Search Results

Search found 3849 results on 154 pages for 'execution'.

Page 39/154 | < Previous Page | 35 36 37 38 39 40 41 42 43 44 45 46  | Next Page >

  • .Net Sql Client Provider

    - by sameer
    Have come across a situation where in, if a stored procedure is executed in Query Analyser its execution time is less than a second. But when same Stored Procedure is executed using .NET Sql Client Provide. it is taking 61 seconds. Therefore inorder to troubleshoot this issue we went to SQL Profiler we find the request come to SQL Server less then a second but execution completed after 60 seconds. Can anybody suggest why we have such a deviation. Query is a simple as give below SELECT distinct p1.productID, p1.description FROM Details V INNER JOIN Product P ON V.ProductID=P.ProductID INNER JOIN product p1 on p1.productID=p.parentID WHERE V.MarketID='1159' AND V.FinancialYear='1213' AND V.LEPeriodID= '75' AND p1.parentID=100024 AND p1.statusID = 1 ORDER BY description

    Read the article

  • Delete from empty table taking forver

    - by Will
    Hello, I have an empty table that previously had a large amount of rows. The table has about 10 columns and indexes on many of them, as well as indexes on multiple columns. DELETE FROM item WHERE 1=1 This takes approximately 40 seconds to complete SELECT * FROM item this takes 4 seconds. The execution plan of SELECT * FROM ITEM shows the following; SQL> select * from midas_item; no rows selected Elapsed: 00:00:04.29 Execution Plan ---------------------------------------------------------- 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=19 Card=123 Bytes=73 80) 1 0 TABLE ACCESS (FULL) OF 'MIDAS_ITEM' (Cost=19 Card=123 Byte s=7380) Statistics ---------------------------------------------------------- 0 recursive calls 0 db block gets 5263 consistent gets 5252 physical reads 0 redo size 1030 bytes sent via SQL*Net to client 372 bytes received via SQL*Net from client 1 SQL*Net roundtrips to/from client 0 sorts (memory) 0 sorts (disk) 0 rows processed any idea why these would be taking so long and how to fix it would be greatly appreciated!!

    Read the article

  • Windows 7 .NET 3.5.1 - 2.0 Slightly Corrupted, How to Repair?

    - by Quinxy von Besiex
    My Windows 7 included .NET installation (3.5 to 2.0) appears very slightly and particularly corrupted and I am trying to fix it without reinstalling Windows or trying to revert to backups. Everything was working and then my hard drive started corrupting a few files and checkdisk found bad clusters so I imaged the drive to a new one. As soon as I booted on the new drive everything worked except programs which call the System.Net.NetworkInformation methods within .NET 3.5 to 2.0 (like Ping() and IsNetworkAvailable()), which immediately crash the app in which the calls are (those calls in .NET 4.0 works fine). Those methods are found inside System.dll, and I assume call native methods which I believe are inside winnsi.dll or iphlpapi.dll or something else (I've not found this yet); I assume it calls native methods because the exception which causes the crash is Fatal Execution Engine Error which people mention is usually related to calling native methods and marshaling data between them. A huge clue about the culprit is likely found in the fact that when I launch the exact same crashing application through a code profiler (which executes the exe and captures stats on which methods took the longest) the app works fine, no crash at all! How could running it within the profiler work and running it outside not work? That seems the key to the mystery. I've used procmon to catch all the registry, filesystem, and network events from the crashing execution and the profiler-run successful execution and compared the two outputs but didn't learn much (I see the moment at which the non-profiled app crashes, but up until then they behave the same, loaded the same modules, ). The only big difference seems to be that at the moment before the app crash the profiler-executed code creates 4-6 new threads and the directly executed code only creates 1-2. I have diffed the files/directories which seemed most relevant (the .NET stuff under Windows and Program Files) pre- and post- disk trouble and seen no changes where I didn't expect any (no obvious file corruption). I have diffed the software and system registry hives pre- and post- disk trouble and seen no changes which seemed relevant. I have created a new user account and cleaned up any environment variables in case environment was related. No change. I did "sfc /scannow" and it found no integrity problems. I tried "ngen update" to regenerate pre-compiled code in case I missed something that might be damaged and nothing changed. I assume I need to repair my .NET installation but because Windows 7 included .NET 3.5 - 2.0 you can't just re-run a .NET installer to redo it. I do not have access to the Windows disks to try to re-install Windows over itself (the computer has a recovery partition but it is unusable); also the drive uses a whole-disk encryption solution and re-installing would be difficult. I absolutely do not want to start from scratch here and install a fresh Windows, reinstall dozens of software packages, try and remember dozens of development-related customizations/etc. Given all that... does anyone have any helpful advice? I need .NET 3.5 - 2.0 working as I am a developer and need to build and test against it. Thanks! Quinxy

    Read the article

  • Putting indexes in separate filegroup kills our queries

    - by womp
    Can anyone shed some light on this? On our dev boxes, our database resides entirely in the PRIMARY filegroup, and everything works fine. On one of our production servers, recently upgraded from 2005 to 2008, we noticed it was performing slower than it should. On this machine, there are two filegroups - PRIMARY and INDEXES. Both filegroups contain 1 file per logical volume, one logical volume per CPU, (and each logical volume is a RAID 10 of 4 physical disks). We isolated a few queries that were performing fast on the dev boxes and slow (up to 40x slower) on the production machine. Turned out these queries were using the non-clustered indexes that resided in the INDEXES filegroup. Tweaking some of the queries to only use clustered indexes that were in the PRIMARY filegroup dropped their times back to normal. As a final confirmation, we redeployed the same database on the same machine to have everything in PRIMARY, and things went back to normal! Here's the statistics output of one of the queries, run identically on the machine with different filegroup configurations (table names changed to protect the innocent): FAST (everything in PRIMARY filegroup): (3 row(s) affected) Table '0'. Scan count 2, logical reads 14, ... Table '1'. Scan count 0, logical reads 0, ... Table '1'. Scan count 0, logical reads 0, ... Table '2'. Scan count 2, logical reads 7, ... Table '3'. Scan count 2, logical reads 1012, ... Table '4'. Scan count 1, logical reads 3, ... SQL Server Execution Times: CPU time = 437 ms, elapsed time = 445 ms. SLOW (indexes split into their own filegroup): (3 row(s) affected) Table '0'. Scan count 209, logical reads 428, ... Table '1'. Scan count 0, logical reads 0,... Table '2'. Scan count 1021, logical reads 9043,.... Table '3'. Scan count 209, logical reads 105754, .... Table '4'. Scan count 0, logical reads 0, .... Table '5'. Scan count 1, logical reads 695, ... **Table '#46DA8CA9'. Scan count 205, logical reads 205, ...** Table '6'. Scan count 6, logical reads 436, ... Table '7'. Scan count 1, logical reads 12,.... SQL Server Execution Times: CPU time = 17581 ms, elapsed time = 17595 ms. Notice the weird temp table and extra tables involved in the slow query. It seems clear that having a second file group is making SQL Server batty with choosing an execution plan. What the heck is going on?

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • SQL SERVER – Out of the Box – Activty and Performance Reports from SSSMS

    - by pinaldave
    SQL Server management Studio 2008 is wonderful tool and has many different features. Many times, an average user does not use them as they are not aware about these features. Today, we will learn one such feature. SSMS comes with many inbuilt performance and activity reports, but we do not use it to the full potential. Let us see how we can access these standard reports. Connect to SQL Server Node >> Right Click on it >> Go to Reports >> Click on Standard Reports >> Pick Any Report. Click to Enlarge You can see there are many reports, which an average users needs right away, are available there. Let me list all the reports available. Server Dashboard Configuration Changes History Schema Changes History Scheduler Health Memory Consumption Activity – All Blocking Transactions Activity – All Cursors Activity – All Sessions Activity – Top Sessions Activity – Dormant Sessions Activity -  Top Connections Top Transactions by Age Top Transactions by Blocked Transactions Count Top Transactions by Locks Count Performance – Batch Execution Statistics Performance – Object Execution Statistics Performance – Top Queries by Average CPU Time Performance – Top Queries by Average IO Performance – Top Queries by Total CPU Time Performance – Top Queries by Total IO Service Broker Statistics Transactions Log Shipping Status In fact, when you look at the above list, it is fairly clear that they are very thought out and commonly needed reports that are available in SQL Server 2008. Let us run a couple of reports and observe their result. Performance – Top Queries by Total CPU Time Click to Enlarge Memory Consumption Click to Enlarge There are options for custom reports as well, which we can configure. We will learn about them in some other post. Additionally, you can right click on the reports and export in Excel or PDF. I think this tool can really help those who are just looking for some quick details. Does any of you use this feature, or this feature has some limitations and You would like to see more features? Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • SQL SERVER – Remove Debug Button in SSMS – SQL in Sixty Seconds #020 – Video

    - by pinaldave
    SQL in Sixty Seconds is indeed tremendous fun to do. Every week, we try to come up with some new learning which we can share in Sixty Seconds. In this busy world, we all have sixty seconds to learn something new – no matter how much busy we are. In this episode of the series, we talk about another interesting feature of SQL Server Management Studio. In SQL Server Management Studio (SSMS) we have two button side by side. 1) Execute (!) and 2) Debug (>). It is quite confusing to a few developers. The debug button which looks like a play button encourages developers to click on the same thinking it will execute the code. Also developer with a Visual Studio background often click it because of their habit. However, Debug button is not the same as Execute button. In most of the cases developers want to click on Execute to run the query but by mistake they click on Debug and it wastes their valuable time. It is very easy to fix this. If developers are not frequently using a debug feature in SQL Server they should hide it from the toolbar itself. This will reduce the chances to incorrectly click on the debug button greatly as well save lots of time for developer as invoking debug processes and turning it off takes a few extra moments. In this Sixty second video we will discuss how one can hide the debug button and avoid confusion regarding execution button. I personally use function key F5 to execute the T-SQL code so I do not face this problem that often. More on Removing Debug Button in SSMS: SQL SERVER – Read Only Files and SQL Server Management Studio (SSMS) SQL SERVER – Standard Reports from SQL Server Management Studio – SQL in Sixty Seconds #016 – Video SQL SERVER – Discard Results After Query Execution – SSMS SQL SERVER – Tricks to Comment T-SQL in SSMS – SQL in Sixty Seconds #019 – Video SQL SERVER – Right Aligning Numerics in SQL Server Management Studio (SSMS) I encourage you to submit your ideas for SQL in Sixty Seconds. We will try to accommodate as many as we can. If we like your idea we promise to share with you educational material. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Scripts, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology, Video

    Read the article

  • Parallelism in .NET – Part 15, Making Tasks Run: The TaskScheduler

    - by Reed
    In my introduction to the Task class, I specifically made mention that the Task class does not directly provide it’s own execution.  In addition, I made a strong point that the Task class itself is not directly related to threads or multithreading.  Rather, the Task class is used to implement our decomposition of tasks.  Once we’ve implemented our tasks, we need to execute them.  In the Task Parallel Library, the execution of Tasks is handled via an instance of the TaskScheduler class. The TaskScheduler class is an abstract class which provides a single function: it schedules the tasks and executes them within an appropriate context.  This class is the class which actually runs individual Task instances.  The .NET Framework provides two (internal) implementations of the TaskScheduler class. Since a Task, based on our decomposition, should be a self-contained piece of code, parallel execution makes sense when executing tasks.  The default implementation of the TaskScheduler class, and the one most often used, is based on the ThreadPool.  This can be retrieved via the TaskScheduler.Default property, and is, by default, what is used when we just start a Task instance with Task.Start(). Normally, when a Task is started by the default TaskScheduler, the task will be treated as a single work item, and run on a ThreadPool thread.  This pools tasks, and provides Task instances all of the advantages of the ThreadPool, including thread pooling for reduced resource usage, and an upper cap on the number of work items.  In addition, .NET 4 brings us a much improved thread pool, providing work stealing and reduced locking within the thread pool queues.  By using the default TaskScheduler, our Tasks are run asynchronously on the ThreadPool. There is one notable exception to my above statements when using the default TaskScheduler.  If a Task is created with the TaskCreationOptions set to TaskCreationOptions.LongRunning, the default TaskScheduler will generate a new thread for that Task, at least in the current implementation.  This is useful for Tasks which will persist for most of the lifetime of your application, since it prevents your Task from starving the ThreadPool of one of it’s work threads. The Task Parallel Library provides one other implementation of the TaskScheduler class.  In addition to providing a way to schedule tasks on the ThreadPool, the framework allows you to create a TaskScheduler which works within a specified SynchronizationContext.  This scheduler can be retrieved within a thread that provides a valid SynchronizationContext by calling the TaskScheduler.FromCurrentSynchronizationContext() method. This implementation of TaskScheduler is intended for use with user interface development.  Windows Forms and Windows Presentation Foundation both require any access to user interface controls to occur on the same thread that created the control.  For example, if you want to set the text within a Windows Forms TextBox, and you’re working on a background thread, that UI call must be marshaled back onto the UI thread.  The most common way this is handled depends on the framework being used.  In Windows Forms, Control.Invoke or Control.BeginInvoke is most often used.  In WPF, the equivelent calls are Dispatcher.Invoke or Dispatcher.BeginInvoke. As an example, say we’re working on a background thread, and we want to update a TextBlock in our user interface with a status label.  The code would typically look something like: // Within background thread work... string status = GetUpdatedStatus(); Dispatcher.BeginInvoke(DispatcherPriority.Normal, new Action( () => { statusLabel.Text = status; })); // Continue on in background method .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This works fine, but forces your method to take a dependency on WPF or Windows Forms.  There is an alternative option, however.  Both Windows Forms and WPF, when initialized, setup a SynchronizationContext in their thread, which is available on the UI thread via the SynchronizationContext.Current property.  This context is used by classes such as BackgroundWorker to marshal calls back onto the UI thread in a framework-agnostic manner. The Task Parallel Library provides the same functionality via the TaskScheduler.FromCurrentSynchronizationContext() method.  When setting up our Tasks, as long as we’re working on the UI thread, we can construct a TaskScheduler via: TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); We then can use this scheduler on any thread to marshal data back onto the UI thread.  For example, our code above can then be rewritten as: string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); // Continue on in background method This is nice since it allows us to write code that isn’t tied to Windows Forms or WPF, but is still fully functional with those technologies.  I’ll discuss even more uses for the SynchronizationContext based TaskScheduler when I demonstrate task continuations, but even without continuations, this is a very useful construct. In addition to the two implementations provided by the Task Parallel Library, it is possible to implement your own TaskScheduler.  The ParallelExtensionsExtras project within the Samples for Parallel Programming provides nine sample TaskScheduler implementations.  These include schedulers which restrict the maximum number of concurrent tasks, run tasks on a single threaded apartment thread, use a new thread per task, and more.

    Read the article

  • Intellitrace bug causes &ldquo;Operation could destabilize the runtime&rdquo; exception

    - by Magnus Karlsson
    We cant use it when we use simplemembership to handle external authorizations.   Server Error in '/' Application. Operation could destabilize the runtime. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.Security.VerificationException: Operation could destabilize the runtime. Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. Stack Trace: [VerificationException: Operation could destabilize the runtime.] DotNetOpenAuth.OpenId.Messages.IndirectSignedResponse.GetSignedMessageParts(Channel channel) +943 DotNetOpenAuth.OpenId.ChannelElements.ExtensionsBindingElement.GetExtensionsDictionary(IProtocolMessage message, Boolean ignoreUnsigned) +282 DotNetOpenAuth.OpenId.ChannelElements.<GetExtensions>d__a.MoveNext() +279 DotNetOpenAuth.OpenId.ChannelElements.ExtensionsBindingElement.ProcessIncomingMessage(IProtocolMessage message) +594 DotNetOpenAuth.Messaging.Channel.ProcessIncomingMessage(IProtocolMessage message) +933 DotNetOpenAuth.OpenId.ChannelElements.OpenIdChannel.ProcessIncomingMessage(IProtocolMessage message) +326 DotNetOpenAuth.Messaging.Channel.ReadFromRequest(HttpRequestBase httpRequest) +1343 DotNetOpenAuth.OpenId.RelyingParty.OpenIdRelyingParty.GetResponse(HttpRequestBase httpRequestInfo) +241 DotNetOpenAuth.OpenId.RelyingParty.OpenIdRelyingParty.GetResponse() +361 DotNetOpenAuth.AspNet.Clients.OpenIdClient.VerifyAuthentication(HttpContextBase context) +136 DotNetOpenAuth.AspNet.OpenAuthSecurityManager.VerifyAuthentication(String returnUrl) +984 Microsoft.Web.WebPages.OAuth.OAuthWebSecurity.VerifyAuthenticationCore(HttpContextBase context, String returnUrl) +333 Microsoft.Web.WebPages.OAuth.OAuthWebSecurity.VerifyAuthentication(String returnUrl) +192 PrioMvcWebRole.Controllers.AccountController.ExternalLoginCallback(String returnUrl) in c:hiddenforyou lambda_method(Closure , ControllerBase , Object[] ) +127 System.Web.Mvc.ReflectedActionDescriptor.Execute(ControllerContext controllerContext, IDictionary`2 parameters) +250 System.Web.Mvc.ControllerActionInvoker.InvokeActionMethod(ControllerContext controllerContext, ActionDescriptor actionDescriptor, IDictionary`2 parameters) +39 System.Web.Mvc.Async.<>c__DisplayClass39.<BeginInvokeActionMethodWithFilters>b__33() +87 System.Web.Mvc.Async.<>c__DisplayClass4f.<InvokeActionMethodFilterAsynchronously>b__49() +439 System.Web.Mvc.Async.<>c__DisplayClass4f.<InvokeActionMethodFilterAsynchronously>b__49() +439 System.Web.Mvc.Async.<>c__DisplayClass37.<BeginInvokeActionMethodWithFilters>b__36(IAsyncResult asyncResult) +15 System.Web.Mvc.Async.<>c__DisplayClass2a.<BeginInvokeAction>b__20() +34 System.Web.Mvc.Async.<>c__DisplayClass25.<BeginInvokeAction>b__22(IAsyncResult asyncResult) +221 System.Web.Mvc.<>c__DisplayClass1d.<BeginExecuteCore>b__18(IAsyncResult asyncResult) +28 System.Web.Mvc.Async.<>c__DisplayClass4.<MakeVoidDelegate>b__3(IAsyncResult ar) +15 System.Web.Mvc.Controller.EndExecuteCore(IAsyncResult asyncResult) +42 System.Web.Mvc.Async.<>c__DisplayClass4.<MakeVoidDelegate>b__3(IAsyncResult ar) +15 System.Web.Mvc.<>c__DisplayClass8.<BeginProcessRequest>b__3(IAsyncResult asyncResult) +42 System.Web.Mvc.Async.<>c__DisplayClass4.<MakeVoidDelegate>b__3(IAsyncResult ar) +15 System.Web.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +523 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +176 Version Information: Microsoft .NET Framework Version:4.0.30319; ASP.NET Version:4.0.30319.17929

    Read the article

  • Stuck at the STARTUP [closed]

    - by Tarik Setia
    I started with "Getting started with asp mvc4 tutorial". I just created the project and when I pressed F5 I got this: Server Error in '/' Application. -------------------------------------------------------------------------------- Could not load type 'System.Web.WebPages.DisplayModes' from assembly 'System.Web.WebPages, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35'. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.TypeLoadException: Could not load type 'System.Web.WebPages.DisplayModes' from assembly 'System.Web.WebPages, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35'. Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. Stack Trace: [TypeLoadException: Could not load type 'System.Web.WebPages.DisplayModes' from assembly 'System.Web.WebPages, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35'.] System.Web.Mvc.VirtualPathProviderViewEngine.GetPath(ControllerContext controllerContext, String[] locations, String[] areaLocations, String locationsPropertyName, String name, String controllerName, String cacheKeyPrefix, Boolean useCache, String[]& searchedLocations) +0 System.Web.Mvc.VirtualPathProviderViewEngine.FindView(ControllerContext controllerContext, String viewName, String masterName, Boolean useCache) +315 System.Web.Mvc.c__DisplayClassc.b__a(IViewEngine e) +68 System.Web.Mvc.ViewEngineCollection.Find(Func`2 lookup, Boolean trackSearchedPaths) +182 System.Web.Mvc.ViewEngineCollection.Find(Func`2 cacheLocator, Func`2 locator) +67 System.Web.Mvc.ViewEngineCollection.FindView(ControllerContext controllerContext, String viewName, String masterName) +329 System.Web.Mvc.ViewResult.FindView(ControllerContext context) +135 System.Web.Mvc.ViewResultBase.ExecuteResult(ControllerContext context) +230 System.Web.Mvc.ControllerActionInvoker.InvokeActionResult(ControllerContext controllerContext, ActionResult actionResult) +39 System.Web.Mvc.c__DisplayClass1c.b__19() +74 System.Web.Mvc.ControllerActionInvoker.InvokeActionResultFilter(IResultFilter filter, ResultExecutingContext preContext, Func`1 continuation) +388 System.Web.Mvc.c__DisplayClass1e.b__1b() +72 System.Web.Mvc.ControllerActionInvoker.InvokeActionResultWithFilters(ControllerContext controllerContext, IList`1 filters, ActionResult actionResult) +303 System.Web.Mvc.ControllerActionInvoker.InvokeAction(ControllerContext controllerContext, String actionName) +844 System.Web.Mvc.Controller.ExecuteCore() +130 System.Web.Mvc.ControllerBase.Execute(RequestContext requestContext) +229 System.Web.Mvc.ControllerBase.System.Web.Mvc.IController.Execute(RequestContext requestContext) +39 System.Web.Mvc.c__DisplayClassb.b__5() +71 System.Web.Mvc.Async.c__DisplayClass1.b__0() +44 System.Web.Mvc.Async.c__DisplayClass8`1.b__7(IAsyncResult _) +42 System.Web.Mvc.Async.WrappedAsyncResult`1.End() +152 System.Web.Mvc.Async.AsyncResultWrapper.End(IAsyncResult asyncResult, Object tag) +59 System.Web.Mvc.Async.AsyncResultWrapper.End(IAsyncResult asyncResult, Object tag) +40 System.Web.Mvc.c__DisplayClasse.b__d() +75 System.Web.Mvc.SecurityUtil.b__0(Action f) +31 System.Web.Mvc.SecurityUtil.ProcessInApplicationTrust(Action action) +61 System.Web.Mvc.MvcHandler.EndProcessRequest(IAsyncResult asyncResult) +118 System.Web.Mvc.MvcHandler.System.Web.IHttpAsyncHandler.EndProcessRequest(IAsyncResult result) +38 System.Web.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +10303829 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +178 -------------------------------------------------------------------------------- Version Information: Microsoft .NET Framework Version:4.0.30319; ASP.NET Version:4.0.30319.17020

    Read the article

  • SQL SERVER – Importance of User Without Login – T-SQL Demo Script

    - by pinaldave
    Earlier I wrote a blog post about SQL SERVER – Importance of User Without Login and my friend and SQL Expert Vinod Kumar has written excellent follow up blog post about Contained Databases inside SQL Server 2012. Now lots of people asked me if I can also explain the same concept again so here is the small demonstration for it. Let me show you how login without user can help. Before we continue on this subject I strongly recommend that you read my earlier blog post here. In following demo I am going to demonstrate following situation. Login using the System Admin account Create a user without login Checking Access Impersonate the user without login Checking Access Revert Impersonation Give Permission to user without login Impersonate the user without login Checking Access Revert Impersonation Clean up USE [AdventureWorks2012] GO -- Step 1 : Login using the SA -- Step 2 : Create Login Less User CREATE USER [testguest] 9ITHOUT LOGIN WITH DEFAULT_SCHEMA=[dbo] GO -- Step 3 : Checking access to Tables SELECT * FROM sys.tables; -- Step 4 : Changing the execution contest EXECUTE AS USER   = 'testguest'; GO -- Step 5 : Checking access to Tables SELECT * FROM sys.tables; GO -- Step 6 : Reverting Permissions REVERT; -- Step 7 : Giving more Permissions to testguest user GRANT SELECT ON [dbo].[ErrorLog] TO [testguest]; GRANT SELECT ON [dbo].[DatabaseLog] TO [testguest]; GO -- Step 8 : Changing the execution contest EXECUTE AS USER   = 'testguest'; GO -- Step 9 : Checking access to Tables SELECT * FROM sys.tables; GO -- Step 10 : Reverting Permissions REVERT; GO -- Step 11: Clean up DROP USER [testguest]Step 3 GO Here is the step 9 we will be able to notice that how a user without login gets access to some of the data/object which we gave permission. What I am going to prove with this example? Well there can be different rights with different account. Once the login is authenticated it makes sense for impersonating a user with only necessary permissions to be used for further operation. Again this is very basic and fundamental example. There are lots of more points to be discussed as we go in future posts. Just do not take this blog post as a template and implement everything as it is. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Security, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Run Your Tests With Any NUnit Version

    - by Alois Kraus
    I always thought that the NUnit test runners and the test assemblies need to reference the same NUnit.Framework version. I wanted to be able to run my test assemblies with the newest GUI runner (currently 2.5.3). Ok so all I need to do is to reference both NUnit versions the newest one and the official for the current project. There is a nice article form Kent Bogart online how to reference the same assembly multiple times with different versions. The magic works by referencing one NUnit assembly with an alias which does prefix all types inside it. Then I could decorate my tests with the TestFixture and Test attribute from both NUnit versions and everything worked fine except that this was ugly. After playing a little bit around to make it simpler I found that I did not need to reference both NUnit.Framework assemblies. The test runners do not require the TestFixture and Test attribute in their specific version. That is really neat since the test runners are instructed by attributes what to do in a declarative way there is really no need to tie the runners to a specific version. At its core NUnit has this little method hidden to find matching TestFixtures and Tests   public bool CanBuildFrom(Type type) {     if (!(!type.IsAbstract || type.IsSealed))     {         return false;     }     return (((Reflect.HasAttribute(type,           "NUnit.Framework.TestFixtureAttribute", true) ||               Reflect.HasMethodWithAttribute(type, "NUnit.Framework.TestAttribute"       , true)) ||               Reflect.HasMethodWithAttribute(type, "NUnit.Framework.TestCaseAttribute"   , true)) ||               Reflect.HasMethodWithAttribute(type, "NUnit.Framework.TheoryAttribute"     , true)); } That is versioning and backwards compatibility at its best. I tell NUnit what to do by decorating my tests classes with NUnit Attributes and the runner executes my intent without the need to bind me to a specific version. The contract between NUnit versions is actually a bit more complex (think of AssertExceptions) but this is also handled nicely by using not the concrete type but simply to check for the catched exception type by string. What can we learn from this? Versioning can be easy if the contract is small and the users of your library use it in a declarative way (Attributes). Everything beyond it will force you to reference several versions of the same assembly with all its consequences. Type equality is lost between versions so none of your casts will work. That means that you cannot simply use IBigInterface in two versions. You will need a wrapper to call the correct versioned one. To get out of this mess you can use one (and only one) version agnostic driver to encapsulate your business logic from the concrete versions. This is of course more work but as NUnit shows it can be easy. Simplicity is therefore not a nice thing to have but also requirement number one if you intend to make things more complex in version two and want to support any version (older and newer). Any interaction model above easy will not be maintainable. There are different approached to versioning. Below are my own personal observations how versioning works within the  .NET Framwork and NUnit.   Versioning Models 1. Bug Fixing and New Isolated Features When you only need to fix bugs there is no need to break anything. This is especially true when you have a big API surface. Microsoft did this with the .NET Framework 3.0 which did leave the CLR as is but delivered new assemblies for the features WPF, WCF and Windows Workflow Foundations. Their basic model was that the .NET 2.0 assemblies were declared as red assemblies which must not change (well mostly but each change was carefully reviewed to minimize the risk of breaking changes as much as possible) whereas the new green assemblies of .NET 3,3.5 did not have such obligations since they did implement new unrelated features which did not have any impact on the red assemblies. This is versioning strategy aimed at maximum compatibility and the delivery of new unrelated features. If you have a big API surface you should strive hard to do the same or you will break your customers code with every release. 2. New Breaking Features There are times when really new things need to be added to an existing product. The .NET Framework 4.0 did change the CLR in many ways which caused subtle different behavior although the API´s remained largely unchanged. Sometimes it is possible to simply recompile an application to make it work (e.g. changed method signature void Func() –> bool Func()) but behavioral changes need much more thought and cannot be automated. To minimize the impact .NET 2.0,3.0,3.5 applications will not automatically use the .NET 4.0 runtime when installed but they will keep using the “old” one. What is interesting is that a side by side execution model of both CLR versions (2 and 4) within one process is possible. Key to success was total isolation. You will have 2 GCs, 2 JIT compilers, 2 finalizer threads within one process. The two .NET runtimes cannot talk  (except via the usual IPC mechanisms) to each other. Both runtimes share nothing and run independently within the same process. This enables Explorer plugins written for the CLR 2.0 to work even when a CLR 4 plugin is already running inside the Explorer process. The price for isolation is an increased memory footprint because everything is loaded and running two times.   3. New Non Breaking Features It really depends where you break things. NUnit has evolved and many different Assert, Expect… methods have been added. These changes are all localized in the NUnit.Framework assembly which can be easily extended. As long as the test execution contract (TestFixture, Test, AssertException) remains stable it is possible to write test executors which can run tests written for NUnit 10 because the execution contract has not changed. It is possible to write software which executes other components in a version independent way but this is only feasible if the interaction model is relatively simple.   Versioning software is hard and it looks like it will remain hard since you suddenly work in a severely constrained environment when you try to innovate and to keep everything backwards compatible at the same time. These are contradicting goals and do not play well together. The easiest way out of this is to carefully watch what your customers are doing with your software. Minimizing the impact is much easier when you do not need to guess how many people will be broken when this or that is removed.

    Read the article

  • Illegal characters for SharePoint 2010 Content Type name

    - by Kelly Jones
    Quick tip: you can’t include a backslash in the name of the SharePoint 2010 Content Type.  In fact, there are several illegal characters:  \  / : * ? " # % < > { } | ~ & , two consecutive periods (..), or special characters such as a tab. What, you didn’t know that after entering one of these characters in the name?  Is it because you saw this screen: Oh, that’s right….you need to turn off custom errors in the layouts folder…See this blog post for details and you’ll also need to turn off for the web application. Once you do that, you’ll see this: I wonder why the SharePoint team just doesn’t let the user know that the content type name contains illegal characters before the user hits the create button. Here’s a copy of the complete error (for the search engines): Server Error in '/' Application. -------------------------------------------------------------------------------- The content type name 'asdfadsf\asdfasf' cannot contain: \  / : * ? " # % < > { } | ~ & , two consecutive periods (..), or special characters such as a tab. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: Microsoft.SharePoint.SPInvalidContentTypeNameException: The content type name 'asdfadsf\asdfasf' cannot contain: \  / : * ? " # % < > { } | ~ & , two consecutive periods (..), or special characters such as a tab. Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below.  Stack Trace: [SPInvalidContentTypeNameException: The content type name 'asdfadsf\asdfasf' cannot contain: \  / : * ? " # % < > { } | ~ & , two consecutive periods (..), or special characters such as a tab.]    Microsoft.SharePoint.SPContentType.ValidateName(String name) +27419522    Microsoft.SharePoint.SPContentType.ValidateNameWithResource(String strVal, String& strLocalized) +423    Microsoft.SharePoint.SPContentType.set_Name(String value) +151    Microsoft.SharePoint.SPContentType.Initialize(SPContentType parentContentType, SPContentTypeCollection collection, String name) +112    Microsoft.SharePoint.SPContentType..ctor(SPContentType parentContentType, SPContentTypeCollection collection, String name) +132    Microsoft.SharePoint.ApplicationPages.ContentTypeCreatePage.BtnOK_Click(Object sender, EventArgs e) +497    System.Web.UI.WebControls.Button.OnClick(EventArgs e) +115    System.Web.UI.WebControls.Button.RaisePostBackEvent(String eventArgument) +140    System.Web.UI.Page.RaisePostBackEvent(IPostBackEventHandler sourceControl, String eventArgument) +29    System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) +2981   -------------------------------------------------------------------------------- Version Information: Microsoft .NET Framework Version:2.0.50727.4927; ASP.NET Version:2.0.50727.4927

    Read the article

  • Microsoft TechEd 2010 - Day 3 @ Bangalore

    - by sathya
    Microsoft TechEd 2010 - Day 3 @ Bangalore Sorry for my delayed post on day 3 because I had to travel from Blore to Chennai So I couldnt write for the past two days. On day 3 as usual we had lot of simultaneous tracks on various sessions. This day I choose the Your Data, Our Platform Track. It had sessions on the following 5 topics :   Developing Data-tier Applications in Visual Studio 2010 - by Sanjay Nagamangalam SQL Server Query Optimization, Execution and Debugging Query Performance - by Vinod Kumar M SQL Server Utility - Its about more than 1 SQL Server - by Vinod Kumar Jagannathan Data Recovery / Consistency with CheckDB - by Vinod Kumar M Developing with SQL Server Spatial and Deep dive into Spatial Indexing - by Pinal Dave Developing Data-tier Applications in Visual Studio 2010 - by Sanjay Nagamangalam This was one of the superb sessions i have attended. He explained all the concepts in detail with a demo. The important thing in this is there is something called Data-Tier application project which is newly introduced in this VS2010 with which we can manage all our data along with our application inside our VS itself. We can create DB,Tables,Procs,Views etc. here itself and once we deploy it creates a compressed file called .dacpac which stores all the changes in Table Schema,Created procs, etc. on to that single file which reduces our (developer's) effort in preparing the deployment scripts and giving it to the DBA. It also has some policy configurations which can be managed easily by checking some rules like in outlook. For Ex : IF the SQL Server Version > 10 then deploy else dont. This rule specifies that even if we try to deploy on SQL Server DB with version less than 10 It will not do it. And if we deploy some .dacpac to SQL server production db with the option upgrade DB with this dacpac once everything completes successfully it will say success else it rollsback to the prior version. Even if it gets deployed successfully and later @ a point of time you wish to revert it back to the prior version, you can go ahead and delete the existing dacpac version so that it reverts to the older version of the db changes. And for the good questions that were asked in the session T-Shirts were given. SQL Server Query Optimization, Execution and Debugging Query Performance - by Vinod Kumar M This one too was the best session. The speaker Vinod explained everything very much clearly. This was really useful session and you dont believe, as per my knowledge, in the total 3 days in the TechEd except the Keynote, for this session seats were full (House FULL)  People were even standing out to attend this session. Such a great one it was. The speaker did a deep dive in to the Query Plan section and showed which actually causes the problem. Its all about the thing that we need to understand about the execution of SQL server Queries. We think in a way and SQL Server never executes in that way. We need to understand that first. He also told about there might be two plans generated for a single query at a point of time because of parallel processors in the system. The Key is here in every query. There is something called Estimated Row Count and Actual Row Count in the query plan. If the estimated row count by SQL server tallies with the actual row count your performance will be awesome. He said some tweaks to achieve the same. After this as usual we had lunch SQL Server Utility - Its about more than 1 SQL Server - by Vinod Kumar Jagannathan This was more of a DBA's session. Am really sorry I was totally blank and I was not interested to attend this session and walked out to attend Migrating to the cloud by Harish Ranganathan (My favorite Speaker) but unfortunately that was some other persons session. There the speaker was telling about how to configure the connection strings in such a way that we can connect to the SQL Azure platform from our VS and also showed us how to deploy the same in to Windows Azure. In between there were lot of technical problems like laptop hang, user locked and he was switching between systems, also i came in the half so i wasnt able to listen that fully. In between, Since I got an MCTS certification they gave me T-Shirt with the lines 'Iam Certified. Are you?' and they asked me to wear that. If we wear that we might get spotted and they would give us some goodies  So on the 3rd day I was wearing that T-Shirt. I got spotted by the person Tarun who was coordinating things about the certification, and he was accompanied with a cameraman and they interviewed me about the certification and I was shown live in the Teched and was seen by 60000 live viewers of the TechEd. I was really happy on that. Data Recovery / Consistency with CheckDB - by Vinod Kumar M This was one of the best sessions too in the TechEd. This guy is really amazing. In front of us he crashed a DB and showed how to recover the same in 6 different ways for different no of failures. Showed about Different types of error msgs like : 823,824,825 msdb..suspect_pages DBCC CheckDB (different parameters to it) I am really waiting for his session to get uploaded live in the Teched Website. Here is his contact info If you wish to connect to him : Twitter : @vinodk_sql Website : www.ExtremeExperts.com Blog : http://blogs.sqlxml.org/vinodkumar Developing with SQL Server Spatial and Deep dive into Spatial Indexing - by Pinal Dave Pinal Dave is a King in SQL and he is a SQL MVP and he is the owner of SQLAuthority.com He took the session on Spatial Databases from the start. Showed about the different types of Spatial : Geometric and Geographic Geometric : x and y axis its a planar surface Geographic : Spherical surface with 3600  as the maximum which is used to represent the geographic points on the earth and easy to draw maps of different kinds. He had a lot of obstacles during his session like rain coming inside the hall, mic wires got bursted due to rain, Videos off on the display screens. In spite of that he asked the audience to come in the front rows and managed to take a good session without ppts and finally we got the displays on and he was showing demos on the same what he explained orally. That was really a fun filled informative session. He gave some books for the persons who asked good questions and answered well for his questions and I got one too  (It was a book on Data Mining - Wrox Publishers) And finally after all these things there was Keynote session for close of the TechEd. and we all assembled in a big hall where Mr.Ashok Soota, a man of age around 70  co-founder of Mindtree was called to give some lecture on his successes. He was explaining about his past and what all companies he switched and for what reasons and what are all his successes and what are all his failures and the learnings of him from his past failures. and his success and failures on his partnerships with the other concern. And there were some questions for him like What is your suggestion on young entrepreneur? How did you learn from past failures? What is reiterating your success? What is your suggestion on partnerships? How to choose partnerships? etc. And they said @ 7.30 Pm there would be a party night, but unfortunately i was not able to attend that because I had to catch my train and before that i had to pack things, so I started @ 7 itself. Thats it about the TechED!!! Stay tuned for further Technology updates.

    Read the article

  • Improving the Industry’s Best Cloud Project Portfolio Management (PPM) Solution – New Release of Instantis EnterpriseTrack

    - by Melissa Centurio Lopes
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} By Yasser Mahmud, Vice President of Product Strategy & Industry Marketing, Oracle Primavera We know that in today’s rapidly changing world, organizations and leaders must adapt to fierce competition, business climate change and customers consistently demanding more for less. And project portfolio management (PPM) initiatives are a key component to help organizations thrive and stand out among competitors. That’s why I’m excited to announce Instantis EnterpriseTrack 8.5. Since Oracle’s acquisition of Instantis late last year, we’ve been busy working to enhance the leading cloud PPM solution. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Here’s what’s new: Perform more precise resource planning and management  Gain more precise capacity visibility for resource planning and project execution with resource calendars that capture vacation, LOA and part-time resource availability Ensure compliance and governance processes  with activity labor cost capitalization Improve project labor cost estimation, tracking and administration with variable resource rates Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Optimize Project Demand Management And Execution Enhance productivity and analysis with project request flexible staffing plan and simplified finance estimation Improve project status communication and execution with estimated time to complete (ETC) in timesheets and projects Achieve audit compliance and governance with field change history for key project and project request fields Enforce proper financial accounting processes with the new strict finance lock/close period option Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Improve Reporting and the User Experience Enhance user productivity and analysis with improved listing pages Improve program reporting with new program filters in listing pages and reports Run large data volume user defined Excel reports with MS Excel 2010 support Accelerate user productivity and satisfaction with an improved user interface for project issues, risks, and scope changes Enjoy faster system response and improved user experience with  optimized listing pages, resource planning, and application cache Deliver user self-service training on demand with UPK support And if that wasn’t enough, we’ve also made additional improvements to timesheets, field change history and finance lock/close period. Learn more about Instantis EnterpriseTrack 8.5.

    Read the article

  • Oracle Utilities Application Framework future feature deprecation

    - by Paula Speranza-Hadley
    From time to time, existing functionality is replaced with alternative features to offer greater flexibility and standardization. In Oracle Utilities Application Framework V4.2.0.0.0 the following features are being announced for deprecation in the next release or have been previously announced and are not being delivered with this version of the Oracle Utilities Application Framework: ·         No SQL Server Support – Oracle Utilities Application Framework V4.2.0.0.0 or above does not ship with any support for SQL Server. ·         No MPL Support – Oracle Utilities Application Framework V4.2.0.0.0 or above does not ship with the Multi-Purpose Listener (MPL) component of the XML Application Integration (XAI) component. Customers using the MPL should migrate to Oracle Service Bus. ·         No provided Crystal Reports/Business Objects Interface – Oracle Utilities Application Framework V4.2.0.0.0 or above does not ship with a supported Crystal Reports/Business Objects Interface. This facility is now available as downloadable customization for existing or new customers. Responsibility for maintenance and new features is now individual customer's responsibility. ·         XAI Servlet deprecation – The XAI Servlet (xaiserver and classicxai) will be removed in the next release of the Oracle Utilities Application Framework. Customers are encouraged to migrate to the native Web Services Support as outlined in XAI Best Practices whitepaper available from My Oracle Support (Doc Id: 942074.1). ·         ConfigLab deprecation – The ConfigLab facility will be removed in the next release of Oracle Utilities Application Framework for products it is shipped with. Customers are recommended to migrate to the Configuration Migration Assistant which provides the same and more functionality.   ·         Archiving deprecation – The inbuilt Archiving has been removed from Oracle Utilities Application Framework V4.2.0.0.0 or above, for products it is shipped with. Customers considering Archiving solution should migrate to the Information Lifecycle Management based solution provided for your product. ·         DISTRIBUTED batch execution mode deprecation – The DISTRIBUTED execution mode used by the batch component of the Oracle Utilities Application Framework will be deprecated in the next release of the Oracle Utilities Application Framework. Customers using DISTRUBUTED mode should migrate to CLUSTERED mode as outlined in the Batch Best Practices For Oracle Utilities Application Framework Based Products whitepaper available from My Oracle Support (Doc Id: 836362.1). ·         XAI Schema Editor deprecation – The XAI Schema Editor which is a component of the Oracle Utilities Software Development Kit will be removed in the next release of the Oracle Utilities Application Framework. Customers should migrate their existing schemas to Business Object based schemas and use the browser based Schema Editor instead.  

    Read the article

  • Reminder: True WCF Asynchronous Operation

    - by Sean Feldman
    A true asynchronous service operation is not the one that returns void, but the one that is marked as IsOneWay=true. Without this, client will always wait for valid response from server, blocking execution. Possible work-around is to generate asynchronous methods and subscribe to Completed event, but then it’s a pseudo asynchronous. Real fire-and-forget is with one way operations.

    Read the article

  • BPEL Technology: A tool for Apps-to-Apps integration, using Oracle EBS Financials and Oracle's Retai

    Listen to Jeff Wexler, Senior Director of Oracle's Retail Industry Strategy and Amlan Debnath, VP of Oracle's Server Technologies speak with Cliff about their recent experience using Oracle's Business Process Execution Language (BPEL) to support integration between Oracle E-Business Suite Financials and Oracle's Retail Merchandising Industry Solution and find out how to get more info about this technology.

    Read the article

  • Impromptu-interface

    - by Sean Feldman
    While trying to solve a problem of removing conditional execution from my code, I wanted to take advantage of .NET 4.0 and it’s dynamic capabilities. Going with DynamicObject or ExpandoObject initially didn’t get me any success since those by default support properties and indexes, but not methods. Luckily, I have a reply for my post and learned about this great OSS library called impromptu-interface. It based on DLR capabilities in .NET 4.0 and I have to admit that it made my code extremely simple – no more if :)

    Read the article

  • Who Do You Turn To for Your Consumer Goods Sales and Marketing Needs

    - by ruth.donohue
    As a sales or marketing executive, you want the best software for managing your marketing, demand generation, trade promotion, customer/volume planning, and retail execution/monitoring activities and analysis. However, working with niche software vendors can result in a very disjointed user and support experience. It would be ideal to have just one end-to-end solution that could manage and optimize each of these processes...but is that just wishful thinking? Read this Gartner article to find out more!

    Read the article

  • Big Data – Interacting with Hadoop – What is PIG? – What is PIG Latin? – Day 16 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the HIVE in Big Data Story. In this article we will understand what is PIG and PIG Latin in Big Data Story. Yahoo started working on Pig for their application deployment on Hadoop. The goal of Yahoo to manage their unstructured data. What is Pig and What is Pig Latin? Pig is a high level platform for creating MapReduce programs used with Hadoop and the language we use for this platform is called PIG Latin. The pig was designed to make Hadoop more user-friendly and approachable by power-users and nondevelopers. PIG is an interactive execution environment supporting Pig Latin language. The language Pig Latin has supported loading and processing of input data with series of transforming to produce desired results. PIG has two different execution environments 1) Local Mode – In this case all the scripts run on a single machine. 2) Hadoop – In this case all the scripts run on Hadoop Cluster. Pig Latin vs SQL Pig essentially creates set of map and reduce jobs under the hoods. Due to same users does not have to now write, compile and build solution for Big Data. The pig is very similar to SQL in many ways. The Ping Latin language provide an abstraction layer over the data. It focuses on the data and not the structure under the hood. Pig Latin is a very powerful language and it can do various operations like loading and storing data, streaming data, filtering data as well various data operations related to strings. The major difference between SQL and Pig Latin is that PIG is procedural and SQL is declarative. In simpler words, Pig Latin is very similar to SQ Lexecution plan and that makes it much easier for programmers to build various processes. Whereas SQL handles trees naturally, Pig Latin follows directed acyclic graph (DAG). DAGs is used to model several different kinds of structures in mathematics and computer science. DAG Tomorrow In tomorrow’s blog post we will discuss about very important components of the Big Data Ecosystem – Zookeeper. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Security updates for all supported versions of SQL Server

    - by AaronBertrand
    It's patch Tuesday! [ UPDATE June 19 : Please see my follow-up post about this security update.] Today Microsoft released a security bulletin covering several issues that could potentially affect SQL Server; these exploits include remote code execution, denial of service, information disclosure and elevation of privilege. You should test these patches on all machines running SQL Server, including those running only client tools (e.g. Management Studio or Management Studio Express). The updates affect...(read more)

    Read the article

  • SSIS Reporting Pack update

    - by jamiet
    Its been a while since I last posted anything in regard to SSIS Reporting Pack, the most recent release being on 27th May 2012, so here is a short update. There is still lots of work to do on SSIS Reporting Pack; lots more features to add, lots of performance work to be done, and a few bug fixes too. I have also been (fairly) hard at work on a framework to be used in conjunction with SSIS 2012 that I refer to as the Restart Framework (currently residing at http://ssisrestartframework.codeplex.com/). There is still much work to be done on the Restart Framework (not least some useful documentation on how to use it) which is why I haven’t mentioned it publicly before now although I am actively checking in changes. One thing I am considering is amalgamating the two projects into one; this would mean I could build a suite of reports that both work against the SSIS Catalog (what you currently know as “SSIS Reporting Pack”) and also against this Restart Framework thing. No decision has been made as yet though. There have been a number of bug reports and feature suggestions for SSIS Reporting Pack added to the Issue Tracker. Thank you to everyone that has submitted something, rest assured I am not going to ignore them forever; my time is at a premium right now unfortunately due to … well … life… so working on these items isn’t near the top of my priority list. Lastly, I am actively using SSIS Reporting Pack in a production environment right now and I’m happy to report that it is proving to be very useful. One of the reports that I have put a lot of time into is execution executable duration.rdl and its proving very adept at easily identifying bottlenecks in our SSIS 2012 executions: The report allows you to browse through the hierarchy of executables in each execution and each bar represents the duration of each executable in relation to all the other executables; longer bars being a good indication of where problems might lie. The colour of the bar indicates whether it was successful or not (green=success). Hovering over a bar brings up a tooltip showing more information about that executable. Clicking on a bar allows you to compare this particular instance of the executable against other executions. Please do let me know if you are using SSIS Reporting Pack. I would like to hear any anecdotes you might have, good or bad. @Jamiet

    Read the article

  • How To Run A Shell Script Again And Again Having X Interval Of Time?

    - by Muhammad Hassan
    I have a shell script in my Ubuntu Server 14.04 LTS at ./ShellScript.sh. I setup /etc/rc.local to run the shell script after boot but before login using below code. Run this: sudo nano /etc/rc.local then add following and save. #!/bin/sh -e # # rc.local # # This script is executed at the end of each multiuser runlevel. # Make sure that the script will "exit 0" on success or any other # value on error. # # In order to enable or disable this script just change the execution # bits. # # By default this script does nothing. #!/bin/bash ./ShellScript.sh exit 0 Now I want to run/execute this shell script again and again having 15min of time interval between every run after boot but before login. So Can I do it? Update 1:) When I run crontab -e then I got the following. Now What to do? no crontab for root - using an empty one Select an editor. To change later, run 'select-editor'. 1. /bin/ed 2. /bin/nano <---- easiest 3. /usr/bin/vim.basic 4. /usr/bin/vim.tiny Choose 1-4 [2]: After selecting 2, I got crontab: "/usr/bin/sensible-editor" exited with status 2 UPDATE 2:) Update ShellScript.sh like below... #!/bin/bash # Testing ShellScript... while true do echo "ShellScript Start Running..." ********************************** All My Shell Script Codes/Script/Commands ********************************** echo "ShellScript End Running..." exit 0 sleep 900 done Then Run this: sudo nano /etc/rc.local then add following and save. #!/bin/sh -e # # rc.local # # This script is executed at the end of each multiuser runlevel. # Make sure that the script will "exit 0" on success or any other # value on error. # # In order to enable or disable this script just change the execution # bits. # # By default this script does nothing. sh ./ShellScript.sh & exit 0

    Read the article

  • How Parallelism Works in SQL Server

    - by Paul White
    You might have noticed that January was a quiet blogging month for me.  Part of the reason was that I was working on a series of articles for Simple Talk, examining how parallel query execution really works.  The first part is published today at: http://www.simple-talk.com/sql/learn-sql-server/understanding-and-using-parallelism-in-sql-server/ . This introductory piece is not quite as deeply technical as my SQLblog posts tend to be, but I hope there be enough interesting material to make...(read more)

    Read the article

< Previous Page | 35 36 37 38 39 40 41 42 43 44 45 46  | Next Page >