Search Results

Search found 62606 results on 2505 pages for 'sql files'.

Page 384/2505 | < Previous Page | 380 381 382 383 384 385 386 387 388 389 390 391  | Next Page >

  • How to clean and add options to the Open With list of apps

    - by Luis Alvarado
    After installing several PPAs (Wine, PoL) and opening several files with other apps (Like changing from Totem to VLC) I discovered that the Open With option had 2 problems: Many items on the list are duplicated (As seen on the image for "A Wine Program") Sometimes the app I want to use to open is not shown there (For example, Virtualbox or VLC) So how can I edit this list to clean the duplicates and add missing apps from the list.

    Read the article

  • "Ghost" output from locate?

    - by Hailwood
    I deleted some files, but they seem to still exist. Can anyone please explain the output of this: m@work:~$ locate cfx.css | xargs rm m@work:~$ locate cfx.css /var/www/wfox/hbr.co.nz/cfx/a/c/cfx.css /var/www/wfox/modules/gallery/cfx/a/c/cfx.css /var/www/wfox/phoenix/fp.co.nz/cfx/a/c/cfx.css /var/www/wfox/tmp.co.nz/cfx/a/c/cfx.css m@work:~$ cat /var/www/wfox/hbr.co.nz/cfx/a/c/cfx.css cat: /var/www/wfox/hbr.co.nz/cfx/a/c/cfx.css: No such file or directory

    Read the article

  • Application Crash cleared the content of the Folder

    - by Ameya
    Recently while working on the LinuxDC++ over the network the application crashed while downloading files. Now my Downloads folder which had at least 60-80GB of data is completely cleaned but the system is not reporting the available the correct free space. Is there way to restore the contents of the folder only as the solution available are for the whole partition. I just want to recover the contents from one folder.

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Trash Destination Adapter

    The Trash Destination and this article came from early experiences of using SSIS and community feedback at the time. When developing a package it is very useful to have a destination adapter that does nothing but consume rows with no setup requirement. You often want run a package part way through development, or just add a path so you can set a Data Viewer. There are stock tasks that can be used, but with the Trash Destination all columns are treated as selected automatically (usage type of read-only), so the pipeline knows they are required. It is also obvious that this is for development or diagnostic purposes, and is clearly not a part of the functional design of the package. It is also ideal for just playing around and exploring concepts in SSIS, and is often used in conjunction with the Data Generator Source. Using these two components it is easy to setup a test of an expression in the Derived Column Transformation for example. The Data Generator Source provides some dummy data, and the Trash Destination allows you to anchor the output path and set a Data Viewer to examine the results. It can also be used when performance tuning packages. It is a consistent and known quantity that has no external influences, so it is ideal as a destination when breaking the data flow into sections to isolate a bottleneck. The adapter is really simple to use and requires no setup. Simply drop it onto the pipeline designer and use it to terminate your data flow path. Installation The component is provided as an MSI file which you can download and run to install it. This simply places the files on disk in the correct locations and also installs the assemblies in the Global Assembly Cache as per Microsoft’s recommendations. You may need to restart the SQL Server Integration Services service, as this caches information about what components are installed, as well as restarting any open instances of Business Intelligence Development Studio (BIDS) / Visual Studio that you may be using to build your SSIS packages. Finally, for 2005/2008, you will have to add the transformation to the Visual Studio toolbox manually. Right-click the toolbox, and select Choose Items.... Select the SSIS Data Flow Items tab, and then check the Trash Destination transformation in the Choose Toolbox Items window. This process has been described in detail in the related FAQ entry for How do I install a task or transform component? We recommend you follow best practice and apply the current Microsoft SQL Server Service pack to your SQL Server servers and workstations. Downloads The Trash Destination is available for SQL Server 2005, SQL Server 2008 (includes R2) and SQL Server 2012. Please choose the version to match your SQL Server version, or you can install multiple versions and use them side by side if you have more than one version of SQL Server installed. Trash Destination for SQL Server 2005 Trash Destination for SQL Server 2008 Trash Destination for SQL Server 2012 Version History SQL Server 2012 Version 3.0.0.34 - SQL Server 2012 release. Includes upgrade support for both 2005 and 2008 packages to 2012. (5 Jun 2012) SQL Server 2008 Version 2.0.0.33 - SQL Server 2008 release. Includes support for upgrade of 2005 packages. RTM compatible, previously February 2008 CTP. (4 Mar 2008) Version 2.0.0.31 - SQL Server 2008 November 2007 CTP. (14 Feb 2008) SQL Server 2005 Version 1.0.2.18 - SQL Server 2005 RTM Refresh. SP1 Compatibility Testing. (12 Jun 2006) Version 1.0.1.1 - SQL Server 2005 IDW 15 June CTP. Minor enhancements over v1.0.1.0. (11 Jun 2005) Version 1.0.1.0 - SQL Server 2005 IDW 14 April CTP. First Public Release. (30 May 2005) Troubleshooting Make sure you have downloaded the version that matches your version of SQL Server. We offer separate downloads for SQL Server 2005, SQL Server 2008 and SQL Server 2012. If you an error when you try and use the component along the lines of The component could not be added to the Data Flow task. Please verify that this component is properly installed.  ... The data flow object "Konesans ..." is not installed correctly on this computer, this usually indicates that the internal cache of SSIS components needs to be updated. This is held by the SSIS service, so you need restart the the SQL Server Integration Services service. You can do this from the Services applet in Control Panel or Administrative Tools in Windows. You can also restart the computer if you prefer. You may also need to restart any current instances of Business Intelligence Development Studio (BIDS) / Visual Studio that you may be using to build your SSIS packages. The full error message is shown below for reference: TITLE: Microsoft Visual Studio ------------------------------ The component could not be added to the Data Flow task. Please verify that this component is properly installed. ------------------------------ ADDITIONAL INFORMATION: The data flow object "Konesans.Dts.Pipeline.TrashDestination.Trash, Konesans.Dts.Pipeline.TrashDestination, Version=1.0.1.0, Culture=neutral, PublicKeyToken=b8351fe7752642cc" is not installed correctly on this computer. (Microsoft.DataTransformationServices.Design) For 2005/2008, once installation is complete you need to manually add the task to the toolbox before you will see it and to be able add it to packages - How do I install a task or transform component? This is not necessary for SQL Server 2012 as the new SSIS toolbox automatically detects components. If you are still having issues then contact us, but please provide as much detail as possible about error, as well as which version of the the task you are using and details of the SSIS tools installed.

    Read the article

  • Multitenant Design for SQL Azure: White Paper Available

    - by Herve Roggero
    Cloud computing is about scaling out all your application tiers, from web application to the database layer. In fact, the whole promise of Azure is to pay for just what you need. You need more IIS servers? No problemo... just spin another web server. You expect to double your storage needs for Azure Tables? No problemo; you are covered there too... just pay for your storage needs. But what about the database tier, SQL Azure? How do you add new databases easily, and transparently, so that your application simply uses more of SQL Azure if its needs to? Without changing a single line of code? And what if you need to scale back down? Welcome to the world of database scalability. There are many terms that describe database scalability, including data federation, multitenant designs, and even NoSQL depending on the technical solution you are implementing.  Because SQL Azure is a transactional database system, NoSQL is not really an option. However data federation and multitenant designs offer some very interesting scalability options that are worth considering. Data federation, a feature of SQL Azure that will be offered in the future, offers very interesting capabilities available natively on the SQL Azure platform. More to come in a few weeks... Multitenant designs on the other hand are design practices and technologies designed to help you reach flexible scalability options not available otherwise. The first incarnation of such a method was made available on CodePlex as an open source project (http://enzosqlshard.codeplex.com).  This project was an attempt to provide a sharding library for educational purposes.  All that sounds really cool... and really esoteric... almost a form of database "voodoo"... However after being on multiple Azure projects I am starting to see a real need. Customers want to be able to free themselves from the database tier, so that if they have 10 new customers tomorrow, all they need to do is add 2 more SQL Azure instances. It's that simple. How you achieve this, and suggested application design guidelines, are available in a white paper I just published.  The white paper offers two primary sections. The first section describes the business and technical problem at hand, and how to classify it according to specific design patterns. For example, I discuss compressed shards through schema separation. The second section offers a method for addressing the needs of a multitenant design using a new library, the big bother of the codeplex project mentioned previously (that I created earlier this year), complete with management interface and such. A Beta of this platform will be made available within weeks; as soon as the documentation will be ready.   I would like to ask you to drop me a quick email at [email protected] if you are going to download the white paper. It's not required, but it would help me get in touch with you for feedback.  You can download this white paper here:   http://www.bluesyntax.net/files/EnzoFramework.pdf . Thank you, and I am looking for feedback, thoughts and implementation opportunities.

    Read the article

  • I Hereby Resolve… (T-SQL Tuesday #14)

    - by smisner
    It’s time for another T-SQL Tuesday, hosted this month by Jen McCown (blog|twitter), on the topic of resolutions. Specifically, “what techie resolutions have you been pondering, and why?” I like that word – pondering – because I ponder a lot. And while there are many things that I do already because of my job, there are many more things that I ponder about doing…if only I had the time. Then I ponder about making time, but then it’s back to work! In 2010, I was moderately more successful in making time for things that I ponder about than I had been in years past, and I hope to continue that trend in 2011. If Jen hadn’t settled on this topic, I could keep my ponderings to myself and no one would ever know the outcome, but she’s egged me on (and everyone else that chooses to participate)! So here goes… For me, having resolve to do something means that I wouldn’t be doing that something as part of my ordinary routine. It takes extra effort to make time for it. It’s not something that I do once and check off a list, but something that I need to commit to over a period of time. So with that in mind, I hereby resolve… To Learn Something New… One of the things I love about my job is that I get to do a lot of things outside of my ordinary routine. It’s a veritable smorgasbord of opportunity! So what more could I possibly add to that list of things to do? Well, the more I learn, the more I realize I have so much more to learn. It would be much easier to remain in ignorant bliss, but I was born to learn. Constantly. (And apparently to teach, too– my father will tell you that as a small child, I had the neighborhood kids gathered together to play school – in the summer. I’m sure they loved that – but they did it!) These are some of things that I want to dedicate some time to learning this year: Spatial data. I have a good understanding of how maps in Reporting Services works, and I can cobble together a simple T-SQL spatial query, but I know I’m only scratching the surface here. Rob Farley (blog|twitter) posted interesting examples of combining maps and PivotViewer, and I think there’s so many more creative possibilities. I’ve always felt that pictures (including charts and maps) really help people get their minds wrapped around data better, and because a lot of data has a geographic aspect to it, I believe developing some expertise here will be beneficial to my work. PivotViewer. Not only is PivotViewer combined with maps a useful way to visualize data, but it’s an interesting way to work with data. If you haven’t seen it yet, check out this interactive demonstration using Netflx OData feed. According to Rob Farley, learning how to work with PivotViewer isn’t trivial. Just the type of challenge I like! Security. You’ve heard of the accidental DBA? Well, I am the accidental security person – is there a word for that role? My eyes used to glaze over when having to study about security, or  when reading anything about it. Then I had a problem long ago that no one could figure out – not even the vendor’s tech support – until I rolled up my sleeves and painstakingly worked through the myriad of potential problems to resolve a very thorny security issue. I learned a lot in the process, and have been able to share what I’ve learned with a lot of people. But I’m not convinced their eyes weren’t glazing over, too. I don’t take it personally – it’s just a very dry topic! So in addition to deepening my understanding about security, I want to find a way to make the subject as it relates to SQL Server and business intelligence more accessible and less boring. Well, there’s actually a lot more that I could put on this list, and a lot more things I have plans to do this coming year, but I run the risk of overcommitting myself. And then I wouldn’t have time… To Have Fun! My name is Stacia and I’m a workaholic. When I love what I do, it’s difficult to separate out the work time from the fun time. But there are some things that I’ve been meaning to do that aren’t related to business intelligence for which I really need to develop some resolve. And they are techie resolutions, too, in a roundabout sort of way! Photography. When my husband and I went on an extended camping trip in 2009 to Yellowstone and the Grand Tetons, I had a nice little digital camera that took decent pictures. But then I saw the gorgeous cameras that other tourists were toting around and decided I needed one too. So I bought a Nikon D90 and have started to learn to use it, but I’m definitely still in the beginning stages. I traveled so much in 2010 and worked on two book projects that I didn’t have a lot of free time to devote to it. I was very inspired by Kimberly Tripp’s (blog|twitter) and Paul Randal’s (blog|twitter) photo-adventure in Alaska, though, and plan to spend some dedicated time with my camera this year. (And hopefully before I move to Alaska – nothing set in stone yet, but we hope to move to a remote location – with Internet access – later this year!) Astronomy. I have this cool telescope, but it suffers the same fate as my camera. I have been gone too much and busy with other things that I haven’t had time to work with it. I’ll figure out how it works, and then so much time passes by that I forget how to use it. I have this crazy idea that I can actually put the camera and the telescope together for astrophotography, but I think I need to start simple by learning how to use each component individually. As long as I’m living in Las Vegas, I know I’ll have clear skies for nighttime viewing, but when we move to Alaska, we’ll be living in a rain forest. I have no idea what my opportunities will be like there – except I know that when the sky is clear, it will be far more amazing than anything I can see in Vegas – even out in the desert - because I’ll be so far away from city light pollution. I’ve been contemplating putting together a blog on these topics as I learn. As many of my fellow bloggers in the SQL Server community know, sometimes the best way to learn something is to sit down and write about it. I’m just stumped by coming up with a clever name for the new blog, which I was thinking about inaugurating with my move to Alaska. Except that I don’t know when that will be exactly, so we’ll just have to wait and see which comes first!

    Read the article

  • SSIS: Deploying OLAP cubes using C# script tasks and AMO

    - by DrJohn
    As part of the continuing series on Building dynamic OLAP data marts on-the-fly, this blog entry will focus on how to automate the deployment of OLAP cubes using SQL Server Integration Services (SSIS) and Analysis Services Management Objects (AMO). OLAP cube deployment is usually done using the Analysis Services Deployment Wizard. However, this option was dismissed for a variety of reasons. Firstly, invoking external processes from SSIS is fraught with problems as (a) it is not always possible to ensure SSIS waits for the external program to terminate; (b) we cannot log the outcome properly and (c) it is not always possible to control the server's configuration to ensure the executable works correctly. Another reason for rejecting the Deployment Wizard is that it requires the 'answers' to be written into four XML files. These XML files record the three things we need to change: the name of the server, the name of the OLAP database and the connection string to the data mart. Although it would be reasonably straight forward to change the content of the XML files programmatically, this adds another set of complication and level of obscurity to the overall process. When I first investigated the possibility of using C# to deploy a cube, I was surprised to find that there are no other blog entries about the topic. I can only assume everyone else is happy with the Deployment Wizard! SSIS "forgets" assembly references If you build your script task from scratch, you will have to remember how to overcome one of the major annoyances of working with SSIS script tasks: the forgetful nature of SSIS when it comes to assembly references. Basically, you can go through the process of adding an assembly reference using the Add Reference dialog, but when you close the script window, SSIS "forgets" the assembly reference so the script will not compile. After repeating the operation several times, you will find that SSIS only remembers the assembly reference when you specifically press the Save All icon in the script window. This problem is not unique to the AMO assembly and has certainly been a "feature" since SQL Server 2005, so I am not amazed it is still present in SQL Server 2008 R2! Sample Package So let's take a look at the sample SSIS package I have provided which can be downloaded from here: DeployOlapCubeExample.zip  Below is a screenshot after a successful run. Connection Managers The package has three connection managers: AsDatabaseDefinitionFile is a file connection manager pointing to the .asdatabase file you wish to deploy. Note that this can be found in the bin directory of you OLAP database project once you have clicked the "Build" button in Visual Studio TargetOlapServerCS is an Analysis Services connection manager which identifies both the deployment server and the target database name. SourceDataMart is an OLEDB connection manager pointing to the data mart which is to act as the source of data for your cube. This will be used to replace the connection string found in your .asdatabase file Once you have configured the connection managers, the sample should run and deploy your OLAP database in a few seconds. Of course, in a production environment, these connection managers would be associated with package configurations or set at runtime. When you run the sample, you should see that the script logs its activity to the output screen (see screenshot above). If you configure logging for the package, then these messages will also appear in your SSIS logging. Sample Code Walkthrough Next let's walk through the code. The first step is to parse the connection string provided by the TargetOlapServerCS connection manager and obtain the name of both the target OLAP server and also the name of the OLAP database. Note that the target database does not have to exist to be referenced in an AS connection manager, so I am using this as a convenient way to define both properties. We now connect to the server and check for the existence of the OLAP database. If it exists, we drop the database so we can re-deploy. svr.Connect(olapServerName); if (svr.Connected) { // Drop the OLAP database if it already exists Database db = svr.Databases.FindByName(olapDatabaseName); if (db != null) { db.Drop(); } // rest of script } Next we start building the XMLA command that will actually perform the deployment. Basically this is a small chuck of XML which we need to wrap around the large .asdatabase file generated by the Visual Studio build process. // Start generating the main part of the XMLA command XmlDocument xmlaCommand = new XmlDocument(); xmlaCommand.LoadXml(string.Format("<Batch Transaction='false' xmlns='http://schemas.microsoft.com/analysisservices/2003/engine'><Alter AllowCreate='true' ObjectExpansion='ExpandFull'><Object><DatabaseID>{0}</DatabaseID></Object><ObjectDefinition/></Alter></Batch>", olapDatabaseName));  Next we need to merge two XML files which we can do by simply using setting the InnerXml property of the ObjectDefinition node as follows: // load OLAP Database definition from .asdatabase file identified by connection manager XmlDocument olapCubeDef = new XmlDocument(); olapCubeDef.Load(Dts.Connections["AsDatabaseDefinitionFile"].ConnectionString); // merge the two XML files by obtain a reference to the ObjectDefinition node oaRootNode.InnerXml = olapCubeDef.InnerXml;   One hurdle I had to overcome was removing detritus from the .asdabase file left by the Visual Studio build. Through an iterative process, I found I needed to remove several nodes as they caused the deployment to fail. The XMLA error message read "Cannot set read-only node: CreatedTimestamp" or similar. In comparing the XMLA generated with by the Deployment Wizard with that generated by my code, these read-only nodes were missing, so clearly I just needed to strip them out. This was easily achieved using XPath to find the relevant XML nodes, of which I show one example below: foreach (XmlNode node in rootNode.SelectNodes("//ns1:CreatedTimestamp", nsManager)) { node.ParentNode.RemoveChild(node); } Now we need to change the database name in both the ID and Name nodes using code such as: XmlNode databaseID = xmlaCommand.SelectSingleNode("//ns1:Database/ns1:ID", nsManager); if (databaseID != null) databaseID.InnerText = olapDatabaseName; Finally we need to change the connection string to point at the relevant data mart. Again this is easily achieved using XPath to search for the relevant nodes and then replace the content of the node with the new name or connection string. XmlNode connectionStringNode = xmlaCommand.SelectSingleNode("//ns1:DataSources/ns1:DataSource/ns1:ConnectionString", nsManager); if (connectionStringNode != null) { connectionStringNode.InnerText = Dts.Connections["SourceDataMart"].ConnectionString; } Finally we need to perform the deployment using the Execute XMLA command and check the returned XmlaResultCollection for errors before setting the Dts.TaskResult. XmlaResultCollection oResults = svr.Execute(xmlaCommand.InnerXml);  // check for errors during deployment foreach (Microsoft.AnalysisServices.XmlaResult oResult in oResults) { foreach (Microsoft.AnalysisServices.XmlaMessage oMessage in oResult.Messages) { if ((oMessage.GetType().Name == "XmlaError")) { FireError(oMessage.Description); HadError = true; } } } If you are not familiar with XML programming, all this may all seem a bit daunting, but perceiver as the sample code is pretty short. If you would like the script to process the OLAP database, simply uncomment the lines in the vicinity of Process method. Of course, you can extend the script to perform your own custom processing and to even synchronize the database to a front-end server. Personally, I like to keep the deployment and processing separate as the code can become overly complex for support staff.If you want to know more, come see my session at the forthcoming SQLBits conference.

    Read the article

  • Developing a Cost Model for Cloud Applications

    - by BuckWoody
    Note - please pay attention to the date of this post. As much as I attempt to make the information below accurate, the nature of distributed computing means that components, units and pricing will change over time. The definitive costs for Microsoft Windows Azure and SQL Azure are located here, and are more accurate than anything you will see in this post: http://www.microsoft.com/windowsazure/offers/  When writing software that is run on a Platform-as-a-Service (PaaS) offering like Windows Azure / SQL Azure, one of the questions you must answer is how much the system will cost. I will not discuss the comparisons between on-premise costs (which are nigh impossible to calculate accurately) versus cloud costs, but instead focus on creating a general model for estimating costs for a given application. You should be aware that there are (at this writing) two billing mechanisms for Windows and SQL Azure: “Pay-as-you-go” or consumption, and “Subscription” or commitment. Conceptually, you can consider the former a pay-as-you-go cell phone plan, where you pay by the unit used (at a slightly higher rate) and the latter as a standard cell phone plan where you commit to a contract and thus pay lower rates. In this post I’ll stick with the pay-as-you-go mechanism for simplicity, which should be the maximum cost you would pay. From there you may be able to get a lower cost if you use the other mechanism. In any case, the model you create should hold. Developing a good cost model is essential. As a developer or architect, you’ll most certainly be asked how much something will cost, and you need to have a reliable way to estimate that. Businesses and Organizations have been used to paying for servers, software licenses, and other infrastructure as an up-front cost, and power, people to the systems and so on as an ongoing (and sometimes not factored) cost. When presented with a new paradigm like distributed computing, they may not understand the true cost/value proposition, and that’s where the architect and developer can guide the conversation to make a choice based on features of the application versus the true costs. The two big buckets of use-types for these applications are customer-based and steady-state. In the customer-based use type, each successful use of the program results in a sale or income for your organization. Perhaps you’ve written an application that provides the spot-price of foo, and your customer pays for the use of that application. In that case, once you’ve estimated your cost for a successful traversal of the application, you can build that into the price you charge the user. It’s a standard restaurant model, where the price of the meal is determined by the cost of making it, plus any profit you can make. In the second use-type, the application will be used by a more-or-less constant number of processes or users and no direct revenue is attached to the system. A typical example is a customer-tracking system used by the employees within your company. In this case, the cost model is often created “in reverse” - meaning that you pilot the application, monitor the use (and costs) and that cost is held steady. This is where the comparison with an on-premise system becomes necessary, even though it is more difficult to estimate those on-premise true costs. For instance, do you know exactly how much cost the air conditioning is because you have a team of system administrators? This may sound trivial, but that, along with the insurance for the building, the wiring, and every other part of the system is in fact a cost to the business. There are three primary methods that I’ve been successful with in estimating the cost. None are perfect, all are demand-driven. The general process is to lay out a matrix of: components units cost per unit and then multiply that times the usage of the system, based on which components you use in the program. That sounds a bit simplistic, but using those metrics in a calculation becomes more detailed. In all of the methods that follow, you need to know your application. The components for a PaaS include computing instances, storage, transactions, bandwidth and in the case of SQL Azure, database size. In most cases, architects start with the first model and progress through the other methods to gain accuracy. Simple Estimation The simplest way to calculate costs is to architect the application (even UML or on-paper, no coding involved) and then estimate which of the components you’ll use, and how much of each will be used. Microsoft provides two tools to do this - one is a simple slider-application located here: http://www.microsoft.com/windowsazure/pricing-calculator/  The other is a tool you download to create an “Return on Investment” (ROI) spreadsheet, which has the advantage of leading you through various questions to estimate what you plan to use, located here: https://roianalyst.alinean.com/msft/AutoLogin.do?d=176318219048082115  You can also just create a spreadsheet yourself with a structure like this: Program Element Azure Component Unit of Measure Cost Per Unit Estimated Use of Component Total Cost Per Component Cumulative Cost               Of course, the consideration with this model is that it is difficult to predict a system that is not running or hasn’t even been developed. Which brings us to the next model type. Measure and Project A more accurate model is to actually write the code for the application, using the Software Development Kit (SDK) which can run entirely disconnected from Azure. The code should be instrumented to estimate the use of the application components, logging to a local file on the development system. A series of unit and integration tests should be run, which will create load on the test system. You can use standard development concepts to track this usage, and even use Windows Performance Monitor counters. The best place to start with this method is to use the Windows Azure Diagnostics subsystem in your code, which you can read more about here: http://blogs.msdn.com/b/sumitm/archive/2009/11/18/introducing-windows-azure-diagnostics.aspx This set of API’s greatly simplifies tracking the application, and in fact you can use this information for more than just a cost model. After you have the tracking logs, you can plug the numbers into ay of the tools above, which should give a representative cost or in some cases a unit cost. The consideration with this model is that the SDK fabric is not a one-to-one comparison with performance on the actual Windows Azure fabric. Those differences are usually smaller, but they do need to be considered. Also, you may not be able to accurately predict the load on the system, which might lead to an architectural change, which changes the model. This leads us to the next, most accurate method for a cost model. Sample and Estimate Using standard statistical and other predictive math, once the application is deployed you will get a bill each month from Microsoft for your Azure usage. The bill is quite detailed, and you can export the data from it to do analysis, and using methods like regression and so on project out into the future what the costs will be. I normally advise that the architect also extrapolate a unit cost from those metrics as well. This is the information that should be reported back to the executives that pay the bills: the past cost, future projected costs, and unit cost “per click” or “per transaction”, as your case warrants. The challenge here is in the model itself - statistical methods are not foolproof, and the larger the sample (in this case I recommend the entire population, not a smaller sample) is key. References and Tools Articles: http://blogs.msdn.com/b/patrick_butler_monterde/archive/2010/02/10/windows-azure-billing-overview.aspx http://technet.microsoft.com/en-us/magazine/gg213848.aspx http://blog.codingoutloud.com/2011/06/05/azure-faq-how-much-will-it-cost-me-to-run-my-application-on-windows-azure/ http://blogs.msdn.com/b/johnalioto/archive/2010/08/25/10054193.aspx http://geekswithblogs.net/iupdateable/archive/2010/02/08/qampa-how-can-i-calculate-the-tco-and-roi-when.aspx   Other Tools: http://cloud-assessment.com/ http://communities.quest.com/community/cloud_tools

    Read the article

  • Nepotism In The SQL Family

    - by Rob Farley
    There’s a bunch of sayings about nepotism. It’s unpopular, unless you’re the family member who is getting the opportunity. But of course, so much in life (and career) is about who you know. From the perspective of the person who doesn’t get promoted (when the family member is), nepotism is simply unfair; even more so when the promoted one seems less than qualified, or incompetent in some way. We definitely get a bit miffed about that. But let’s also look at it from the other side of the fence – the person who did the promoting. To them, their son/daughter/nephew/whoever is just another candidate, but one in whom they have more faith. They’ve spent longer getting to know that person. They know their weaknesses and their strengths, and have seen them in all kinds of situations. They expect them to stay around in the company longer. And yes, they may have plans for that person to inherit one day. Sure, they have a vested interest, because they’d like their family members to have strong careers, but it’s not just about that – it’s often best for the company as well. I’m not announcing that the next LobsterPot employee is one of my sons (although I wouldn’t be opposed to the idea of getting them involved), but actually, admitting that almost all the LobsterPot employees are SQLFamily members… …which makes this post good for T-SQL Tuesday, this month hosted by Jeffrey Verheul (@DevJef). You see, SQLFamily is the concept that the people in the SQL Server community are close. We have something in common that goes beyond ordinary friendship. We might only see each other a few times a year, at events like the PASS Summit and SQLSaturdays, but the bonds that are formed are strong, going far beyond typical professional relationships. And these are the people that I am prepared to hire. People that I have got to know. I get to know their skill level, how well they explain things, how confident people are in their expertise, and what their values are. Of course there people that I wouldn’t hire, but I’m a lot more comfortable hiring someone that I’ve already developed a feel for. I need to trust the LobsterPot brand to people, and that means they need to have a similar value system to me. They need to have a passion for helping people and doing what they can to make a difference. Above all, they need to have integrity. Therefore, I believe in nepotism. All the people I’ve hired so far are people from the SQL community. I don’t know whether I’ll always be able to hire that way, but I have no qualms admitting that the things I look for in an employee are things that I can recognise best in those that are referred to as SQLFamily. …like Ted Krueger (@onpnt), LobsterPot’s newest employee and the guy who is representing our brand in America. I’m completely proud of this guy. He’s everything I want in an employee. He’s an experienced consultant (even wrote a book on it!), loving husband and father, genuine expert, and incredibly respected by his peers. It’s not favouritism, it’s just choosing someone I’ve been interviewing for years. @rob_farley

    Read the article

  • Want a headless build server for SSDT without installing Visual Studio? You’re out of luck!

    - by jamiet
    An issue that regularly seems to rear its head on my travels is that of headless build servers for SSDT. What does that mean exactly? Let me give you my interpretation of it. A SQL Server Data Tools (SSDT) project incorporates a build process that will basically parse all of the files within the project and spit out a .dacpac file. Where an organisation employs a Continuous Integration process they will likely want to automate the building of that dacpac whenever someone commits a change to the source control repository. In order to do that the organisation will use a build server (e.g. TFS, TeamCity, Jenkins) and hence that build server requires all the pre-requisite software that understands how to build an SSDT project. The simplest way to install all of those pre-requisites is to install SSDT itself however a lot of folks don’t like that approach because it installs a lot unnecessary components on there, not least Visual Studio itself. Those folks (of which i am one) are of the opinion that it should be unnecessary to install a heavyweight GUI in order to simply get a few software components required to do something that inherently doesn’t even need a GUI. The phrase “headless build server” is often used to describe a build server that doesn’t contain any heavyweight GUI tools such as Visual Studio and is a desirable state for a build server. In his blog post Headless MSBuild Support for SSDT (*.sqlproj) Projects Gert Drapers outlines the steps necessary to obtain a headless build server for SSDT: This article describes how to install the required components to build and publish SQL Server Data Tools projects (*.sqlproj) using MSBuild without installing the full SQL Server Data Tool hosted inside the Visual Studio IDE. http://sqlproj.com/index.php/2012/03/headless-msbuild-support-for-ssdt-sqlproj-projects/ Frankly however going through these steps is a royal PITA and folks like myself have longed for Microsoft to support headless build support for SSDT by providing a distributable installer that installs only the pre-requisites for building SSDT projects. Yesterday in MSDN forum thread Building a VS2013 headless build server - it's sooo hard Mike Hingley complained about this very thing and it prompted a response from Kevin Cunnane from the SSDT product team: The official recommendation from the TFS / Visual Studio team is to install the version of Visual Studio you use on the build machine. I, like many others, would rather not have to install full blown Visual Studio and so I asked: Is there any chance you'll ever support any of these scenarios: Installation of all build/deploy pre-requisites without installing the VS shell? TFS shipping with all of the pre-requisites for doing SSDT project build/deploys 3rd party build servers (e.g. TeamCity) shipping with all of the requisites for doing SSDT project build/deploys I have to say that the lack of a single installer containing all the pre-requisites for SSDT build/deploy puzzles me. Surely the DacFX installer would be a perfect vehicle for that? Kevin replied again: The answer is no for all 3 scenarios. We looked into this issue, discussed it with the Visual Studio / TFS team, and in the end agreed to go with their latest guidance which is to install Visual Studio (e.g. VS2013 Express for Web) on the build machine. This is how Visual Studio Online is doing it and it's the approach recommended for customers setting up their own TFS build servers. I would hope this is compatible with 3rd party build servers but have not verified whether this works with TeamCity etc. Note that DacFx MSI isn't a suitable release vehicle for this as we don't want to include Visual Studio/MSBuild dependencies in that package. It's meant to just include the core DacFx DLLs used by SSMS, SqlPackage.exe on the command line, etc. What this means is we won't be providing a separate MSI installer or nuget package with just the necessary build DLLs you need to run your build and tests. If someone wanted to create a script that generated a nuget package based on our DLLs and targets files, then release that somewhere on the web for easier integration with 3rd party build servers we've no problem with that. Again, here’s the link to the thread and its worth reading in its entirety if this is something that interests you. So there you have it. Microsoft will not be be providing support for headless build servers for SSDT but if someone in the community wants to go ahead and roll their own, go right ahead. @Jamiet

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 23 (sys.dm_db_index_usage_stats)

    - by Tamarick Hill
    The sys.dm_db_index_usage_stats Dynamic Management View is used to return usage information about the various indexes on your SQL Server instance. Let’s have a look at this DMV against our AdventureWorks2012 database so we can examine the information returned. SELECT * FROM sys.dm_db_index_usage_stats WHERE database_id = db_id('AdventureWorks2012') The first three columns in the result set represent the database_id, object_id, and index_id of a given row. You can join these columns back to other system tables to extract the actual database, object, and index names. The next four columns are probably the most beneficial columns within this DMV. First, the user_seeks column represents the number of times that a user query caused a seek operation against a particular index. The user_scans column represents how many times a user query caused a scan operation on a particular index. The user_lookups column represents how many times an index was used to perform a lookup operation. The user_updates column refers to how many times an index had to be updated due to a write operation that effected a particular index. The last_user_seek, last_user_scan, last_user_lookup, and last_user_update columns provide you with DATETIME information about when the last user scan, seek, lookup, or update operation was performed. The remaining columns in the result set are the same as the ones we previously discussed, except instead of the various operations being generated from user requests, they are generated from system background requests. This is an extremely useful DMV and one of my favorites when it comes to Index Maintenance. As we all know, indexes are extremely beneficial with improving the performance of your read operations. But indexes do have a downside as well. Indexes slow down the performance of your write operations, and they also require additional resources for storage. For this reason, in my opinion, it is important to regularly analyze the indexes on your system to make sure the indexes you have are being used efficiently. My AdventureWorks2012 database is only used for demonstrating or testing things, so I dont have a lot of meaningful information here, but for a Production system, if you see an index that is never getting any seeks, scans, or lookups, but is constantly getting a ton of updates, it more than likely would be a good candidate for you to consider removing. You would not be getting much benefit from the index, but yet it is incurring a cost on your system due to it constantly having to be updated for your write operations, not to mention the additional storage it is consuming. You should regularly analyze your indexes to ensure you keep your database systems as efficient and lean as possible. One thing to note is that these DMV statistics are reset every time SQL Server is restarted. Therefore it would not be a wise idea to make decisions about removing indexes after a Server Reboot or a cluster roll. If you restart your SQL Server instances frequently, for example if you schedule weekly/monthly cluster rolls, then you may not capture indexes that are being used for weekly/monthly reports that run for business users. And if you remove them, you may have some upset people at your desk on Monday morning. If you would like to begin analyzing your indexes to possibly remove the ones that your system is not using, I would recommend building a process to load this DMV information into a table on scheduled basis, depending on how frequently you perform an operation that would reset these statistics, then you can analyze the data over a period of time to get a more accurate view of what indexes are really being used and which ones or not. For more information about this DMV, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/ms188755.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 19 (sys.dm_exec_query_stats)

    - by Tamarick Hill
    The sys.dm_exec_query_stats DMV is one of the most useful DMV’s out there when it comes to performance tuning. If you have been keeping up with this blog series this month, you know that I started out on Day 1 reviewing many of the DMV’s within the ‘exec’ namespace. I’m not sure how I missed this one considering how valuable it is, but hey, they say it’s better late than never right?? On Day 7 and Day 8 we reviewed the sys.dm_exec_procedure_stats and sys.dm_exec_trigger_stats respectively. This sys.dm_exec_query_stats DMV is very similar to these two. As a matter of fact, this DMV will return all of the information you saw in the other two DMV’s, but in addition to that, you can see stats for all queries that have cached execution plans on your server. You can even see stats for statements that are ran Ad-Hoc as long as they are still cached in the buffer pool. To better illustrate this DMV, let have a quick look at it: SELECT * FROM sys.dm_exec_query_stats As you can see, there is a lot of information returned from this DMV. I wont go into detail about each and every one of these columns, but I will touch on a few of them briefly. The first column is the ‘sql_handle’, which if you remember from Day 4 of our blog series, I explained how you can use this column to extract the actual SQL text that was executed. The next columns statement_start_offset and statement_end_offset provide you a way of extracting the exact SQL statement that was executed as part of a batch. The plan_handle column is used to extract the Execution plan that was used, which we talked about during Day 5 of this blog series. Later in the result set, you have columns to identify how many times a particular statement was executed, how much CPU time it used, how many reads/writes it performed, the duration, how many rows were returned, etc. These columns provide you with a solid avenue to begin your performance optimization. The last column I will touch on is the query_plan_hash column. A lot of times when you have Dynamic SQL running on your server, you have similar statements with different parameter values being passed in. Many times these types of statements will get similar execution plans and then a Binary hash value can be generated based on these similar plans. This query plan hash can be used to find the cost of all queries that have similar execution plans and then you can tune based on that plan to improve the performance of all of the individual queries. This is a very powerful way of identifying and tuning Ad-hoc statements that run on your server. As I stated earlier, this sys.dm_exec_query_stats DMV is a very powerful and recommended DMV for performance tuning. You are able to quickly identify statements that are running on your server and analyze their impact on system resources. Using this DMV to track down the biggest performance killers on your server will allow you to make the biggest gains once you focus your tuning efforts on those top offenders. For more information about this DMV, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/ms189741.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

  • Three Buckets of Knowledge

    - by BuckWoody
    As I learn more and more about SQL Server every day, I divide up my information into three “buckets”: Concepts In the first bucket are the general concepts about the topic. What is it? What does it do (or sometimes, what is is supposed to do?) How does one operation flow to another? For this information I use books, magazine articles and believe it or not – Wikipedia. I don’t always trust that last source, but I do use it to see how others lay out their thoughts around a concept. I really like graphical charts that show me the process flow if I can get it, and this is an ideal place for a good presentation. In fact, this may be the only real use for a presentation – I’ll explain what I mean in a moment. Reference The references for a topic include things like Transact-SQL (T-SQL) syntax, or the screen layout on a panel, things like that. Think Dictionary. The only reference I trust for this information is Books Online – presentations are fine, but we’re talking about a dictionary. Ever go to a movie that just reads through a dictionary? Me neither. But I have gone to presentations where people try to include tons of reference materials in their slides. Even if you give me the presentation material later, it’s not really a searchable, readable medium. How To A how-to for me is an example, or even better, a tutorial about an example. Whatever it is shows me a practical use for the concepts and of course involves the syntax. The important thing here is that you need to be able to separate out the example the person is showing you from the stuff you need to know. I can’t tell you how many times folks have told me, “well, sure, if yours is red then that works. But mine is blue.” And I have to explain, “then use “blue” for the search word here.” You get the idea. No one will do your work for you – the examples are meant as a teaching tool only. I accept that, learn what I can, and then run off to create my own thing. You might think a How To works well in a presentation, and it does, for the most part. For a complex example or tutorial, I still prefer the printed word (electronic if possible) so that I can go over the example multiple times, skip around and so on.   The order here isn’t actually that important. Most of the time I start with a concept, look at an example, and then read the reference material. But sometimes I look up an example, read a little of concepts and then check the reference. The only primary thing I try to enforce is to read something from each of them. It’s dangerous to base your work on any single example, reference or concept.  Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Sql server version error...655 version needed but you computer has 612 or earlier version ? error

    - by xpugur
    Hi i have a error like " dbFileName cannot be opened because it is version 655. This server supports version 612 and earlier. " what should i do ? some friend of mine done a project but i guess he done it with sql 2008 and i have sql 2005 is that the reason why i got this error? can i fix it ? if i setup a newer version of sql does it will solve the problem? www.microsoft.com/express/Database/default.aspx#Installation_Options here sql server 2008 R2 express is available can it be the solution? thank you... by the way i found a link of an update http://www.microsoft.com/downloads/details.aspx?FamilyID=E1109AEF-1AA2-408D-AA0F-9DF094F993BF&displaylang=en is this a solution to my problem ?

    Read the article

  • Need to get .obj file names of Executable(which one is crrently executing) at runtime programaticall

    - by Usman
    Suppose I have a VC++ project contains no of(say e.g 5) Source files(.cpp files),it will generate 5 .obj files(obj files corresponding to my .cpp's files not all kernel and OS layers including .obj files) e.g my project includes xyz_1.cpp,xyz_2.cpp,xyz_3.cpp,xyz_4.cpp,it will corresponds 4 respective .objs. By programtaically HOW CAN I TAKE AND GET THE NAMES OF THESE 4 .OBJ files at runtime(On run time I need to check how many obj files & names of those objs). REMEMBER I DON'T NEED ALL KERNEL AND OS LAYER .OBJS I ONLY NEED OBJS OF MY .CPPs. Regards Usman

    Read the article

  • Visual Web Developer 2008 Express wanting SQL Server 2005 instead of 2008?

    - by J. Pablo Fernández
    When I double click on an mdf file on Visual Web Developer 2008 (NerdDinner.mdf) it says: Connections to SQL Server files (*.mdf) require SQL Server Express 2005 to function properly. Please verify the installation of the component or download from the URL: http://go.microsoft.com/fwlink/?LinkId=49251 The URL of course points to SQL Server Express 2008. I have that one installed and running. Any ideas why am I getting that message?

    Read the article

  • What is the best way to cofigure a sql server for 50 developers?

    - by Lakhlani Prashant
    Hi, If I am running an organization that has 50 .net developers and all are using sql server, what is the best way to make single sql server available to them? Here is some of the concerns that I want to be careful about Should I configure database users per project or per user? or both? Should I provide single sql server instance? There are some more concerns but I think getting answer of these two will be a good starting point.

    Read the article

  • Convert ADO.Net EF Connection String To Be SQL Azure Cloud Connection String Compatible!?

    - by Goober
    The Scenario I have written a Silverlight 3 Application that uses an SQL Server database. I'm moving the application onto the Cloud (Azure Platform). In order to do this I have had to setup my database on SQL Azure. I am using the ADO.Net Entity Framework to model my database. I have got the application running on the cloud, but I cannot get it to connect to the database. Below is the original localhost connection string, followed by the SQL Azure connection string that isn't working. The application itself runs fine, but fails when trying to retrieve data. The Original Localhost Connection String <add name="InmZenEntities" connectionString="metadata=res://*/InmZenModel.csdl|res://*/InmZenModel.ssdl|res://*/InmZenModel.msl; provider=System.Data.SqlClient; provider connection string=&quot; Data Source=localhost; Initial Catalog=InmarsatZenith; Integrated Security=True; MultipleActiveResultSets=True&quot;" providerName="System.Data.EntityClient" /> The Converted SQL Azure Connection String <add name="InmZenEntities" connectionString="metadata=res://*/InmZenModel.csdl|res://*/InmZenModel.ssdl|res://*/InmZenModel.msl; provider=System.Data.SqlClient; provider connection string=&quot; Server=tcp:MYSERVER.ctp.database.windows.net; Database=InmarsatZenith; UserID=MYUSERID;Password=MYPASSWORD; Trusted_Connection=False; MultipleActiveResultSets=True&quot;" providerName="System.Data.EntityClient" /> The Question Anyone know if this connection string for SQL Azure is correct? Help greatly appreciated.

    Read the article

  • Playing around with Eclipse features - Project files are now hidden?

    - by Daddy Warbox
    I don't even remember how, but somehow I managed to make all of my project's source files hidden in Eclipse's Package and Project Explorer panels. Go figure. 'Show Filtered Children (alt+click)' temporarily reveals the files, and only in Package Explorer can I double-click to reopen them from this view. They go back into hiding after I select another item, though. Plus, now I'm getting other annoyances, such as all of the folded non-hidden trees altogether expanding when I click on any item, and the entire file folder tree of my project now being shown in these panels (including my .svn subversion folders... which shouldn't be any of Eclipse's business, presently). Long story short, my Package/Project Explorers' just blew up on me, and I want to know how to fix this. Thanks in advance. P.S. What's a good guide I can use to learn my way around this silly contraption, anyway?

    Read the article

  • How to I serialize a large graph of .NET object into a SQL Server BLOB without creating a large bu

    - by Ian Ringrose
    We have code like: ms = New IO.MemoryStream bin = New System.Runtime.Serialization.Formatters.Binary.BinaryFormatter bin.Serialize(ms, largeGraphOfObjects) dataToSaveToDatabase = ms.ToArray() // put dataToSaveToDatabase in a Sql server BLOB But the memory steam allocates a large buffer from the large memory heap that is giving us problems. So how can we stream the data without needing enough free memory to hold the serialized objects. I am looking for a way to get a Stream from SQL server that can then be passed to bin.Serialize() so avoiding keeping all the data in my processes memory. Likewise for reading the data back... Some more background. This is part of a complex numerical processing system that processes data in near real time looking for equipment problems etc, the serialization is done to allow a restart when there is a problem with data quality from a data feed etc. (We store the data feeds and can rerun them after the operator has edited out bad values.) Therefore we serialize the object a lot more often then we de-serialize them. The objects we are serializing include very large arrays mostly of doubles as well as a lot of small “more normal” objects. We are pushing the memory limit on a 32 bit system and make the garage collector work very hard. (Effects are being made elsewhere in the system to improve this, e.g. reusing large arrays rather then create new arrays.) Often the serialization of the state is the last straw that courses an out of memory exception; our peak memory usage is while this serialization is being done. I think we get large memory pool fragmentation when we de-serialize the object, I expect there are also other problem with large memory pool fragmentation given the size of the arrays. (This has not yet been investigated, as the person that first looked at this is a numerical processing expert, not a memory management expert.) Are customers use a mix of Sql Server 2000, 2005 and 2008 and we would rather not have different code paths for each version of Sql Server if possible. We can have many active models at a time (in different process, across many machines), each model can have many saved states. Hence the saved state is stored in a database blob rather then a file. As the spread of saving the state is important, I would rather not serialize the object to a file, and then put the file in a BLOB one block at a time. Other related questions I have asked How to Stream data from/to SQL Server BLOB fields? Is there a SqlFileStream like class that works with Sql Server 2005?

    Read the article

  • How can I download all files of a specific type from a website using PHP?

    - by CheeseConQueso
    I want to get all midi (*.mid) files from a site that's set up pretty simple in terms of directory tree structure. I wish we had wget installed here, but that's another party.... The site is VGMusic.com and the path containing all of the midi files is: http://www.vgmusic.com/music/console/nintendo/nes/ I tried glob'ing it out, but I suppose that glob only works locally? Here is what I wrote to try to make it happen (doesn't work.. obviously..): <?php echo 'not a blizzard<br>'; foreach(glob('http://www.vgmusic.com/music/console/nintendo/nes/*.mid') as $filename) { echo $filename.'<br>'; //$newfile = 'http://www.mydomain.com/nes/'.$filename; //copy($filename, $newfile) } ?> I tried it also without the http:// in there with no luck.

    Read the article

  • How to deploy SQL Reporting 2005 when Data Sources are locked?

    - by spoulson
    The DBAs here maintain all SQL Server and SQL Reporting servers. I have a custom developed SQL Reporting 2005 project in Visual Studio that runs fine on my local SQL Database and Reporting instances. I need to deploy to a production server, so I had a folder created on a SQL Reporting 2005 server with permissions to upload files. Normally, a deploy from within Visual Studio is all that is needed to upload the report files. However, for security purposes, data sources are maintained explicitly by DBAs and stored in a separated locked down common folder on the reporting server. I had them create the data source for me. When I attempt to deploy from VS, it gives me the error "The item '/Data Sources' already exists." I get this whether I'm deploying the whole project or just a single report file. I already set OverwriteDataSources=false in the project properties. The TargetServer URL and folder are verified correct. I suppose I could copy the files manually, but I'd like to be able to deploy from within VS. What could I be doing wrong?

    Read the article

  • SSIS 2008 - How to read from SQL Server Compact Edition file?

    - by Gustavo Cavalcanti
    I can see "SQL Server Compact Destination" under Data Flow Destinations, but I am looking for its source counterpart. If I choose ADO.Net source and create a new connection, there's no provider for SQL CE. What am I missing? Thanks! Update: I am able to create a "Data Source" (under "Data Sources" folder in my SSIS project") that connects to an existing Sql CE file. But how can I use this Data Source in my data flow?

    Read the article

< Previous Page | 380 381 382 383 384 385 386 387 388 389 390 391  | Next Page >