Search Results

Search found 318 results on 13 pages for 'appdomain'.

Page 4/13 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • How do I get stdout into mstest output when running in new app domain?

    - by btlog
    I have been working on test framework, which creates a new app domain to run the tests in. The primary reason being the dll's that we are testing has some horrible code that relies on the dll being located in the app domain path. (No I can't change this code.) The problem that I am having is that my test team is writing a bunch of functional tests in mstest and one of the loggers, that writes to Console.Out, does not have any of the log information captured in the trx output. When running the code through a console app all of the log information is output fine. So do the other loggers that have been implemented. My thought is that mstest is setting its own TextWriter to Console.Out, but the new app doamin has it's own TextWriter for Console.Out as the new app domain has it's own set of statics. I appreciate your ideas.

    Read the article

  • .net - failed to create app domain

    - by d daly
    Hi just looking for abit of guidance here if possible. I recently downloaded a .net component for VS 2008 to handle sftp. After struggling with it for a day i uninstalled and deleted it. When going back into VS 2008, any of my previous projects have this error at the bottom in the error window: failed to create app domain. I was going to do a re-install, but is there anything I can try before I resort to this? thanks again DD

    Read the article

  • Can .NET AppDomains do this?

    - by Eloff
    I've spent hours reading up about AppDomains, but I'm not sure they work quite like I'm hoping. If I have two classes, Foo in AppDomain #1, Bar in AppDomain #2: App Domain #1 is the application. App Domain #2 is something like a plugin, and can be loaded and unloaded dynamically. AppDomain #2 wants to create Foo and use it. Foo uses lots of classes in AppDomain #1 internally. I don't want AppDomain #2 using object foo with reflection, I want it to use Foo foo, with all the static typing and compiled speed that goes with it. Can this be done considering that AppDomain #1, containing Foo, is never unloaded? If so, does any remoting take place here when using Foo? When I unload AppDomain #2, the type Foo is destroyed?

    Read the article

  • How can I pass managed objects from one AppDomain to another?

    - by Dennis P
    I have two assemblies that I'm trying to link together. One is a sort of background process that's built with WinForms and will be designed to run as a Windows Service. I have a second project that will act as a UI for the background process whenever a user launches it. I've never tried attempting something like this with managed code before, so I've started trying to use windows messages to communicate between the two processes. I'm struggling when it comes to passing more than just IntPtrs back and forth, however. Here's the code from a control in my UI project that registers itself with the background process: public void Init() { IntPtr hwnd = IntPtr.Zero; Process[] ps = Process.GetProcessesByName("BGServiceApp"); Process mainProcess = null; if(ps == null || ps.GetLength(0) == 0) { mainProcess = LaunchApp(); } else { mainProcess = ps[0]; } SendMessage(mainProcess.MainWindowHandle, INIT_CONNECTION, this.Handle, IntPtr.Zero); } protected override void WndProc(ref Message m) { if(m.Msg == INIT_CONFIRMED && InitComplete != null) { string message = Marshal.PtrToStringAuto(m.WParam); Marshal.FreeHGlobal(m.WParam); InitComplete(message, EventArgs.Empty); } base.WndProc(ref m); } This is the code from the background process that's supposed to receive a request from the UI process to register for status updates and send a confirmation message. protected override void WndProc(ref Message m) { if(m.Msg == INIT_CONNECTION) { RegisterUIDispatcher(m.WParam); Respond(m.WParam); } if(m.Msg == UNINIT_CONNECTION) { UnregisterUIDispatcher(m.WParam); if(m_RegisteredDispatchers.Count == 0) { this.Close(); } } base.WndProc(ref m); } private void Respond(IntPtr caller) { string test = "Registration confirmed!"; IntPtr ptr = Marshal.StringToHGlobalAuto(test); SendMessage(caller, INIT_CONFIRMED, ptr, IntPtr.Zero); } } The UI process receives the INIT_CONFIRMED message from my background process, but when I try to marshal the IntPtr back into a string, I get an empty string. Is the area of heap I'm using out of scope to the other process or am I missing some security attribute maybe? Is there a better and cleaner way to go about something like this using an event driven model?

    Read the article

  • Can I use AppDomain.AssemblyResolve Event to redirect a failed Assembly Load?

    - by esac
    By default, my application references a mixed mode DLL, so this DLL is both 32 and 64 bit. On a 32 bit system, my app is MSIL and loads the 32 bit DLL. On a 64 bit system, my app loads the 64 bit. However on a 64 bit system, in an older version of the assembly that I am referencing, they only created a 32 bit version. So I fail to load this. I was looking at doing it dynamically, and ideally I would want my MSIL app in 64 bit mode to load the 32 bit DLL. Is this possible? Also it would be nice to resolve it to a different version than what I have referenced as well. Any help appreciated.

    Read the article

  • Will lock() statement block all threads in the proccess/appdomain?

    - by MikeJ
    Maybe the question sounds silly, but I don't understand 'something about threads and locking and I would like to get a confirmation (here's why I ask). So, if I have 10 servers and 10 request in the same time come to each server, that's 100 request across the farm. Without locking, thats 100 request to the database. If I do something like this: private static readonly object myLockHolder = new object(); if (Cache[key] == null) { lock(myLockHolder) { if (Cache[key] == null) { Cache[key] = LengthyDatabaseCall(); } } } How many database requests will I do? 10? 100? Or as much as I have threads?

    Read the article

  • .NET Security Part 3

    - by Simon Cooper
    You write a security-related application that allows addins to be used. These addins (as dlls) can be downloaded from anywhere, and, if allowed to run full-trust, could open a security hole in your application. So you want to restrict what the addin dlls can do, using a sandboxed appdomain, as explained in my previous posts. But there needs to be an interaction between the code running in the sandbox and the code that created the sandbox, so the sandboxed code can control or react to things that happen in the controlling application. Sandboxed code needs to be able to call code outside the sandbox. Now, there are various methods of allowing cross-appdomain calls, the two main ones being .NET Remoting with MarshalByRefObject, and WCF named pipes. I’m not going to cover the details of setting up such mechanisms here, or which you should choose for your specific situation; there are plenty of blogs and tutorials covering such issues elsewhere. What I’m going to concentrate on here is the more general problem of running fully-trusted code within a sandbox, which is required in most methods of app-domain communication and control. Defining assemblies as fully-trusted In my last post, I mentioned that when you create a sandboxed appdomain, you can pass in a list of assembly strongnames that run as full-trust within the appdomain: // get the Assembly object for the assembly Assembly assemblyWithApi = ... // get the StrongName from the assembly's collection of evidence StrongName apiStrongName = assemblyWithApi.Evidence.GetHostEvidence<StrongName>(); // create the sandbox AppDomain sandbox = AppDomain.CreateDomain( "Sandbox", null, appDomainSetup, restrictedPerms, apiStrongName); Any assembly that is loaded into the sandbox with a strong name the same as one in the list of full-trust strong names is unconditionally given full-trust permissions within the sandbox, irregardless of permissions and sandbox setup. This is very powerful! You should only use this for assemblies that you trust as much as the code creating the sandbox. So now you have a class that you want the sandboxed code to call: // within assemblyWithApi public class MyApi { public static void MethodToDoThings() { ... } } // within the sandboxed dll public class UntrustedSandboxedClass { public void DodgyMethod() { ... MyApi.MethodToDoThings(); ... } } However, if you try to do this, you get quite an ugly exception: MethodAccessException: Attempt by security transparent method ‘UntrustedSandboxedClass.DodgyMethod()’ to access security critical method ‘MyApi.MethodToDoThings()’ failed. Security transparency, which I covered in my first post in the series, has entered the picture. Partially-trusted code runs at the Transparent security level, fully-trusted code runs at the Critical security level, and Transparent code cannot under any circumstances call Critical code. Security transparency and AllowPartiallyTrustedCallersAttribute So the solution is easy, right? Make MethodToDoThings SafeCritical, then the transparent code running in the sandbox can call the api: [SecuritySafeCritical] public static void MethodToDoThings() { ... } However, this doesn’t solve the problem. When you try again, exactly the same exception is thrown; MethodToDoThings is still running as Critical code. What’s going on? By default, a fully-trusted assembly always runs Critical code, irregardless of any security attributes on its types and methods. This is because it may not have been designed in a secure way when called from transparent code – as we’ll see in the next post, it is easy to open a security hole despite all the security protections .NET 4 offers. When exposing an assembly to be called from partially-trusted code, the entire assembly needs a security audit to decide what should be transparent, safe critical, or critical, and close any potential security holes. This is where AllowPartiallyTrustedCallersAttribute (APTCA) comes in. Without this attribute, fully-trusted assemblies run Critical code, and partially-trusted assemblies run Transparent code. When this attribute is applied to an assembly, it confirms that the assembly has had a full security audit, and it is safe to be called from untrusted code. All code in that assembly runs as Transparent, but SecurityCriticalAttribute and SecuritySafeCriticalAttribute can be applied to individual types and methods to make those run at the Critical or SafeCritical levels, with all the restrictions that entails. So, to allow the sandboxed assembly to call the full-trust API assembly, simply add APCTA to the API assembly: [assembly: AllowPartiallyTrustedCallers] and everything works as you expect. The sandboxed dll can call your API dll, and from there communicate with the rest of the application. Conclusion That’s the basics of running a full-trust assembly in a sandboxed appdomain, and allowing a sandboxed assembly to access it. The key is AllowPartiallyTrustedCallersAttribute, which is what lets partially-trusted code call a fully-trusted assembly. However, an assembly with APTCA applied to it means that you have run a full security audit of every type and member in the assembly. If you don’t, then you could inadvertently open a security hole. I’ll be looking at ways this can happen in my next post.

    Read the article

  • [.NET] What's the point of MarshalByValue Object?

    - by smwikipedia
    Hi awesome! We know that MarshalByRef allow us to create an object in a different AppDomain and use a Proxy object to access it. And the behavior of that object is in a different context of the AppDomain where it actually lives in. Well this sounds faily reseaonable in the regard of isolation and safety. But why is there still MarshalByValue? MarshalByValue just leads to an newly deserialized object which is an exact copy of the object in a different AppDomain. If we need that object, why not just create it in the current AppDomain? Why bother to first create it in a different AppDomain and then get it back by MarshaoByValue? Many thanks.

    Read the article

  • .NET remoting exception: Permission denied: cannot call non-public or static methods remotely.

    - by Vilx-
    I'm writing a program which will allow to load a specific managed .DLL file and play with it. Since I want the ability to unload the .DLL file, I'm creating two AppDomains - one for the app itself, the other for the currently loaded .DLL. Since most of the objects in the loaded .DLL do not serialize well, I'm creating a MarshalByRefObject wrapper class which will keep the object itself in its own AppDomain, and expose some reflection functions to the main application AppDomain. However when I try to invoke a method on the remote object I get stuck with an exception: Permission denied: cannot call non-public or static methods remotely. This is very strange, because I'm not using any non-public or static methods at all. In essence, what I have is: class RemoteObjectWrapper: MarshalByRefObject { private Type SourceType; private object Source; public RemoteObjectWrapper(object source) { if (source == null) throw new ArgumentNullException("source"); this.Source = source; this.SourceType = source.GetType(); } public T WrapValue<T>(object value) { if ( value == null ) return default(T); var TType = typeof(T); if (TType == typeof(RemoteObjectWrapper)) value = new RemoteObjectWrapper(value); return (T)value; } public T InvokeMethod<T>(string methodName, params object[] args) { return WrapValue<T>(SourceType.InvokeMember(methodName, System.Reflection.BindingFlags.FlattenHierarchy | System.Reflection.BindingFlags.Instance | System.Reflection.BindingFlags.InvokeMethod | System.Reflection.BindingFlags.Public, null, this.Source, args)); } } And I get the exception when I try to do: var c = SomeInstanceOfRemoteObjectWrapper.InvokeMethod<RemoteObjectWrapper>("somePublicMethod", "some string parameter"); What's going on here? As far as I can understand, the InvokeMethod method doesn't even get executed, the exception is thrown when I try to run it. Added: To clarify - SomeInstanceOfRemoteObjectWrapper is constructed in the .DLL's AppDomain and then returned to my main AppDomain, The InvokeMethod<T>() is called from my main AppDomain (and I expect it to execute in the .DLL's AppDomain).

    Read the article

  • Use IIS Application Initialization for keeping ASP.NET Apps alive

    - by Rick Strahl
    I've been working quite a bit with Windows Services in the recent months, and well, it turns out that Windows Services are quite a bear to debug, deploy, update and maintain. The process of getting services set up,  debugged and updated is a major chore that has to be extensively documented and or automated specifically. On most projects when a service is built, people end up scrambling for the right 'process' to use for administration. Web app deployment and maintenance on the other hand are common and well understood today, as we are constantly dealing with Web apps. There's plenty of infrastructure and tooling built into Web Tools like Visual Studio to facilitate the process. By comparison Windows Services or anything self-hosted for that matter seems convoluted.In fact, in a recent blog post I mentioned that on a recent project I'd been using self-hosting for SignalR inside of a Windows service, because the application is in fact a 'service' that also needs to send out lots of messages via SignalR. But the reality is that it could just as well be an IIS application with a service component that runs in the background. Either way you look at it, it's either a Windows Service with a built in Web Server, or an IIS application running a Service application, neither of which follows the standard Service or Web App template.Personally I much prefer Web applications. Running inside of IIS I get all the benefits of the IIS platform including service lifetime management (crash and restart), controlled shutdowns, the whole security infrastructure including easy certificate support, hot-swapping of code and the the ability to publish directly to IIS from within Visual Studio with ease.Because of these benefits we set out to move from the self hosted service into an ASP.NET Web app instead.The Missing Link for ASP.NET as a Service: Auto-LoadingI've had moments in the past where I wanted to run a 'service like' application in ASP.NET because when you think about it, it's so much easier to control a Web application remotely. Services are locked into start/stop operations, but if you host inside of a Web app you can write your own ticket and control it from anywhere. In fact nearly 10 years ago I built a background scheduling application that ran inside of ASP.NET and it worked great and it's still running doing its job today.The tricky part for running an app as a service inside of IIS then and now, is how to get IIS and ASP.NET launched so your 'service' stays alive even after an Application Pool reset. 7 years ago I faked it by using a web monitor (my own West Wind Web Monitor app) I was running anyway to monitor my various web sites for uptime, and having the monitor ping my 'service' every 20 seconds to effectively keep ASP.NET alive or fire it back up after a reload. I used a simple scheduler class that also includes some logic for 'self-reloading'. Hacky for sure, but it worked reliably.Luckily today it's much easier and more integrated to get IIS to launch ASP.NET as soon as an Application Pool is started by using the Application Initialization Module. The Application Initialization Module basically allows you to turn on Preloading on the Application Pool and the Site/IIS App, which essentially fires a request through the IIS pipeline as soon as the Application Pool has been launched. This means that effectively your ASP.NET app becomes active immediately, Application_Start is fired making sure your app stays up and running at all times. All the other features like Application Pool recycling and auto-shutdown after idle time still work, but IIS will then always immediately re-launch the application.Getting started with Application InitializationAs of IIS 8 Application Initialization is part of the IIS feature set. For IIS 7 and 7.5 there's a separate download available via Web Platform Installer. Using IIS 8 Application Initialization is an optional install component in Windows or the Windows Server Role Manager: This is an optional component so make sure you explicitly select it.IIS Configuration for Application InitializationInitialization needs to be applied on the Application Pool as well as the IIS Application level. As of IIS 8 these settings can be made through the IIS Administration console.Start with the Application Pool:Here you need to set both the Start Automatically which is always set, and the StartMode which should be set to AlwaysRunning. Both have to be set - the Start Automatically flag is set true by default and controls the starting of the application pool itself while Always Running flag is required in order to launch the application. Without the latter flag set the site settings have no effect.Now on the Site/Application level you can specify whether the site should pre load: Set the Preload Enabled flag to true.At this point ASP.NET apps should auto-load. This is all that's needed to pre-load the site if all you want is to get your site launched automatically.If you want a little more control over the load process you can add a few more settings to your web.config file that allow you to show a static page while the App is starting up. This can be useful if startup is really slow, so rather than displaying blank screen while the user is fiddling their thumbs you can display a static HTML page instead: <system.webServer> <applicationInitialization remapManagedRequestsTo="Startup.htm" skipManagedModules="true"> <add initializationPage="ping.ashx" /> </applicationInitialization> </system.webServer>This allows you to specify a page to execute in a dry run. IIS basically fakes request and pushes it directly into the IIS pipeline without hitting the network. You specify a page and IIS will fake a request to that page in this case ping.ashx which just returns a simple OK string - ie. a fast pipeline request. This request is run immediately after Application Pool restart, and while this request is running and your app is warming up, IIS can display an alternate static page - Startup.htm above. So instead of showing users an empty loading page when clicking a link on your site you can optionally show some sort of static status page that says, "we'll be right back".  I'm not sure if that's such a brilliant idea since this can be pretty disruptive in some cases. Personally I think I prefer letting people wait, but at least get the response they were supposed to get back rather than a random page. But it's there if you need it.Note that the web.config stuff is optional. If you don't provide it IIS hits the default site link (/) and even if there's no matching request at the end of that request it'll still fire the request through the IIS pipeline. Ideally though you want to make sure that an ASP.NET endpoint is hit either with your default page, or by specify the initializationPage to ensure ASP.NET actually gets hit since it's possible for IIS fire unmanaged requests only for static pages (depending how your pipeline is configured).What about AppDomain Restarts?In addition to full Worker Process recycles at the IIS level, ASP.NET also has to deal with AppDomain shutdowns which can occur for a variety of reasons:Files are updated in the BIN folderWeb Deploy to your siteweb.config is changedHard application crashThese operations don't cause the worker process to restart, but they do cause ASP.NET to unload the current AppDomain and start up a new one. Because the features above only apply to Application Pool restarts, AppDomain restarts could also cause your 'ASP.NET service' to stop processing in the background.In order to keep the app running on AppDomain recycles, you can resort to a simple ping in the Application_End event:protected void Application_End() { var client = new WebClient(); var url = App.AdminConfiguration.MonitorHostUrl + "ping.aspx"; client.DownloadString(url); Trace.WriteLine("Application Shut Down Ping: " + url); }which fires any ASP.NET url to the current site at the very end of the pipeline shutdown which in turn ensures that the site immediately starts back up.Manual Configuration in ApplicationHost.configThe above UI corresponds to the following ApplicationHost.config settings. If you're using IIS 7, there's no UI for these flags so you'll have to manually edit them.When you install the Application Initialization component into IIS it should auto-configure the module into ApplicationHost.config. Unfortunately for me, with Mr. Murphy in his best form for me, the module registration did not occur and I had to manually add it.<globalModules> <add name="ApplicationInitializationModule" image="%windir%\System32\inetsrv\warmup.dll" /> </globalModules>Most likely you won't need ever need to add this, but if things are not working it's worth to check if the module is actually registered.Next you need to configure the ApplicationPool and the Web site. The following are the two relevant entries in ApplicationHost.config.<system.applicationHost> <applicationPools> <add name="West Wind West Wind Web Connection" autoStart="true" startMode="AlwaysRunning" managedRuntimeVersion="v4.0" managedPipelineMode="Integrated"> <processModel identityType="LocalSystem" setProfileEnvironment="true" /> </add> </applicationPools> <sites> <site name="Default Web Site" id="1"> <application path="/MPress.Workflow.WebQueueMessageManager" applicationPool="West Wind West Wind Web Connection" preloadEnabled="true"> <virtualDirectory path="/" physicalPath="C:\Clients\…" /> </application> </site> </sites> </system.applicationHost>On the Application Pool make sure to set the autoStart and startMode flags to true and AlwaysRunning respectively. On the site make sure to set the preloadEnabled flag to true.And that's all you should need. You can still set the web.config settings described above as well.ASP.NET as a Service?In the particular application I'm working on currently, we have a queue manager that runs as standalone service that polls a database queue and picks out jobs and processes them on several threads. The service can spin up any number of threads and keep these threads alive in the background while IIS is running doing its own thing. These threads are newly created threads, so they sit completely outside of the IIS thread pool. In order for this service to work all it needs is a long running reference that keeps it alive for the life time of the application.In this particular app there are two components that run in the background on their own threads: A scheduler that runs various scheduled tasks and handles things like picking up emails to send out outside of IIS's scope and the QueueManager. Here's what this looks like in global.asax:public class Global : System.Web.HttpApplication { private static ApplicationScheduler scheduler; private static ServiceLauncher launcher; protected void Application_Start(object sender, EventArgs e) { // Pings the service and ensures it stays alive scheduler = new ApplicationScheduler() { CheckFrequency = 600000 }; scheduler.Start(); launcher = new ServiceLauncher(); launcher.Start(); // register so shutdown is controlled HostingEnvironment.RegisterObject(launcher); }}By keeping these objects around as static instances that are set only once on startup, they survive the lifetime of the application. The code in these classes is essentially unchanged from the Windows Service code except that I could remove the various overrides required for the Windows Service interface (OnStart,OnStop,OnResume etc.). Otherwise the behavior and operation is very similar.In this application ASP.NET serves two purposes: It acts as the host for SignalR and provides the administration interface which allows remote management of the 'service'. I can start and stop the service remotely by shutting down the ApplicationScheduler very easily. I can also very easily feed stats from the queue out directly via a couple of Web requests or (as we do now) through the SignalR service.Registering a Background Object with ASP.NETNotice also the use of the HostingEnvironment.RegisterObject(). This function registers an object with ASP.NET to let it know that it's a background task that should be notified if the AppDomain shuts down. RegisterObject() requires an interface with a Stop() method that's fired and allows your code to respond to a shutdown request. Here's what the IRegisteredObject::Stop() method looks like on the launcher:public void Stop(bool immediate = false) { LogManager.Current.LogInfo("QueueManager Controller Stopped."); Controller.StopProcessing(); Controller.Dispose(); Thread.Sleep(1500); // give background threads some time HostingEnvironment.UnregisterObject(this); }Implementing IRegisterObject should help with reliability on AppDomain shutdowns. Thanks to Justin Van Patten for pointing this out to me on Twitter.RegisterObject() is not required but I would highly recommend implementing it on whatever object controls your background processing to all clean shutdowns when the AppDomain shuts down.Testing it outI'm still in the testing phase with this particular service to see if there are any side effects. But so far it doesn't look like it. With about 50 lines of code I was able to replace the Windows service startup to Web start up - everything else just worked as is. An honorable mention goes to SignalR 2.0's oWin hosting, because with the new oWin based hosting no code changes at all were required, merely a couple of configuration file settings and an assembly directive needed, to point at the SignalR startup class. Sweet!It also seems like SignalR is noticeably faster running inside of IIS compared to self-host. Startup feels faster because of the preload.Starting and Stopping the 'Service'Because the application is running as a Web Server, it's easy to have a Web interface for starting and stopping the services running inside of the service. For our queue manager the SignalR service and front monitoring app has a play and stop button for toggling the queue.If you want more administrative control and have it work more like a Windows Service you can also stop the application pool explicitly from the command line which would be equivalent to stopping and restarting a service.To start and stop from the command line you can use the IIS appCmd tool. To stop:> %windir%\system32\inetsrv\appcmd stop apppool /apppool.name:"Weblog"and to start> %windir%\system32\inetsrv\appcmd start apppool /apppool.name:"Weblog"Note that when you explicitly force the AppPool to stop running either in the UI (on the ApplicationPools page use Start/Stop) or via command line tools, the application pool will not auto-restart immediately. You have to manually start it back up.What's not to like?There are certainly a lot of benefits to running a background service in IIS, but… ASP.NET applications do have more overhead in terms of memory footprint and startup time is a little slower, but generally for server applications this is not a big deal. If the application is stable the service should fire up and stay running indefinitely. A lot of times this kind of service interface can simply be attached to an existing Web application, or if scalability requires be offloaded to its own Web server.Easier to work withBut the ultimate benefit here is that it's much easier to work with a Web app as opposed to a service. While developing I can simply turn off the auto-launch features and launch the service on demand through IIS simply by hitting a page on the site. If I want to shut down an IISRESET -stop will shut down the service easily enough. I can then attach a debugger anywhere I want and this works like any other ASP.NET application. Yes you end up on a background thread for debugging but Visual Studio handles that just fine and if you stay on a single thread this is no different than debugging any other code.SummaryUsing ASP.NET to run background service operations is probably not a super common scenario, but it probably should be something that is considered carefully when building services. Many applications have service like features and with the auto-start functionality of the Application Initialization module, it's easy to build this functionality into ASP.NET. Especially when combined with the notification features of SignalR it becomes very, very easy to create rich services that can also communicate their status easily to the outside world.Whether it's existing applications that need some background processing for scheduling related tasks, or whether you just create a separate site altogether just to host your service it's easy to do and you can leverage the same tool chain you're already using for other Web projects. If you have lots of service projects it's worth considering… give it some thought…© Rick Strahl, West Wind Technologies, 2005-2013Posted in ASP.NET  SignalR  IIS   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Capturing unhandled exceptions in .Net 2.0. Wrong event called.

    - by SoMoS
    Hello, I'm investigating a bit about how the unhandled exceptions are managed in .Net and I'm getting unexpected results that I would like to share with you to see what do you think about. The first one is pretty simple to see. I wrote this code to do the test, just a button that throws an Exception on the same thread that created the Form: Public Class Form1 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click Throw New Exception() End Sub Private Sub UnhandledException(ByVal sender As Object, ByVal e As UnhandledExceptionEventArgs) MsgBox(String.Format("Exception: {0}. Ending: {1}. AppDomain: {2}", CType(e.ExceptionObject, Exception).Message, e.IsTerminating.ToString(), AppDomain.CurrentDomain.FriendlyName)) End Sub Private Sub UnhandledThreadException(ByVal sender As Object, ByVal e As System.Threading.ThreadExceptionEventArgs) MsgBox(String.Format("Exception: {0}. AppDomain: {1}", e.Exception.Message(), AppDomain.CurrentDomain.FriendlyName)) End Sub Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load AddHandler AppDomain.CurrentDomain.UnhandledException, AddressOf UnhandledException AddHandler Application.ThreadException, AddressOf UnhandledThreadException End Sub End Class When I execute the code inside the Visual Studio the UnhandledException is called as expected but when I execute the application from Windows the UndhanledThreadException is called instead. ¿?¿?¿¿?¿? Someone has any idea of what can be happening here? Thanks in advance.

    Read the article

  • Why does ASP.Net locks when I update code with TortoiseSVN

    - by Malartre
    Hi, when I update Adobe Flash/Flex code that is not related to ASP.Net with TortoiseSVN (latest) on a Windows Server 2008, the complete website locks and stop responding. Is it ASP.Net recompiling my code, is it IIS 7 or is it Tortoise locking the file system? How can I prevent or minimize this if I need to do an update when 1000 users are using the ASP.Net website? UPDATE: Thanks to Aito and Bryan, I learned more about AppDomain. I found these two links where I discover that folder creation/deletion recycle the AppDomain in ASP.Net 2. --If TortoiseSVN creates folders in it's hidden .svn folders hierarchy, I guess it will lock the app! ASP.NET v2.0 - AppDomain recycles, more common than before http://weblogs.asp.net/owscott/archive/2006/02/21/ASP.NET-v2.0-2D00-AppDomain-recycles_2C00_-more-common-than-before.aspx FIX: ASP.NET 2.0-connected applications on a Web site may appear to stop responding http://support.microsoft.com/kb/911272 I'm testing this. Carl

    Read the article

  • AJAX with Web services and ASP.NET SessionState

    - by needhelp1
    We have an application which uses ScriptManager to generate a client-side proxy which makes AJAX calls to web services. The web services being invoked live in a separate appDomain(separate cluster altogether). The problem is that our application uses a State server for storing session. I want the web services to be able to access session also. First off, does anyone see anything wrong with the client making web service calls to a separate cluster(we're hoping this would be a better approach for scalability)? I was thinking that possibly anytime there is an update to the session dictionary in one appDomain, automatically update the session in the other appDomain also(referring to the web service appDomain, don't know how to do this, only theoretical). What do others think? Thanks!

    Read the article

  • Can I compile and execute C# expression without saving the assembly to disk?

    - by Sasha
    I can compile, get an instance and invoke a method of any C# type programmaticaly. There lots of info on that, including the StackOverflow (http://stackoverflow.com/questions/53844/how-can-i-evaluate-a-c-expression-dynamically). My problem is that I'm in the web environment and cannot save anything to /bin directory. I can compile "in-memory" as the above mentioned link suggests but then I won't be able to "unload" my custom assembly from the current AppDomain. After a while that will become a huge memory problem. Is it possible to open a new AppDomain, compile new assembly "in-memory", evaluate some expression or access some member of that assembly inside of that new AppDomain and kill that AppDomain safely when done, all that without saving anything to a hard drive? Thanks in advance for any links, suggestions, etc.

    Read the article

  • Monitoring ASP.NET Application

    - by imran_ku07
        Introduction:          There are times when you may need to monitor your ASP.NET application's CPU and memory consumption, so that you can fine-tune your ASP.NET application(whether Web Form, MVC or WebMatrix). Also, sometimes you may need to see all the exceptions(and their details) of your application raising, whether they are handled or not. If you are creating an ASP.NET application in .NET Framework 4.0, then you can easily monitor your application's CPU or memory consumption and see how many exceptions your application raising. In this article I will show you how you can do this.       Description:           With .NET Framework 4.0, you can turn on the monitoring of CPU and memory consumption by setting AppDomain.MonitoringEnabled property to true. Also, in .NET Framework 4.0, you can register a callback method to AppDomain.FirstChanceException event to monitor the exceptions being thrown within your application's AppDomain. Turning on the monitoring and registering a callback method will add some additional overhead to your application, which will hurt your application performance. So it is better to turn on these features only if you have following properties in web.config file,   <add key="AppDomainMonitoringEnabled" value="true"/> <add key="FirstChanceExceptionMonitoringEnabled" value="true"/>             In case if you wonder what does FirstChanceException mean. It simply means the first notification of an exception raised by your application. Even CLR invokes this notification before the catch block that handles the exception. Now just update global.asax.cs file as,   string _item = "__RequestExceptionKey"; protected void Application_Start() { SetupMonitoring(); } private void SetupMonitoring() { bool appDomainMonitoringEnabled, firstChanceExceptionMonitoringEnabled; bool.TryParse(ConfigurationManager.AppSettings["AppDomainMonitoringEnabled"], out appDomainMonitoringEnabled); bool.TryParse(ConfigurationManager.AppSettings["FirstChanceExceptionMonitoringEnabled"], out firstChanceExceptionMonitoringEnabled); if (appDomainMonitoringEnabled) { AppDomain.MonitoringIsEnabled = true; } if (firstChanceExceptionMonitoringEnabled) { AppDomain.CurrentDomain.FirstChanceException += (object source, FirstChanceExceptionEventArgs e) => { if (HttpContext.Current == null)// If no context available, ignore it return; if (HttpContext.Current.Items[_item] == null) HttpContext.Current.Items[_item] = new RequestException { Exceptions = new List<Exception>() }; (HttpContext.Current.Items[_item] as RequestException).Exceptions.Add(e.Exception); }; } } protected void Application_EndRequest() { if (Context.Items[_item] != null) { //Only add the request if atleast one exception is raised var reqExc = Context.Items[_item] as RequestException; reqExc.Url = Request.Url.AbsoluteUri; Application.Lock(); if (Application["AllExc"] == null) Application["AllExc"] = new List<RequestException>(); (Application["AllExc"] as List<RequestException>).Add(reqExc); Application.UnLock(); } }               Now browse to Monitoring.cshtml file, you will see the following screen,                            The above screen shows you the total bytes allocated, total bytes in use and CPU usage of your application. The above screen also shows you all the exceptions raised by your application which is very helpful for you. I have uploaded a sample project on github at here. You can find Monitoring.cshtml file on this sample project. You can use this approach in ASP.NET MVC, ASP.NET WebForm and WebMatrix application.       Summary:          This is very important for administrators/developers to manage and administer their web application after deploying to production server. This article will help administrators/developers to see the memory and CPU usage of their web application. This will also help administrators/developers to see all the exceptions your application is throwing whether they are swallowed or not. Hopefully you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Using Nemerle in asp.net App_Code directory

    - by Andrew Davey
    I want to use Nemerle in an ASP.NET application. Specifically, putting .n files into App_Code. I added this to my web.config system.codedom/compilers section: <compiler language="n;Nemerle" extension=".n" type="Nemerle.Compiler.NemerleCodeProvider, Nemerle.Compiler"/> When running I get this exception: The assembly '' is already loaded in another appdomain. Setting in machine.config can help solve this issue. Stack trace [HttpException (0x80004005): The assembly '' is already loaded in another appdomain. Setting <deployment retail="true" /> in machine.config can help solve this issue.] System.Web.Compilation.CodeDirectoryCompiler.GetCodeDirectoryAssembly(VirtualPath virtualDir, CodeDirectoryType dirType, String assemblyName, StringSet excludedSubdirectories, Boolean isDirectoryAllowed) +8809675 System.Web.Compilation.BuildManager.CompileCodeDirectory(VirtualPath virtualDir, CodeDirectoryType dirType, String assemblyName, StringSet excludedSubdirectories) +128 System.Web.Compilation.BuildManager.CompileCodeDirectories() +265 System.Web.Compilation.BuildManager.EnsureTopLevelFilesCompiled() +320 [HttpException (0x80004005): The assembly '' is already loaded in another appdomain. Setting <deployment retail="true" /> in machine.config can help solve this issue.] System.Web.Compilation.BuildManager.ReportTopLevelCompilationException() +58 System.Web.Compilation.BuildManager.EnsureTopLevelFilesCompiled() +512 System.Web.Hosting.HostingEnvironment.Initialize(ApplicationManager appManager, IApplicationHost appHost, IConfigMapPathFactory configMapPathFactory, HostingEnvironmentParameters hostingParameters) +729 [HttpException (0x80004005): The assembly '' is already loaded in another appdomain. Setting <deployment retail="true" /> in machine.config can help solve this issue.] System.Web.HttpRuntime.FirstRequestInit(HttpContext context) +8890735 System.Web.HttpRuntime.EnsureFirstRequestInit(HttpContext context) +85 System.Web.HttpRuntime.ProcessRequestInternal(HttpWorkerRequest wr) +259 What am I doing wrong?

    Read the article

  • How do I pass references as method parameters across AppDomains?

    - by Thiado de Arruda
    I have been trying to get the following code to work(everything is defined in the same assembly) : namespace SomeApp{ public class A : MarshalByRefObject { public byte[] GetSomeData() { // } } public class B : MarshalByRefObject { private A remoteObj; public void SetA(A remoteObj) { this.remoteObj = remoteObj; } } public class C { A someA = new A(); public void Init() { AppDomain domain = AppDomain.CreateDomain("ChildDomain"); string currentAssemblyPath = Assembly.GetExecutingAssembly().Location; B remoteB = domain.domain.CreateInstanceFromAndUnwrap(currentAssemblyPath,"SomeApp.B") as B; remoteB.SetA(someA); // this throws an ArgumentException "Object type cannot be converted to target type." } } } What I'm trying to do is pass a reference of an 'A' instance created in the first AppDomain to the child domain and have the child domain execute a method on the first domain. In some point on 'B' code I'm going to call 'remoteObj.GetSomeData()'. This has to be done because the 'byte[]' from 'GetSomeData' method must be 'calculated' on the first appdomain. What should I do to avoid the exception, or what can I do to achieve the same result?

    Read the article

  • Is System.AddIn mostly about making it easier to use Remoting or does it make it harder to do so?

    - by MatthewMartin
    It takes at least 7 assemblies and restricting my AddIn's data model to data types that remoting can deal with before the appdomain isolation features begin to work. It is so complex! The System.AddIn teams blog implies to me they were trying to re-create a mental model of COM, a model I never understood very well in the first place and am not sold on the benefits. (If COM is so good why's it dead?-rhetorical question.) If I don't need to mirror or interop with legacy COM (like VSTO does using System.AddIn), is it possible to just create some classes that load load in a new AppDomain? I can write the discovery code my self, I've done it before and a naive implementation is pretty fast because I'm not like iterating over the assemblies in the GAC! So my specific question is, can I get the AppDomain isolation that AddIns provide with a few code Remoting snippets, and what would those be?

    Read the article

  • [NAnt] About "nant::get-base-directory()"

    - by Nam Gi VU
    As in http://nant.sourceforge.net/release/latest/help/functions/nant.get-base-directory.html, they explaint the meaning of this function is: The base directory of the appdomain in which NAnt is running. I don't know what does appdomain mean! Someone please explain it for me. Thank you.

    Read the article

  • Merging .NET assemblies on Windows Store / Phone 8 / Portable Class Library

    - by Gabriel S.
    Is there a way to embed multiple dependent assemblies into a single one for projects written on the following platform types: Windows Store Apps, Windows Phone 8, Portable Class Library? I know that for regular .Net projects there is ILMerge, but on the aforementioned project types it doesn't work. Embedding assemblies as resources and then manually resolving the references using AppDomain.CurrentDomain.AssemblyResolve is not possible either, since AppDomain is not available in these types of project.

    Read the article

  • Cocoa : Once and for all, how to really reset the standardUserDefaults

    - by Korion
    I tried using -resetStandardUserDefaults, I tried removing the plist file, none of those really do what I need. I want to reset my preferences completely, as if the app re-installed. Is there a good solution to this? I tried : NSString *appDomain = [[NSBundle mainBundle] bundleIdentifier]; [[NSUserDefaults standardUserDefaults] removePersistentDomainForName:appDomain]; But Xcode complains. Apparently, it doesn't like that the plist file has disappeared.

    Read the article

  • Reflection in C#

    - by matt
    var victim = System.IO.Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "Victim.dll"); var assy = AppDomain.CurrentDomain.Load(System.IO.File.ReadAllBytes(victim)); var types = from x in assy.GetTypes() where x.Name.StartsWith("AwesomePage") select x; var pageType = types.First(); page = Activator.CreateInstance(pageType); this.Content = page; Could someone tell me why a dll file would be targeted?

    Read the article

  • Azure, don't give me multiple VMs, give me one elastic VM

    - by FransBouma
    Yesterday, Microsoft revealed new major features for Windows Azure (see ScottGu's post). It all looks shiny and great, but after reading most of the material describing the new features, I still find the overall idea behind all of it flawed: why should I care on how much VMs my web app runs? Isn't that a problem to solve for the Windows Azure engineers / software? And what if I need the file system, why can't I simply get a virtual filesystem ? To illustrate my point, let's use a real example: a product website with a customer system/database and next to it a support site with accompanying database. Both are written in .NET, using ASP.NET and use a SQL Server database each. The product website offers files to download by customers, very simple. You have a couple of options to host these websites: Buy a server, place it in a rack at an ISP and run the sites on that server Use 'shared hosting' with an ISP, which means your sites' appdomains are running on the same machine, as well as the files stored, and the databases are hosted in the same server as the other shared databases. Hire a VM, install your OS of choice at an ISP, and host the sites on that VM, basically the same as the first option, except you don't have a physical server At some cloud-vendor, either host the sites 'shared' or in a VM. See above. With all of those options, scalability is a problem, even the cloud-based ones, though not due to the same reasons: The physical server solution has the obvious problem that if you need more power, you need to buy a bigger server or more servers which requires you to add replication and other overhead Shared hosting solutions are almost always capped on memory usage / traffic and database size: if your sites get too big, you have to move out of the shared hosting environment and start over with one of the other solutions The VM solution, be it a VM at an ISP or 'in the cloud' at e.g. Windows Azure or Amazon, in theory allows scaling out by simply instantiating more VMs, however that too introduces the same overhead problems as with the physical servers: suddenly more than 1 instance runs your sites. If a cloud vendor offers its services in the form of VMs, you won't gain much over having a VM at some ISP: the main problems you have to work around are still there: when you spin up more than one VM, your application must be completely stateless at any moment, including the DB sub system, because what's in memory in instance 1 might not be in memory in instance 2. This might sounds trivial but it's not. A lot of the websites out there started rather small: they were perfectly runnable on a single machine with normal memory and CPU power. After all, you don't need a big machine to run a website with even thousands of users a day. Moving these sites to a multi-VM environment will cause a problem: all the in-memory state they use, all the multi-page transitions they use while keeping state across the transition, they can't do that anymore like they did that on a single machine: state is something of the past, you have to store every byte of state in either a DB or in a viewstate or in a cookie somewhere so with the next request, all state information is available through the request, as nothing is kept in-memory. Our example uses a bunch of files in a file system. Using multiple VMs will require that these files move to a cloud storage system which is mounted in each VM so we don't have to store the files on each VM. This might require different file paths, but this change should be minor. What's perhaps less minor is the maintenance procedure in place on the new type of cloud storage used: instead of ftp-ing into a VM, you might have to update the files using different ways / tools. All in all this makes moving an existing website which was written for an environment that's based around a VM (namely .NET with its CLR) overly cumbersome and problematic: it forces you to refactor your website system to be able to be used 'in the cloud', which is caused by the limited way how e.g. Windows Azure offers its cloud services: in blocks of VMs. Offer a scalable, flexible VM which extends with my needs Instead, cloud vendors should offer simply one VM to me. On that VM I run the websites, store my DB and my files. As it's a virtual machine, how this machine is actually ran on physical hardware (e.g. partitioned), I don't care, as that's the problem for the cloud vendor to solve. If I need more resources, e.g. I have more traffic to my server, way more visitors per day, the VM stretches, like I bought a bigger box. This frees me from the problem which comes with multiple VMs: I don't have any refactoring to do at all: I can simply build my website as if it runs on my local hardware server, upload it to the VM offered by the cloud vendor, install it on the VM and I'm done. "But that might require changes to windows!" Yes, but Microsoft is Windows. Windows Azure is their service, they can make whatever change to what they offer to make it look like it's windows. Yet, they're stuck, like Amazon, in thinking in VMs, which forces developers to 'think ahead' and gamble whether they would need to migrate to a cloud with multiple VMs in the future or not. Which comes down to: gamble whether they should invest time in code / architecture which they might never need. (YAGNI anyone?) So the VM we're talking about, is that a low-level VM which runs a guest OS, or is that VM a different kind of VM? The flexible VM: .NET's CLR ? My example websites are ASP.NET based, which means they run inside a .NET appdomain, on the .NET CLR, which is a VM. The only physical OS resource the sites need is the file system, however this too is accessed through .NET. In short: all the websites see is what .NET allows the websites to see, the world as the websites know it is what .NET shows them and lets them access. How the .NET appdomain is run physically, that's the concern of .NET, not mine. This begs the question why Windows Azure doesn't offer virtual appdomains? Or better: .NET environments which look like one machine but could be physically multiple machines. In such an environment, no change has to be made to the websites to migrate them from a local machine or own server to the cloud to get proper scaling: the .NET VM will simply scale with the need: more memory needed, more CPU power needed, it stretches. What it offers to the application running inside the appdomain is simply increasing, but not fragmented: all resources are available to the application: this means that the problem of how to scale is back to where it should be: with the cloud vendor. "Yeah, great, but what about the databases?" The .NET application communicates with the database server through a .NET ADO.NET provider. Where the database is located is not a problem of the appdomain: the ADO.NET provider has to solve that. I.o.w.: we can host the databases in an environment which offers itself as a single resource and is accessible through one connection string without replication overhead on the outside, and use that environment inside the .NET VM as if it was a single DB. But what about memory replication and other problems? This environment isn't simple, at least not for the cloud vendor. But it is simple for the customer who wants to run his sites in that cloud: no work needed. No refactoring needed of existing code. Upload it, run it. Perhaps I'm dreaming and what I described above isn't possible. Yet, I think if cloud vendors don't move into that direction, what they're offering isn't interesting: it doesn't solve a problem at all, it simply offers a way to instantiate more VMs with the guest OS of choice at the cost of me needing to refactor my website code so it can run in the straight jacket form factor dictated by the cloud vendor. Let's not kid ourselves here: most of us developers will never build a website which needs a truck load of VMs to run it: almost all websites created by developers can run on just a few VMs at most. Yet, the most expensive change is right at the start: moving from one to two VMs. As soon as you have refactored your website code to run across multiple VMs, adding another one is just as easy as clicking a mouse button. But that first step, that's the problem here and as it's right there at the beginning of scaling the website, it's particularly strange that cloud vendors refuse to solve that problem and leave it to the developers to solve that. Which makes migrating 'to the cloud' particularly expensive.

    Read the article

  • Can't access CodeBase from a dynamically generated assembly.

    - by Michael Meadows
    I'm trying to create an assembly dynamically in .Net. I can't seem to figure out how to get the CodeBase property to return a value, however. Here's an example: var assemblyName = new AssemblyName { Name = "Whatever", CodeBase = Directory.GetCurrentDirectory() }; var assemblyBuilder = AppDomain.CurrentDomain .DefineDynamicAssembly(assemblyName, AssemblyBuilderAccess.RunAndSave); var moduleBuilder = assemblyBuilder.DefineDynamicModule("WhateverModule", "Whatever.dll"); var typeBuilder = moduleBuilder.DefineType("WhateverType", TypeAttributes.Public); var type = typeBuilder.CreateType(); assemblyBuilder.Save("Whatever.dll"); var codeBase = type.Assembly.CodeBase; // throws the below exception System.NotSupportedException was unhandled Message=The invoked member is not supported in a dynamic assembly. Source=mscorlib StackTrace: at System.Reflection.Emit.InternalAssemblyBuilder.get_CodeBase() at Stupid.Program.Main(String[] args) in C:\Users\Walking Disaster\Documents\Visual Studio 10\Projects\Lingual.Proxy\Stupid\Program.cs:line 25 at System.AppDomain._nExecuteAssembly(RuntimeAssembly assembly, String[] args) at System.AppDomain.ExecuteAssembly(String assemblyFile, Evidence assemblySecurity, String[] args) at Microsoft.VisualStudio.HostingProcess.HostProc.RunUsersAssembly() at System.Threading.ThreadHelper.ThreadStart_Context(Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ThreadHelper.ThreadStart() Can anyone see what I'm doing wrong?

    Read the article

  • Partial Trust in WPF 4

    - by Hadi Eskandari
    I've started a new project in WPF 4 (.NET 4) and trying to see if I can run it in xbap mode. I need to run the application in Full Trust with the new mode made available in .NET 4 which asks the end user if the full trust application should be run. I've set the "Security" mode to "Full Trust" application, and it builds just fine. When I run it, an exception is thrown and IE error message shows the following error. Any ways around it?? Startup URI: T:\projects\Hightech Sources\PayRoll\PayRoll.Web\publish\PayRoll.Web.xbap Application Identity: file:///T:/projects/Hightech%20Sources/PayRoll/PayRoll.Web/publish/PayRoll.Web.xbap#PayRoll.Web.xbap, Version=1.0.0.0, Culture=neutral, PublicKeyToken=1d910f49755d2c97, processorArchitecture=msil/PayRoll.Web.exe, Version=1.0.0.0, Culture=neutral, PublicKeyToken=1d910f49755d2c97, processorArchitecture=msil, type=win32 System.Security.SecurityException: Request for the permission of type 'System.Security.Permissions.FileIOPermission, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089' failed. at System.Security.CodeAccessSecurityEngine.Check(Object demand, StackCrawlMark& stackMark, Boolean isPermSet) at System.Security.CodeAccessSecurityEngine.Check(CodeAccessPermission cap, StackCrawlMark& stackMark) at System.Security.CodeAccessPermission.Demand() at System.Reflection.RuntimeAssembly.InternalLoadAssemblyName(AssemblyName assemblyRef, Evidence assemblySecurity, StackCrawlMark& stackMark, Boolean forIntrospection, Boolean suppressSecurityChecks) at System.Reflection.RuntimeAssembly.InternalLoadFrom(String assemblyFile, Evidence securityEvidence, Byte[] hashValue, AssemblyHashAlgorithm hashAlgorithm, Boolean forIntrospection, Boolean suppressSecurityChecks, StackCrawlMark& stackMark) at System.Reflection.Assembly.LoadFrom(String assemblyFile) at PayRoll.Web.App.SelectAssemblies() at Caliburn.PresentationFramework.ApplicationModel.CaliburnApplication..ctor() at PayRoll.Web.App..ctor() at PayRoll.Web.App.Main() at System.AppDomain._nExecuteAssembly(RuntimeAssembly assembly, String[] args) at System.AppDomain.nExecuteAssembly(RuntimeAssembly assembly, String[] args) at System.Runtime.Hosting.ManifestRunner.Run(Boolean checkAptModel) at System.Runtime.Hosting.ManifestRunner.ExecuteAsAssembly() at System.Runtime.Hosting.ApplicationActivator.CreateInstance(ActivationContext activationContext, String[] activationCustomData) at System.Runtime.Hosting.ApplicationActivator.CreateInstance(ActivationContext activationContext) at System.Windows.Interop.PresentationApplicationActivator.CreateInstance(ActivationContext actCtx) at System.Activator.CreateInstance(ActivationContext activationContext) at System.AppDomain.Setup(Object arg) at System.AppDomain.nCreateInstance(String friendlyName, AppDomainSetup setup, Evidence providedSecurityInfo, Evidence creatorsSecurityInfo, IntPtr parentSecurityDescriptor) at System.Runtime.Hosting.ApplicationActivator.CreateInstanceHelper(AppDomainSetup adSetup) at System.Runtime.Hosting.ApplicationActivator.CreateInstance(ActivationContext activationContext, String[] activationCustomData) at System.Windows.Interop.PresentationApplicationActivator.CreateInstance(ActivationContext actCtx) at System.Activator.CreateInstance(ActivationContext activationContext) at System.Deployment.Application.DeploymentManager.ExecuteNewDomain() at System.Deployment.Application.InPlaceHostingManager.Execute() at MS.Internal.AppModel.XappLauncherApp.ExecuteDownloadedApplication() at System.Windows.Interop.DocObjHost.RunApplication(ApplicationRunner runner) at MS.Internal.AppModel.XappLauncherApp.XappLauncherApp_Exit(Object sender, ExitEventArgs e) at System.Windows.Application.OnExit(ExitEventArgs e) at System.Windows.Application.DoShutdown() at System.Windows.Application.ShutdownImpl() at System.Windows.Application.ShutdownCallback(Object arg) at System.Windows.Threading.ExceptionWrapper.InternalRealCall(Delegate callback, Object args, Int32 numArgs) at MS.Internal.Threading.ExceptionFilterHelper.TryCatchWhen(Object source, Delegate method, Object args, Int32 numArgs, Delegate catchHandler) at System.Windows.Threading.DispatcherOperation.InvokeImpl() at System.Windows.Threading.DispatcherOperation.InvokeInSecurityContext(Object state) at System.Threading.ExecutionContext.runTryCode(Object userData) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Windows.Threading.DispatcherOperation.Invoke() at System.Windows.Threading.Dispatcher.ProcessQueue() at System.Windows.Threading.Dispatcher.WndProcHook(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam, Boolean& handled) at MS.Win32.HwndWrapper.WndProc(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam, Boolean& handled) at MS.Win32.HwndSubclass.DispatcherCallbackOperation(Object o) at System.Windows.Threading.ExceptionWrapper.InternalRealCall(Delegate callback, Object args, Int32 numArgs) at MS.Internal.Threading.ExceptionFilterHelper.TryCatchWhen(Object source, Delegate method, Object args, Int32 numArgs, Delegate catchHandler) at System.Windows.Threading.Dispatcher.InvokeImpl(DispatcherPriority priority, TimeSpan timeout, Delegate method, Object args, Int32 numArgs) at MS.Win32.HwndSubclass.SubclassWndProc(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam) at MS.Win32.UnsafeNativeMethods.DispatchMessage(MSG& msg) at System.Windows.Threading.Dispatcher.PushFrameImpl(DispatcherFrame frame) at System.Windows.Threading.Dispatcher.PushFrame(DispatcherFrame frame) at System.Windows.Threading.Dispatcher.Run() at System.Windows.Application.RunDispatcher(Object ignore) at System.Windows.Application.StartDispatcherInBrowser(Object unused) at System.Windows.Threading.ExceptionWrapper.InternalRealCall(Delegate callback, Object args, Int32 numArgs) at MS.Internal.Threading.ExceptionFilterHelper.TryCatchWhen(Object source, Delegate method, Object args, Int32 numArgs, Delegate catchHandler) at System.Windows.Threading.DispatcherOperation.InvokeImpl() at System.Windows.Threading.DispatcherOperation.InvokeInSecurityContext(Object state) at System.Threading.ExecutionContext.runTryCode(Object userData) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Windows.Threading.DispatcherOperation.Invoke() at System.Windows.Threading.Dispatcher.ProcessQueue() at System.Windows.Threading.Dispatcher.WndProcHook(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam, Boolean& handled) at MS.Win32.HwndWrapper.WndProc(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam, Boolean& handled) at MS.Win32.HwndSubclass.DispatcherCallbackOperation(Object o) at System.Windows.Threading.ExceptionWrapper.InternalRealCall(Delegate callback, Object args, Int32 numArgs) at MS.Internal.Threading.ExceptionFilterHelper.TryCatchWhen(Object source, Delegate method, Object args, Int32 numArgs, Delegate catchHandler) at System.Windows.Threading.Dispatcher.InvokeImpl(DispatcherPriority priority, TimeSpan timeout, Delegate method, Object args, Int32 numArgs) at MS.Win32.HwndSubclass.SubclassWndProc(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam) The action that failed was: Demand The type of the first permission that failed was: System.Security.Permissions.FileIOPermission

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >