Order = 9)] public string Vehicle { get; set; } [DataMember(Order = 10)] public Decimal Price { get; set; } } When the ThumbnailByteData field is small, all is OK. When it is large I get the 400 error What are my options here? I've tried increasing the MaxBytesRecived config setting but that is not enough Any ideas?

    Read the article

  • c# find nearest match to array of doubles

    - by Scott
    Given the code below, how do I compare a List of objects's values with a test value? I'm building a geolocation application. I'll be passing in longitude and latitude and would like to have the service answer back with the location closest to those values. I started down the path of converting to a string, and formatting the values down to two decimal places, but that seemed a bit too ghetto, and I'm looking for a more elegant solution. Any help would be great. Thanks, Scott public class Location : IEnumerable { public string label { get; set; } public double lat { get; set; } public double lon { get; set; } //Implement IEnumerable public IEnumerator GetEnumerator() { return (IEnumerator)this; } } [HandleError] public class HomeController : Controller { private List<Location> myList = new List<Location> { new Location { label="Atlanta Midtown", lon=33.657674, lat=-84.423130}, new Location { label="Atlanta Airport", lon=33.794151, lat=-84.387228}, new Location { label="Stamford, CT", lon=41.053758, lat=-73.530979}, ... } public static int Main(String[] args) { string inLat = "-80.987654"; double dblInLat = double.Parse(inLat); // here's where I would like to find the closest location to the inLat // once I figure out this, I'll implement the Longitude, and I'll be set }

    Read the article

  • SQLite vs Firebird

    - by rwallace
    The scenario I'm looking at is "This program uses Postgres. Oh, you want to just use it single-user for the moment, and put off having to deal with installing a database server? Okay, in the meantime you can use it with the embedded single-user database." The question is then which embedded database is best. As I understand it, the two main contenders are SQLite and Firebird; so which is better? Criteria: Full SQL support, or as close as reasonably possible. Full text search. Easy to call from C# Locks, or allows you to lock, the database file to make sure nobody tries to run it multiuser and ends up six months down the road with intermittent data corruption in all their backups. Last but far from least, reliability. As I understand it, the disadvantages of SQLite are, No right outer join. Workaround: use left outer join instead. Not much integrity checking. Workaround: be really careful in the application code. No decimal numbers. Workaround: lots of aspirin. None of the above are showstoppers. Are there any others I'm missing? (I know it doesn't support some administrative and code-within-database SQL features, that aren't relevant for this kind of use case.) I don't know anything much about Firebird. What are its disadvantages?

    Read the article

  • dbExpress error in Delphi 2010

    - by JosephStyons
    The below code works in Delphi 2007, but it gives me this error in Delphi 2010: --------------------------- Error --------------------------- Cannot load oci.dll library (error code 127). The oci.dll library may be missing from the system path or you may have an incompatible version of the library installed. --------------------------- OK Details >> --------------------------- The exception is raised when I set "connected" to "true". I have tried placing a copy of "oci.dll" in the same folder as the .exe file, but I get the same message. I also get this message when using the form designer and a visible TSQLConnection component. Any thoughts? function TDBExpressConnector.GetConnection(username, password, servername: string) : TSQLConnection; begin //take a username, password, and server //return a connected TSQLConnection try FSqlDB := TSQLConnection.Create(nil); with FSqlDB do begin Connected := False; DriverName := 'Oracle'; GetDriverFunc := 'getSQLDriverORACLE'; KeepConnection := True; LibraryName := 'dbxora30.dll'; ConnectionName := 'OracleConnection';; Params.Clear; Params.Add('DriverName=Oracle'); Params.Add('DataBase=' + servername); Params.Add('User_Name=' + username); Params.Add('Password=' + password); Params.Add('RowsetSize=20'); Params.Add('BlobSize=-1'); Params.Add('ErrorResourceFile='); Params.Add('LocaleCode=0000'); Params.Add('Oracle TransIsolation=ReadCommited'); Params.Add('OS Authentication=False'); Params.Add('Multiple Transaction=False'); Params.Add('Trim Char=False'); Params.Add('Decimal Separator=.'); LoginPrompt := False; Connected := True; end; Result := FSqlDB; except on e:Exception do raise; end; //try-except end;

    Read the article

  • Android SeekBar Minimum and Continuous Float Value Attributes

    - by fordays
    I'm looking for a way to implement a minimum value in my SeekBar and also have the option to increment decimal numbers. For example, currently my SeekBar's minimum is set to 0, but I need it to start at the value 0.2. Also, I would like to have the functionality to be able to have the user select a number from 0.2 to 10.0 at a .1 precision so they can choose the numbers 5.6 or 7.1. Here are the style attributes for my SeekBar: <style name="SeekBar"> <item name="android:paddingLeft">30dp</item> <item name="android:paddingRight">30dp</item> <item name="android:layout_width">fill_parent</item> <item name="android:layout_height">wrap_content</item> <item name="android:layout_marginTop">0dp</item> <item name="android:layout_marginBottom">0dp</item> <item name="android:max">10</item> <item name="android:progress">1</item> </style>

    Read the article

  • Ruby BigDecimal Round: Is this an error?

    - by peterdp
    While writing a test with a value that gets represented as a BigDecimal, I ran into something weird and decided to dig into it. In brief, '0.00009' when rounded to two decimal places is returned as 0.01 instead of 0.00. Really. Here's my script/console capture: >> bp = BigDecimal('0.09') => #<BigDecimal:210fe08,'0.9E-1',4(8)> >> bp.round(2,BigDecimal::ROUND_HALF_DOWN).to_f => 0.09 >> bp = BigDecimal('0.009') => #<BigDecimal:210bcf4,'0.9E-2',4(8)> >> bp.round(2,BigDecimal::ROUND_HALF_DOWN).to_f => 0.01 >> bp = BigDecimal('0.0009') => #<BigDecimal:2107a8c,'0.9E-3',4(12)> >> bp.round(2,BigDecimal::ROUND_HALF_DOWN).to_f => 0.0 >> bp = BigDecimal('0.00009') => #<BigDecimal:2103428,'0.9E-4',4(12)> >> bp.round(2,BigDecimal::ROUND_HALF_DOWN).to_f => 0.01 >> bp = BigDecimal('0.000009') => #<BigDecimal:20ff0f8,'0.9E-5',4(12)> >> bp.round(2,BigDecimal::ROUND_HALF_DOWN).to_f => 0.0 Oh, and I get the same results if I use the default mode, like so: >> bd = BigDecimal('0.00009') => #<BigDecimal:2152ed8,'0.9E-4',4(12)> >> bd.round(2).to_f => 0.01 Here are my versions: ruby 1.8.6 (2008-03-03 patchlevel 114) [i686-darwin9.2.2] Rails 2.3.4 Has anyone seen anything like this?

    Read the article

  • Code Golf: Leibniz formula for Pi

    - by Greg Beech
    I recently posted one of my favourite interview whiteboard coding questions in "What's your more controversial programming opinion", which is to write a function that computes Pi using the Leibniz formula. It can be approached in a number of different ways, and the exit condition takes a bit of thought, so I thought it might make an interesting code golf question. Shortest code wins! Given that Pi can be estimated using the function 4 * (1 - 1/3 + 1/5 - 1/7 + ...) with more terms giving greater accuracy, write a function that calculates Pi to within 0.00001. Edit: 3 Jan 2008 As suggested in the comments I changed the exit condition to be within 0.00001 as that's what I really meant (an accuracy 5 decimal places is much harder due to rounding and so I wouldn't want to ask that in an interview, whereas within 0.00001 is an easier to understand and implement exit condition). Also, to answer the comments, I guess my intention was that the solution should compute the number of iterations, or check when it had done enough, but there's nothing to prevent you from pre-computing the number of iterations and using that number. I really asked the question out of interest to see what people would come up with.

    Read the article

  • Perl DBI execute not maintaining MySQL stored procedure results

    - by David Dolphin
    I'm having a problem with executing a stored procedure from Perl (using the DBI Module). If I execute a simple SELECT * FROM table there are no problems. The SQL code is: DROP FUNCTION IF EXISTS update_current_stock_price; DELIMITER | CREATE FUNCTION update_current_stock_price (symbolIN VARCHAR(20), nameIN VARCHAR(150), currentPriceIN DECIMAL(10,2), currentPriceTimeIN DATETIME) RETURNS INT DETERMINISTIC BEGIN DECLARE outID INT; SELECT id INTO outID FROM mydb449.app_stocks WHERE symbol = symbolIN; IF outID 0 THEN UPDATE mydb449.app_stocks SET currentPrice = currentPriceIN, currentPriceTime = currentPriceTimeIN WHERE id = outID; ELSE INSERT INTO mydb449.app_stocks (symbol, name, currentPrice, currentPriceTime) VALUES (symbolIN, nameIN, currentPriceIN, currentPriceTimeIN); SELECT LAST_INSERT_ID() INTO outID; END IF; RETURN outID; END| DELIMITER ; The Perl code snip is: $sql = "select update_current_stock_price('$csv_result[0]', '$csv_result[1]', '$csv_result[2]', '$currentDateTime') as `id`;"; My::Extra::StandardLog("SQL being used: ".$sql); my $query_handle = $dbh-prepare($sql); $query_handle-execute(); $query_handle-bind_columns(\$returnID); $query_handle-fetch(); If I execute select update_current_stock_price('aapl', 'Apple Corp', '264.4', '2010-03-17 00:00:00') asid; using the mysql CLI client it executes the stored function correctly and returns an existing ID, or the new ID. However, the Perl will only return a new ID, (incrementing by 1 on each run). It also doesn't store the result in the database. It looks like it's executing a DELETE on the new id just after the update_current_stock_price function is run. Any help? Does Perl do anything funky to procedures I should know about? Before you ask, I don't have access to binary logging, sorry

    Read the article

< Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >