Search Results

Search found 19182 results on 768 pages for 'game engine'.

Page 395/768 | < Previous Page | 391 392 393 394 395 396 397 398 399 400 401 402  | Next Page >

  • IrrKlang with Ogre

    - by Vinnie
    I'm trying to set up sound in my Ogre3D project. I have installed irrKlang 1.4.0 and added it's include and lib directories to my projects VC++ Include and Library directories, but I'm still getting a Linker error when I attempt to build. Any suggestions? (Error 4007 error LNK2019: unresolved external symbol "__declspec(dllimport) class irrklang::ISoundEngine * __cdecl irrklang::createIrrKlangDevice(enum irrklang::E_SOUND_OUTPUT_DRIVER,int,char const *,char const *)" (_imp?createIrrKlangDevice@irrklang@@YAPAVISoundEngine@1@W4E_SOUND_OUTPUT_DRIVER@1@HPBD1@Z) referenced in function "public: __thiscall SoundManager::SoundManager(void)" (??0SoundManager@@QAE@XZ)

    Read the article

  • Is there any hueristic to polygonize a closed 2d-raster shape with n triangles?

    - by Arthur Wulf White
    Lets say we have a 2d image black on white that shows a closed geometric shape. Is there any (not naive brute force) algorithm that approximates that shape as closely as possible with n triangles? If you want a formal definition for as closely as possible: Approximate the shape with a polygon that when rendered into a new 2d image will match the largest number of pixels possible with the original image.

    Read the article

  • Why do the order of uniforms gets changed by the compiler?

    - by Aybe
    I have the following shader, everything works fine when setting the value of one of the matrices but I've discovered that getting a value back is incorrect for View and Projection, they are in reverse order. #version 430 precision highp float; layout (location = 0) uniform mat4 Model; layout (location = 1) uniform mat4 View; layout (location = 2) uniform mat4 Projection; layout (location = 0) in vec3 in_position; layout (location = 1) in vec4 in_color; out vec4 out_color; void main(void) { gl_Position = Projection * View * Model * vec4(in_position, 1.0); out_color = in_color; } When querying their location they are effectively reversed, I did a small test by renaming View to Piew which puts it before Projection if sorted alphabetically and the order is correct. Now if I do remove layout (location = ...) from the uniforms, the problem disappears !? I am starting to think that this is a driver bug as explained in the wiki. Do you know why the order of the uniforms is changed whenever the shader is compiled ? (using an AMD HD7850)

    Read the article

  • Why does my sprite glitch when moving? [closed]

    - by rphello101
    Using Slick 2D/Java, I'm using the mouse to rotate a sprite and WASD to move it (A and D are used to strafe). I finally got the directional keys and rotation to work in sync, but I'm having problems with sporadic movement. It seems that the move speed is not always set to the value I have it at. Sometimes the sprite with just shoot across the screen. Furthermore, it seems that at 0 degrees, when the left key is pressed, the sprite moves backwards, not to the left. There also seems to be quite a bit of glitching when two keys are pressed, like left and up. Anyone see anything obvious? Here is the rotational code: int mX = Mouse.getX(); int mY = HEIGHT - Mouse.getY(); int pX = sprite.x+sprite.image.getWidth()/2; int pY = sprite.y+sprite.image.getHeight()/2; double mAng; if(mX!=pX){ mAng = Math.toDegrees(Math.atan2(mY - pY, mX - pX)); if(mAng==0 && mX<=pX) mAng=180; } else{ if(mY>pY) mAng=90; else mAng=270; } sprite.angle = mAng; sprite.image.setRotation((float) mAng); Movement code: Input input = gc.getInput(); Vector2f direction = new Vector2f(); Vector2f velocity = new Vector2f(); Vector2f left; Vector2f right; direction.x = (float) Math.cos(Math.toRadians(sprite.angle)); direction.y = (float) Math.sin(Math.toRadians(sprite.angle)); if(direction.length()>0) direction = direction.normalise(); left = new Vector2f(-direction.y, direction.x); right = new Vector2f(direction.y, -direction.x); velocity.x = (float) (direction.x * sprite.moveSpeed); velocity.y = (float) (direction.y * sprite.moveSpeed); if(input.isKeyDown(sprite.up)){ sprite.x += velocity.x*delta; sprite.y += velocity.y*delta; }if (input.isKeyDown(sprite.down)){ sprite.x -= velocity.x*delta; sprite.y -= velocity.y*delta; }if (input.isKeyDown(sprite.left)){ sprite.x += left.x * sprite.moveSpeed * delta; sprite.y += left.y * sprite.moveSpeed * delta; }if (input.isKeyDown(sprite.right)){ sprite.x += right.x * sprite.moveSpeed * delta; sprite.y += right.y * sprite.moveSpeed * delta; }

    Read the article

  • Implementing an automatic navigation mesh generation for 2d top down map?

    - by J2V
    I am currently in the middle of implementing an A* pathfinding for enemies. In order to implement the actual A* logic, I need a navigation mesh for my map. I am working on a 2D top down rpg map. The world is static, meaning there is no requirement for dynamic runtime mesh generation. My world objects are pixel based, not tile based and have associated data with them such as scale, rotation, origin etc. I will obviously need some vertex data being generated from my world objects, maybe create a polygon generation from color data? I could create a colormap with objects for my whole map, but I have no idea how to begin creating nav mesh polygons. How would an actual navigation mesh generation look like with this kind of available information? Can anyone maybe point to some great resources? I have looked into some 3D nav mesh tools, but they seem kind of overly complex for my situation and also have a lot of their req data available from models. Thanks a lot in advance! I have been trying to get my head around it for some time now.

    Read the article

  • Component-wise GLSL vector branching

    - by Gustavo Maciel
    I'm aware that it usually is a BAD idea to operate separately on GLSL vec's components separately. For example: //use instrinsic functions, they do the calculation on 4 components at a time. float dot = v1.x*v2.x + v1.y * v2.y + v1.z * v2.z; //NEVER float dot = dot(v1, v2); //YES //Multiply one by one is not good too, since the ALU can do the 4 components at a time too. vec3 mul = vec3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z); //NEVER vec3 mul = v1 * v2; I've been struggling thinking, are there equivalent operations for branching? For example: vec4 Overlay(vec4 v1, vec4 v2, vec4 opacity) { bvec4 less = lessThan(v1, vec4(0.5)); vec4 blend; for(int i = 0; i < 4; ++i) { if(less[i]) blend[i] = 2.0 * v1[i]*v2[i]; else blend[i] = 1.0 - 2.0 * (1.0 - v1[i])*(1.0 - v2[i]); } return v1 + (blend-v1)*opacity; } This is a Overlay operator that works component wise. I'm not sure if this is the best way to do it, since I'm afraid these for and if can be a bottleneck later. Tl;dr, Can I branch component wise? If yes, how can I optimize that Overlay function with it?

    Read the article

  • 3d vertex translated onto 2d viewport

    - by Dan Leidal
    I have a spherical world defined by simple trigonometric functions to create triangles that are relatively similar in size and shape throughout. What I want to be able to do is use mouse input to target a range of vertices in the area around the mouse click in order to manipulate these vertices in real time. I read a post on this forum regarding translating 3d world coordinates into the 2d viewport.. it recommended that you should multiply the world vector coordinates by the viewport and then the projection, but they didn't include any code examples, and suffice to say i couldn't get any good results. Further information.. I am using a lookat method for the viewport. Does this cause a problem, and if so is there a solution? If this isn't the problem, does anyone have a simple code example illustrating translating one vertex in a 3d world into a 2d viewspace? I am using XNA.

    Read the article

  • How to use the zoom gesture in libgdx?

    - by user3452725
    I found the example code for the GestureListener class, but I don't understand the zoom method: private float initialScale = 1; public boolean zoom (float originalDistance, float currentDistance) { float ratio = originalDistance / currentDistance; //I get this camera.zoom = initialScale * ratio; //This doesn't make sense to me because it seems like every time you pinch to zoom, it resets to the original zoom which is 1. So basically it wouldn't 'save' the zoom right? System.out.println(camera.zoom); //Prints the camera zoom return false; } Am I not interpreting this right?

    Read the article

  • Fast pixelshader 2D raytracing

    - by heishe
    I'd like to do a simple 2D shadow calculation algorithm by rendering my environment into a texture, and then use raytracing to determine what pixels of the texture are not visible to the point light (simply handed to the shader as a vec2 position) . A simple brute force algorithm per pixel would looks like this: line_segment = line segment between current pixel of texture and light source For each pixel in the texture: { if pixel is not just empty space && pixel is on line_segment output = black else output = normal color of the pixel } This is, of course, probably not the fastest way to do it. Question is: What are faster ways to do it or what are some optimizations that can be applied to this technique?

    Read the article

  • Where can I find free or buy "next-gen" 3D Assets?

    - by Valmond
    Usually I buy 3D Assets from sites like turbosquid.com or similar. My problem is that I have lately implemented glow, normal maps, specular (and specular power) maps and reflection maps and I can't find any models that use those techniques. So where can I find / buy "next gen" assets (at least models/items with a normal map)? I have checked for similar posts but those I found are about either free only or 2D or 'ordinary' 3D so I hope this is not a duplicate.

    Read the article

  • Any reliable polygon normal calculation code?

    - by Jenko
    I'm currently calculating the normal vector of a polygon using this code, but for some faces here and there it calculates a wrong normal. I don't really know what's going on or where it fails but its not reliable. Do you have any polygon normal calculation that's tested and found to be reliable? // calculate normal of a polygon using all points var n:int = points.length; var x:Number = 0; var y:Number = 0; var z:Number = 0 // ensure all points above 0 var minx:Number = 0, miny:Number = 0, minz:Number = 0; for (var p:int = 0, pl:int = points.length; p < pl; p++) { var po:_Point3D = points[p] = points[p].clone(); if (po.x < minx) { minx = po.x; } if (po.y < miny) { miny = po.y; } if (po.z < minz) { minz = po.z; } } for (p = 0; p < pl; p++) { po = points[p]; po.x -= minx; po.y -= miny; po.z -= minz; } var cur:int = 1, prev:int = 0, next:int = 2; for (var i:int = 1; i <= n; i++) { // using Newell method x += points[cur].y * (points[next].z - points[prev].z); y += points[cur].z * (points[next].x - points[prev].x); z += points[cur].x * (points[next].y - points[prev].y); cur = (cur+1) % n; next = (next+1) % n; prev = (prev+1) % n; } // length of the normal var length:Number = Math.sqrt(x * x + y * y + z * z); // turn large values into a unit vector if (length != 0){ x = x / length; y = y / length; z = z / length; }else { throw new Error("Cannot calculate normal since triangle has an area of 0"); }

    Read the article

  • PCF shadow shader math causing artifacts

    - by user2971069
    For a while now I used PCSS for my shadow technique of choice until I discovered a type of percentage closer filtering. This method creates really smooth shadows and with hopes of improving performance, with only a fraction of texture samples, I tried to implement PCF into my shader. This is the relevant code: float c0, c1, c2, c3; float f = blurFactor; float2 coord = ProjectedTexCoords; if (receiverDistance - tex2D(lightSampler, coord + float2(0, 0)).x > 0.0007) c0 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(f, 0)).x > 0.0007) c1 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(0, f)).x > 0.0007) c2 = 1; if (receiverDistance - tex2D(lightSampler, coord + float2(f, f)).x > 0.0007) c3 = 1; coord = (coord % f) / f; return 1 - (c0 * (1 - coord.x) * (1 - coord.y) + c1 * coord.x * (1 - coord.y) + c2 * (1 - coord.x) * coord.y + c3 * coord.x * coord.y); This is a very basic implementation. blurFactor is initialized with 1 / LightTextureSize. So the if statements fetch the occlusion values for the four adjacent texels. I now want to weight each value based on the actual position of the texture coordinate. If it's near the bottom-right pixel, that occlusion value should be preferred. The weighting itself is done with a simple bilinear interpolation function, however this function takes a 2d vector in the range [0..1] so I have to convert my texture coordinate to get the distance from my first pixel to the second one in range [0..1]. For that I used the mod operator to get it into [0..f] range and then divided by f. This code makes sense to me, and for specific blurFactors it works, producing really smooth one pixel wide shadows, but not for all blurFactors. Initially blurFactor is (1 / LightTextureSize) to sample the 4 adjacent texels. I now want to increase the blurFactor by factor x to get a smooth interpolation across maybe 4 or so pixels. But that is when weird artifacts show up. Here is an image: Using a 1x on blurFactor produces a good result, 0.5 is as expected not so smooth. 2x however doesn't work at all. I found that only a factor of 1/2^n produces an good result, every other factor produces artifacts. I'm pretty sure the error lies here: coord = (coord % f) / f; Maybe the modulo is not calculated correctly? I have no idea how to fix that. Is it even possible for pixel that are further than 1 pixel away?

    Read the article

  • Reasoner Conversion Problems:

    - by Annalyne
    I have this code right here in Java and I wanted to translate it in C++, but I had some problems going: this is the java code: import java.io.*; import java.util.*; public class ClueReasoner { private int numPlayers; private int playerNum; private int numCards; private SATSolver solver; private String caseFile = "cf"; private String[] players = {"sc", "mu", "wh", "gr", "pe", "pl"}; private String[] suspects = {"mu", "pl", "gr", "pe", "sc", "wh"}; private String[] weapons = {"kn", "ca", "re", "ro", "pi", "wr"}; private String[] rooms = {"ha", "lo", "di", "ki", "ba", "co", "bi", "li", "st"}; private String[] cards; public ClueReasoner() { numPlayers = players.length; // Initialize card info cards = new String[suspects.length + weapons.length + rooms.length]; int i = 0; for (String card : suspects) cards[i++] = card; for (String card : weapons) cards[i++] = card; for (String card : rooms) cards[i++] = card; numCards = i; // Initialize solver solver = new SATSolver(); addInitialClauses(); } private int getPlayerNum(String player) { if (player.equals(caseFile)) return numPlayers; for (int i = 0; i < numPlayers; i++) if (player.equals(players[i])) return i; System.out.println("Illegal player: " + player); return -1; } private int getCardNum(String card) { for (int i = 0; i < numCards; i++) if (card.equals(cards[i])) return i; System.out.println("Illegal card: " + card); return -1; } private int getPairNum(String player, String card) { return getPairNum(getPlayerNum(player), getCardNum(card)); } private int getPairNum(int playerNum, int cardNum) { return playerNum * numCards + cardNum + 1; } public void addInitialClauses() { // TO BE IMPLEMENTED AS AN EXERCISE // Each card is in at least one place (including case file). for (int c = 0; c < numCards; c++) { int[] clause = new int[numPlayers + 1]; for (int p = 0; p <= numPlayers; p++) clause[p] = getPairNum(p, c); solver.addClause(clause); } // If a card is one place, it cannot be in another place. // At least one card of each category is in the case file. // No two cards in each category can both be in the case file. } public void hand(String player, String[] cards) { playerNum = getPlayerNum(player); // TO BE IMPLEMENTED AS AN EXERCISE } public void suggest(String suggester, String card1, String card2, String card3, String refuter, String cardShown) { // TO BE IMPLEMENTED AS AN EXERCISE } public void accuse(String accuser, String card1, String card2, String card3, boolean isCorrect) { // TO BE IMPLEMENTED AS AN EXERCISE } public int query(String player, String card) { return solver.testLiteral(getPairNum(player, card)); } public String queryString(int returnCode) { if (returnCode == SATSolver.TRUE) return "Y"; else if (returnCode == SATSolver.FALSE) return "n"; else return "-"; } public void printNotepad() { PrintStream out = System.out; for (String player : players) out.print("\t" + player); out.println("\t" + caseFile); for (String card : cards) { out.print(card + "\t"); for (String player : players) out.print(queryString(query(player, card)) + "\t"); out.println(queryString(query(caseFile, card))); } } public static void main(String[] args) { ClueReasoner cr = new ClueReasoner(); String[] myCards = {"wh", "li", "st"}; cr.hand("sc", myCards); cr.suggest("sc", "sc", "ro", "lo", "mu", "sc"); cr.suggest("mu", "pe", "pi", "di", "pe", null); cr.suggest("wh", "mu", "re", "ba", "pe", null); cr.suggest("gr", "wh", "kn", "ba", "pl", null); cr.suggest("pe", "gr", "ca", "di", "wh", null); cr.suggest("pl", "wh", "wr", "st", "sc", "wh"); cr.suggest("sc", "pl", "ro", "co", "mu", "pl"); cr.suggest("mu", "pe", "ro", "ba", "wh", null); cr.suggest("wh", "mu", "ca", "st", "gr", null); cr.suggest("gr", "pe", "kn", "di", "pe", null); cr.suggest("pe", "mu", "pi", "di", "pl", null); cr.suggest("pl", "gr", "kn", "co", "wh", null); cr.suggest("sc", "pe", "kn", "lo", "mu", "lo"); cr.suggest("mu", "pe", "kn", "di", "wh", null); cr.suggest("wh", "pe", "wr", "ha", "gr", null); cr.suggest("gr", "wh", "pi", "co", "pl", null); cr.suggest("pe", "sc", "pi", "ha", "mu", null); cr.suggest("pl", "pe", "pi", "ba", null, null); cr.suggest("sc", "wh", "pi", "ha", "pe", "ha"); cr.suggest("wh", "pe", "pi", "ha", "pe", null); cr.suggest("pe", "pe", "pi", "ha", null, null); cr.suggest("sc", "gr", "pi", "st", "wh", "gr"); cr.suggest("mu", "pe", "pi", "ba", "pl", null); cr.suggest("wh", "pe", "pi", "st", "sc", "st"); cr.suggest("gr", "wh", "pi", "st", "sc", "wh"); cr.suggest("pe", "wh", "pi", "st", "sc", "wh"); cr.suggest("pl", "pe", "pi", "ki", "gr", null); cr.printNotepad(); cr.accuse("sc", "pe", "pi", "bi", true); } } how can I convert this? there are too many errors I get. for my C++ code (as a commentor asked for) #include <iostream> #include <cstdlib> #include <string> using namespace std; void Scene_Reasoner() { int numPlayer; int playerNum; int cardNum; string filecase = "Case: "; string players [] = {"sc", "mu", "wh", "gr", "pe", "pl"}; string suspects [] = {"mu", "pl", "gr", "pe", "sc", "wh"}; string weapons [] = {"kn", "ca", "re", "ro", "pi", "wr"}; string rooms[] = {"ha", "lo", "di", "ki", "ba", "co", "bi", "li", "st"}; string cards [0]; }; void Scene_Reason_Base () { numPlayer = players.length; // Initialize card info cards = new String[suspects.length + weapons.length + rooms.length]; int i = 0; for (String card : suspects) cards[i++] = card; for (String card : weapons) cards[i++] = card; for (String card : rooms) cards[i++] = card; cardNum = i; }; private int getCardNum (string card) { for (int i = 0; i < numCards; i++) if (card.equals(cards[i])) return i; cout << "Illegal card: " + card <<endl; return -1; }; private int getPairNum(String player, String card) { return getPairNum(getPlayerNum(player), getCardNum(card)); }; private int getPairNum(int playerNum, int cardNum) { return playerNum * numCards + cardNum + 1; }; int main () { return 0; }

    Read the article

  • Why am I not getting an sRGB default framebuffer?

    - by Aaron Rotenberg
    I'm trying to make my OpenGL Haskell program gamma correct by making appropriate use of sRGB framebuffers and textures, but I'm running into issues making the default framebuffer sRGB. Consider the following Haskell program, compiled for 32-bit Windows using GHC and linked against 32-bit freeglut: import Foreign.Marshal.Alloc(alloca) import Foreign.Ptr(Ptr) import Foreign.Storable(Storable, peek) import Graphics.Rendering.OpenGL.Raw import qualified Graphics.UI.GLUT as GLUT import Graphics.UI.GLUT(($=)) main :: IO () main = do (_progName, _args) <- GLUT.getArgsAndInitialize GLUT.initialDisplayMode $= [GLUT.SRGBMode] _window <- GLUT.createWindow "sRGB Test" -- To prove that I actually have freeglut working correctly. -- This will fail at runtime under classic GLUT. GLUT.closeCallback $= Just (return ()) glEnable gl_FRAMEBUFFER_SRGB colorEncoding <- allocaOut $ glGetFramebufferAttachmentParameteriv gl_FRAMEBUFFER gl_FRONT_LEFT gl_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING print colorEncoding allocaOut :: Storable a => (Ptr a -> IO b) -> IO a allocaOut f = alloca $ \ptr -> do f ptr peek ptr On my desktop (Windows 8 64-bit with a GeForce GTX 760 graphics card) this program outputs 9729, a.k.a. gl_LINEAR, indicating that the default framebuffer is using linear color space, even though I explicitly requested an sRGB window. This is reflected in the rendering results of the actual program I'm trying to write - everything looks washed out because my linear color values aren't being converted to sRGB before being written to the framebuffer. On the other hand, on my laptop (Windows 7 64-bit with an Intel graphics chip), the program prints 0 (huh?) and I get an sRGB default framebuffer by default whether I request one or not! And on both machines, if I manually create a non-default framebuffer bound to an sRGB texture, the program correctly prints 35904, a.k.a. gl_SRGB. Why am I getting different results on different hardware? Am I doing something wrong? How can I get an sRGB framebuffer consistently on all hardware and target OSes?

    Read the article

  • New way of integrating Openfeint in Cocos2d-x 0.12.0

    - by Ef Es
    I am trying to implement OpenFeint for Android in my cocos2d-x project. My approach so far has been creating a button that calls a static java method in class Bridge using jnihelper functions (jnihelper only accepts statics). Bridge has one singleton attribute of type OFAndroid, that is the class dynamically calling the Openfeint Api methods, and every method in the bridge just forwards it to the OFAndroid object. What I am trying to do now is to initialize the openfeint libraries in the main java class that is the one calling the static C++ libraries. My problem right now is that the initializing function void com.openfeint.api.OpenFeint.initialize(Context ctx, OpenFeintSettings settings, OpenFeintDelegate delegate) is not accepting the context parameter that I am giving him, which is a "this" reference to the main class. Main class extends from Cocos2dxActivity but I don't have any other that extends from Application. Any suggestions on fixing it or how to improve the architecture? EDIT: I am trying a new solution. Make the bridge class into an Application child, is called from Main object, initializes OpenFeint when created and it can call the OpenFeint functions instead of needing an additional class. The problem is I still get the error. 03-30 14:39:22.661: E/AndroidRuntime(9029): Caused by: java.lang.NullPointerException 03-30 14:39:22.661: E/AndroidRuntime(9029): at android.content.ContextWrapper.getPackageManager(ContextWrapper.java:85) 03-30 14:39:22.661: E/AndroidRuntime(9029): at com.openfeint.internal.OpenFeintInternal.validateManifest(OpenFeintInternal.java:885) 03-30 14:39:22.661: E/AndroidRuntime(9029): at com.openfeint.internal.OpenFeintInternal.initializeWithoutLoggingIn(OpenFeintInternal.java:829) 03-30 14:39:22.661: E/AndroidRuntime(9029): at com.openfeint.internal.OpenFeintInternal.initialize(OpenFeintInternal.java:852) 03-30 14:39:22.661: E/AndroidRuntime(9029): at com.openfeint.api.OpenFeint.initialize(OpenFeint.java:47) 03-30 14:39:22.661: E/AndroidRuntime(9029): at nurogames.fastfish.NuroFeint.onCreate(NuroFeint.java:23) 03-30 14:39:22.661: E/AndroidRuntime(9029): at nurogames.fastfish.FastFish.onCreate(FastFish.java:47) 03-30 14:39:22.661: E/AndroidRuntime(9029): at android.app.Instrumentation.callActivityOnCreate(Instrumentation.java:1069) 03-30 14:39:22.661: E/AndroidRuntime(9029): at android.app.ActivityThread.performLaunchActivity(ActivityThread.java:2751)

    Read the article

  • HLSL - Creating Shadows in 2D

    - by richard
    The way that I create shadows is by the following technique: http://www.catalinzima.com/2010/07/my-technique-for-the-shader-based-dynamic-2d-shadows/ But I have questions to HLSL. The way that I currently do it is, I have a black and white image, where Black means 'object', and white means 'nothing'. I then distort the image like in the tutorial. I do this with a pixel shader, but instead of rendering to the screen, I render to a texture, back to my application. I then take this, and create the shadows, and then send it back to the graphics card to undo the distortion, after the shadow has been added - this comes back and I have a stencil of shadow. I can put this ontop of the original image and send them back to the graphics card, which then puts them on the screen. To me this is alot of back and forth. Is there a way i can avoid this? The problem that I am having is that I need to basically go through all positions in the texture 3 times, and use the new new texture every time instead of the orginal one. I tried to read up on Passes, but i don't think that i am heading in the right direction there. Help?

    Read the article

  • Camera doesnt move on opengl qt

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but i couldnt make it move,Thanks in advance. #define PI_OVER_180 0.0174532925f define GL_CLAMP_TO_EDGE 0x812F include "metinalifeyyaz.h" include include include include include include include metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Finding direction of travel in a world with wrapped edges

    - by crazy
    I need to find the shortest distance direction from one point in my 2D world to another point where the edges are wrapped (like asteroids etc). I know how to find the shortest distance but am struggling to find which direction it's in. The shortest distance is given by: int rows = MapY; int cols = MapX; int d1 = abs(S.Y - T.Y); int d2 = abs(S.X - T.X); int dr = min(d1, rows-d1); int dc = min(d2, cols-d2); double dist = sqrt((double)(dr*dr + dc*dc)); Example of the world : : T : :--------------:--------- : : : S : : : : : : T : : : :--------------: In the diagram the edges are shown with : and -. I've shown a wrapped repeat of the world at the top right too. I want to find the direction in degrees from S to T. So the shortest distance is to the top right repeat of T. but how do I calculate the direction in degreed from S to the repeated T in the top right? I know the positions of both S and T but I suppose I need to find the position of the repeated T however there more than 1. The worlds coordinates system starts at 0,0 at the top left and 0 degrees for the direction could start at West. It seems like this shouldn’t be too hard but I haven’t been able to work out a solution. I hope somone can help? Any websites would be appreciated.

    Read the article

  • Pathfinding in multi goal, multi agent environment

    - by Rohan Agrawal
    I have an environment in which I have multiple agents (a), multiple goals (g) and obstacles (o). . . . a o . . . . . . . o . g . . a . . . . . . . . . . o . . . . o o o o . g . . o . . . . . . . o . . . . o . . . . o o o o a What would an appropriate algorithm for pathfinding in this environment? The only thing I can think of right now, is to Run a separate version of A* for each goal separately, but i don't think that's very efficient.

    Read the article

  • Double sides face with two normals

    - by Marnix
    I think this isn't possible, but I just want to check this: Is it possible to create a face in opengl that has two normals? So: I want the inside and outside of some cilinder to be drawn, but I want the lights to do as expected and not calculate it for the normal given. I was trying to do this with backface culling off, so I would have both faces, but the light was wrongly calculated of course. Is this possible, or do I have to draw an inside and an outside? So draw twice?

    Read the article

  • Multiple volumetric lights

    - by notabene
    I recently read this GPU GEMS 3 article Volumetric Light Scattering as a Post-Process. I like the idea to add volumetric light property to realtime render i'm working on. Question is will it work for multiple lights? Our renderer uses one render pass per light and uses additive blending to sum incoming light. I'm mostly convinced that it have to work nice. Do you agree? Maybe there can be problem where light rays crosses each other.

    Read the article

  • Strange rendering in XNA/Monogame

    - by Gerhman
    I am trying to render G-Code generated for a 3d-printer as the printed product by reading the file as line segments and the drawing cylinders with the diameter of the filament around the segment. I think I have managed to do this part right because the vertex I am sending to the graphics device appear to have been processed correctly. My problem I think lies somewhere in the rendering. What basically happens is that when I start rotating my model in the X or Y axis then it renders perfectly for half of the rotation but then for the other half it has this weird effect where you start seeing through the outer filament into some of the shapes inside. This effect is the strongest with X rotations though. Here is a picture of the part of the rotation that looks correct: And here is one that looks horrible: I am still quite new to XNA and/Monogame and 3d programming as a whole. I have no idea what could possibly be causing this and even less of an idea of what this type of behavior is called. I am guessing this has something to do with rendering so have added the code for that part: protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.Black); basicEffect.World = world; basicEffect.View = view; basicEffect.Projection = projection; basicEffect.VertexColorEnabled = true; basicEffect.EnableDefaultLighting(); GraphicsDevice.SetVertexBuffer(vertexBuffer); RasterizerState rasterizerState = new RasterizerState(); rasterizerState.CullMode = CullMode.CullClockwiseFace; rasterizerState.ScissorTestEnable = true; GraphicsDevice.RasterizerState = rasterizerState; foreach (EffectPass pass in basicEffect.CurrentTechnique.Passes) { pass.Apply(); GraphicsDevice.DrawPrimitives(PrimitiveType.TriangleList, 0, vertexBuffer.VertexCount); } base.Draw(gameTime); } I don't know if it could be because I am shading something that does not really have a texture. I am using this custom vertex declaration I found on some tutorial that allows me to store a vertex with a position, color and normal: public struct VertexPositionColorNormal { public Vector3 Position; public Color Color; public Vector3 Normal; public readonly static VertexDeclaration VertexDeclaration = new VertexDeclaration ( new VertexElement(0, VertexElementFormat.Vector3, VertexElementUsage.Position, 0), new VertexElement(sizeof(float) * 3, VertexElementFormat.Color, VertexElementUsage.Color, 0), new VertexElement(sizeof(float) * 3 + 4, VertexElementFormat.Vector3, VertexElementUsage.Normal, 0) ); } If any of you have ever seen this type of thing please help. Also, if you think that the problem might lay somewhere else in my code then please just request what part you would like to see in the comments section.

    Read the article

  • Fitting a rectangle into screen with XNA

    - by alecnash
    I am drawing a rectangle with primitives in XNA. The width is: width = GraphicsDevice.Viewport.Width and the height is height = GraphicsDevice.Viewport.Height I am trying to fit this rectangle in the screen (using different screens and devices) but I am not sure where to put the camera on the Z-axis. Sometimes the camera is too close and sometimes to far. This is what I am using to get the camera distance: //Height of piramid float alpha = 0; float beta = 0; float gamma = 0; alpha = (float)Math.Sqrt((width / 2 * width/2) + (height / 2 * height / 2)); beta = height / ((float)Math.Cos(MathHelper.ToRadians(67.5f)) * 2); gamma = (float)Math.Sqrt(beta*beta - alpha*alpha); position = new Vector3(0, 0, gamma); Any idea where to put the camera on the Z-axis?

    Read the article

  • Largest sphere inside a frustum

    - by Will
    How do you find the largest sphere that you can draw in perspective? Viewed from the top, it'd be this: Added: on the frustum on the right, I've marked four points I think we know something about. We can unproject all eight corners of the frusum, and the centres of the near and far ends. So we know point 1, 3 and 4. We also know that point 2 is the same distance from 3 as 4 is from 3. So then we can compute the nearest point on the line 1 to 4 to point 2 in order to get the centre? But the actual math and code escapes me. I want to draw models (which are approximately spherical and which I have a miniball bounding sphere for) as large as possible. Update: I've tried to implement the incircle-on-two-planes approach as suggested by bobobobo and Nathan Reed : function getFrustumsInsphere(viewport,invMvpMatrix) { var midX = viewport[0]+viewport[2]/2, midY = viewport[1]+viewport[3]/2, centre = unproject(midX,midY,null,null,viewport,invMvpMatrix), incircle = function(a,b) { var c = ray_ray_closest_point_3(a,b); a = a[1]; // far clip plane b = b[1]; // far clip plane c = c[1]; // camera var A = vec3_length(vec3_sub(b,c)), B = vec3_length(vec3_sub(a,c)), C = vec3_length(vec3_sub(a,b)), P = 1/(A+B+C), x = ((A*a[0])+(B*a[1])+(C*a[2]))*P, y = ((A*b[0])+(B*b[1])+(C*b[2]))*P, z = ((A*c[0])+(B*c[1])+(C*c[2]))*P; c = [x,y,z]; // now the centre of the incircle c.push(vec3_length(vec3_sub(centre[1],c))); // add its radius return c; }, left = unproject(viewport[0],midY,null,null,viewport,invMvpMatrix), right = unproject(viewport[2],midY,null,null,viewport,invMvpMatrix), horiz = incircle(left,right), top = unproject(midX,viewport[1],null,null,viewport,invMvpMatrix), bottom = unproject(midX,viewport[3],null,null,viewport,invMvpMatrix), vert = incircle(top,bottom); return horiz[3]<vert[3]? horiz: vert; } I admit I'm winging it; I'm trying to adapt 2D code by extending it into 3 dimensions. It doesn't compute the insphere correctly; the centre-point of the sphere seems to be on the line between the camera and the top-left each time, and its too big (or too close). Is there any obvious mistakes in my code? Does the approach, if fixed, work?

    Read the article

  • Audio Panning using RtAudio

    - by user1801724
    I use Rtaudio library. I would like to implement an audio program where I can control the panning (e.g. shifting the sound from the left channel to the right channel). In my specific case, I use a duplex mode (you can find an example here: duplex mode). It means that I link the microphone input to the speaker output. I seek on the web, but I did not find anything useful. Should I apply a filter on the output buffer? What kind of filter? Can anyone help me? Thanks

    Read the article

< Previous Page | 391 392 393 394 395 396 397 398 399 400 401 402  | Next Page >