Search Results

Search found 26774 results on 1071 pages for 'distributed development'.

Page 394/1071 | < Previous Page | 390 391 392 393 394 395 396 397 398 399 400 401  | Next Page >

  • Algorithm to find average position

    - by Simran kaur
    In the given diagram, I have the extreme left and right points, that is -2 and 4 in this case. So, obviously, I can calculate the width which is 6 in this case. What we know: The number of partitions:3 in this case The partition number at at any point i.e which one is 1st,second or third partition (numbered starting from left) What I want: The position of the purple line drawn which is positio of average of a particular partition So, basically I just want a generalized formula to calculate position of the average at any point.

    Read the article

  • Constant game speed independent of variable FPS in OpenGL with GLUT?

    - by Nazgulled
    I've been reading Koen Witters detailed article about different game loop solutions but I'm having some problems implementing the last one with GLUT, which is the recommended one. After reading a couple of articles, tutorials and code from other people on how to achieve a constant game speed, I think that what I currently have implemented (I'll post the code below) is what Koen Witters called Game Speed dependent on Variable FPS, the second on his article. First, through my searching experience, there's a couple of people that probably have the knowledge to help out on this but don't know what GLUT is and I'm going to try and explain (feel free to correct me) the relevant functions for my problem of this OpenGL toolkit. Skip this section if you know what GLUT is and how to play with it. GLUT Toolkit: GLUT is an OpenGL toolkit and helps with common tasks in OpenGL. The glutDisplayFunc(renderScene) takes a pointer to a renderScene() function callback, which will be responsible for rendering everything. The renderScene() function will only be called once after the callback registration. The glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0) takes the number of milliseconds to pass before calling the callback processAnimationTimer(). The last argument is just a value to pass to the timer callback. The processAnimationTimer() will not be called each TIMER_MILLISECONDS but just once. The glutPostRedisplay() function requests GLUT to render a new frame so we need call this every time we change something in the scene. The glutIdleFunc(renderScene) could be used to register a callback to renderScene() (this does not make glutDisplayFunc() irrelevant) but this function should be avoided because the idle callback is continuously called when events are not being received, increasing the CPU load. The glutGet(GLUT_ELAPSED_TIME) function returns the number of milliseconds since glutInit was called (or first call to glutGet(GLUT_ELAPSED_TIME)). That's the timer we have with GLUT. I know there are better alternatives for high resolution timers, but let's keep with this one for now. I think this is enough information on how GLUT renders frames so people that didn't know about it could also pitch in this question to try and help if they fell like it. Current Implementation: Now, I'm not sure I have correctly implemented the second solution proposed by Koen, Game Speed dependent on Variable FPS. The relevant code for that goes like this: #define TICKS_PER_SECOND 30 #define MOVEMENT_SPEED 2.0f const int TIMER_MILLISECONDS = 1000 / TICKS_PER_SECOND; int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void processAnimationTimer(int value) { // setups the timer to be called again glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Requests to render a new frame (this will call my renderScene() once) glutPostRedisplay(); } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) // Setup the timer to be called one first time glutTimerFunc(TIMER_MILLISECONDS, processAnimationTimer, 0); // Read the current time since glutInit was called currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } This implementation doesn't fell right. It works in the sense that helps the game speed to be constant dependent on the FPS. So that moving from point A to point B takes the same time no matter the high/low framerate. However, I believe I'm limiting the game framerate with this approach. Each frame will only be rendered when the time callback is called, that means the framerate will be roughly around TICKS_PER_SECOND frames per second. This doesn't feel right, you shouldn't limit your powerful hardware, it's wrong. It's my understanding though, that I still need to calculate the elapsedTime. Just because I'm telling GLUT to call the timer callback every TIMER_MILLISECONDS, it doesn't mean it will always do that on time. I'm not sure how can I fix this and to be completely honest, I have no idea what is the game loop in GLUT, you know, the while( game_is_running ) loop in Koen's article. But it's my understanding that GLUT is event-driven and that game loop starts when I call glutMainLoop() (which never returns), yes? I thought I could register an idle callback with glutIdleFunc() and use that as replacement of glutTimerFunc(), only rendering when necessary (instead of all the time as usual) but when I tested this with an empty callback (like void gameLoop() {}) and it was basically doing nothing, only a black screen, the CPU spiked to 25% and remained there until I killed the game and it went back to normal. So I don't think that's the path to follow. Using glutTimerFunc() is definitely not a good approach to perform all movements/animations based on that, as I'm limiting my game to a constant FPS, not cool. Or maybe I'm using it wrong and my implementation is not right? How exactly can I have a constant game speed with variable FPS? More exactly, how do I correctly implement Koen's Constant Game Speed with Maximum FPS solution (the fourth one on his article) with GLUT? Maybe this is not possible at all with GLUT? If not, what are my alternatives? What is the best approach to this problem (constant game speed) with GLUT? I originally posted this question on Stack Overflow before being pointed out about this site. The following is a different approach I tried after creating the question in SO, so I'm posting it here too. Another Approach: I've been experimenting and here's what I was able to achieve now. Instead of calculating the elapsed time on a timed function (which limits my game's framerate) I'm now doing it in renderScene(). Whenever changes to the scene happen I call glutPostRedisplay() (ie: camera moving, some object animation, etc...) which will make a call to renderScene(). I can use the elapsed time in this function to move my camera for instance. My code has now turned into this: int previousTime; int currentTime; int elapsedTime; void renderScene(void) { (...) // Setup the camera position and looking point SceneCamera.LookAt(); // Do all drawing below... (...) } void renderScene(void) { (...) // Get the time when the previous frame was rendered previousTime = currentTime; // Get the current time (in milliseconds) and calculate the elapsed time currentTime = glutGet(GLUT_ELAPSED_TIME); elapsedTime = currentTime - previousTime; /* Multiply the camera direction vector by constant speed then by the elapsed time (in seconds) and then move the camera */ SceneCamera.Move(cameraDirection * MOVEMENT_SPEED * (elapsedTime / 1000.0f)); // Setup the camera position and looking point SceneCamera.LookAt(); // All drawing code goes inside this function drawCompleteScene(); glutSwapBuffers(); /* Redraw the frame ONLY if the user is moving the camera (similar code will be needed to redraw the frame for other events) */ if(!IsTupleEmpty(cameraDirection)) { glutPostRedisplay(); } } void main(int argc, char **argv) { glutInit(&argc, argv); (...) glutDisplayFunc(renderScene); (...) currentTime = glutGet(GLUT_ELAPSED_TIME); glutMainLoop(); } Conclusion, it's working, or so it seems. If I don't move the camera, the CPU usage is low, nothing is being rendered (for testing purposes I only have a grid extending for 4000.0f, while zFar is set to 1000.0f). When I start moving the camera the scene starts redrawing itself. If I keep pressing the move keys, the CPU usage will increase; this is normal behavior. It drops back when I stop moving. Unless I'm missing something, it seems like a good approach for now. I did find this interesting article on iDevGames and this implementation is probably affected by the problem described on that article. What's your thoughts on that? Please note that I'm just doing this for fun, I have no intentions of creating some game to distribute or something like that, not in the near future at least. If I did, I would probably go with something else besides GLUT. But since I'm using GLUT, and other than the problem described on iDevGames, do you think this latest implementation is sufficient for GLUT? The only real issue I can think of right now is that I'll need to keep calling glutPostRedisplay() every time the scene changes something and keep calling it until there's nothing new to redraw. A little complexity added to the code for a better cause, I think. What do you think?

    Read the article

  • converting a mouse click to a ray

    - by Will
    I have a perspective projection. When the user clicks on the screen, I want to compute the ray between the near and far planes that projects from the mouse point, so I can do some ray intersection code with my world. I am using my own matrix and vector and ray classes and they all work as expected. However, when I try and convert the ray to world coordinates my far always ends up as 0,0,0 and so my ray goes from the mouse click to the centre of the object space, rather than through it. (The x and y coordinates of near and far are identical, they differ only in the z coordinates where they are negatives of each other) GLint vp[4]; glGetIntegerv(GL_VIEWPORT,vp); matrix_t mv, p; glGetFloatv(GL_MODELVIEW_MATRIX,mv.f); glGetFloatv(GL_PROJECTION_MATRIX,p.f); const matrix_t inv = (mv*p).inverse(); const float unit_x = (2.0f*((float)(x-vp[0])/(vp[2]-vp[0])))-1.0f, unit_y = 1.0f-(2.0f*((float)(y-vp[1])/(vp[3]-vp[1]))); const vec_t near(vec_t(unit_x,unit_y,-1)*inv); const vec_t far(vec_t(unit_x,unit_y,1)*inv); ray = ray_t(near,far-near); What have I got wrong? (How do you unproject the mouse-point?)

    Read the article

  • Collision detection of convex shapes on voxel terrain

    - by Dave
    I have some standard convex shapes (cubes, capsules) on a voxel terrain. It is very easy to detect single vertex collisions. However, it becomes computationally expensive when many vertices are involved. To clarify, currently my algorithm represents a cube as multiple vertices covering every face of the cube, not just the corners. This is because the cubes can be much bigger than the voxels, so multiple sample points (vertices) are required (the distance between sample points must be at least the width of a voxel). This very rapidly becomes intractable. It would be great if there were some standard algorithm(s) for collision detection between convex shapes and arbitrary voxel based terrain (like there is with OBB's and seperating axis theorem etc). Any help much appreciated.

    Read the article

  • Open source level editor for HTML5 platform game?

    - by Lai Yu-Hsuan
    A natty GUI editor is very helpful to create level map. I want to use some open-source choices rather than build my own from scratch. I found Tiled Map Editor but it doesn't work for what I want. Though I'm building HTML5 game, I don't have to use a HTML5 level editor as long as it can output well-formatted map files which my javascript can read. Edit: Sorry for the confusion. Tiled does not work for me because to make the player perform a 'tricky' jump, sometimes I want to set the distance between two platforms to, say, 7/3 or 8/3 tiles. But in Tiled I get only 2 or 3. If Tiled can do this, please teach me.

    Read the article

  • which platform to choose for designing a game

    - by Pramod
    I am new to gaming platform and don't have any experience in gaming as well. I want to develop a small shooting game and don't have any idea from where to start and which platform to use like things. I have some experience in java and .net. Can anyone help me in giving me a start? I don't mind even if this question is voted down or closed. But please do help me. I've tried searching other similar questions but everyone is already into gaming and i can't get any of the words. Please refer me to some books or tutorials

    Read the article

  • Implement 2x speed in tower of defense type game

    - by Siddharth
    I was currently developing tower of defense game and I want to implement 2x feature for my game. Game usually run with 1x speed that was normal speed of the game. Here what 1x and 2x mean : 1x - mention normal speed of the game, 2x - mention the game object moves with double speed means user experience the fast game play. I want to implement such functionality for my game. The functionality that I want contains in the game Medieval Castle game that was available in the market. https://play.google.com/store/apps/details?id=com.nova.root&feature=search_result#?t=W251bGwsMSwxLDEsImNvbS5ub3ZhLnJvb3QiXQ.. The screen shot also shows the 1x and 2x button in that game. I think for 2x speed of the game I have to increase the speed of each object that were in the game. So any member please help what to do for that implementation. Only idea become enough for me.

    Read the article

  • Box2D networking

    - by spacevillain
    I am trying to make a simple sync between two box2d rooms, where you can drag boxes using the mouse. So every time player clicks (and holds the mousedown) a box, I try send joint parameters to server, and server sends them to other clients. When mouseup occurs, I send command to delete joint. The problem is that sync breaks too often. Is my way radically wrong, or it just needs some tweaks? http://www.youtube.com/watch?v=eTN2Gwj6_Lc Source code https://github.com/agentcooper/Box2d-networking

    Read the article

  • How can I locate empty space next to polygon regions?

    - by Stephen
    Let's say I have the following area in a top-down map: The circle is the player, the black square is an obstacle, and the grey polygons with red borders are walk-able areas that will be used as a navigation mesh for enemies. Obstacles and grey polygons are always convex. The grey regions were defined using an algorithm when the world was generated at runtime. Notice the little white column. I need to figure out where any empty space like this is, if at all, after the algorithm builds the grey regions, so that I can fill the space with another region. Basically what I'm hoping for is an algorithm that can detect empty space next to a polygon.

    Read the article

  • OpenGL-ES: clearing the alpha of the FrameBufferObject

    - by MrDatabase
    This question is a follow-up to Texture artifacts on iPad How does one "clear the alpha of the render texture frameBufferObject"? I've searched around here, StackOverflow and various search engines but no luck. I've tried a few things... for example calling GlClear(GL_COLOR_BUFFER_BIT) at the beginning of my render loop... but it doesn't seem to make a difference. Any help is appreciated since I'm still new to OpenGL. Cheers! p.s. I read on SO and in Apple's documentation that GlClear should always be called at the beginning of the renderLoop. Agree? Disagree? Here's where I read this: http://stackoverflow.com/questions/2538662/how-does-glclear-improve-performance

    Read the article

  • What are the benefits of designing a KeyBinding relay?

    - by Adam Naylor
    The input system of Quake3 is handled using a Keybinding relay, whereby each keypress is matched against a 'binding' which is then passed to the CLI along with a time stamp of when the keypress (or release) occurred. I just wanted to get an idea from developers what they considered to be the key benefits of designing your input system around this approach? One thing i don't particularly like is the appending of the timestamp to the bound command. This seems like a bit of a hack to bend the CLI into handling the games input? Also I feel that detecting the keypress only to add the command to a stream of text that gets parsed at a later date to be a slightly latent way of responding to input? (or is this unfounded?) The only real benefit i can see is that it allows you to bind 'complex' commands to keypresses; like 'switch weapon;+fire;' for example. Or maybe for journaling purposes? Thanks for any insights!

    Read the article

  • Mobile 3D engine renders alpha as full-object transparency

    - by Nils Munch
    I am running a iOS project using the isgl3d framework for showing pod files. I have a stylish car with 0.5 alpha windows, that I wish to render on a camera background, seeking some augmented reality goodness. The alpha on the windows looks okay, but when I add the object, I notice that it renders the entire object transparently, where the windows are. Including interior of the car. Like so (in example, keyboard can be seen through the dashboard, seats and so on. should be solid) The car interior is a seperate object with alpha 1.0. I would rather not show a "ghost car" in my project, but I haven't found a way around this. Have anyone encountered the same issue, and eventually reached a solution ?

    Read the article

  • Making entire scene fade to grayscale

    - by Fibericon
    When the player loses all of their lives, I want the entire game screen to go grayscale, but not stop updating immediately. I'd also prefer it fade to grayscale instead of suddenly lose all color. Everything I've found so far is either about taking a screenshot and making it grayscale, or making a specific texture grayscale. Is there a way to change the entire playing field and all objects within to grayscale without iterating through everything?

    Read the article

  • How should I unbind and delete OpenAL buffers?

    - by Joe Wreschnig
    I'm using OpenAL to play sounds. I'm trying to implement a fire-and-forget play function that takes a buffer ID and assigns it to a source from a pool I have previously allocated, and plays it. However, there is a problem with object lifetimes. In OpenGL, delete functions either automatically unbind things (e.g. textures), or automatically deletes the thing when it eventually is unbound (e.g. shaders) and so it's usually easy to manage deletion. However alDeleteBuffers instead simply fails with AL_INVALID_OPERATION if the buffer is still bound to a source. Is there an idiomatic way to "delete" OpenAL buffers that allows them to finish playing, and then automatically unbinds and really them? Do I need to tie buffer management more deeply into the source pool (e.g. deleting a buffer requires checking all the allocated sources also)? Similarly, is there an idiomatic way to unbind (but not delete) buffers when they are finished playing? It would be nice if, when I was looking for a free source, I only needed to see if a buffer was attached at all and not bother checking the source state. (I'm using C++, although approaches for C are also fine. Approaches assuming a GCd language and using finalizers are probably not applicable.)

    Read the article

  • Velocity control of the player, why doesn't this work?

    - by Dominic Grenier
    I have the following code inside a while True loop: if abs(playerx) < MAXSPEED: if moveLeft: playerx -= 1 if moveRight: playerx += 1 if abs(playery) < MAXSPEED: if moveDown: playery += 1 if moveUp: playery -= 1 if moveLeft == False and abs(playerx) > 0: playerx += 1 if moveRight == False and abs(playerx) > 0: playerx -= 1 if moveUp == False and abs(playery) > 0: playery += 1 if moveDown == False and abs(playery) > 0: playery -= 1 player.x += playerx player.y += playery if player.left < 0 or player.right > 1000: player.x -= playerx if player.top < 0 or player.bottom > 600: player.y -= playery The intended result is that while an arrow key is pressed, playerx or playery increments by one at every iteration until it reaches MAXSPEED and stays at MAXSPEED. And that when the player stops pressing that arrow key, his speed decreases until it reaches 0. To me, this code explicitly says that... But what actually happens is that playerx or playery keeps incrementing regardless of MAXSPEED and continues moving even after the player stops pressing the arrow key. I keep rereading but I'm completely baffled by this weird behavior. Any insights? Thanks.

    Read the article

  • Networking Client Server Packet logic (How they communicate)

    - by Trixmix
    I want to know what is the logic behind server client communication through packets for a real time game. for example the server sends x packets then the client receives x packets and processes them.. Basically what is the process to keep the client and server in sync and able to receive and send packets. more in depth example of what I want to know: client step 1 wait for a packet step 2 read x packets step 3 process x packets step 4 send x packets and so on... I need to know the very basic outline of the communication. Big questions are: 1) do I send and read packets all at one time? i.e for loop though the incoming packets array list and read them all or one every server loop or what... 2) what order should I do things i.e first receive then read then process then send etc.. 3) what I asked above a step by step of what the server / client should do.. Thanks!

    Read the article

  • Computing a normal matrix in conjunction with gluLookAt

    - by Chris Smith
    I have a hand-rolled camera class that converts yaw, pitch, and roll angles into a forward, side, and up vector suitable for calling gluLookAt. Using this camera class I can modify the model-view matrix to move about the 3D world just fine. However, I am having trouble when using this camera class (and associated model-view matrix) when trying to perform directional lighting in my vertex shader. The problem is that the light direction, (0, 1, 0) for example, is relative to where the 'camera is looking' and not the actual world coordinates. (Or is this eye coordinates vs. model coordinates?) I would like the light direction to be unaffected by the camera's viewing direction. For example, when the camera is looking down the Z axis the ground is lit correctly. However, if I point the camera straight at the ground, then it goes dark. This is (I think) because the light direction is parallel with the camera's 'up' vector which is perpendicular with the ground's normal vector. I tried computing the normal matrix without taking the camera's model view into account, but then none of my objects were rotated correctly. Sorry if this sounds vague. I suspect there is a straight forward answer, but I'm not 100% clear on how the normal matrix should be used for transforming vertex normals in my vertex shader. For reference, here is pseudo code for my rendering loop: pMatrix = new Matrix(); pMatrix = makePerspective(...) mvMatrix = new Matrix() camera.apply(mvMatrix); // Calls gluLookAt // Move the object into position. mvMatrix.translatev(position); mvMatrix.rotatef(rotation.x, 1, 0, 0); mvMatrix.rotatef(rotation.y, 0, 1, 0); mvMatrix.rotatef(rotation.z, 0, 0, 1); var nMatrix = new Matrix(); nMatrix.set(mvMatrix.get().getInverse().getTranspose()); // Set vertex shader uniforms. gl.uniformMatrix4fv(shaderProgram.pMatrixUniform, false, new Float32Array(pMatrix.getFlattened())); gl.uniformMatrix4fv(shaderProgram.mvMatrixUniform, false, new Float32Array(mvMatrix.getFlattened())); gl.uniformMatrix4fv(shaderProgram.nMatrixUniform, false, new Float32Array(nMatrix.getFlattened())); // ... gl.drawElements(gl.TRIANGLES, this.vertexIndexBuffer.numItems, gl.UNSIGNED_SHORT, 0); And the corresponding vertex shader: // Attributes attribute vec3 aVertexPosition; attribute vec4 aVertexColor; attribute vec3 aVertexNormal; // Uniforms uniform mat4 uMVMatrix; uniform mat4 uNMatrix; uniform mat4 uPMatrix; // Varyings varying vec4 vColor; // Constants const vec3 LIGHT_DIRECTION = vec3(0, 1, 0); // Opposite direction of photons. const vec4 AMBIENT_COLOR = vec4 (0.2, 0.2, 0.2, 1.0); float ComputeLighting() { vec4 transformedNormal = vec4(aVertexNormal.xyz, 1.0); transformedNormal = uNMatrix * transformedNormal; float base = dot(normalize(transformedNormal.xyz), normalize(LIGHT_DIRECTION)); return max(base, 0.0); } void main(void) { gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0); float lightWeight = ComputeLighting(); vColor = vec4(aVertexColor.xyz * lightWeight, 1.0) + AMBIENT_COLOR; } Note that I am using WebGL, so if the anser is use glFixThisProblem(...) any pointers on how to re-implement that on WebGL if missing would be appreciated.

    Read the article

  • Beat detection and FFT

    - by Quincy
    So I am working on a platformer game which includes music with beat detection. I am currently using a simple if the energy that is stored in the history buffer is smaller then the current energy there is a beat. The problem with this is that ofcourse if you use songs like rock songs where you have a pretty steady amplitude this isn't going to work. So I looked further and found algorithms splitting the sound into multiple bands using FFT. I then found this : http://en.literateprograms.org/Cooley-Tukey_FFT_algorithm_(C) The only problem I'm having is that I am quite new to audio and I have no idea how to use that to split the signal up into multiple signals. So my question is : How do you use a FFT to split a signal into multiple bands ? Also for the guys interested, this is my algorithm in c# : // C = threshold, N = size of history buffer / 1024 public void PlaceBeatMarkers(float C, int N) { List<float> instantEnergyList = new List<float>(); short[] samples = soundData.Samples; float timePerSample = 1 / (float)soundData.SampleRate; int sampleIndex = 0; int nextSamples = 1024; // Calculate instant energy for every 1024 samples. while (sampleIndex + nextSamples < samples.Length) { float instantEnergy = 0; for (int i = 0; i < nextSamples; i++) { instantEnergy += Math.Abs((float)samples[sampleIndex + i]); } instantEnergy /= nextSamples; instantEnergyList.Add(instantEnergy); if(sampleIndex + nextSamples >= samples.Length) nextSamples = samples.Length - sampleIndex - 1; sampleIndex += nextSamples; } int index = N; int numInBuffer = index; float historyBuffer = 0; //Fill the history buffer with n * instant energy for (int i = 0; i < index; i++) { historyBuffer += instantEnergyList[i]; } // If instantEnergy / samples in buffer < instantEnergy for the next sample then add beatmarker. while (index + 1 < instantEnergyList.Count) { if(instantEnergyList[index + 1] > (historyBuffer / numInBuffer) * C) beatMarkers.Add((index + 1) * 1024 * timePerSample); historyBuffer -= instantEnergyList[index - numInBuffer]; historyBuffer += instantEnergyList[index + 1]; index++; } }

    Read the article

  • Avoid if statements in DirectX 10 shaders?

    - by PolGraphic
    I have heard that if statements should be avoid in shaders, because both parts of the statements will be execute, and than the wrong will be dropped (which harms the performance). It's still a problem in DirectX 10? Somebody told me, that in it only the right branch will be execute. For the illustration I have the code: float y1 = 5; float y2 = 6; float b1 = 2; float b2 = 3; if(x>0.5){ x = 10 * y1 + b1; }else{ x = 10 * y2 + b2; } Is there an other way to make it faster? If so, how do it? Both branches looks similar, the only difference is the values of "constants" (y1, y2, b1, b2 are the same for all pixels in Pixel Shader).

    Read the article

  • How should I invoke a physics engine?

    - by ymfoi
    I'm new to writing games. I'm planning to write a 2D battle game which may require an physics engine. Suppose I've written one, but how can I combine it with the main routine of my game? Should I attach it directly to the graphics render routine or put it in an individual thread? I've spent much time looking for some common approach, but found nothing. So can you reveal some basics idea for me, a newbie? Thanks! P.S. There're many other problems I have to deal with if I choose to start a separate thread for the physics engine, for example, the lock problem, while from my intuition, I guess I'd better separate the render and the physics engine.

    Read the article

  • Setting up collision using a tilemap and cocos2d

    - by James
    I'm building my first platformer using cocos2d and a tilemap. I'm having trouble coming up with a decent way of determining if the character is colliding with an object. More specifically, in which direction is the character colliding with an object. Following the tutorial here, I have made a separate "meta" layer of collidable tiles. The problem is that unless the character is in the tile, you can't detect the collision. Also, there's no way of telling WHERE the collision is occurring. The best solution would be one that could tell me if a character is up against a wall, or walking on top of a platform. However, I can't seem to figure out a good technique for this.

    Read the article

  • Strange mesh import problem with Assimp and OpenGL

    - by Morgan
    Using the assimp library for importing 3D data into an OpenGL application. I get some strange problems regarding indexing of the vertices: If I use the following code for importing vertex indices: for (unsigned int t = 0; t < mesh->mNumFaces; ++t) { const struct aiFace * face = &mesh->mFaces[t]; if (face->mNumIndices == 3) { indices->push_back(face->mIndices[0]); indices->push_back(face->mIndices[1]); indices->push_back(face->mIndices[2]); } } I get the following result: Instead, if I use the following code: for(int k = 0; k < 2 ; k++) { for (unsigned int t = 0; t < mesh->mNumFaces; ++t) { const struct aiFace * face = &mesh->mFaces[t]; if (face->mNumIndices == 3) { indices->push_back(face->mIndices[0]); indices->push_back(face->mIndices[1]); indices->push_back(face->mIndices[2]); } } } I get the correct result: Hence adding the indices twice, renders the correct result? The OpenGL buffer is populated, like so: glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices->size() * sizeof(unsigned int), indices->data(), GL_STATIC_DRAW); And rendered as follows: glDrawElements(GL_TRIANGLES, vertexCount*3, GL_UNSIGNED_INT, indices->data());

    Read the article

  • Homemaking a 2d soft body physics engine

    - by Griffin
    hey so I've decided to Code my own 2D soft-body physics engine in C++ since apparently none exist and I'm starting only with a general idea/understanding on how physics work and could be simulated: by giving points and connections between points properties such as elasticity, density, mass, shape retention, friction, stickiness, etc. What I want is a starting point: resources and helpful examples/sites that could give me the specifics needed to actually make this such as equations and required physics knowledge. It would be great if anyone out there also would give me their attempts or ideas. finally I was wondering if it was possible to... use the source code of an existing 3D engine such as Bullet and transform it to be 2D based? use the source code of a 2D Rigid body physics engine such as box2d as a starting point?

    Read the article

  • Normal map applied as diffuse textures looks wrong

    - by KaiserJohaan
    Diffuse textures works fine, but I am having problem with normal maps, so I thought I'd tried to apply the normal maps as the diffuse map in my fragment shader so I could see everything is OK. I comment-out my normal map code and just set the diffuse map to the normal map and I get this: http://postimg.org/image/j9gudjl7r/ Looks like a smurf! This is the actual normal map of the main body: http://postimg.org/image/sbkyr6fg9/ Here is my fragment shader, notice I commented out normal map code so I could debug the normal map as a diffuse texture "#version 330 \n \ \n \ layout(std140) uniform; \n \ \n \ const int MAX_LIGHTS = 8; \n \ \n \ struct Light \n \ { \n \ vec4 mLightColor; \n \ vec4 mLightPosition; \n \ vec4 mLightDirection; \n \ \n \ int mLightType; \n \ float mLightIntensity; \n \ float mLightRadius; \n \ float mMaxDistance; \n \ }; \n \ \n \ uniform UnifLighting \n \ { \n \ vec4 mGamma; \n \ vec3 mViewDirection; \n \ int mNumLights; \n \ \n \ Light mLights[MAX_LIGHTS]; \n \ } Lighting; \n \ \n \ uniform UnifMaterial \n \ { \n \ vec4 mDiffuseColor; \n \ vec4 mAmbientColor; \n \ vec4 mSpecularColor; \n \ vec4 mEmissiveColor; \n \ \n \ bool mHasDiffuseTexture; \n \ bool mHasNormalTexture; \n \ bool mLightingEnabled; \n \ float mSpecularShininess; \n \ } Material; \n \ \n \ uniform sampler2D unifDiffuseTexture; \n \ uniform sampler2D unifNormalTexture; \n \ \n \ in vec3 frag_position; \n \ in vec3 frag_normal; \n \ in vec2 frag_texcoord; \n \ in vec3 frag_tangent; \n \ in vec3 frag_bitangent; \n \ \n \ out vec4 finalColor; " " \n \ \n \ void CalcGaussianSpecular(in vec3 dirToLight, in vec3 normal, out float gaussianTerm) \n \ { \n \ vec3 viewDirection = normalize(Lighting.mViewDirection); \n \ vec3 halfAngle = normalize(dirToLight + viewDirection); \n \ \n \ float angleNormalHalf = acos(dot(halfAngle, normalize(normal))); \n \ float exponent = angleNormalHalf / Material.mSpecularShininess; \n \ exponent = -(exponent * exponent); \n \ \n \ gaussianTerm = exp(exponent); \n \ } \n \ \n \ vec4 CalculateLighting(in Light light, in vec4 diffuseTexture, in vec3 normal) \n \ { \n \ if (light.mLightType == 1) // point light \n \ { \n \ vec3 positionDiff = light.mLightPosition.xyz - frag_position; \n \ float dist = max(length(positionDiff) - light.mLightRadius, 0); \n \ \n \ float attenuation = 1 / ((dist/light.mLightRadius + 1) * (dist/light.mLightRadius + 1)); \n \ attenuation = max((attenuation - light.mMaxDistance) / (1 - light.mMaxDistance), 0); \n \ \n \ vec3 dirToLight = normalize(positionDiff); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (attenuation * angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (attenuation * gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 2) // directional light \n \ { \n \ vec3 dirToLight = normalize(light.mLightDirection.xyz); \n \ float angleNormal = clamp(dot(normalize(normal), dirToLight), 0, 1); \n \ \n \ float gaussianTerm = 0.0; \n \ if (angleNormal > 0.0) \n \ CalcGaussianSpecular(dirToLight, normal, gaussianTerm); \n \ \n \ return diffuseTexture * (angleNormal * Material.mDiffuseColor * light.mLightIntensity * light.mLightColor) + \n \ (gaussianTerm * Material.mSpecularColor * light.mLightIntensity * light.mLightColor); \n \ } \n \ else if (light.mLightType == 4) // ambient light \n \ return diffuseTexture * Material.mAmbientColor * light.mLightIntensity * light.mLightColor; \n \ else \n \ return vec4(0.0); \n \ } \n \ \n \ void main() \n \ { \n \ vec4 diffuseTexture = vec4(1.0); \n \ if (Material.mHasDiffuseTexture) \n \ diffuseTexture = texture(unifDiffuseTexture, frag_texcoord); \n \ \n \ vec3 normal = frag_normal; \n \ if (Material.mHasNormalTexture) \n \ { \n \ diffuseTexture = vec4(normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0), 1.0); \n \ // vec3 normalTangentSpace = normalize(texture(unifNormalTexture, frag_texcoord).xyz * 2.0 - 1.0); \n \ //mat3 tangentToWorldSpace = mat3(normalize(frag_tangent), normalize(frag_bitangent), normalize(frag_normal)); \n \ \n \ // normal = tangentToWorldSpace * normalTangentSpace; \n \ } \n \ \n \ if (Material.mLightingEnabled) \n \ { \n \ vec4 accumLighting = vec4(0.0); \n \ \n \ for (int lightIndex = 0; lightIndex < Lighting.mNumLights; lightIndex++) \n \ accumLighting += Material.mEmissiveColor * diffuseTexture + \n \ CalculateLighting(Lighting.mLights[lightIndex], diffuseTexture, normal); \n \ \n \ finalColor = pow(accumLighting, Lighting.mGamma); \n \ } \n \ else { \n \ finalColor = pow(diffuseTexture, Lighting.mGamma); \n \ } \n \ } \n"; Here is my wrapper around a texture OpenGLTexture::OpenGLTexture(const std::vector<uint8_t>& textureData, uint32_t textureWidth, uint32_t textureHeight, TextureFormat textureFormat, TextureType textureType, Logger& logger) : mLogger(logger), mTextureID(gNextTextureID++), mTextureType(textureType) { glGenTextures(1, &mTexture); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, mTexture); CHECK_GL_ERROR(mLogger); GLint glTextureFormat = (textureFormat == TextureFormat::TEXTURE_FORMAT_RGB ? GL_RGB : textureFormat == TextureFormat::TEXTURE_FORMAT_RGBA ? GL_RGBA : GL_RED); glTexImage2D(GL_TEXTURE_2D, 0, glTextureFormat, textureWidth, textureHeight, 0, glTextureFormat, GL_UNSIGNED_BYTE, &textureData[0]); CHECK_GL_ERROR(mLogger); glGenerateMipmap(GL_TEXTURE_2D); CHECK_GL_ERROR(mLogger); glBindTexture(GL_TEXTURE_2D, 0); CHECK_GL_ERROR(mLogger); } OpenGLTexture::~OpenGLTexture() { glDeleteBuffers(1, &mTexture); CHECK_GL_ERROR(mLogger); } And here is the sampler I create which is shared between Diffuse and normal textures // texture sampler setup glGenSamplers(1, &mTextureSampler); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_S, GL_REPEAT); CHECK_GL_ERROR(mLogger); glSamplerParameteri(mTextureSampler, GL_TEXTURE_WRAP_T, GL_REPEAT); CHECK_GL_ERROR(mLogger); glSamplerParameterf(mTextureSampler, GL_TEXTURE_MAX_ANISOTROPY_EXT, mCurrentAnisotropy); CHECK_GL_ERROR(mLogger); glUniform1i(glGetUniformLocation(mDefaultProgram.GetHandle(), "unifDiffuseTexture"), OpenGLTexture::TEXTURE_UNIT_DIFFUSE); CHECK_GL_ERROR(mLogger); glUniform1i(glGetUniformLocation(mDefaultProgram.GetHandle(), "unifNormalTexture"), OpenGLTexture::TEXTURE_UNIT_NORMAL); CHECK_GL_ERROR(mLogger); glBindSampler(OpenGLTexture::TEXTURE_UNIT_DIFFUSE, mTextureSampler); CHECK_GL_ERROR(mLogger); glBindSampler(OpenGLTexture::TEXTURE_UNIT_NORMAL, mTextureSampler); CHECK_GL_ERROR(mLogger); SetAnisotropicFiltering(mCurrentAnisotropy); The diffuse textures looks like they should, but the normal looks so wierd. Why is this?

    Read the article

  • How to move the object around the screen

    - by Abhishek
    I am trying to move the object around the screen I try this code -(void) move { CGFloat upperLimit = mWinSize.height - (mGunda.contentSize.height / 2.0); CGFloat upperLimit1 = mWinSize.height; CGFloat lowerLimit = (mGunda.contentSize.height / 2.0); CGFloat RightLimit = mWinSize.width - (mGunda.contentSize.width/2.0); CGFloat Right = (mGunda.contentSize.width/2.0); if ( mImageGoingUpward ) { mGunda.position = ccp( mGunda.position.x, mGunda.position.y + 5); if ( mGunda.position.y >= upperLimit ) { mImageGoingUpward = NO; mHori = NO; } } else { mGunda.position = ccp( mGunda.position.x, mGunda.position.y - 5); if ( mGunda.position.y <= lowerLimit ) { mGunda.position = ccp(mGunda.position.x +5, lowerLimit); } if(mGunda.position.x >= RightLimit) { mGunda.position = ccp(mGunda.position.x, mGunda.position.y+10); mHori = YES; } if(mHori) { if(mGunda.position.y >= upperLimit) { mGunda.position = ccp(mGunda.position.x - 5,mGunda.position.y); } } } } } It move the object from bottom to top & top to bottom & bottom to right & right to right top of the screen here is problem I have got It not move to the right top to left side of screen this rotationis not happen. How can I do this

    Read the article

< Previous Page | 390 391 392 393 394 395 396 397 398 399 400 401  | Next Page >