Search Results

Search found 13995 results on 560 pages for 'programmer day'.

Page 389/560 | < Previous Page | 385 386 387 388 389 390 391 392 393 394 395 396  | Next Page >

  • Create dropdown from multi array + PHP class

    - by chris
    Hi there, Well, I am writing class that creates a DOB selection dropdown. I am having figure out the dropdown(), it seems working but not exactly. Code just creates one drop down, and under this dropdown all day, month and year data are in one selection. like: <label> <sup>*</sup>DOB</label> <select name="form_bod_year"> <option value=""/> <option selected="" value="0">1</option> <option value="1">2</option> <option value="2">3</option> <option value="3">4</option> <option value="4">5</option> <option value="5">6</option> .. <option value="29">30</option> <option value="30">31</option> <option value="1">January</option> <option value="2">February</option> .. <option value="11">November</option> <option value="12">December</option> <option selected="" value="0">1910</option> <option value="1">1911</option> .. <option value="98">2008</option> <option value="99">2009</option> <option value="100">2010</option> </select> Here is my code, I wonder that why all datas are in one selection. It has to be tree selction - Day:Month:Year. //dropdown connector class DropDownConnector { var $dropDownsDatas; var $field_label; var $field_name; var $locale; function __construct($dropDownsDatas, $field_label, $field_name, $locale) { $this-dropDownsDatas = $dropDownsDatas; $this-field_label = $field_label; $this-field_name = $field_name; $this-locale = $locale; } function getValue(){ return $_POST[$this-field_name]; } function dropdown(){ $selectedVal = $this-getValue($this-field_name); foreach($this-dropDownsDatas as $keys=$values){ foreach ($values as $key=$value){ $selected = ($key == $selectedVal ? "selected" : "" ); $options .= sprintf('%s',$key,$value); }; }; return $select_start = "$this-field_desc".$options.""; } function getLabel(){ $non_req = $this-getNotRequiredData(); $req = in_array($this-field_name, $non_req) ? '' : '*'; return $this-field_label ? $req . $this-field_label : ''; } function __toString() { $id = $this-field_name; $label = $this-getLabel(); $field = $this-dropdown(); return 'field_name.'"'.$label.''.$field.''; } } function generateForm ($lang,$country_list,$states_list,$days_of_month,$month_list,$years){ $xx = array( 'form_bod_day' = $days_of_month, 'form_bod_month' = $month_list, 'form_bod_year' = $years); echo $dropDownConnector = new DropDownConnector($xx,'DOB','bod','en-US'); } // Call php class to use class on external functionss. $avInq = new formGenerator; $lang='en-US'; echo generateForm ($lang,$country_list,$states_list,$days_of_month,$month_list,$years);

    Read the article

  • PHP mailer containing HTML not showing correctly

    - by kielie
    Hi guys, here is some code I've been working on, basically I need to set up a auto e-mail that gets sent to a user after they fill in a form, which at the moment it is doing, but the HTML is not displaying as it should inside of the email client. I checked in Gmail, Outlook and Mac mail and none of them display the HTML correctly. Here is the code <?php session_start(); $_SESSION['name'] = $_POST['name']; $name = $_SESSION['name']; $email_1 = $_POST['email_1']; $email_2 = $_POST['email_2']; $email_3 = $_POST['email_3']; $email_4 = $_POST['email_4']; $id_num = $_POST['id_num']; $tel = $_POST['tel']; $email = $_POST['email']; //sets the current date $curDate = date("Y-m-d"); // Example require_once("mailclass/htmlMimeMail.php"); $mail = new htmlMimeMail(); $mail->setSubject("Your submission to MyWebsite!"); $mail->setFrom("MyWebsite <[email protected]>"); $mail->setFrom("MyWebsite <[email protected]>"); $email_address = $email_1 . "," . $email_2 . "," . $email_3 ."," . $email_4 ; $mail->setBcc($email_address); $day = " <body style="'background: #000000; color: #FFFFFF;'"> <div style="'background-image: url(http://www.website.com/images/mailerbg.jpg); width: 900px; height: 839px; margin: 0 auto;'"> <div style="'width: 620px; height: 280px; position: relative; top: 155px; left: 25px;'"> <h1><br>your friend $name<br><br><br></h1> </div> </div> </body>"; $mail->setHTML($day); $result = $mail->send(array()); ?> The code is pretty messy, from me screwing around with it so much, but basically none of the HTML shows up as it should in the email client once the message arrives at it's destination, how can I get it to display as a proper HTML page inside of the mail client? I am assuming that my escaping is not done correctly, which is why nothing is showing as it should? Thanx in advance!

    Read the article

  • Ajax Calendar Date Range with JavaScript

    - by hungrycoder
    I have the following code to compare two dates with the following conditions Scenario: On load there are two text boxes (FromDate, ToDate) with Ajax calendar extenders. On load From Date shows today's date. when date less than today was selected in both text boxes(FromDate, ToDate), it alerts user saying "You cannot select a day earlier than today!" When ToDate's Selected date < FromDate's Selected Date, alerts user saying "To Date must be Greater than From date." and at the same time it clears the selected Date in ToDate Text box. Codeblock: ASP.NET , AJAX <asp:TextBox ID="txtFrom" runat="server" ReadOnly="true"></asp:TextBox> <asp:ImageButton ID="imgBtnFrom" runat="server" ImageUrl="~/images/Cal20x20.png" Width="20" Height="20" ImageAlign="TextTop" /> <asp:CalendarExtender ID="txtFrom_CalendarExtender" PopupButtonID="imgBtnFrom" runat="server" Enabled="True" OnClientDateSelectionChanged="checkDate" TargetControlID="txtFrom" Format="MMM d, yyyy"> </asp:CalendarExtender> <asp:TextBox ID="txtTo" runat="server" ReadOnly="true"></asp:TextBox> <asp:ImageButton ID="imgBtnTo" runat="server" ImageUrl="~/images/Cal20x20.png" Width="20" Height="20" ImageAlign="TextTop" /> <asp:CalendarExtender ID="txtTo_CalendarExtender" OnClientDateSelectionChanged="compareDateRange" PopupButtonID="imgBtnTo" runat="server" Enabled="True" TargetControlID="txtTo" Format="MMM d, yyyy"> </asp:CalendarExtender> <asp:HiddenField ID="hdnFrom" runat="server" /> <asp:HiddenField ID="hdnTo" runat="server" /> C# Code protected void Page_Load(object sender, EventArgs e) { txtFrom.Text = string.Format("{0: MMM d, yyyy}", DateTime.Today); if (Page.IsPostBack) { if (!String.IsNullOrEmpty(hdnFrom.Value as string)) { txtFrom.Text = hdnFrom.Value; } if (!String.IsNullOrEmpty(hdnTo.Value as string)) { txtTo.Text = hdnTo.Value; } } } JavaScript Code <script type="text/javascript"> function checkDate(sender, args) { document.getElementById('<%=txtTo.ClientID %>').value = ""; if (sender._selectedDate < new Date()) { alert("You cannot select a day earlier than today!"); sender._selectedDate = new Date(); // set the date back to the current date sender._textbox.set_Value(sender._selectedDate.format(sender._format)); //assign the value to the hidden field. document.getElementById('<%=hdnFrom.ClientID %>').value = sender._selectedDate.format(sender._format); //reset the to date to blank. document.getElementById('<%=txtTo.ClientID %>').value = ""; } else { document.getElementById('<%=hdnFrom.ClientID %>').value = sender._selectedDate.format(sender._format); } } function compareDateRange(sender, args) { var fromDateString = document.getElementById('<%=txtFrom.ClientID %>').value; var fromDate = new Date(fromDateString); if (sender._selectedDate < new Date()) { alert("You cannot select a Date earlier than today!"); sender._selectedDate = ""; sender._textbox.set_Value(sender._selectedDate) } if (sender._selectedDate <= fromDate) { alert("To Date must be Greater than From date."); sender._selectedDate = ""; sender._textbox.set_Value(sender._selectedDate) } else { document.getElementById('<%=hdnTo.ClientID %>').value = sender._selectedDate.format(sender._format); } } </script> Error Screen(Hmmm :X) Now in ToDate, when you select Date Earlier than today or Date less than FromDate, ToDate Calendar shows NaN for Every Date and ,0NaN for Year

    Read the article

  • Normalizing a table

    - by Alex
    I have a legacy table, which I can't change. The values in it can be modified from legacy application (application also can't be changed). Due to a lot of access to the table from new application (new requirement), I'd like to create a temporary table, which would hopefully speed up the queries. The actual requirement, is to calculate number of business days from X to Y. For example, give me all business days from Jan 1'st 2001 until Dec 24'th 2004. The table is used to mark which days are off, as different companies may have different days off - it isn't just Saturday + Sunday) The temporary table would be created from a .NET program, each time user enters the screen for this query (user may run query multiple times, with different values, table is created once), so I'd like it to be as fast as possible. Approach below runs in under a second, but I only tested it with a small dataset, and still it takes probably close to half a second, which isn't great for UI - even though it's just the overhead for first query. The legacy table looks like this: CREATE TABLE [business_days]( [country_code] [char](3) , [state_code] [varchar](4) , [calendar_year] [int] , [calendar_month] [varchar](31) , [calendar_month2] [varchar](31) , [calendar_month3] [varchar](31) , [calendar_month4] [varchar](31) , [calendar_month5] [varchar](31) , [calendar_month6] [varchar](31) , [calendar_month7] [varchar](31) , [calendar_month8] [varchar](31) , [calendar_month9] [varchar](31) , [calendar_month10] [varchar](31) , [calendar_month11] [varchar](31) , [calendar_month12] [varchar](31) , misc. ) Each month has 31 characters, and any day off (Saturday + Sunday + holiday) is marked with X. Each half day is marked with an 'H'. For example, if a month starts on a Thursday, than it will look like (Thursday+Friday workdays, Saturday+Sunday marked with X): ' XX XX ..' I'd like the new table to look like so: create table #Temp (country varchar(3), state varchar(4), date datetime, hours int) And I'd like to only have rows for days which are off (marked with X or H from previous query) What I ended up doing, so far is this: Create a temporary-intermediate table, that looks like this: create table #Temp_2 (country_code varchar(3), state_code varchar(4), calendar_year int, calendar_month varchar(31), month_code int) To populate it, I have a union which basically unions calendar_month, calendar_month2, calendar_month3, etc. Than I have a loop which loops through all the rows in #Temp_2, after each row is processed, it is removed from #Temp_2. To process the row there is a loop from 1 to 31, and substring(calendar_month, counter, 1) is checked for either X or H, in which case there is an insert into #Temp table. [edit added code] Declare @country_code char(3) Declare @state_code varchar(4) Declare @calendar_year int Declare @calendar_month varchar(31) Declare @month_code int Declare @calendar_date datetime Declare @day_code int WHILE EXISTS(SELECT * From #Temp_2) -- where processed = 0) BEGIN Select Top 1 @country_code = t2.country_code, @state_code = t2.state_code, @calendar_year = t2.calendar_year, @calendar_month = t2.calendar_month, @month_code = t2.month_code From #Temp_2 t2 -- where processed = 0 set @day_code = 1 while @day_code <= 31 begin if substring(@calendar_month, @day_code, 1) = 'X' begin set @calendar_date = convert(datetime, (cast(@month_code as varchar) + '/' + cast(@day_code as varchar) + '/' + cast(@calendar_year as varchar))) insert into #Temp (country, state, date, hours) values (@country_code, @state_code, @calendar_date, 8) end if substring(@calendar_month, @day_code, 1) = 'H' begin set @calendar_date = convert(datetime, (cast(@month_code as varchar) + '/' + cast(@day_code as varchar) + '/' + cast(@calendar_year as varchar))) insert into #Temp (country, state, date, hours) values (@country_code, @state_code, @calendar_date, 4) end set @day_code = @day_code + 1 end delete from #Temp_2 where @country_code = country_code AND @state_code = state_code AND @calendar_year = calendar_year AND @calendar_month = calendar_month AND @month_code = month_code --update #Temp_2 set processed = 1 where @country_code = country_code AND @state_code = state_code AND @calendar_year = calendar_year AND @calendar_month = calendar_month AND @month_code = month_code END I am not an expert in SQL, so I'd like to get some input on my approach, and maybe even a much better approach suggestion. After having the temp table, I'm planning to do (dates would be coming from a table): select cast(convert(datetime, ('01/31/2012'), 101) -convert(datetime, ('01/17/2012'), 101) as int) - ((select sum(hours) from #Temp where date between convert(datetime, ('01/17/2012'), 101) and convert(datetime, ('01/31/2012'), 101)) / 8) Besides the solution of normalizing the table, the other solution I implemented for now, is a function which does all this logic of getting the business days by scanning the current table. It runs pretty fast, but I'm hesitant to call a function, if I can instead add a simpler query to get result. (I'm currently trying this on MSSQL, but I would need to do same for Sybase ASE and Oracle)

    Read the article

  • WMI Remote Process Starting

    - by Goober
    Scenario I've written a WMI Wrapper that seems to be quite sufficient, however whenever I run the code to start a remote process on a server, I see the process name appear in the task manager but the process itself does not start like it should (as in, I don't see the command line log window of the process that prints out what it's doing etc.) The process I am trying to start is just a C# application executable that I have written. Below is my WMI Wrapper Code and the code I am using to start running the process. Question Is the process actually running? - Even if it is only displaying the process name in the task manager and not actually launching the application to the users window? Code To Start The Process IPHostEntry hostEntry = Dns.GetHostEntry("InsertServerName"); WMIWrapper wrapper = new WMIWrapper("Insert User Name", "Insert Password", hostEntry.HostName); List<Process> processes = wrapper.GetProcesses(); foreach (Process process in processes) { if (process.Caption.Equals("MyAppName.exe")) { Console.WriteLine(process.Caption); Console.WriteLine(process.CommandLine); int processId; wrapper.StartProcess("E:\\MyData\\Data\\MyAppName.exe", out processId); Console.WriteLine(processId.ToString()); } } Console.ReadLine(); WMI Wrapper Code using System; using System.Collections.Generic; using System.Management; using System.Runtime.InteropServices; using Common.WMI.Objects; using System.Net; namespace Common.WMIWrapper { public class WMIWrapper : IDisposable { #region Constructor /// <summary> /// Creates a new instance of the wrapper /// </summary> /// <param jobName="username"></param> /// <param jobName="password"></param> /// <param jobName="server"></param> public WMIWrapper(string server) { Initialise(server); } /// <summary> /// Creates a new instance of the wrapper /// </summary> /// <param jobName="username"></param> /// <param jobName="password"></param> /// <param jobName="server"></param> public WMIWrapper(string username, string password, string server) { Initialise(username, password, server); } #endregion #region Destructor /// <summary> /// Clean up unmanaged references /// </summary> ~WMIWrapper() { Dispose(false); } #endregion #region Initialise /// <summary> /// Initialise the WMI Connection (local machine) /// </summary> /// <param name="server"></param> private void Initialise(string server) { m_server = server; // set connection options m_connectOptions = new ConnectionOptions(); IPHostEntry host = Dns.GetHostEntry(Environment.MachineName); } /// <summary> /// Initialise the WMI connection /// </summary> /// <param jobName="username">Username to connect to server with</param> /// <param jobName="password">Password to connect to server with</param> /// <param jobName="server">Server to connect to</param> private void Initialise(string username, string password, string server) { m_server = server; // set connection options m_connectOptions = new ConnectionOptions(); IPHostEntry host = Dns.GetHostEntry(Environment.MachineName); if (host.HostName.Equals(server, StringComparison.OrdinalIgnoreCase)) return; m_connectOptions.Username = username; m_connectOptions.Password = password; m_connectOptions.Impersonation = ImpersonationLevel.Impersonate; m_connectOptions.EnablePrivileges = true; } #endregion /// <summary> /// Return a list of available wmi namespaces /// </summary> /// <returns></returns> public List<String> GetWMINamespaces() { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root", this.Server), this.ConnectionOptions); List<String> wmiNamespaceList = new List<String>(); ManagementClass wmiNamespaces = new ManagementClass(wmiScope, new ManagementPath("__namespace"), null); ; foreach (ManagementObject ns in wmiNamespaces.GetInstances()) wmiNamespaceList.Add(ns["Name"].ToString()); return wmiNamespaceList; } /// <summary> /// Return a list of available classes in a namespace /// </summary> /// <param jobName="wmiNameSpace">Namespace to get wmi classes for</param> /// <returns>List of classes in the requested namespace</returns> public List<String> GetWMIClassList(string wmiNameSpace) { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, wmiNameSpace), this.ConnectionOptions); List<String> wmiClasses = new List<String>(); ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery("SELECT * FROM meta_Class"), null); foreach (ManagementClass wmiClass in wmiSearcher.Get()) wmiClasses.Add(wmiClass["__CLASS"].ToString()); return wmiClasses; } /// <summary> /// Get a list of wmi properties for the specified class /// </summary> /// <param jobName="wmiNameSpace">WMI Namespace</param> /// <param jobName="wmiClass">WMI Class</param> /// <returns>List of properties for the class</returns> public List<String> GetWMIClassPropertyList(string wmiNameSpace, string wmiClass) { List<String> wmiClassProperties = new List<string>(); ManagementClass managementClass = GetWMIClass(wmiNameSpace, wmiClass); foreach (PropertyData property in managementClass.Properties) wmiClassProperties.Add(property.Name); return wmiClassProperties; } /// <summary> /// Returns a list of methods for the class /// </summary> /// <param jobName="wmiNameSpace"></param> /// <param jobName="wmiClass"></param> /// <returns></returns> public List<String> GetWMIClassMethodList(string wmiNameSpace, string wmiClass) { List<String> wmiClassMethods = new List<string>(); ManagementClass managementClass = GetWMIClass(wmiNameSpace, wmiClass); foreach (MethodData method in managementClass.Methods) wmiClassMethods.Add(method.Name); return wmiClassMethods; } /// <summary> /// Retrieve the specified management class /// </summary> /// <param jobName="wmiNameSpace">Namespace of the class</param> /// <param jobName="wmiClass">Type of the class</param> /// <returns></returns> public ManagementClass GetWMIClass(string wmiNameSpace, string wmiClass) { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, wmiNameSpace), this.ConnectionOptions); ManagementClass managementClass = null; ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery(String.Format("SELECT * FROM meta_Class WHERE __CLASS = '{0}'", wmiClass)), null); foreach (ManagementClass wmiObject in wmiSearcher.Get()) managementClass = wmiObject; return managementClass; } /// <summary> /// Get an instance of the specficied class /// </summary> /// <param jobName="wmiNameSpace">Namespace of the classes</param> /// <param jobName="wmiClass">Type of the classes</param> /// <returns>Array of management classes</returns> public ManagementObject[] GetWMIClassObjects(string wmiNameSpace, string wmiClass) { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, wmiNameSpace), this.ConnectionOptions); List<ManagementObject> wmiClasses = new List<ManagementObject>(); ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery(String.Format("SELECT * FROM {0}", wmiClass)), null); foreach (ManagementObject wmiObject in wmiSearcher.Get()) wmiClasses.Add(wmiObject); return wmiClasses.ToArray(); } /// <summary> /// Get a full list of services /// </summary> /// <returns></returns> public List<Service> GetServices() { return GetService(null); } /// <summary> /// Get a list of services /// </summary> /// <returns></returns> public List<Service> GetService(string name) { ManagementObject[] services = GetWMIClassObjects("CIMV2", "WIN32_Service"); List<Service> serviceList = new List<Service>(); for (int i = 0; i < services.Length; i++) { ManagementObject managementObject = services[i]; Service service = new Service(managementObject); service.Status = (string)managementObject["Status"]; service.Name = (string)managementObject["Name"]; service.DisplayName = (string)managementObject["DisplayName"]; service.PathName = (string)managementObject["PathName"]; service.ProcessId = (uint)managementObject["ProcessId"]; service.Started = (bool)managementObject["Started"]; service.StartMode = (string)managementObject["StartMode"]; service.ServiceType = (string)managementObject["ServiceType"]; service.InstallDate = (string)managementObject["InstallDate"]; service.Description = (string)managementObject["Description"]; service.Caption = (string)managementObject["Caption"]; if (String.IsNullOrEmpty(name) || name.Equals(service.Name, StringComparison.OrdinalIgnoreCase)) serviceList.Add(service); } return serviceList; } /// <summary> /// Get a list of processes /// </summary> /// <returns></returns> public List<Process> GetProcesses() { return GetProcess(null); } /// <summary> /// Get a list of processes /// </summary> /// <returns></returns> public List<Process> GetProcess(uint? processId) { ManagementObject[] processes = GetWMIClassObjects("CIMV2", "WIN32_Process"); List<Process> processList = new List<Process>(); for (int i = 0; i < processes.Length; i++) { ManagementObject managementObject = processes[i]; Process process = new Process(managementObject); process.Priority = (uint)managementObject["Priority"]; process.ProcessId = (uint)managementObject["ProcessId"]; process.Status = (string)managementObject["Status"]; DateTime createDate; if (ConvertFromWmiDate((string)managementObject["CreationDate"], out createDate)) process.CreationDate = createDate.ToString("dd-MMM-yyyy HH:mm:ss"); process.Caption = (string)managementObject["Caption"]; process.CommandLine = (string)managementObject["CommandLine"]; process.Description = (string)managementObject["Description"]; process.ExecutablePath = (string)managementObject["ExecutablePath"]; process.ExecutionState = (string)managementObject["ExecutionState"]; process.MaximumWorkingSetSize = (UInt32?)managementObject ["MaximumWorkingSetSize"]; process.MinimumWorkingSetSize = (UInt32?)managementObject["MinimumWorkingSetSize"]; process.KernelModeTime = (UInt64)managementObject["KernelModeTime"]; process.ThreadCount = (UInt32)managementObject["ThreadCount"]; process.UserModeTime = (UInt64)managementObject["UserModeTime"]; process.VirtualSize = (UInt64)managementObject["VirtualSize"]; process.WorkingSetSize = (UInt64)managementObject["WorkingSetSize"]; if (processId == null || process.ProcessId == processId.Value) processList.Add(process); } return processList; } /// <summary> /// Start the specified process /// </summary> /// <param jobName="commandLine"></param> /// <returns></returns> public bool StartProcess(string command, out int processId) { processId = int.MaxValue; ManagementClass processClass = GetWMIClass("CIMV2", "WIN32_Process"); object[] objectsIn = new object[4]; objectsIn[0] = command; processClass.InvokeMethod("Create", objectsIn); if (objectsIn[3] == null) return false; processId = int.Parse(objectsIn[3].ToString()); return true; } /// <summary> /// Schedule a process on the remote machine /// </summary> /// <param name="command"></param> /// <param name="scheduleTime"></param> /// <param name="jobName"></param> /// <returns></returns> public bool ScheduleProcess(string command, DateTime scheduleTime, out string jobName) { jobName = String.Empty; ManagementClass scheduleClass = GetWMIClass("CIMV2", "Win32_ScheduledJob"); object[] objectsIn = new object[7]; objectsIn[0] = command; objectsIn[1] = String.Format("********{0:00}{1:00}{2:00}.000000+060", scheduleTime.Hour, scheduleTime.Minute, scheduleTime.Second); objectsIn[5] = true; scheduleClass.InvokeMethod("Create", objectsIn); if (objectsIn[6] == null) return false; UInt32 scheduleid = (uint)objectsIn[6]; jobName = scheduleid.ToString(); return true; } /// <summary> /// Returns the current time on the remote server /// </summary> /// <returns></returns> public DateTime Now() { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, "CIMV2"), this.ConnectionOptions); ManagementClass managementClass = null; ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery(String.Format("SELECT * FROM Win32_LocalTime")), null); DateTime localTime = DateTime.MinValue; foreach (ManagementObject time in wmiSearcher.Get()) { UInt32 day = (UInt32)time["Day"]; UInt32 month = (UInt32)time["Month"]; UInt32 year = (UInt32)time["Year"]; UInt32 hour = (UInt32)time["Hour"]; UInt32 minute = (UInt32)time["Minute"]; UInt32 second = (UInt32)time["Second"]; localTime = new DateTime((int)year, (int)month, (int)day, (int)hour, (int)minute, (int)second); }; return localTime; } /// <summary> /// Converts a wmi date into a proper date /// </summary> /// <param jobName="wmiDate">Wmi formatted date</param> /// <returns>Date time object</returns> private static bool ConvertFromWmiDate(string wmiDate, out DateTime properDate) { properDate = DateTime.MinValue; string properDateString; // check if string is populated if (String.IsNullOrEmpty(wmiDate)) return false; wmiDate = wmiDate.Trim().ToLower().Replace("*", "0"); string[] months = new string[] { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; try { properDateString = String.Format("{0}-{1}-{2} {3}:{4}:{5}.{6}", wmiDate.Substring(6, 2), months[int.Parse(wmiDate.Substring(4, 2)) - 1], wmiDate.Substring(0, 4), wmiDate.Substring(8, 2), wmiDate.Substring(10, 2), wmiDate.Substring(12, 2), wmiDate.Substring(15, 6)); } catch (InvalidCastException) { return false; } catch (ArgumentOutOfRangeException) { return false; } // try and parse the new date if (!DateTime.TryParse(properDateString, out properDate)) return false; // true if conversion successful return true; } private bool m_disposed; #region IDisposable Members /// <summary> /// Managed dispose /// </summary> public void Dispose() { Dispose(true); GC.SuppressFinalize(this); } /// <summary> /// Dispose of managed and unmanaged objects /// </summary> /// <param jobName="disposing"></param> public void Dispose(bool disposing) { if (disposing) { m_connectOptions = null; } } #endregion #region Properties private ConnectionOptions m_connectOptions; /// <summary> /// Gets or sets the management scope /// </summary> private ConnectionOptions ConnectionOptions { get { return m_connectOptions; } set { m_connectOptions = value; } } private String m_server; /// <summary> /// Gets or sets the server to connect to /// </summary> public String Server { get { return m_server; } set { m_server = value; } } #endregion } }

    Read the article

  • Performance and Optimization Isn’t Evil

    - by Reed
    Donald Knuth is a fairly amazing guy.  I consider him one of the most influential contributors to computer science of all time.  Unfortunately, most of the time I hear his name, I cringe.  This is because it’s typically somebody quoting a small portion of one of his famous statements on optimization: “premature optimization is the root of all evil.” I mention that this is only a portion of the entire quote, and, as such, I feel that Knuth is being quoted out of context.  Optimization is important.  It is a critical part of every software development effort, and should never be ignored.  A developer who ignores optimization is not a professional.  Every developer should understand optimization – know what to optimize, when to optimize it, and how to think about code in a way that is intelligent and productive from day one. I want to start by discussing my own, personal motivation here.  I recently wrote about a performance issue I ran across, and was slammed by multiple comments and emails that effectively boiled down to: “You’re an idiot.  Premature optimization is the root of all evil.  This doesn’t matter.”  It didn’t matter that I discovered this while measuring in a profiler, and that it was a portion of my code base that can take “many hours to complete.”  Even so, multiple people instantly jump to “it’s premature – it doesn’t matter.” This is a common thread I see.  For example, StackOverflow has many pages of posts with answers that boil down to (mis)quoting Knuth.  In fact, just about any question relating to a performance related issue gets this quote thrown at it immediately – whether it deserves it or not.  That being said, I did receive some positive comments and emails as well.  Many people want to understand how to optimize their code, approaches to take, tools and techniques they can use, and any other advice they can discover. First, lets get back to Knuth – I mentioned before that Knuth is being quoted out of context.  Lets start by looking at the entire quote from his 1974 paper Structured Programming with go to Statements: “We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%. A good programmer will not be lulled into complacency by such reasoning, he will be wise to look carefully at the critical code; but only after that code has been identified.” Ironically, if you read Knuth’s original paper, this statement was made in the middle of a discussion of how Knuth himself had changed how he approaches optimization.  It was never a statement saying “don’t optimize”, but rather, “optimizing intelligently provides huge advantages.”  His approach had three benefits: “a) it doesn’t take long” … “b) the payoff is real”, c) you can “be less efficient in the other parts of my programs, which therefore are more readable and more easily written and debugged.” Looking at Knuth’s premise here, and reading that section of his paper, really leads to a few observations: Optimization is important  “he will be wise to look carefully at the critical code” Normally, 3% of your code – three lines out of every 100 you write, are “critical code” and will require some optimization: “we should not pass up our opportunities in that critical 3%” Optimization, if done well, should not be time consuming: “it doesn’t take long” Optimization, if done correctly, provides real benefits: “the payoff is real” None of this is new information.  People who care about optimization have been discussing this for years – for example, Rico Mariani’s Designing For Performance (a fantastic article) discusses many of the same issues very intelligently. That being said, many developers seem unable or unwilling to consider optimization.  Many others don’t seem to know where to start.  As such, I’m going to spend some time writing about optimization – what is it, how should we think about it, and what can we do to improve our own code.

    Read the article

  • ASP.NET Error Handling: Creating an extension method to send error email

    - by Jalpesh P. Vadgama
    Error handling in asp.net required to handle any kind of error occurred. We all are using that in one or another scenario. But some errors are there which will occur in some specific scenario in production environment in this case We can’t show our programming errors to the End user. So we are going to put a error page over there or whatever best suited as per our requirement. But as a programmer we should know that error so we can track the scenario and we can solve that error or can handle error. In this kind of situation an Error Email comes handy. Whenever any occurs in system it will going to send error in our email. Here I am going to write a extension method which will send errors in email. From asp.net 3.5 or higher version of .NET framework  its provides a unique way to extend your classes. Here you can fine more information about extension method. So lets create extension method via implementing a static class like following. I am going to use same code for sending email via my Gmail account from here. Following is code for that. using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Net.Mail; namespace Experiement { public static class MyExtension { public static void SendErrorEmail(this Exception ex) { MailMessage mailMessage = new MailMessage(new MailAddress("[email protected]") , new MailAddress("[email protected]")); mailMessage.Subject = "Exception Occured in your site"; mailMessage.IsBodyHtml = true; System.Text.StringBuilder errorMessage = new System.Text.StringBuilder(); errorMessage.AppendLine(string.Format("<B>{0}</B>:{1}<BR/>","Exception",ex.Message)); errorMessage.AppendLine(string.Format("<B>{0}</B>:{1}<BR/>", "Stack Trace", ex.StackTrace)); if (ex.InnerException != null) { errorMessage.AppendLine(string.Format("<B>{0}</B>:{1}<BR/>", " Inner Exception", ex.InnerException.Message)); errorMessage.AppendLine(string.Format("<B>{0}</B>:{1}<BR/>", "Inner Stack Trace", ex.InnerException.StackTrace)); } mailMessage.Body = errorMessage.ToString(); System.Net.NetworkCredential networkCredentials = new System.Net.NetworkCredential("[email protected]", "password"); SmtpClient smtpClient = new SmtpClient(); smtpClient.EnableSsl = true; smtpClient.UseDefaultCredentials = false; smtpClient.Credentials = networkCredentials; smtpClient.Host = "smtp.gmail.com"; smtpClient.Port = 587; smtpClient.Send(mailMessage); } } } After creating an extension method let us that extension method to handle error like following in page load event of page. using System; namespace Experiement { public partial class WebForm1 : System.Web.UI.Page { protected void Page_Load(object sender,System.EventArgs e) { try { throw new Exception("My custom Exception"); } catch (Exception ex) { ex.SendErrorEmail(); Response.Write(ex.Message); } } } } Now in above code I have generated custom exception for example but in production It can be any Exception. And you can see I have use ex.SendErrorEmail() function in catch block to send email. That’s it.. Now it will throw exception and you will email in your email box like below.   That’s its. It’s so simple…Stay tuned for more.. Happy programming.. Technorati Tags: Exception,Extension Mehtod,Error Handling,ASP.NET

    Read the article

  • Tuxedo 11gR1 Client Server Affinity

    - by todd.little
    One of the major new features in Oracle Tuxedo 11gR1 is the ability to define an affinity between clients and servers. In previous releases of Tuxedo, the only way to ensure that multiple requests from a client went to the same server was to establish a conversation with tpconnect() and then use tpsend() and tprecv(). Although this works it has some drawbacks. First for single-threaded servers, the server is tied up for the entire duration of the conversation and cannot service other clients, an obvious scalability issue. I believe the more significant drawback is that the application programmer has to switch from the simple request/response model provided by tpcall() to the half duplex tpsend() and tprecv() calls used with conversations. Switching between the two typically requires a fair amount of redesign and recoding. The Client Server Affinity feature in Tuxedo 11gR1 allows by way of configuration an application to define affinities that can exist between clients and servers. This is done in the *SERVICES section of the UBBCONFIG file. Using new parameters for services defined in the *SERVICES section, customers can determine when an affinity session is created or deleted, the scope of the affinity, and whether requests can be routed outside the affinity scope. The AFFINITYSCOPE parameter can be MACHINE, GROUP, or SERVER, meaning that while the affinity session is in place, all requests from the client will be routed to the same MACHINE, GROUP, or SERVER. The creation and deletion of affinity is defined by the SESSIONROLE parameter and a service can be defined as either BEGIN, END, or NONE, where BEGIN starts an affinity session, END deletes the affinity session, and NONE does not impact the affinity session. Finally customers can define how strictly they want the affinity scope adhered to using the AFFINITYSTRICT parameter. If set to MANDATORY, all requests made during an affinity session will be routed to a server in the affinity scope. Thus if the affinity scope is SERVER, all subsequent tpcall() requests will be sent to the same server the affinity scope was established with. If the server doesn't offer that service, even though other servers do offer the service, the call will fail with TPNOENT. Setting AFFINITYSTRICT to PRECEDENT tells Tuxedo to try and route the request to a server in the affinity scope, but if that's not possible, then Tuxedo can try to route the request to servers out of scope. All of this begs the question, why? Why have this feature? There many uses for this capability, but the most common is when there is state that is maintained in a server, group of servers, or in a machine and subsequent requests from a client must be routed to where that state is maintained. This might be something as simple as a database cursor maintained by a server on behalf of a client. Alternatively it might be that the server has a connection to an external system and subsequent requests need to go back to the server that has that connection. A more sophisticated case is where a group of servers maintains some sort of cache in shared memory and subsequent requests need to be routed to where the cache is maintained. Although this last case might be able to be handled by data dependent routing, using client server affinity allows the cache to be partitioned dynamically instead of statically.

    Read the article

  • Building a Mafia&hellip;TechFest Style

    - by David Hoerster
    It’s been a few months since I last blogged (not that I blog much to begin with), but things have been busy.  We all have a lot going on in our lives, but I’ve had one item that has taken up a surprising amount of time – Pittsburgh TechFest 2012.  After the event, I went through some minutes of the first meetings for TechFest, and I started to think about how it all came together.  I think what inspired me the most about TechFest was how people from various technical communities were able to come together and build and promote a common event.  As a result, I wanted to blog about this to show that people from different communities can work together to build something that benefits all communities.  (Hopefully I've got all my facts straight.)  TechFest started as an idea Eric Kepes and myself had when we were planning our next Pittsburgh Code Camp, probably in the summer of 2011.  Our Spring 2011 Code Camp was a little different because we had a great infusion of some folks from the Pittsburgh Agile group (especially with a few speakers from LeanDog).  The line-up was great, but we felt our audience wasn’t as broad as it should have been.  We thought it would be great to somehow attract other user groups around town and have a big, polyglot conference. We started contacting leaders from Pittsburgh’s various user groups.  Eric and I split up the ones that we knew about, and we just started making contacts.  Most of the people we started contacting never heard of us, nor we them.  But we all had one thing in common – we ran user groups who’s primary goal is educating our members to make them better at what they do. Amazingly, and I say this because I wasn’t sure what to expect, we started getting some interest from the various leaders.  One leader, Greg Akins, is, in my opinion, Pittsburgh’s poster boy for the polyglot programmer.  He’s helped us in the past with .NET Code Camps, is a Java developer (and leader in Pittsburgh’s Java User Group), works with Ruby and I’m sure a handful of other languages.  He helped make some e-introductions to other user group leaders, and the whole thing just started to snowball. Once we realized we had enough interest with the user group leaders, we decided to not have a Fall Code Camp and instead focus on this new entity. Flash-forward to October of 2011.  I set up a meeting, with the help of Jeremy Jarrell (Pittsburgh Agile leader) to hold a meeting with the leaders of many of Pittsburgh technical user groups.  We had representatives from 12 technical user groups (Python, JavaScript, Clojure, Ruby, PittAgile, jQuery, PHP, Perl, SQL, .NET, Java and PowerShell) – 14 people.  We likened it to a scene from a Godfather movie where the heads of all the families come together to make some deal.  As a result, the name “TechFest Mafia” was born and kind of stuck. Over the next 7 months or so, we had our starts and stops.  There were moments where I thought this event would not happen either because we wouldn’t have the right mix of topics (was I off there!), or enough people register (OK, I was wrong there, too!) or find an appropriate venue (hmm…wrong there, too) or find enough sponsors to help support the event (wow…not doing so well).  Overall, everything fell into place with a lot of hard work from Eric, Jen, Greg, Jeremy, Sean, Nicholas, Gina and probably a few others that I’m forgetting.  We also had a bit of luck, too.  But in the end, the passion that we had to put together an event that was really about making ourselves better at what we do really paid off. I’ve never been more excited about a project coming together than I have been with Pittsburgh TechFest 2012.  From the moment the first person arrived at the event to the final minutes of my closing remarks (where I almost lost my voice – I ended up being diagnosed with bronchitis the next day!), it was an awesome event.  I’m glad to have been part of bringing something like this to Pittsburgh…and I’m looking forward to Pittsburgh TechFest 2013.  See you there!

    Read the article

  • What’s the use of code reuse?

    - by Tony Davis
    All great developers write reusable code, don’t they? Well, maybe, but as with all statements regarding what “great” developers do or don’t do, it’s probably an over-simplification. A novice programmer, in particular, will encounter in the literature a general assumption of the importance of code reusability. They spend time worrying about DRY (don’t repeat yourself), moving logic into specific “helper” modules that they can then reuse, agonizing about the minutiae of the class structure, inheritance and interface design that will promote easy reuse. Unfortunately, writing code specifically for reuse often leads to complicated object hierarchies and inheritance models that are anything but reusable. If, instead, one strives to write simple code units that are highly maintainable and perform a single function, in a concise, isolated fashion then the potential for reuse simply “drops out” as a natural by-product. Programmers, of course, care about these principles, about encapsulation and clean interfaces that don’t expose inner workings and allow easy pluggability. This is great when it helps with the maintenance and development of code but how often, in practice, do we actually reuse our code? Most DBAs and database developers are familiar with the practical reasons for the limited opportunities to reuse database code and its potential downsides. However, surely elsewhere in our code base, reuse happens often. After all, we can all name examples, such as date/time handling modules, which if we write with enough care we can plug in to many places. I spoke to a developer just yesterday who looked me in the eye and told me that in 30+ years as a developer (a successful one, I’d add), he’d never once reused his own code. As I sat blinking in disbelief, he explained that, of course, he always thought he would reuse it. He’d often agonized over its design, certain that he was creating code of great significance that he and other generations would reuse, with grateful tears misting their eyes. In fact, it never happened. He had in his head, most of the algorithms he needed and would simply write the code from scratch each time, refining the algorithms and tailoring the code to meet the specific requirements. It was, he said, simply quicker to do that than dig out the old code, check it, correct the mistakes, and adapt it. Is this a common experience, or just a strange anomaly? Viewed in a certain light, building code with a focus on reusability seems to hark to a past age where people built cars and music systems with the idea that someone else could and would replace and reuse the parts. Technology advances so rapidly that the next time you need the “same” code, it’s likely a new technique, or a whole new language, has emerged in the meantime, better equipped to tackle the task. Maybe we should be less fearful of the idea that we could write code well suited to the system requirements, but with little regard for reuse potential, and then rewrite a better version from scratch the next time.

    Read the article

  • Guest (and occasional co-host) on Jesse Liberty's Yet Another Podcast

    - by Jon Galloway
    I was a recent guest on Jesse Liberty's Yet Another Podcast talking about the latest Visual Studio, ASP.NET and Azure releases. Download / Listen: Yet Another Podcast #75–Jon Galloway on ASP.NET/ MVC/ Azure Co-hosted shows: Jesse's been inviting me to co-host shows and I told him I'd show up when I was available. It's a nice change to be a drive-by co-host on a show (compared with the work that goes into organizing / editing / typing show notes for Herding Code shows). My main focus is on Herding Code, but it's nice to pop in and talk to Jesse's excellent guests when it works out. Some shows I've co-hosted over the past year: Yet Another Podcast #76–Glenn Block on Node.js & Technology in China Yet Another Podcast  #73 - Adam Kinney on developing for Windows 8 with HTML5 Yet Another Podcast #64 - John Papa & Javascript Yet Another Podcast #60 - Steve Sanderson and John Papa on Knockout.js Yet Another Podcast #54–Damian Edwards on ASP.NET Yet Another Podcast #53–Scott Hanselman on Blogging Yet Another Podcast #52–Peter Torr on Windows Phone Multitasking Yet Another Podcast #51–Shawn Wildermuth: //build, Xaml Programming & Beyond And some more on the way that haven't been released yet. Some of these I'm pretty quiet, on others I get wacky and hassle the guests because, hey, not my podcast so not my problem. Show notes from the ASP.NET / MVC / Azure show: What was just released Visual Studio 2012 Web Developer features ASP.NET 4.5 Web Forms Strongly Typed data controls Data access via command methods Similar Binding syntax to ASP.NET MVC Some context: Damian Edwards and WebFormsMVP Two questions from Jesse: Q: Are you making this harder or more complicated for Web Forms developers? Short answer: Nothing's removed, it's just a new option History of SqlDataSource, ObjectDataSource Q: If I'm using some MVC patterns, why not just move to MVC? Short answer: This works really well in hybrid applications, doesn't require a rewrite Allows sharing models, validation, other code between Web Forms and MVC ASP.NET MVC Adaptive Rendering (oh, also, this is in Web Forms 4.5 as well) Display Modes Mobile project template using jQuery Mobile OAuth login to allow Twitter, Google, Facebook, etc. login Jon (and friends') MVC 4 book on the way: Professional ASP.NET MVC 4 Windows 8 development Jesse and Jon announce they're working on a new book: Pro Windows 8 Development with XAML and C# Jon and Jesse agree that it's nice to be able to write Windows 8 applications using the same skills they picked up for Silverlight, WPF, and Windows Phone development. Compare / contrast ASP.NET MVC and Windows 8 development Q: Does ASP.NET and HTML5 development overlap? Jon thinks they overlap in the MVC world because you're writing HTML views without controls Jon describes how his web development career moved from a preoccupation with server code to a focus on user interaction, which occurs in the browser Jon mentions his NDC Oslo presentation on Learning To Love HTML as Beautiful Code Q: How do you apply C# / XAML or HTML5 skills to Windows 8 development? Q: If I'm a XAML programmer, what's the learning curve on getting up to speed on ASP.NET MVC? Jon describes the difference in application lifecycle and state management Jon says it's nice that web development is really interactive compared to application development Q: Can you learn MVC by reading a book? Or is it a lot bigger than that? What is Azure, and why would I use it? Jon describes the traditional Azure platform mode and how Azure Web Sites fits in Q: Why wouldn't Jesse host his blog on Azure Web Sites? Domain names on Azure Web Sites File hosting options Q: Is Azure just another host? How is it different from any of the other shared hosting options? A: Azure gives you the ability to scale up or down whenever you want A: Other services are available if or when you want them

    Read the article

  • Review: ComponentOne Studio for Entity Framework

    - by Tim Murphy
    While I have always been a fan of libraries that improve coding efficiency and reduce code redundancy I have mostly been using ones that were in the public domain.  As part of the Geeks With Blogs Influencers program a got my hands on ComponentOne’s Studio for Entity Framework.  Below are my thought after working with the product for several weeks. My coding preference has always been maintainable code that is reusable across an enterprises protfolio.  Because of this my focus in reviewing this product is less on the RAD components and more on its benefits for layered applications using code first Entity Framework. Before we get into the pros and cons here is a summary of the main feature listed for SEF. Unified Data Context Virtual Data Access More Powerful Data Binding Pros The first thing that I found to my liking is the C1DataSource. It basically manages a cache for your Entity Model context.  Under RAD conditions this is setup automatically when you drop the object on a your design surface.  If you are like me and want to abstract you data management into a library it takes a little more work, but it is still acceptable and gains the same benefits. The second feature that I found beneficial is the definition of views with improved sorting and filtering.  Again the ease of use of these features is greater on the RAD side but no capabilities are missing when manipulating object in code. Linq has become my friend over the last couple of years and it was great to see that ComponentOne had ensured that it remained a first class citizen in their design.  When you look into this product yourself I would suggest taking a dive into LiveLinq which allow the joining of different data source types. As I went through discovering the features of this framework I appreciated the number of examples that they supplied for different uses.  Besides showing how to use SEF with WinForms, WPF and Silverlight they also showed how to accomplish tasks both RAD, code only and MVVM approaches. Cons The only area that I would really like to see improvement is in there level of detail in their documentation.  Specifically I would like to have seen some of the supporting code explained, such as what some supporting object did, in the examples instead of having to go to the programmer’s reference. I did find some times where currently existing projects had some trouble determining scope that the RAD controls were allowed, but I expect this is something that is in part end user related. Summary Overall I found the Studio for Entity Framework capable and well thought out.  If you are already using the Entity Framework this product will fit into your environment with little effort in return for greater flexibility and greater robustness in your solutions. Whether the $895 list price for a standard version works for you will depend on your return on investment. Smaller companies with only a small number of projects may not be able to stomach it, you get a full featured product that is supported by a well established company.  The more projects and the more code you have the greater your return on investment will be. Personally I intend to apply this product to some production systems and will probably have some tips and tricks in the future. del.icio.us Tags: ComponentOne,Studio for Entity Framework,Geeks With Blogs,Influencers,Product Reviews

    Read the article

  • TiVo Follow-up&hellip;Training Opportunities

    - by MightyZot
    A few posts ago I talked about my experience with TiVo Customer Service. While I didn’t receive bad service per se, I felt like the reps could have communicated better. I made the argument that it should be just as easy to leave a company as it is to engage with a company, even though my intention is to remain a TiVo fan. I worked for DataStorm Technologies in the early 90s. I pointed out to another developer that we were leaving files behind in our installations. My opinion was that, if the customer is uninstalling our application, there should be no trace of it left after uninstall except for the customer’s data. He replied with, “screw ‘em. They’re leaving us. Why do we care if we left anything behind?” Wow. Surely there is a lot of arrogance in that statement. Think about this…how often do you change your services, devices, or whatever?  Personally, I change things up about once every two or three years. If I don’t change things up, I at least think about it. So, every two or three years there is an opportunity for you (as a vendor or business) to sell me something. (That opportunity actually exists all the time, because there are many of these two or three year periods overlapping.) Likewise, you have the opportunity to win back my business every two or three years as well. Customer service on exit is just as important as customer service during engagement because, every so often, you have another chance to gain back my loyalty. If you screw that up on exit, your chances are close to zero. In addition, you need to consider all of the potential or existing customers that are part of or affected by my social organizations. “Melissa” at TiVo gave me a call last week and set up some time to talk about my experience. We talked yesterday and she gave me a few moments to pontificate about my thoughts on the importance of a complete customer experience. She had listened to my customer support calls and agreed that I had made it clear that I intended to remain a TiVo customer even though suddenLink is handling my subscription. She said that suddenLink is a very important partner for them and, of course, they want to do everything they can to support TiVo / suddenLink customers.  “Melissa” also said that they had turned this experience into a training opportunity for the reps involved. I hope that is true, because that “programmer arrogance” that I mentioned above (which was somewhat pervasive back then) may be part of the reason why that company is no longer around. Good job “Melissa”!  And, like I said, I am still a TiVo fan. In fact, we love our new TiVo and many of the great new features. In addition, if you’re one of the two people that read these posts, please remember that these are just opinions. Your experiences may be, and likely will be, completely unique to you.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Extend Your Applications Your Way: Oracle OpenWorld Live Poll Results

    - by Applications User Experience
    Lydia Naylor, Oracle Applications User Experience Manager At OpenWorld 2012, I attended one of our team’s very exciting sessions: “Extend Your Applications, Your Way”. It was clear that customers were engaged by the topics presented. Not only did we see many heads enthusiastically nodding in agreement during the presentation, and witness a large crowd surround our speakers Killian Evers, Kristin Desmond and Greg Nerpouni afterwards, but we can prove it…with data! Figure 1. Killian Evers, Kristin Desmond, and Greg Nerpouni of Oracle at the OOW 2012 session. At the beginning of our OOW 2012 journey, Greg Nerpouni, Fusion HCM Principal Product Manager, told me he really wanted to get feedback from the audience on our extensibility direction. Initially, we were thinking of doing a group activity at the OOW UX labs events that we hold every year, but Greg was adamant- he wanted “real-time” feedback. So, after a little tinkering, we came up with a way to use an online survey tool, a simple QR code (Quick Response code: a matrix barcode that can include information like URLs and can be read by mobile device cameras), and the audience’s mobile devices to do just that. Figure 2. Actual QR Code for survey Prior to the session, we developed a short survey in Vovici (an online survey tool), with questions to gather feedback on certain points in the presentation, as well as demographic data from our participants. We used Vovici’s feature to generate a mobile HTML version of the survey. At the session, attendees accessed the survey by simply scanning a QR code or typing in a TinyURL (a shorthand web address that is easily accessible through mobile devices). Killian, Kristin and Greg paused at certain points during the session and asked participants to answer a few survey questions about what they just presented. Figure 3. Session survey deployed on a mobile phone The nice thing about Vovici’s survey tool is that you can see the data real-time as participants are responding to questions - so we knew during the session that not only was our direction on track but we were hitting the mark and fulfilling Greg’s request. We planned on showing the live polling results to the audience at the end of the presentation but it ran just a little over time, and we were gently nudged out of the room by the session attendants. We’ve included a quick summary below and this link to the full results for your enjoyment. Figure 4. Most important extensions to Fusion Applications So what did participants think of our direction for extensibility? A total of 94% agreed that it was an improvement upon their current process. The vast majority, 80%, concurred that the extensibility model accounts for the major roles involved: end user, business systems analyst and programmer. Attendees suggested a few supporting roles such as systems administrator, data architect and integrator. Customers and partners in the audience verified that Oracle‘s Fusion Composers allow them to make changes in the most common areas they need to: user interface, business processes, reporting and analytics. Integrations were also suggested. All top 10 things customers can do on a page rated highly in importance, with all but two getting an average rating above 4.4 on a 5 point scale. The kinds of layout changes our composers allow customers to make align well with customers’ needs. The most common were adding columns to a table (94%) and resizing regions and drag and drop content (both selected by 88% of participants). We want to thank the attendees of the session for allowing us another great opportunity to gather valuable feedback from our customers! If you didn’t have a chance to attend the session, we will provide a link to the OOW presentation when it becomes available.

    Read the article

  • Algorithm to Find the Aggregate Mass of "Granola Bar"-Like Structures?

    - by Stuart Robbins
    I'm a planetary science researcher and one project I'm working on is N-body simulations of Saturn's rings. The goal of this particular study is to watch as particles clump together under their own self-gravity and measure the aggregate mass of the clumps versus the mean velocity of all particles in the cell. We're trying to figure out if this can explain some observations made by the Cassini spacecraft during the Saturnian summer solstice when large structures were seen casting shadows on the nearly edge-on rings. Below is a screenshot of what any given timestep looks like. (Each particle is 2 m in diameter and the simulation cell itself is around 700 m across.) The code I'm using already spits out the mean velocity at every timestep. What I need to do is figure out a way to determine the mass of particles in the clumps and NOT the stray particles between them. I know every particle's position, mass, size, etc., but I don't know easily that, say, particles 30,000-40,000 along with 102,000-105,000 make up one strand that to the human eye is obvious. So, the algorithm I need to write would need to be a code with as few user-entered parameters as possible (for replicability and objectivity) that would go through all the particle positions, figure out what particles belong to clumps, and then calculate the mass. It would be great if it could do it for "each" clump/strand as opposed to everything over the cell, but I don't think I actually need it to separate them out. The only thing I was thinking of was doing some sort of N2 distance calculation where I'd calculate the distance between every particle and if, say, the closest 100 particles were within a certain distance, then that particle would be considered part of a cluster. But that seems pretty sloppy and I was hoping that you CS folks and programmers might know of a more elegant solution? Edited with My Solution: What I did was to take a sort of nearest-neighbor / cluster approach and do the quick-n-dirty N2 implementation first. So, take every particle, calculate distance to all other particles, and the threshold for in a cluster or not was whether there were N particles within d distance (two parameters that have to be set a priori, unfortunately, but as was said by some responses/comments, I wasn't going to get away with not having some of those). I then sped it up by not sorting distances but simply doing an order N search and increment a counter for the particles within d, and that sped stuff up by a factor of 6. Then I added a "stupid programmer's tree" (because I know next to nothing about tree codes). I divide up the simulation cell into a set number of grids (best results when grid size ˜7 d) where the main grid lines up with the cell, one grid is offset by half in x and y, and the other two are offset by 1/4 in ±x and ±y. The code then divides particles into the grids, then each particle N only has to have distances calculated to the other particles in that cell. Theoretically, if this were a real tree, I should get order N*log(N) as opposed to N2 speeds. I got somewhere between the two, where for a 50,000-particle sub-set I got a 17x increase in speed, and for a 150,000-particle cell, I got a 38x increase in speed. 12 seconds for the first, 53 seconds for the second, 460 seconds for a 500,000-particle cell. Those are comparable speeds to how long the code takes to run the simulation 1 timestep forward, so that's reasonable at this point. Oh -- and it's fully threaded, so it'll take as many processors as I can throw at it.

    Read the article

  • The busy developers guide to the Kinect SDK Beta

    - by mbcrump
    The Kinect is awesome. From day one, I’ve said this thing has got potential. After playing with several open-source Kinect projects, I am please to announce that Microsoft has released the official SDK beta on 6/16/2011. I’ve created this quick start guide to get you up to speed in no time flat. Let’s begin: What is it? The Kinect for Windows SDK beta is a starter kit for applications developers that includes APIs, sample code, and drivers. This SDK enables the academic research and enthusiast communities to create rich experiences by using Microsoft Xbox 360 Kinect sensor technology on computers running Windows 7. (defined by Microsoft) Links worth checking out: Download Kinect for Windows SDK beta – You can either download a 32 or 64 bit SDK depending on your OS. Readme for Kinect for Windows SDK Beta from Microsoft Research  Programming Guide: Getting Started with the Kinect for Windows SDK Beta Code Walkthroughs of the samples that ship with the Kinect for Windows SDK beta (Found in \Samples Folder) Coding4Fun Kinect Toolkit – Lots of extension methods and controls for WPF and WinForms. Kinect Mouse Cursor – Use your hands to control things like a mouse created by Brian Peek. Kinect Paint – Basically MS Paint but use your hands! Kinect for Windows SDK Quickstarts Installing and Using the Kinect Sensor Getting it installed: After downloading the Kinect SDK Beta, double click the installer to get the ball rolling. Hit the next button a few times and it should complete installing. Once you have everything installed then simply plug in your Kinect device into the USB Port on your computer and hopefully you will get the following screen: Once installed, you are going to want to check out the following folders: C:\Program Files (x86)\Microsoft Research KinectSDK – This contains the actual Kinect Sample Executables along with the documentation as a CHM file. Also check out the C:\Users\Public\Documents\Microsoft Research KinectSDK Samples directory: The main thing to note here is that these folders contain the source code to the applications where you can compile/build them yourself. Audio NUI DEMO Time Let’s get started with some demos. Navigate to the C:\Program Files (x86)\Microsoft Research KinectSDK folder and double click on ShapeGame.exe. Next up is SkeletalViewer.exe (image taken from http://www.i-programmer.info/news/91-hardware/2619-microsoft-launch-kinect-sdk-beta.html as I could not get a good image using SnagIt) At this point, you will have to download Kinect Mouse Cursor – This is really cool because you can use your hands to control the mouse cursor. I actually used this to resize itself. Last up is Kinect Paint – This is very cool, just make sure you read the instructions! MS Paint on steroids! A few tips for getting started building Kinect Applications. It appears WPF is the way to go with building Kinect Applications. You must also use a version of Visual Studio 2010.  Your going to need to reference Microsoft.Research.Kinect.dll when building a Kinect Application. Right click on References and then goto Browse and navigate to C:\Program Files (x86)\Microsoft Research KinectSDK and select Microsoft.Research.Kinect.dll. You are going to want to make sure your project has the Platform target set to x86. The Coding4Fun Kinect Toolkit really makes things easier with extension methods and controls. Just note that this is for WinForms or WPF. Conclusion It looks like we have a lot of fun in store with the Kinect SDK. I’m very excited about the release and have already been thinking about all the applications that I can begin building. It seems that development will be easier now that we have an official SDK and the great work from Coding4Fun. Please subscribe to my blog or follow me on twitter for more information about Kinect, Silverlight and other great technology.  Subscribe to my feed

    Read the article

  • Guessing Excel Data Types

    - by AjarnMark
    Note to Self HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\Excel: TypeGuessRows = 0 means scan everything. Note to Others About 10 years ago I stumbled across this bit of information just when I needed it and it saved my project.  Then for some reason, a few years later when it would have been nice, but not critical, for some reason I could not find it again anywhere.  Well, now I have stumbled across it again, and to preserve my future self from nightmares and sudden baldness due to pulling my hair out, I have decided to blog it in the hopes that I can find it again this way. Here’s the story…  When you query data from an Excel spreadsheet, such as with old-fashioned DTS packages in SQL 2000 (my first reference) or simply with an OLEDB Data Adapter from ASP.NET (recent task) and if you are using the Microsoft Jet 4.0 driver (newer ones may deal with this differently) then you can get funny results where the query reports back that a cell value is null even when you know it contains data. What happens is that Excel doesn’t really have data types.  While you can format information in cells to appear like certain data types (e.g. Date, Time, Decimal, Text, etc.) that is not really defining the cell as being of a certain type like we think of when working with databases.  But, presumably, to make things more convenient for the user (programmer) when you issue a query against Excel, the query processor tries to guess what type of data is contained in each column and returns it in an appropriate manner.  This is all well and good IF your data is consistent in every row and matches what the processor guessed.  And, for efficiency’s sake, when the query processor is trying to figure out each column’s data type, it does so by analyzing only the first 8 rows of data (default setting). Now here’s the problem, suppose that your spreadsheet contains information about clothing, and one of the columns is Size.  Now suppose that in the first 8 rows, all of your sizes look like 32, 34, 18, 10, and so on, using numbers, but then, somewhere after the 8th row, you have some rows with sizes like S, M, L, XL.  What happens is that by examining only the first 8 rows, the query processor inferred that the column contained numerical data, and then when it hits the non-numerical data in later rows, it comes back blank.  Major bummer, and a real pain to track down if you don’t know that Excel is doing this, because you study the spreadsheet and say, “the data is RIGHT THERE!  WHY doesn’t the query see it?!?!”  And the hair-pulling begins. So, what’s a developer to do?  One option is to go to the registry setting noted above and change the DWORD value of TypeGuessRows from the default of 8 to 0 (zero).  Setting this value to zero will force Jet to scan every row in the spreadsheet before making its determination as to what type of data the column contains.  And that means that in the example above, it would have treated the column as a string rather than as numeric, and presto! your query now returns all of the values that you know are in there. Of course, there is a caveat… if you are querying large spreadsheets, making Jet scan every row can be quite a performance hit.  You could enter a different number (more than 8) that you believe is a better sampling of rows to make the guess, but you still have the possibility that every row scanned looks alike, but that later rows are different, and that you might get blanks when there really is data there.  That’s the type of gamble, I really don’t like to take with my data. Anyone with a better approach, or with experience with more recent drivers that have a better way of handling data types, please chime in!

    Read the article

  • javascript complex recurrsion [on hold]

    - by Achilles
    Given Below is my data in data array. What i am doing in code below is that from that given data i have to construct json in a special format which i also gave below. //code start here var hierarchy={}; hierarchy.name="Hierarchy"; hierarchy.children=[{"name":"","children":[{"name":"","children":[]}]}]; var countryindex; var flagExist=false; var data = [ {country :"America", city:"Kansas", employe:'Jacob'}, {country :"Pakistan", city:"Lahore", employe:'tahir'}, {country :"Pakistan", city:"Islamabad", employe:'fakhar'} , {country :"Pakistan", city:"Lahore", employe:'bilal'}, {country :"India", city:"d", employe:'ali'} , {country :"Pakistan", city:"Karachi", employe:'eden'}, {country :"America", city:"Kansas", employe:'Jeen'} , {country :"India", city:"Banglore", employe:'PP'} , {country :"India", city:"Banglore", employe:'JJ'} , ]; for(var i=0;i<data.length;i++) { for(var j=0;j<hierarchy.children.length;j++) { //for checking country match if(hierarchy.children[j].name==data[i].country) { countryindex=j; flagExist=true; break; } } if(flagExist)//country match now no need to add new country just add city in it { var cityindex; var cityflag=false; //hierarchy.children[countryindex].children.push({"name":data[i].city,"children":[]}) //if(hierarchy.children[index].children!=undefined) for(var k=0;k< hierarchy.children[countryindex].children.length;k++) { //for checking city match if(hierarchy.children[countryindex].children[k].name==data[i].city) { // hierarchy.children[countryindex].children[k].children.push({"name":data[i].employe}) cityflag=true; cityindex=k; break; } } if(cityflag)//city match now add just empolye at that city index { hierarchy.children[countryindex].children[cityindex].children.push({"name":data[i].employe}); cityflag=false; } else//no city match so add new with employe also as this is new city so its emplye will be 1st { hierarchy.children[countryindex].children.push({"name":data[i].city,children:[{"name":data[i].employe}]}); //same as above //hierarchy.children[countryindex].children[length-1].children.push({"name":data[i].employe}); } flagExist=false; } else{ //no country match adding new country //with city also as this is new city of new country console.log("sparta"); hierarchy.children.push({"name":data[i].country,"children":[{"name":data[i].city,"children":[{"name":data[i].employe}]}]}); // hierarchy.children.children.push({"name":data[i].city,"children":[]}); } //console.log(hierarchy); } hierarchy.children.shift(); var j=JSON.stringify(hierarchy); //code ends here //here is the json which i seccessfully formed from the code { "name":"Hierarchy", "children":[ { "name":"America", "children":[ { "name":"Kansas", "children":[{"name":"Jacob"},{"name":"Jeen"}]}]}, { "name":"Pakistan", "children":[ { "name":"Lahore", "children": [ {"name":"tahir"},{"name":"bilal"}]}, { "name":"Islamabad", "children":[{"name":"fakhar"}]}, { "name":"Karachi", "children":[{"name":"eden"}]}]}, { "name":"India", "children": [ { "name":"d", "children": [ {"name":"ali"}]}, { "name":"Banglore", "children":[{"name":"PP"},{"name":"JJ"}]}]}]} Now the orignal problem is that currently i am solving this problem for data of array of three keys and i have to go for 3 nested loops now i want to optimize this solution so that if data array of object has more than 3 key say 5 {country :"America", state:"NewYork",city:"newYOrk",street:"elm", employe:'Jacob'}, or more than my solution will not work and i cannot decide before how many keys will come so i thought recursion may suit best here. But i am horrible in writing recurrsion and the case is also complex. Can some awesome programmer help me writing recurrsion or suggest some other solution.

    Read the article

  • Modernizr Rocks HTML5

    - by Laila
    HTML5 is a moving target.  At the moment, we don't know what will be in future versions.  In most circumstances, this really matters to the developer. When you're using Adobe Air, you can be reasonably sure what works, what is there, and what isn't, since you have a version of the browser built-in. With Metro, you can assume that you're going to be using at least IE 10.   If, however,  you are using HTML5 in a web application, then you are going to rely heavily on Feature Detection.  Feature-Detection is a collection of techniques that tell you, via JavaScript, whether the current browser has this feature natively implemented or not Feature Detection isn't just there for the esoteric stuff such as  Geo-location,  progress bars,  <canvas> support,  the new <input> types, Audio, Video, web workers or storage, but is required even for semantic markup, since old browsers make a pigs ear out of rendering this.  Feature detection can't rely just on reading the browser version and inferring from that what works. Instead, you must use JavaScript to check that an HTML5 feature is there before using it.  The problem with relying on the user-agent is that it takes a lot of historical data  to work out what version does what, and, anyway, the user-agent can be, and sometimes is, spoofed. The open-source library Modernizr  is just about the most essential  JavaScript library for anyone using HTML5, because it provides APIs to test for most of the CSS3 and HTML5 features before you use them, and is intelligent enough to alter semantic markup into 'legacy' 'markup  using shims  on page-load  for old browsers. It also allows you to check what video Codecs are installed for playing video. It also provides media queries  and conditional resource-loading (formerly YepNope.js.).  Generally, Modernizr gives you the choice of what you do about browsers that don't support the feature that you want. Often, the best choice is graceful degradation, but the resource-loading feature allows you to dynamically load JavaScript Shims to replace the standard API for missing or defective HTML5 functionality, called 'PolyFills'.  As the Modernizr site says 'Yes, not only can you use HTML5 today, but you can use it in the past, too!' The evolutionary progress of HTML5  requires a more defensive style of JavaScript programming where the programmer adopts a mindset of fearing the worst ( IE 6)  rather than assuming the best, whilst exploiting as many of the new HTML features as possible for the requirements of the site or HTML application.  Why would anyone want the distraction of developing their own techniques to do this when  Modernizr exists to do this for you? Laila

    Read the article

  • How to prepare for a programming competition? Graphs, Stacks, Trees, oh my! [closed]

    - by Simucal
    Last semester I attended ACM's (Association for Computing Machinery) bi-annual programming competition at a local University. My University sent 2 teams of 3 people and we competed amongst other schools in the mid-west. We got our butts kicked. You are given a packet with about 11 problems (1 problem per page) and you have 4 hours to solve as many as you can. They'll run your program you submit against a set of data and your output must match theirs exactly. In fact, the judging is automated for the most part. In any case.. I went there fairly confident in my programming skills and I left there feeling drained and weak. It was a terribly humbling experience. In 4 hours my team of 3 people completed only one of the problems. The top team completed 4 of them and took 1st place. The problems they asked were like no problems I have ever had to answer before. I later learned that in order to solve them some of them effectively you have to use graphs/graph algorithms, trees, stacks. Some of them were simply "greedy" algo's. My question is, how can I better prepare for this semesters programming competition so I don't leave there feeling like a complete moron? What tips do you have for me to be able to answer these problems that involve graphs, trees, various "well known" algorithms? How can I easily identify the algorithm we should implement for a given problem? I have yet to take Algorithm Design in school so I just feel a little out of my element. Here are some examples of the questions asked at the competitions: ACM Problem Sets Update: Just wanted to update this since the latest competition is over. My team placed 1st for our small region (about 6-7 universities with between 1-5 teams each school) and ~15th for the midwest! So, it is a marked improvement over last years performance for sure. We also had no graduate students on our team and after reviewing the rules we found out that many teams had several! So, that would be a pretty big advantage in my own opinion. Problems this semester ranged from about 1-2 "easy" problems (ie bit manipulation, string manipulation) to hard (graph problems involving fairly complex math and network flow problems). We were able to solve 4 problems in our 5 hours. Just wanted to thank everyone for the resources they provided here, we used them for our weekly team practices and it definitely helped! Some quick tips that I have that aren't suggested below: When you are seated at your computer before the competition starts, quickly type out various data structures that you might need that you won't have access to in your languages libraries. I typed out a Graph data-structure complete with floyd-warshall and dijkstra's algorithm before the competition began. We ended up using it in our 2nd problem that we solved and this is the main reason why we solved this problem before anyone else in the midwest. We had it ready to go from the beginning. Similarly, type out the code to read in a file since this will be required for every problem. Save this answer "template" someplace so you can quickly copy/paste it to your IDE at the beginning of each problem. There are no rules on programming anything before the competition starts so get any boilerplate code out the way. We found it useful to have one person who is on permanent whiteboard duty. This is usually the person who is best at math and at working out solutions to get a head start on future problems you will be doing. One person is on permanent programming duty. Your fastest/most skilled "programmer" (most familiar with the language). This will save debugging time also. The last person has several roles between assessing the packet of problems for the next "easiest" problem, helping the person on the whiteboard work out solutions and helping the person programming work out bugs/issues. This person needs to be flexible and be able to switch between roles easily.

    Read the article

  • Subterranean IL: Compiling C# exception handlers

    - by Simon Cooper
    An exception handler in C# combines the IL catch and finally exception handling clauses into a single try statement: try { Console.WriteLine("Try block") // ... } catch (IOException) { Console.WriteLine("IOException catch") // ... } catch (Exception e) { Console.WriteLine("Exception catch") // ... } finally { Console.WriteLine("Finally block") // ... } How does this get compiled into IL? Initial implementation If you remember from my earlier post, finally clauses must be specified with their own .try clause. So, for the initial implementation, we take the try/catch/finally, and simply split it up into two .try clauses (I have to use label syntax for this): StartTry: ldstr "Try block" call void [mscorlib]System.Console::WriteLine(string) // ... leave.s End EndTry: StartIOECatch: ldstr "IOException catch" call void [mscorlib]System.Console::WriteLine(string) // ... leave.s End EndIOECatch: StartECatch: ldstr "Exception catch" call void [mscorlib]System.Console::WriteLine(string) // ... leave.s End EndECatch: StartFinally: ldstr "Finally block" call void [mscorlib]System.Console::WriteLine(string) // ... endfinally EndFinally: End: // ... .try StartTry to EndTry catch [mscorlib]System.IO.IOException handler StartIOECatch to EndIOECatch catch [mscorlib]System.Exception handler StartECatch to EndECatch .try StartTry to EndTry finally handler StartFinally to EndFinally However, the resulting program isn't verifiable, and doesn't run: [IL]: Error: Shared try has finally or fault handler. Nested try blocks What's with the verification error? Well, it's a condition of IL verification that all exception handling regions (try, catch, filter, finally, fault) of a single .try clause have to be completely contained within any outer exception region, and they can't overlap with any other exception handling clause. In other words, IL exception handling clauses must to be representable in the scoped syntax, and in this example, we're overlapping catch and finally clauses. Not only is this example not verifiable, it isn't semantically correct. The finally handler is specified round the .try. What happens if you were able to run this code, and an exception was thrown? Program execution enters top of try block, and exception is thrown within it CLR searches for an exception handler, finds catch Because control flow is leaving .try, finally block is run The catch block is run leave.s End inside the catch handler branches to End label. We're actually running the finally before the catch! What we do about it What we actually need to do is put the catch clauses inside the finally clause, as this will ensure the finally gets executed at the correct time (this time using scoped syntax): .try { .try { ldstr "Try block" call void [mscorlib]System.Console::WriteLine(string) // ... leave.s End } catch [mscorlib]System.IO.IOException { ldstr "IOException catch" call void [mscorlib]System.Console::WriteLine(string) // ... leave.s End } catch [mscorlib]System.Exception { ldstr "Exception catch" call void [mscorlib]System.Console::WriteLine(string) // ... leave.s End } } finally { ldstr "Finally block" call void [mscorlib]System.Console::WriteLine(string) // ... endfinally } End: ret Returning from methods There is a further semantic mismatch that the C# compiler has to deal with; in C#, you are allowed to return from within an exception handling block: public int HandleMethod() { try { // ... return 0; } catch (Exception) { // ... return -1; } } However, you can't ret inside an exception handling block in IL. So the C# compiler does a leave.s to a ret outside the exception handling area, loading/storing any return value to a local variable along the way (as leave.s clears the stack): .method public instance int32 HandleMethod() { .locals init ( int32 retVal ) .try { // ... ldc.i4.0 stloc.0 leave.s End } catch [mscorlib]System.Exception { // ... ldc.i4.m1 stloc.0 leave.s End } End: ldloc.0 ret } Conclusion As you can see, the C# compiler has quite a few hoops to jump through to translate C# code into semantically-correct IL, and hides the numerous conditions on IL exception handling blocks from the C# programmer. Next up: catch-all blocks, and how the runtime deals with non-Exception exceptions.

    Read the article

  • What are some good questions (and good/bad answers) to ask at an interview to gauge the competency of the company/team?

    - by Wayne M
    I'm already familiar with the Joel Test, but it's been my experience that some of the questions there have the answers "massaged" to make the company seem better than it is. I've had several jobs in the past that, for instance, claimed they had a QA process and did unit testing, and what they really meant is "The programmers test the app, and test with the debugger and via trial-and-error."; they said they used SVN but they just lumped everything into one giant repository and had no concept of branching/merging or anything more complicated than updating and committing; said they can build in one step and what they really mean is it's "one step" to copy dozens of files by hand from the programmer's PC to the live server. How do you go about properly gauging a company's environment to make sure that it's a well-evolved company and not stuck on doing things a certain way because they've done it for years and they're ignorant of change? You can almost never ask to see their source code, so you're stuck trying to figure out if the interviewer's answer is accurate or BS to make the company seem good. Besides the Joel Test what are some other good questions to get the proper feel for a company, and more importantly what are some good and bad answers that could indicate a good or bad company? I mean something like (take at face value, please, it's all I could think of at short notice): Question: How does the software team apply the SOLID principles and Inversion of Control to their code? Good Answer: We adhere to SOLID wherever possible; we use TDD so it kind of forces us to write abstract, testable code. We use Ninject for our IoC container because it's fairly easy to configure - it was that or StructureMap but I find Ninject a bit more intuitive, and who doesn't like ninjas? You're not a pirate, are you? Bad Answer: Our code is pretty secure, yeah. And what's this Inversion of Control thing? I've never heard of it before. You see what I did there. The "good" answer uses facts to back it up and has a bit of "in crowd" humor; the bad answer shows complete ignorance of the question - not necessarily a bad thing if you are interviewing for a manger/director position, but a terrible answer and a huge red flag if you're interviewing as a developer and talking to a senior developer or manager! My biggest problem at the moment is being able to take a generic response and gauge whether it's the good or bad answer; more often than not it's the bad kind and I find myself frustrated almost from day one at the new job. I suppose I could name drop if I ask about specific things (e.g. "Do you write unit tests?" and if the answer is yes, ask if they use NUnit, MbUnit or something else; if they mention data access ask if they use a clean ORM like NHibernate or something more coupled like EF or Linq) but is there another way short of being resolute to actually call the interview on things (which will almost certainly result in not getting the job, but if they are skirting the question it's probably not a job I want).

    Read the article

  • The inevitable Hello World post!

    - by brendonpage
    Greetings to anyone reading this! This is my first of hopefully many posts. I would like to use this post to introduce myself and to let you know what to expect from this blog in future. Okay so a bit about myself. In case you missed the name of this blog, my name is Brendon Page! I am a Software Developer from South Africa and work for a small company who’s main focus is producing software for the kitchen cupboard industry, although from time to time we do produce custom solutions for other industries. I work in a small team of 3, including myself, and am fortunate enough to work from home! I have been involved in IT since 1996, which is when I got my first PC, and started working as a junior programmer in 2003. Outside of work I enjoy playing squash, PC Games and of course LANing with my friends. If I get any free time between all of that I will usually dedicate some of it to a personal project, these are mainly prototypes for an idea I have had or for something that could be useful at work. I was in 2 minds on whether to include a photo of myself. The reason for this was because while I was looking for a suitable photo to use, it dawned on me how much time I dedicate to pulling funny faces in photos! I also realized how little I shave, which I blame completely on working form home. So after much debate here I am, funny face, beard and all!   Now that you know a bit about me lets move onto what expect from this blog. I work predominantly with Microsoft technologies so most if not all of my posts will be related to something Microsoft. Since most of my job entails Software Development you can expect a lot of posts which will deal with the .NET Framework. I am currently working on a large Silverlight project, so my first few posts will be targeted at in that direction. I will be striving to make the content of my posts as useful as possible from both an explanation and code perspective, I aim to include a working solution for every post, which I will put up on my skydrive for download. Here is what I have planned for my next few posts: Where did my session variables go?  Here I will take you through the lessons I learnt the hard way about the ASP.NET session. I am not going to go into to much depth in this post, as there is already a lot of information available on it. I mainly want to cover it in an effort to keep the scope creep of my posts to a minimum, some the solutions I upload will use it and I would like to have a post that I can reference to explain why I am doing something a certain way. Uploading files through SIlverlight Again there is a lot of existing information on this topic, so I wont be going into to much depth, but I will be using the solution from this as a base for my next post. Generating and Displaying DeepZoom images dynamically in Silverlight Well the title pretty much speaks for it’s self on this one. As I mentioned I will be building off the solution that I create in my ‘Uploading files through Silverlight’ post. Securing DeepZoom images using a custom implementation of the MultiScaleTileSource In this post I will look at the privacy issue surrounding the default usage of DeepZoom images in Silverlight and how to overcome it. This makes the use of DeepZoom in privacy conscious applications more viable. Thanks to anyone who actually read this post! I look forward to producing more which will hopefully be helpful to you.

    Read the article

  • Ti Launchpad

    - by raysmithequip
    Just thought I would get a couple of notes up here for reference to anyone that is interested...it is now Feb 2011 and I have not been posting here enough to remember this blog. Back in Nov 2010 I ordered the Ti launchpad msp430, it is a little target board kit replete with a mini USB cable, two very inexpensive programmable mcu's and a couple of pin headers with a couple of led's on board, a spi connector some on board jumpers and two programmable micro switches....all for less than $5.00...INCLUDING SHIPPING!!....not bad when the ardruino's are running around 20.00 for the target board, atmega328 and cable off of eBay...I wont even mention the microchip pic right now.  Naw, for $5.00 the Ti launchpad kit is about the cheapest fun around...if-uns your a geek that is... Well, the launchpad was backordered for almost two months, came like Xmas eve in fact...I had almost forgotten it!! And really, it was way late and not my idea of an Xmas present for myself.  That would of been the web expressions 4 I bought a few weeks back.  With all the holidays, I did not even look at it till last week, in fact I passed the wrapped board around at my local ham club meeting during points of personal privilege....some oh's and ahhs but mostly duhs...I actually ordered it to avoid downloading the huge code compressor studio 4 (CCS) that was supposed to be included on the cd.  No cd.  I had already downloaded IAR  another programming IDE for these little micro bugs. In my spare time I toyed with IAR and the launchpad board but after about two days of playing delete the driver with windows I decided to just download CCS 4, the code limited version, and give that a shot......CCS 4, is a good rewrite from the earlier versions, it is based on Eclipse as an IDE and includes the drivers for the msp430 target board I received in the kit.  Once installed I quickly configured the debugger for the target chip which was already plugged into the dip socket at the factory, msp430G2131 from he drop down list and clicked ok...I was in!! The CCS4 is full of bells and whistles compared to the IAR, which I would of preferred for the simplicity.  But the code compressor studio really does have it all!!..the code limited version is free, and of all things will give you java script editor box.  The whole layout in debugger mode reminds me of any modern programmer IDE...I mean sure give me Tex anytime but you simply must admire all the boxes and options included in the GUI.  It was a simple matter to check the assembly code in the flash and ram memory that came preloaded for the launchpad kit.  Assembly.  I am right now looking for my old assembly textbooks...sure I remember how to use mov and add etc but a couple of the commands are a little more than vague anymore.  Still, these little mcu's are about 50 cents each and might just work in a couple of projects I have lined up for the near future.  I may document the code here.  Luckily, I plan to write the code in c++ for the main project but if it has to be assembly, no prob.  For reference, the program that came already on the 2131 in the kit was a temperature indicator that alternately flashed red and green leds and changed the intensity of either depending on whether the temp was rising or falling...neat.  Neat enough that it might be worthwhile banging out a little GUI in windows 7 to test the new user device system calls, maybe put a temp gauge widget up on the desktop...just to keep from getting bored.  If you see some assembly code on this blog, you know I was doing something with one of the many mcu's out there.....thats all for now, more to follow...a bit later, of course.

    Read the article

< Previous Page | 385 386 387 388 389 390 391 392 393 394 395 396  | Next Page >