Search Results

Search found 121 results on 5 pages for 'deadlocks'.

Page 4/5 | < Previous Page | 1 2 3 4 5  | Next Page >

  • SQLAuthority News – I am Presenting 2 Sessions at TechEd India

    - by pinaldave
    TechED is the event which I am always excited about. It is one of the largest technology in India. Microsoft Tech Ed India 2011 is the premier technical education and networking event for tech professionals interested in learning, connecting and exploring a broad set of current and soon-to-be released Microsoft technologies, tools, platforms and services. I am going to speak at the TechED on two very interesting and advanced subjects. Venue: The LaLiT Ashok Kumara Krupa High Grounds Bangalore – 560001, Karnataka, India Sessions Date: March 25, 2011 Understanding SQL Server Behavioral Pattern – SQL Server Extended Events Date and Time: March 25, 2011 12:00 PM to 01:00 PM History repeats itself! SQL Server 2008 has introduced a very powerful, yet very minimal reoccurring feature called Extended Events. This advanced session will teach experienced administrators’ capabilities that were not possible before. From T-SQL error to CPU bottleneck, error login to deadlocks –Extended Event can detect it for you. Understanding the pattern of events can prevent future mistakes. SQL Server Waits and Queues – Your Gateway to Perf. Troubleshooting Date and Time: March 25, 2011 04:15 PM to 05:15 PM Just like a horoscope, SQL Server Waits and Queues can reveal your past, explain your present and predict your future. SQL Server Performance Tuning uses the Waits and Queues as a proven method to identify the best opportunities to improve performance. A glance at Wait Types can tell where there is a bottleneck. Learn how to identify bottlenecks and potential resolutions in this fast paced, advanced performance tuning session. My session will be on the third day of the event and I am very sure that everybody will be in groove to learn new interesting subjects. I will have few give-away during and at the end of the session. I will not tell you what I will have but it will be for sure something you will love to have. Please make a point and reserve above time slots to attend my session. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology Tagged: SQL Extended Events

    Read the article

  • Why lock statements don't scale

    - by Alex.Davies
    We are going to have to stop using lock statements one day. Just like we had to stop using goto statements. The problem is similar, they're pretty easy to follow in small programs, but code with locks isn't composable. That means that small pieces of program that work in isolation can't necessarily be put together and work together. Of course actors scale fine :) Why lock statements don't scale as software gets bigger Deadlocks. You have a program with lots of threads picking up lots of locks. You already know that if two of your threads both try to pick up a lock that the other already has, they will deadlock. Your program will come to a grinding halt, and there will be fire and brimstone. "Easy!" you say, "Just make sure all the threads pick up the locks in the same order." Yes, that works. But you've broken composability. Now, to add a new lock to your code, you have to consider all the other locks already in your code and check that they are taken in the right order. Algorithm buffs will have noticed this approach means it takes quadratic time to write a program. That's bad. Why lock statements don't scale as hardware gets bigger Memory bus contention There's another headache, one that most programmers don't usually need to think about, but is going to bite us in a big way in a few years. Locking needs exclusive use of the entire system's memory bus while taking out the lock. That's not too bad for a single or dual-core system, but already for quad-core systems it's a pretty large overhead. Have a look at this blog about the .NET 4 ThreadPool for some numbers and a weird analogy (see the author's comment). Not too bad yet, but I'm scared my 1000 core machine of the future is going to go slower than my machine today! I don't know the answer to this problem yet. Maybe some kind of per-core work queue system with hierarchical work stealing. Definitely hardware support. But what I do know is that using locks specifically prevents any solution to this. We should be abstracting our code away from the details of locks as soon as possible, so we can swap in whatever solution arrives when it does. NAct uses locks at the moment. But my advice is that you code using actors (which do scale well as software gets bigger). And when there's a better way of implementing actors that'll scale well as hardware gets bigger, only NAct needs to work out how to use it, and your program will go fast on it's own.

    Read the article

  • Did I lost my RAID again?

    - by BarsMonster
    Hi! A little history: 2 years ago I was really excited to find out that mdadm is so powerful so it even can reshape arrays so you can start with a smaller array and the grow it as you need. I've bought 3x1Tb drives and made RAID-5. It was fine for a year. Then I bought 2x more, and tried to reshape to RAID-6 out of 5 drives, and due to some mess with superblock versions, lost all content. Had to rebuild it from scratch, but 2Tb of data were gone. Yesterday I bought 2 more drives, and this time I had everything: properly built array, UPS. I've disabled write intent map, added 2 new drives as a spare and run a command to grow array to 7-disk. It started working, but speed was ridiculously slow, ~100kb/sec. AFter processing first 37Mb at such an amasing speed, one of old HDDs fails. I properly shutdown PC and disconnected failed drive. After bootup it appeared it recreated intent map as it was still in mdadm config, so I removed it from config and rebooted again. Now all I see is that all mdadm processes deadlocks, and don't do anything. PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1937 root 20 0 12992 608 444 D 0 0.1 0:00.00 mdadm 2283 root 20 0 12992 852 704 D 0 0.1 0:00.01 mdadm 2287 root 20 0 0 0 0 D 0 0.0 0:00.01 md0_reshape 2288 root 18 -2 12992 820 676 D 0 0.1 0:00.01 mdadm And all I see in mdstat is: $ cat /proc/mdstat Personalities : [linear] [multipath] [raid0] [raid1] [raid6] [raid5] [raid4] [raid10] md0 : active raid6 sdb1[1] sdg1[4] sdf1[7] sde1[6] sdd1[0] sdc1[5] 2929683456 blocks super 1.2 level 6, 1024k chunk, algorithm 2 [7/6] [UU_UUUU] [>....................] reshape = 0.0% (37888/976561152) finish=567604147.2min speed=0K/sec I've already tried mdadm 2.6.7, 3.1.4 and 3.2 - nothing helps. Did I lost my data again? Any suggestions how can I make it work? OS is Ubuntu Server 10.04.2... PS. Needless to say that data is unaccessible - I cannot mount /dev/md0 as save the most valuable data. You can see my disappointment - the very specific thing I was excited about failed twice taking 5Tb of my data with it.

    Read the article

  • Manic Monday - More OpenWorld Solaris Sessions: Developers, Cloud, Customer Insights, Hardware Optimization

    - by Larry Wake
    We're overflowing with Monday sessions; literally more than one person can take in. Learn more about what's new in Oracle Solaris Studio, hear about the latest x86 and SPARC hardware optimizations, get some insights on cloud deployment strategies, and find out from your peers what they're doing with Oracle Solaris. If you're an OpenWorld attendee, go to to Schedule Builder to guarantee your space in any session or lab. See yesterday's blog post and the "Focus on Oracle Solaris" guide for even more sessions. Monday, October 1st: 10:45 AM - Maximizing Your SPARC T4 Oracle Solaris Application Performance(CON6382,  Marriott Marquis - Golden Gate C3) Hear how customers and commercial software partners have reached peak performance on SPARC T4 servers and engineered systems with Oracle Solaris Studio and its latest tools for analyzing, reporting, and improving runtime performance: Autoparallelizing, high-performance compilers Performance Analyzer (used to find performance hotspots) Thread Analyzer (to expose data races and deadlocks) Code Analyzer (used to discover latent memory corruption issues) 10:45 Cloud Formation: Implementing IaaS in Practice with Oracle Solaris(CON8787, Moscone South 302) Decisions, decisions--at the same time, we've got a session that covers why Oracle Solaris is the ideal OS for public or private clouds, IaaS or PaaS, with built-in features for elastic infrastructure, unrivaled security, superfast installation and deployment, nonstop availability, and crystal-clear observability. This session will include a customer study on how Oracle Solaris is used in the cloud today to implement the Oracle stack. 12:15 PM - Customer Insight: Oracle Solaris on Oracle Exadata, Oracle Exalogic, and SPARC SuperCluster(CON8760, Moscone South 270) Hear from customers what benefits they have realized from using the Oracle stack on Oracle Exadata and Oracle’s SPARC SuperCluster and from using Oracle Solaris on those engineered systems, taking advantage of built-in lightweight OS virtualization (Zones), enterprise reliability and scale, and other key features. 1:45 PM - Case Study: Mobile Tornado Uses Oracle Technology for Better RAS and TCO?(CON4281, Moscone West 2005) Mobile Tornado develops and markets instant communication platforms, replacing traditional radio networks with cellular networks. Its critical concern is uptime. Find out how they've used Oracle Solaris, Netra SPARC T4, and Oracle Solaris Cluster, including Oracle Solaris ZFS and Zones, for their Oracle Database deployments to improve reliability and drive down cost. 3:15 PM - Technical Panel: Developing High Performance Applications on Oracle Solaris(CON7196, Marriott Marquis - Golden Gate C2) Engineers from the Oracle Solaris, Oracle Database, and Oracle Tuxedo development teams, and Oracle ISV Engineering discuss how they develop high-performance enterprise applications that take advantage of Oracle's SPARC and x86 servers, with Oracle Solaris Studio and new Oracle Solaris 11 features. Topics will include developer tools, parallel frameworks, best practices, and methodologies, as well as insights and case studies on parallelizing and optimizing application performance on Oracle Solaris. Bring your best questions! 3:15 PM -  x86 Power Management with Oracle Solaris: Current State, Opportunities, and Future(CON6271, Moscone West 2012) Another option for this time slot: learn about how Intel Xeon and Oracle Solaris work together to reduce server power consumption. This presentation addresses some of the recent power management improvements in Oracle Solaris, opportunities to further improve energy efficiency, and some future directions for Oracle Solaris power management.

    Read the article

  • Deadlock in SQL Server 2005! Two real-time bulk upserts are fighting. WHY?

    - by skimania
    Here's the scenario: I've got a table called MarketDataCurrent (MDC) that has live updating stock prices. I've got one process called 'LiveFeed' which reads prices streaming from the wire, queues up inserts, and uses a 'bulk upload to temp table then insert/update to MDC table.' (BulkUpsert) I've got another process which then reads this data, computes other data, and then saves the results back into the same table, using a similar BulkUpsert stored proc. Thirdly, there are a multitude of users running a C# Gui polling the MDC table and reading updates from it. Now, during the day when the data is changing rapidly, things run pretty smoothly, but then, after market hours, we've recently started seeing an increasing number of Deadlock exceptions coming out of the database, nowadays we see 10-20 a day. The imporant thing to note here is that these happen when the values are NOT changing. Here's all the relevant info: Table Def: CREATE TABLE [dbo].[MarketDataCurrent]( [MDID] [int] NOT NULL, [LastUpdate] [datetime] NOT NULL, [Value] [float] NOT NULL, [Source] [varchar](20) NULL, CONSTRAINT [PK_MarketDataCurrent] PRIMARY KEY CLUSTERED ( [MDID] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] ) ON [PRIMARY] - I've got a Sql Profiler Trace Running, catching the deadlocks, and here's what all the graphs look like. Process 258 is called the following 'BulkUpsert' stored proc, repeatedly, while 73 is calling the next one: ALTER proc [dbo].[MarketDataCurrent_BulkUpload] @updateTime datetime, @source varchar(10) as begin transaction update c with (rowlock) set LastUpdate = getdate(), Value = t.Value, Source = @source from MarketDataCurrent c INNER JOIN #MDTUP t ON c.MDID = t.mdid where c.lastUpdate < @updateTime and c.mdid not in (select mdid from MarketData where LiveFeedTicker is not null and PriceSource like 'LiveFeed.%') and c.value <> t.value insert into MarketDataCurrent with (rowlock) select MDID, getdate(), Value, @source from #MDTUP where mdid not in (select mdid from MarketDataCurrent with (nolock)) and mdid not in (select mdid from MarketData where LiveFeedTicker is not null and PriceSource like 'LiveFeed.%') commit And the other one: ALTER PROCEDURE [dbo].[MarketDataCurrent_LiveFeedUpload] AS begin transaction -- Update existing mdid UPDATE c WITH (ROWLOCK) SET LastUpdate = t.LastUpdate, Value = t.Value, Source = t.Source FROM MarketDataCurrent c INNER JOIN #TEMPTABLE2 t ON c.MDID = t.mdid; -- Insert new MDID INSERT INTO MarketDataCurrent with (ROWLOCK) SELECT * FROM #TEMPTABLE2 WHERE MDID NOT IN (SELECT MDID FROM MarketDataCurrent with (NOLOCK)) -- Clean up the temp table DELETE #TEMPTABLE2 commit To clarify, those Temp Tables are being created by the C# code on the same connection and are populated using the C# SqlBulkCopy class. To me it looks like it's deadlocking on the PK of the table, so I tried removing that PK and switching to a Unique Constraint instead but that increased the number of deadlocks 10-fold. I'm totally lost as to what to do about this situation and am open to just about any suggestion. HELP!! In response to the request for the XDL, here it is: <deadlock-list> <deadlock victim="processc19978"> <process-list> <process id="processaf0b68" taskpriority="0" logused="0" waitresource="KEY: 6:72057594090487808 (d900ed5a6cc6)" waittime="718" ownerId="1102128174" transactionname="user_transaction" lasttranstarted="2010-06-11T16:30:44.750" XDES="0xffffffff817f9a40" lockMode="U" schedulerid="3" kpid="8228" status="suspended" spid="73" sbid="0" ecid="0" priority="0" transcount="2" lastbatchstarted="2010-06-11T16:30:44.750" lastbatchcompleted="2010-06-11T16:30:44.750" clientapp=".Net SqlClient Data Provider" hostname="RISKAPPS_VM" hostpid="3836" loginname="RiskOpt" isolationlevel="read committed (2)" xactid="1102128174" currentdb="6" lockTimeout="4294967295" clientoption1="671088672" clientoption2="128056"> <executionStack> <frame procname="MKP_RISKDB.dbo.MarketDataCurrent_BulkUpload" line="28" stmtstart="1062" stmtend="1720" sqlhandle="0x03000600a28e5e4ef4fd8e00849d00000100000000000000"> UPDATE c WITH (ROWLOCK) SET LastUpdate = getdate(), Value = t.Value, Source = @source FROM MarketDataCurrent c INNER JOIN #MDTUP t ON c.MDID = t.mdid WHERE c.lastUpdate &lt; @updateTime and c.mdid not in (select mdid from MarketData where BloombergTicker is not null and PriceSource like &apos;Blbg.%&apos;) and c.value &lt;&gt; t.value </frame> <frame procname="adhoc" line="1" stmtstart="88" sqlhandle="0x01000600c1653d0598706ca7000000000000000000000000"> exec MarketDataCurrent_BulkUpload @clearBefore, @source </frame> <frame procname="unknown" line="1" sqlhandle="0x000000000000000000000000000000000000000000000000"> unknown </frame> </executionStack> <inputbuf> (@clearBefore datetime,@source nvarchar(10))exec MarketDataCurrent_BulkUpload @clearBefore, @source </inputbuf> </process> <process id="processc19978" taskpriority="0" logused="0" waitresource="KEY: 6:72057594090487808 (74008e31572b)" waittime="718" ownerId="1102128228" transactionname="user_transaction" lasttranstarted="2010-06-11T16:30:44.780" XDES="0x380be9d8" lockMode="U" schedulerid="5" kpid="8464" status="suspended" spid="248" sbid="0" ecid="0" priority="0" transcount="2" lastbatchstarted="2010-06-11T16:30:44.780" lastbatchcompleted="2010-06-11T16:30:44.780" clientapp=".Net SqlClient Data Provider" hostname="RISKBBG_VM" hostpid="4480" loginname="RiskOpt" isolationlevel="read committed (2)" xactid="1102128228" currentdb="6" lockTimeout="4294967295" clientoption1="671088672" clientoption2="128056"> <executionStack> <frame procname="MKP_RISKDB.dbo.MarketDataCurrentBlbgRtUpload" line="14" stmtstart="840" stmtend="1220" sqlhandle="0x03000600005f9d24c8878f00849d00000100000000000000"> UPDATE c WITH (ROWLOCK) SET LastUpdate = t.LastUpdate, Value = t.Value, Source = t.Source FROM MarketDataCurrent c INNER JOIN #TEMPTABLE2 t ON c.MDID = t.mdid; -- Insert new MDID </frame> <frame procname="adhoc" line="1" sqlhandle="0x010006004a58132228bf8d73000000000000000000000000"> MarketDataCurrentBlbgRtUpload </frame> </executionStack> <inputbuf> MarketDataCurrentBlbgRtUpload </inputbuf> </process> </process-list> <resource-list> <keylock hobtid="72057594090487808" dbid="6" objectname="MKP_RISKDB.dbo.MarketDataCurrent" indexname="PK_MarketDataCurrent" id="lock5ba77b00" mode="U" associatedObjectId="72057594090487808"> <owner-list> <owner id="processc19978" mode="U"/> </owner-list> <waiter-list> <waiter id="processaf0b68" mode="U" requestType="wait"/> </waiter-list> </keylock> <keylock hobtid="72057594090487808" dbid="6" objectname="MKP_RISKDB.dbo.MarketDataCurrent" indexname="PK_MarketDataCurrent" id="lock65dca340" mode="U" associatedObjectId="72057594090487808"> <owner-list> <owner id="processaf0b68" mode="U"/> </owner-list> <waiter-list> <waiter id="processc19978" mode="U" requestType="wait"/> </waiter-list> </keylock> </resource-list> </deadlock> </deadlock-list>

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • MySQL is running VERY slow

    - by user1032531
    I have two servers: a VPS and a laptop. I recently re-built both of them, and MySQL is running about 20 times slower on the laptop. Both servers used to run CentOS 5.8 and I think MySQL 5.1, and the laptop used to do great so I do not think it is the hardware. For the VPS, my provider installed CentOS 6.4, and then I installed MySQL 5.1.69 using yum with the CentOS repo. For the laptop, I installed CentOS 6.4 basic server and then installed MySQL 5.1.69 using yum with the CentOS repo. my.cnf for both servers are identical, and I have shown below. For both servers, I've also included below the output from SHOW VARIABLES; as well as output from sysbench, file system information, and cpu information. I have tried adding skip-name-resolve, but it didn't help. The matrix below shows the SHOW VARIABLES output from both servers which is different. Again, MySQL was installed the same way, so I do not know why it is different, but it is and I think this might be why the laptop is executing MySQL so slowly. Why is the laptop running MySQL slowly, and how do I fix it? Differences between SHOW VARIABLES on both servers +---------------------------+-----------------------+-------------------------+ | Variable | Value-VPS | Value-Laptop | +---------------------------+-----------------------+-------------------------+ | hostname | vps.site1.com | laptop.site2.com | | max_binlog_cache_size | 4294963200 | 18446744073709500000 | | max_seeks_for_key | 4294967295 | 18446744073709500000 | | max_write_lock_count | 4294967295 | 18446744073709500000 | | myisam_max_sort_file_size | 2146435072 | 9223372036853720000 | | myisam_mmap_size | 4294967295 | 18446744073709500000 | | plugin_dir | /usr/lib/mysql/plugin | /usr/lib64/mysql/plugin | | pseudo_thread_id | 7568 | 2 | | system_time_zone | EST | PDT | | thread_stack | 196608 | 262144 | | timestamp | 1372252112 | 1372252046 | | version_compile_machine | i386 | x86_64 | +---------------------------+-----------------------+-------------------------+ my.cnf for both servers [root@server1 ~]# cat /etc/my.cnf [mysqld] datadir=/var/lib/mysql socket=/var/lib/mysql/mysql.sock user=mysql # Disabling symbolic-links is recommended to prevent assorted security risks symbolic-links=0 [mysqld_safe] log-error=/var/log/mysqld.log pid-file=/var/run/mysqld/mysqld.pid innodb_strict_mode=on sql_mode=TRADITIONAL # sql_mode=STRICT_TRANS_TABLES,NO_ZERO_DATE,NO_ZERO_IN_DATE character-set-server=utf8 collation-server=utf8_general_ci log=/var/log/mysqld_all.log [root@server1 ~]# VPS SHOW VARIABLES Info Same as Laptop shown below but changes per above matrix (removed to allow me to be under the 30000 characters as required by ServerFault) Laptop SHOW VARIABLES Info auto_increment_increment 1 auto_increment_offset 1 autocommit ON automatic_sp_privileges ON back_log 50 basedir /usr/ big_tables OFF binlog_cache_size 32768 binlog_direct_non_transactional_updates OFF binlog_format STATEMENT bulk_insert_buffer_size 8388608 character_set_client utf8 character_set_connection utf8 character_set_database latin1 character_set_filesystem binary character_set_results utf8 character_set_server latin1 character_set_system utf8 character_sets_dir /usr/share/mysql/charsets/ collation_connection utf8_general_ci collation_database latin1_swedish_ci collation_server latin1_swedish_ci completion_type 0 concurrent_insert 1 connect_timeout 10 datadir /var/lib/mysql/ date_format %Y-%m-%d datetime_format %Y-%m-%d %H:%i:%s default_week_format 0 delay_key_write ON delayed_insert_limit 100 delayed_insert_timeout 300 delayed_queue_size 1000 div_precision_increment 4 engine_condition_pushdown ON error_count 0 event_scheduler OFF expire_logs_days 0 flush OFF flush_time 0 foreign_key_checks ON ft_boolean_syntax + -><()~*:""&| ft_max_word_len 84 ft_min_word_len 4 ft_query_expansion_limit 20 ft_stopword_file (built-in) general_log OFF general_log_file /var/run/mysqld/mysqld.log group_concat_max_len 1024 have_community_features YES have_compress YES have_crypt YES have_csv YES have_dynamic_loading YES have_geometry YES have_innodb YES have_ndbcluster NO have_openssl DISABLED have_partitioning YES have_query_cache YES have_rtree_keys YES have_ssl DISABLED have_symlink DISABLED hostname server1.site2.com identity 0 ignore_builtin_innodb OFF init_connect init_file init_slave innodb_adaptive_hash_index ON innodb_additional_mem_pool_size 1048576 innodb_autoextend_increment 8 innodb_autoinc_lock_mode 1 innodb_buffer_pool_size 8388608 innodb_checksums ON innodb_commit_concurrency 0 innodb_concurrency_tickets 500 innodb_data_file_path ibdata1:10M:autoextend innodb_data_home_dir innodb_doublewrite ON innodb_fast_shutdown 1 innodb_file_io_threads 4 innodb_file_per_table OFF innodb_flush_log_at_trx_commit 1 innodb_flush_method innodb_force_recovery 0 innodb_lock_wait_timeout 50 innodb_locks_unsafe_for_binlog OFF innodb_log_buffer_size 1048576 innodb_log_file_size 5242880 innodb_log_files_in_group 2 innodb_log_group_home_dir ./ innodb_max_dirty_pages_pct 90 innodb_max_purge_lag 0 innodb_mirrored_log_groups 1 innodb_open_files 300 innodb_rollback_on_timeout OFF innodb_stats_method nulls_equal innodb_stats_on_metadata ON innodb_support_xa ON innodb_sync_spin_loops 20 innodb_table_locks ON innodb_thread_concurrency 8 innodb_thread_sleep_delay 10000 innodb_use_legacy_cardinality_algorithm ON insert_id 0 interactive_timeout 28800 join_buffer_size 131072 keep_files_on_create OFF key_buffer_size 8384512 key_cache_age_threshold 300 key_cache_block_size 1024 key_cache_division_limit 100 language /usr/share/mysql/english/ large_files_support ON large_page_size 0 large_pages OFF last_insert_id 0 lc_time_names en_US license GPL local_infile ON locked_in_memory OFF log OFF log_bin OFF log_bin_trust_function_creators OFF log_bin_trust_routine_creators OFF log_error /var/log/mysqld.log log_output FILE log_queries_not_using_indexes OFF log_slave_updates OFF log_slow_queries OFF log_warnings 1 long_query_time 10.000000 low_priority_updates OFF lower_case_file_system OFF lower_case_table_names 0 max_allowed_packet 1048576 max_binlog_cache_size 18446744073709547520 max_binlog_size 1073741824 max_connect_errors 10 max_connections 151 max_delayed_threads 20 max_error_count 64 max_heap_table_size 16777216 max_insert_delayed_threads 20 max_join_size 18446744073709551615 max_length_for_sort_data 1024 max_long_data_size 1048576 max_prepared_stmt_count 16382 max_relay_log_size 0 max_seeks_for_key 18446744073709551615 max_sort_length 1024 max_sp_recursion_depth 0 max_tmp_tables 32 max_user_connections 0 max_write_lock_count 18446744073709551615 min_examined_row_limit 0 multi_range_count 256 myisam_data_pointer_size 6 myisam_max_sort_file_size 9223372036853727232 myisam_mmap_size 18446744073709551615 myisam_recover_options OFF myisam_repair_threads 1 myisam_sort_buffer_size 8388608 myisam_stats_method nulls_unequal myisam_use_mmap OFF net_buffer_length 16384 net_read_timeout 30 net_retry_count 10 net_write_timeout 60 new OFF old OFF old_alter_table OFF old_passwords OFF open_files_limit 1024 optimizer_prune_level 1 optimizer_search_depth 62 optimizer_switch index_merge=on,index_merge_union=on,index_merge_sort_union=on,index_merge_intersection=on pid_file /var/run/mysqld/mysqld.pid plugin_dir /usr/lib64/mysql/plugin port 3306 preload_buffer_size 32768 profiling OFF profiling_history_size 15 protocol_version 10 pseudo_thread_id 3 query_alloc_block_size 8192 query_cache_limit 1048576 query_cache_min_res_unit 4096 query_cache_size 0 query_cache_type ON query_cache_wlock_invalidate OFF query_prealloc_size 8192 rand_seed1 rand_seed2 range_alloc_block_size 4096 read_buffer_size 131072 read_only OFF read_rnd_buffer_size 262144 relay_log relay_log_index relay_log_info_file relay-log.info relay_log_purge ON relay_log_space_limit 0 report_host report_password report_port 3306 report_user rpl_recovery_rank 0 secure_auth OFF secure_file_priv server_id 0 skip_external_locking ON skip_name_resolve OFF skip_networking OFF skip_show_database OFF slave_compressed_protocol OFF slave_exec_mode STRICT slave_load_tmpdir /tmp slave_max_allowed_packet 1073741824 slave_net_timeout 3600 slave_skip_errors OFF slave_transaction_retries 10 slow_launch_time 2 slow_query_log OFF slow_query_log_file /var/run/mysqld/mysqld-slow.log socket /var/lib/mysql/mysql.sock sort_buffer_size 2097144 sql_auto_is_null ON sql_big_selects ON sql_big_tables OFF sql_buffer_result OFF sql_log_bin ON sql_log_off OFF sql_log_update ON sql_low_priority_updates OFF sql_max_join_size 18446744073709551615 sql_mode sql_notes ON sql_quote_show_create ON sql_safe_updates OFF sql_select_limit 18446744073709551615 sql_slave_skip_counter sql_warnings OFF ssl_ca ssl_capath ssl_cert ssl_cipher ssl_key storage_engine MyISAM sync_binlog 0 sync_frm ON system_time_zone PDT table_definition_cache 256 table_lock_wait_timeout 50 table_open_cache 64 table_type MyISAM thread_cache_size 0 thread_handling one-thread-per-connection thread_stack 262144 time_format %H:%i:%s time_zone SYSTEM timed_mutexes OFF timestamp 1372254399 tmp_table_size 16777216 tmpdir /tmp transaction_alloc_block_size 8192 transaction_prealloc_size 4096 tx_isolation REPEATABLE-READ unique_checks ON updatable_views_with_limit YES version 5.1.69 version_comment Source distribution version_compile_machine x86_64 version_compile_os redhat-linux-gnu wait_timeout 28800 warning_count 0 VPS Sysbench Info [root@vps ~]# cat sysbench.txt sysbench 0.4.12: multi-threaded system evaluation benchmark Running the test with following options: Number of threads: 8 Doing OLTP test. Running mixed OLTP test Doing read-only test Using Special distribution (12 iterations, 1 pct of values are returned in 75 pct cases) Using "BEGIN" for starting transactions Using auto_inc on the id column Threads started! Time limit exceeded, exiting... (last message repeated 7 times) Done. OLTP test statistics: queries performed: read: 1449966 write: 0 other: 207138 total: 1657104 transactions: 103569 (1726.01 per sec.) deadlocks: 0 (0.00 per sec.) read/write requests: 1449966 (24164.08 per sec.) other operations: 207138 (3452.01 per sec.) Test execution summary: total time: 60.0050s total number of events: 103569 total time taken by event execution: 479.1544 per-request statistics: min: 1.98ms avg: 4.63ms max: 330.73ms approx. 95 percentile: 8.26ms Threads fairness: events (avg/stddev): 12946.1250/381.09 execution time (avg/stddev): 59.8943/0.00 [root@vps ~]# Laptop Sysbench Info [root@server1 ~]# cat sysbench.txt sysbench 0.4.12: multi-threaded system evaluation benchmark Running the test with following options: Number of threads: 8 Doing OLTP test. Running mixed OLTP test Doing read-only test Using Special distribution (12 iterations, 1 pct of values are returned in 75 pct cases) Using "BEGIN" for starting transactions Using auto_inc on the id column Threads started! Time limit exceeded, exiting... (last message repeated 7 times) Done. OLTP test statistics: queries performed: read: 634718 write: 0 other: 90674 total: 725392 transactions: 45337 (755.56 per sec.) deadlocks: 0 (0.00 per sec.) read/write requests: 634718 (10577.78 per sec.) other operations: 90674 (1511.11 per sec.) Test execution summary: total time: 60.0048s total number of events: 45337 total time taken by event execution: 479.4912 per-request statistics: min: 2.04ms avg: 10.58ms max: 85.56ms approx. 95 percentile: 19.70ms Threads fairness: events (avg/stddev): 5667.1250/42.18 execution time (avg/stddev): 59.9364/0.00 [root@server1 ~]# VPS File Info [root@vps ~]# df -T Filesystem Type 1K-blocks Used Available Use% Mounted on /dev/simfs simfs 20971520 16187440 4784080 78% / none tmpfs 6224432 4 6224428 1% /dev none tmpfs 6224432 0 6224432 0% /dev/shm [root@vps ~]# Laptop File Info [root@server1 ~]# df -T Filesystem Type 1K-blocks Used Available Use% Mounted on /dev/mapper/vg_server1-lv_root ext4 72383800 4243964 64462860 7% / tmpfs tmpfs 956352 0 956352 0% /dev/shm /dev/sdb1 ext4 495844 60948 409296 13% /boot [root@server1 ~]# VPS CPU Info Removed to stay under the 30000 character limit required by ServerFault Laptop CPU Info [root@server1 ~]# cat /proc/cpuinfo processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Core(TM)2 Duo CPU T7100 @ 1.80GHz stepping : 13 cpu MHz : 800.000 cache size : 2048 KB physical id : 0 siblings : 2 core id : 0 cpu cores : 2 apicid : 0 initial apicid : 0 fpu : yes fpu_exception : yes cpuid level : 10 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx lm constant_tsc arch_perfmon pebs bts rep_good aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm lahf_lm ida dts tpr_shadow vnmi flexpriority bogomips : 3591.39 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: processor : 1 vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Core(TM)2 Duo CPU T7100 @ 1.80GHz stepping : 13 cpu MHz : 800.000 cache size : 2048 KB physical id : 0 siblings : 2 core id : 1 cpu cores : 2 apicid : 1 initial apicid : 1 fpu : yes fpu_exception : yes cpuid level : 10 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx lm constant_tsc arch_perfmon pebs bts rep_good aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm lahf_lm ida dts tpr_shadow vnmi flexpriority bogomips : 3591.39 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: [root@server1 ~]# EDIT New Info requested by shakalandy [root@localhost ~]# cat /proc/meminfo MemTotal: 2044804 kB MemFree: 761464 kB Buffers: 68868 kB Cached: 369708 kB SwapCached: 0 kB Active: 881080 kB Inactive: 246016 kB Active(anon): 688312 kB Inactive(anon): 4416 kB Active(file): 192768 kB Inactive(file): 241600 kB Unevictable: 0 kB Mlocked: 0 kB SwapTotal: 4095992 kB SwapFree: 4095992 kB Dirty: 0 kB Writeback: 0 kB AnonPages: 688428 kB Mapped: 65156 kB Shmem: 4216 kB Slab: 92428 kB SReclaimable: 31260 kB SUnreclaim: 61168 kB KernelStack: 2392 kB PageTables: 28356 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 5118392 kB Committed_AS: 1530212 kB VmallocTotal: 34359738367 kB VmallocUsed: 343604 kB VmallocChunk: 34359372920 kB HardwareCorrupted: 0 kB AnonHugePages: 520192 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB DirectMap4k: 8556 kB DirectMap2M: 2078720 kB [root@localhost ~]# ps aux | grep mysql root 2227 0.0 0.0 108332 1504 ? S 07:36 0:00 /bin/sh /usr/bin/mysqld_safe --datadir=/var/lib/mysql --pid-file=/var/lib/mysql/localhost.badobe.com.pid mysql 2319 0.1 24.5 1470068 501360 ? Sl 07:36 0:57 /usr/sbin/mysqld --basedir=/usr --datadir=/var/lib/mysql --plugin-dir=/usr/lib64/mysql/plugin --user=mysql --log-error=/var/lib/mysql/localhost.badobe.com.err --pid-file=/var/lib/mysql/localhost.badobe.com.pid root 3579 0.0 0.1 201840 3028 pts/0 S+ 07:40 0:00 mysql -u root -p root 13887 0.0 0.1 201840 3036 pts/3 S+ 18:08 0:00 mysql -uroot -px xxxxxxxxxx root 14449 0.0 0.0 103248 840 pts/2 S+ 18:16 0:00 grep mysql [root@localhost ~]# ps aux | grep mysql root 2227 0.0 0.0 108332 1504 ? S 07:36 0:00 /bin/sh /usr/bin/mysqld_safe --datadir=/var/lib/mysql --pid-file=/var/lib/mysql/localhost.badobe.com.pid mysql 2319 0.1 24.5 1470068 501356 ? Sl 07:36 0:57 /usr/sbin/mysqld --basedir=/usr --datadir=/var/lib/mysql --plugin-dir=/usr/lib64/mysql/plugin --user=mysql --log-error=/var/lib/mysql/localhost.badobe.com.err --pid-file=/var/lib/mysql/localhost.badobe.com.pid root 3579 0.0 0.1 201840 3028 pts/0 S+ 07:40 0:00 mysql -u root -p root 13887 0.0 0.1 201840 3048 pts/3 S+ 18:08 0:00 mysql -uroot -px xxxxxxxxxx root 14470 0.0 0.0 103248 840 pts/2 S+ 18:16 0:00 grep mysql [root@localhost ~]# vmstat 1 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 0 742172 76376 371064 0 0 6 6 78 202 2 1 97 1 0 0 0 0 742164 76380 371060 0 0 0 16 191 467 2 1 93 5 0 0 0 0 742164 76380 371064 0 0 0 0 148 388 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 159 418 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 145 380 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 166 429 2 1 97 0 0 1 0 0 742164 76380 371064 0 0 0 0 148 373 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 149 382 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 168 408 2 0 97 0 0 0 0 0 742164 76380 371064 0 0 0 0 165 394 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 159 354 2 1 98 0 0 0 0 0 742164 76388 371060 0 0 0 16 180 447 2 0 91 6 0 0 0 0 742164 76388 371064 0 0 0 0 143 344 2 1 98 0 0 0 1 0 742784 76416 370044 0 0 28 580 360 678 3 1 74 23 0 1 0 0 744768 76496 367772 0 0 40 1036 437 865 3 1 53 43 0 0 1 0 747248 76596 365412 0 0 48 1224 561 923 3 2 53 43 0 0 1 0 749232 76696 363092 0 0 32 1132 512 883 3 2 52 44 0 0 1 0 751340 76772 361020 0 0 32 1008 472 872 2 1 52 45 0 0 1 0 753448 76840 358540 0 0 36 1088 512 860 2 1 51 46 0 0 1 0 755060 76936 357636 0 0 28 1012 481 922 2 2 52 45 0 0 1 0 755060 77064 357988 0 0 12 896 444 902 2 1 53 45 0 0 1 0 754688 77148 358448 0 0 16 1096 506 1007 1 1 56 42 0 0 2 0 754192 77268 358932 0 0 12 1060 481 957 1 2 53 44 0 0 1 0 753696 77380 359392 0 0 12 1052 512 1025 2 1 55 42 0 0 1 0 751028 77480 359828 0 0 8 984 423 909 2 2 52 45 0 0 1 0 750524 77620 360200 0 0 8 788 367 869 1 2 54 44 0 0 1 0 749904 77700 360664 0 0 8 928 439 924 2 2 55 43 0 0 1 0 749408 77796 361084 0 0 12 976 468 967 1 1 56 43 0 0 1 0 748788 77896 361464 0 0 12 992 453 944 1 2 54 43 0 1 1 0 748416 77992 361996 0 0 12 784 392 868 2 1 52 46 0 0 1 0 747920 78092 362336 0 0 4 896 382 874 1 1 52 46 0 0 1 0 745252 78172 362780 0 0 12 1040 444 923 1 1 56 42 0 0 1 0 744764 78288 363220 0 0 8 1024 448 934 2 1 55 43 0 0 1 0 744144 78408 363668 0 0 8 1000 461 982 2 1 53 44 0 0 1 0 743648 78488 364148 0 0 8 872 443 888 2 1 54 43 0 0 1 0 743152 78548 364468 0 0 16 1020 511 995 2 1 55 43 0 0 1 0 742656 78632 365024 0 0 12 928 431 913 1 2 53 44 0 0 1 0 742160 78728 365468 0 0 12 996 470 955 2 2 54 44 0 1 1 0 739492 78840 365896 0 0 8 988 447 939 1 2 52 46 0 0 1 0 738872 78996 366352 0 0 12 972 442 928 1 1 55 44 0 1 1 0 738244 79148 366812 0 0 8 948 549 1126 2 2 54 43 0 0 1 0 737624 79312 367188 0 0 12 996 456 953 2 2 54 43 0 0 1 0 736880 79456 367660 0 0 12 960 444 918 1 1 53 46 0 0 1 0 736260 79584 368124 0 0 8 884 414 921 1 1 54 44 0 0 1 0 735648 79716 368488 0 0 12 976 450 955 2 1 56 41 0 0 1 0 733104 79840 368988 0 0 12 932 453 918 1 2 55 43 0 0 1 0 732608 79996 369356 0 0 16 916 444 889 1 2 54 43 0 1 1 0 731476 80128 369800 0 0 16 852 514 978 2 2 54 43 0 0 1 0 731244 80252 370200 0 0 8 904 398 870 2 1 55 43 0 1 1 0 730624 80384 370612 0 0 12 1032 447 977 1 2 57 41 0 0 1 0 730004 80524 371096 0 0 12 984 469 941 2 2 52 45 0 0 1 0 729508 80636 371544 0 0 12 928 438 922 2 1 52 46 0 0 1 0 728888 80756 371948 0 0 16 972 439 943 2 1 55 43 0 0 1 0 726468 80900 372272 0 0 8 960 545 1024 2 1 54 43 0 1 1 0 726344 81024 372272 0 0 8 464 490 1057 1 2 53 44 0 0 1 0 726096 81148 372276 0 0 4 328 441 1063 2 1 53 45 0 1 1 0 726096 81256 372292 0 0 0 296 387 975 1 1 53 45 0 0 1 0 725848 81380 372284 0 0 4 332 425 1034 2 1 54 44 0 1 1 0 725848 81496 372300 0 0 4 308 386 992 2 1 54 43 0 0 1 0 725600 81616 372296 0 0 4 328 404 1060 1 1 54 44 0 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 1 0 725600 81732 372296 0 0 4 328 439 1011 1 1 53 44 0 0 1 0 725476 81848 372308 0 0 0 316 441 1023 2 2 52 46 0 1 1 0 725352 81972 372300 0 0 4 344 451 1021 1 1 55 43 0 2 1 0 725228 82088 372320 0 0 0 328 427 1058 1 1 54 44 0 1 1 0 724980 82220 372300 0 0 4 336 419 999 2 1 54 44 0 1 1 0 724980 82328 372320 0 0 4 320 430 1019 1 1 54 44 0 1 1 0 724732 82436 372328 0 0 0 388 363 942 2 1 54 44 0 1 1 0 724608 82560 372312 0 0 4 308 419 993 1 2 54 44 0 1 0 0 724360 82684 372320 0 0 0 304 421 1028 2 1 55 42 0 1 0 0 724360 82684 372388 0 0 0 0 158 416 2 1 98 0 0 1 1 0 724236 82720 372360 0 0 0 6464 243 855 3 2 84 12 0 1 0 0 724112 82748 372360 0 0 0 5356 266 895 3 1 84 12 0 2 1 0 724112 82764 372380 0 0 0 3052 221 511 2 2 93 4 0 1 0 0 724112 82796 372372 0 0 0 4548 325 1067 2 2 81 16 0 1 0 0 724112 82816 372368 0 0 0 3240 259 829 3 1 90 6 0 1 0 0 724112 82836 372380 0 0 0 3260 309 822 3 2 88 8 0 1 1 0 724112 82876 372364 0 0 0 4680 326 978 3 1 77 19 0 1 0 0 724112 82884 372380 0 0 0 512 207 508 2 1 95 2 0 1 0 0 724112 82884 372388 0 0 0 0 138 361 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 158 397 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 146 395 2 1 98 0 0 2 0 0 724112 82884 372388 0 0 0 0 160 395 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 163 382 1 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 176 422 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 134 351 2 1 98 0 0 0 0 0 724112 82884 372388 0 0 0 0 190 429 2 1 97 0 0 0 0 0 724104 82884 372392 0 0 0 0 139 358 2 1 98 0 0 0 0 0 724848 82884 372392 0 0 0 4 211 432 2 1 97 0 0 1 0 0 724980 82884 372392 0 0 0 0 166 370 2 1 98 0 0 0 0 0 724980 82884 372392 0 0 0 0 164 397 2 1 98 0 0 ^C [root@localhost ~]#

    Read the article

  • Tough Decisions

    - by Johnm
    There was once a thriving business that employed two Database Administrators, Sam and Jim. Both DBAs were certified, educated and highly talented in their skill sets. During lunch breaks these two DBAs were often found together discussing best practices, troubleshooting techniques and the latest release notes for the upcoming version of SQL Server. They genuinely loved what they did. The maintenance of the first database was the responsibility of Sam. He was the architect of this server's setup and he was very meticulous in its configuration. He regularly monitored the health of the database, validated backup files and regularly adhered to the best practices that were advocated by well respected professionals. He was very proud of the fact that there was never a database that he managed that lost data or performed poorly. The maintenance of the second database was the responsibility of Jim. He too was the architect of this server's setup. At the time that he built this server, his understanding of the finer details of configuration were not as clear as they are today. The server was build on a shoestring budget and with very little time for testing and implementation. Jim often monitored the health of the database; but in more of a reactionary mode due to user complaints of slowness or failed transactions. Deadlocks abounded and the backup files were never validated. One day, the announcement was made that revealed that the business had hit financially hard times. Budgets were being cut, limitation on spending was implemented and the reduction in full-time staff was required. Since having two DBAs was regarded a luxury by many, this meant that either Sam or Jim were about to find themselves out of a job. Sam and Jim's boss, Frank, was faced with a very tough decision. Sam's performance was flawless. His techniques and practices were perfection. The databases he managed were reliable and efficient. His solutions are "by the book". When given a task it is certain that, while it may take a little longer, it will be done right the first time. Jim's techniques and practices were not perfect; but effective and responsive. He made mistakes regularly; but he shows that he learns from them and they often result in innovative solutions. When given a task it is certain that, while the results may require some tweaking, it will be done on time and under budget. You are Frank's best friend. He approaches you and presents this scenario. He must layoff one of his valued DBAs the very next morning. Frank asks you: "All else being equal, who would you let go? and Why?" Another pertinent question is raised: "Regardless of good times or bad, if you had to choose, which DBA would you want on your team when tough challenges arise?" Your response is. (This is where you enter a comment below)

    Read the article

  • SQL SERVER – MSQL_XP – Wait Type – Day 20 of 28

    - by pinaldave
    In this blog post, I am going to discuss something from my field experience. While consultation, I have seen various wait typed, but one of my customers who has been using SQL Server for all his operations had an interesting issue with a particular wait type. Our customer had more than 100+ SQL Server instances running and the whole server had MSSQL_XP wait type as the most number of wait types. While running sp_who2 and other diagnosis queries, I could not immediately figure out what the issue was because the query with that kind of wait type was nowhere to be found. After a day of research, I was relieved that the solution was very easy to figure out. Let us continue discussing this wait type. From Book On-Line: ?MSQL_XP occurs when a task is waiting for an extended stored procedure to end. SQL Server uses this wait state to detect potential MARS application deadlocks. The wait stops when the extended stored procedure call ends. MSQL_XP Explanation: This wait type is created because of the extended stored procedure. Extended Stored Procedures are executed within SQL Server; however, SQL Server has no control over them. Unless you know what the code for the extended stored procedure is and what it is doing, it is impossible to understand why this wait type is coming up. Reducing MSQL_XP wait: As discussed, it is hard to understand the Extended Stored Procedure if the code for it is not available. In the scenario described at the beginning of this post, our client was using third-party backup tool. The third-party backup tool was using Extended Stored Procedure. After we learned that this wait type was coming from the extended stored procedure of the backup tool they were using, we contacted the tech team of its vendor. The vendor admitted that the code was not optimal at some places, and within that day they had provided the patch. Once the updated version was installed, the issue on this wait type disappeared. As viewed in the wait statistics of all the 100+ SQL Server, there was no more MSSQL_XP wait type found. In simpler terms, you must first identify which Extended Stored Procedure is creating the wait type of MSSQL_XP and see if you can get in touch with the creator of the SP so you can help them optimize the code. If you have encountered this MSSQL_XP wait type, I encourage all of you to write how you managed it. Please do not mention the name of the vendor in your comment as I will not approve it. The focus of this blog post is to understand the wait types; not talk about others. Read all the post in the Wait Types and Queue series. Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussion of Wait Stats in this blog is generic and varies from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Talking JavaOne with Rock Star Kirk Pepperdine

    - by Janice J. Heiss
    Kirk Pepperdine is not only a JavaOne Rock Star but a Java Champion and a highly regarded expert in Java performance tuning who works as a consultant, educator, and author. He is the principal consultant at Kodewerk Ltd. He speaks frequently at conferences and co-authored the Ant Developer's Handbook. In the rapidly shifting world of information technology, Pepperdine, as much as anyone, keeps up with what's happening with Java performance tuning. Pepperdine will participate in the following sessions: CON5405 - Are Your Garbage Collection Logs Speaking to You? BOF6540 - Java Champions and JUG Leaders Meet Oracle Executives (with Jeff Genender, Mattias Karlsson, Henrik Stahl, Georges Saab) HOL6500 - Finding and Solving Java Deadlocks (with Heinz Kabutz, Ellen Kraffmiller Martijn Verburg, Jeff Genender, and Henri Tremblay) I asked him what technological changes need to be taken into account in performance tuning. “The volume of data we're dealing with just seems to be getting bigger and bigger all the time,” observed Pepperdine. “A couple of years ago you'd never think of needing a heap that was 64g, but today there are deployments where the heap has grown to 256g and tomorrow there are plans for heaps that are even larger. Dealing with all that data simply requires more horse power and some very specialized techniques. In some cases, teams are trying to push hardware to the breaking point. Under those conditions, you need to be very clever just to get things to work -- let alone to get them to be fast. We are very quickly moving from a world where everything happens in a transaction to one where if you were to even consider using a transaction, you've lost." When asked about the greatest misconceptions about performance tuning that he currently encounters, he said, “If you have a performance problem, you should start looking at code at the very least and for that extra step, whip out an execution profiler. I'm not going to say that I never use execution profilers or look at code. What I will say is that execution profilers are effective for a small subset of performance problems and code is literally the last thing you should look at.And what is the most exciting thing happening in the world of Java today? “Interesting question because so many people would say that nothing exciting is happening in Java. Some might be disappointed that a few features have slipped in terms of scheduling. But I'd disagree with the first group and I'm not so concerned about the slippage because I still see a lot of exciting things happening. First, lambda will finally be with us and with lambda will come better ways.” For JavaOne, he is proctoring for Heinz Kabutz's lab. “I'm actually looking forward to that more than I am to my own talk,” he remarked. “Heinz will be the third non-Sun/Oracle employee to present a lab and the first since Oracle began hosting JavaOne. He's got a great message. He's spent a ton of time making sure things are going to work, and we've got a great team of proctors to help out. After that, getting my talk done, the Java Champion's panel session and then kicking back and just meeting up and talking to some Java heads."Finally, what should Java developers know that they currently do not know? “’Write Once, Run Everywhere’ is a great slogan and Java has come closer to that dream than any other technology stack that I've used. That said, different hardware bits work differently and as hard as we try, the JVM can't hide all the differences. Plus, if we are to get good performance we need to work with our hardware and not against it. All this implies that Java developers need to know more about the hardware they are deploying to.” Originally published on blogs.oracle.com/javaone.

    Read the article

  • Tuning Default WorkManager - Advantages and Disadvantages

    - by Murali Veligeti
    Before discussing on Tuning Default WorkManager, lets have a brief introduction on What is Default WorkManger Before Weblogic Server 9.0 release, we had the concept of Execute Queues. WebLogic Server (before WLS 9.0), processing was performed in multiple execute queues. Different classes of work were executed in different queues, based on priority and ordering requirements, and to avoid deadlocks. In addition to the default execute queue, weblogic.kernel.default, there were pre-configured queues dedicated to internal administrative traffic, such as weblogic.admin.HTTP and weblogic.admin.RMI.Users could control thread usage by altering the number of threads in the default queue, or configure custom execute queues to ensure that particular applications had access to a fixed number of execute threads, regardless of overall system load. From WLS 9.0 release onwards WebLogic Server uses is a single thread pool (single thread pool which is called Default WorkManager), in which all types of work are executed. WebLogic Server prioritizes work based on rules you define, and run-time metrics, including the actual time it takes to execute a request and the rate at which requests are entering and leaving the pool.The common thread pool changes its size automatically to maximize throughput. The queue monitors throughput over time and based on history, determines whether to adjust the thread count. For example, if historical throughput statistics indicate that a higher thread count increased throughput, WebLogic increases the thread count. Similarly, if statistics indicate that fewer threads did not reduce throughput, WebLogic decreases the thread count. This new strategy makes it easier for administrators to allocate processing resources and manage performance, avoiding the effort and complexity involved in configuring, monitoring, and tuning custom executes queues. The Default WorkManager is used to handle thread management and perform self-tuning.This Work Manager is used by an application when no other Work Managers are specified in the application’s deployment descriptors. In many situations, the default Work Manager may be sufficient for most application requirements. WebLogic Server’s thread-handling algorithms assign each application its own fair share by default. Applications are given equal priority for threads and are prevented from monopolizing them. The default work-manager, as its name tells, is the work-manager defined by default.Thus, all applications deployed on WLS will use it. But sometimes, when your application is already in production, it's obvious you can't take your EAR / WAR, update the deployment descriptor(s) and redeploy it.The default work-manager belongs to a thread-pool, as initial thread-pool comes with only five threads, that's not much. If your application has to face a large number of hits, you may want to start with more than that.Well, that's quite easy. You have  two option to do so.1) Modify the config.xmlJust add the following line(s) in your server definition : <server> <name>AdminServer</name> <self-tuning-thread-pool-size-min>100</self-tuning-thread-pool-size-min> <self-tuning-thread-pool-size-max>200</self-tuning-thread-pool-size-max> [...] </server> 2) Adding some JVM parameters Add the following system property in setDomainEnv.sh/setDomainEnv.cmd or startWebLogic.sh/startWebLogic.cmd : -Dweblogic.threadpool.MinPoolSize=100 -Dweblogic.threadpool.MaxPoolSize=100 Reboot WLS and see the option has been taken into account . Disadvantage: So far its fine. But here there is an disadvantage in tuning Default WorkManager. Internally Weblogic Server has many work managers configured for different types of work.  if we run out of threads in the self-tuning pool(because of system property -Dweblogic.threadpool.MaxPoolSize) due to being undersized, then important work that WLS might need to do could be starved.  So, while limiting the self-tuning would limit the default WorkManager and internally it also limits all other internal WorkManagers which WLS uses.So the best alternative is to override the default WorkManager that means creating a WorkManager for the Application and assign the WorkManager for the application instead of tuning the Default WorkManager.

    Read the article

  • WebLogic Server Performance and Tuning: Part II - Thread Management

    - by Gokhan Gungor
    WebLogic Server, like any other java application server, provides resources so that your applications use them to provide services. Unfortunately none of these resources are unlimited and they must be managed carefully. One of these resources is threads which are pooled to provide better throughput and performance along with the fast response time and to avoid deadlocks. Threads are execution points that WebLogic Server delivers its power and execute work. Managing threads is very important because it may affect the overall performance of the entire system. In previous releases of WebLogic Server 9.0 we had multiple execute queues and user defined thread pools. There were different queues for different type of work which had fixed number of execute threads.  Tuning of this thread pools and finding the proper number of threads was time consuming which required many trials. WebLogic Server 9.0 and the following releases use a single thread pool and a single priority-based execute queue. All type of work is executed in this single thread pool. Its size (thread count) is automatically decreased or increased (self-tuned). The new “self-tuning” system simplifies getting the proper number of threads and utilizing them.Work manager allows your applications to run concurrently in multiple threads. Work manager is a mechanism that allows you to manage and utilize threads and create rules/guidelines to follow when assigning requests to threads. We can set a scheduling guideline or priority a request with a work manager and then associate this work manager with one or more applications. At run-time, WebLogic Server uses these guidelines to assign pending work/requests to execution threads. The position of a request in the execute queue is determined by its priority. There is a default work manager that is provided. The default work manager should be sufficient for most applications. However there can be cases you want to change this default configuration. Your application(s) may be providing services that need mixture of fast response time and long running processes like batch updates. However wrong configuration of work managers can lead a performance penalty while expecting improvement.We can define/configure work managers at;•    Domain Level: config.xml•    Application Level: weblogic-application.xml •    Component Level: weblogic-ejb-jar.xml or weblogic.xml(For a specific web application use weblogic.xml)We can use the following predefined rules/constraints to manage the work;•    Fair Share Request Class: Specifies the average thread-use time required to process requests. The default is 50.•    Response Time Request Class: Specifies a response time goal in milliseconds.•    Context Request Class: Assigns request classes to requests based on context information.•    Min Threads Constraint: Limits the number of concurrent threads executing requests.•    Max Threads Constraint: Guarantees the number of threads the server will allocate to requests.•    Capacity Constraint: Causes the server to reject requests only when it has reached its capacity. Let’s create a work manager for our application for a long running work.Go to WebLogic console and select Environment | Work Managers from the domain structure tree. Click New button and select Work manager and click next. Enter the name for the work manager and click next. Then select the managed server instances(s) or clusters from available targets (the one that your long running application is deployed) and finish. Click on MyWorkManager, and open the Configuration tab and check Ignore Stuck Threads and save. This will prevent WebLogic to tread long running processes (that is taking more than a specified time) as stuck and enable to finish the process.

    Read the article

  • Talking JavaOne with Rock Star Kirk Pepperdine

    - by Janice J. Heiss
    Kirk Pepperdine is not only a JavaOne Rock Star but a Java Champion and a highly regarded expert in Java performance tuning who works as a consultant, educator, and author. He is the principal consultant at Kodewerk Ltd. He speaks frequently at conferences and co-authored the Ant Developer's Handbook. In the rapidly shifting world of information technology, Pepperdine, as much as anyone, keeps up with what's happening with Java performance tuning. Pepperdine will participate in the following sessions: CON5405 - Are Your Garbage Collection Logs Speaking to You? BOF6540 - Java Champions and JUG Leaders Meet Oracle Executives (with Jeff Genender, Mattias Karlsson, Henrik Stahl, Georges Saab) HOL6500 - Finding and Solving Java Deadlocks (with Heinz Kabutz, Ellen Kraffmiller Martijn Verburg, Jeff Genender, and Henri Tremblay) I asked him what technological changes need to be taken into account in performance tuning. “The volume of data we're dealing with just seems to be getting bigger and bigger all the time,” observed Pepperdine. “A couple of years ago you'd never think of needing a heap that was 64g, but today there are deployments where the heap has grown to 256g and tomorrow there are plans for heaps that are even larger. Dealing with all that data simply requires more horse power and some very specialized techniques. In some cases, teams are trying to push hardware to the breaking point. Under those conditions, you need to be very clever just to get things to work -- let alone to get them to be fast. We are very quickly moving from a world where everything happens in a transaction to one where if you were to even consider using a transaction, you've lost." When asked about the greatest misconceptions about performance tuning that he currently encounters, he said, “If you have a performance problem, you should start looking at code at the very least and for that extra step, whip out an execution profiler. I'm not going to say that I never use execution profilers or look at code. What I will say is that execution profilers are effective for a small subset of performance problems and code is literally the last thing you should look at.And what is the most exciting thing happening in the world of Java today? “Interesting question because so many people would say that nothing exciting is happening in Java. Some might be disappointed that a few features have slipped in terms of scheduling. But I'd disagree with the first group and I'm not so concerned about the slippage because I still see a lot of exciting things happening. First, lambda will finally be with us and with lambda will come better ways.” For JavaOne, he is proctoring for Heinz Kabutz's lab. “I'm actually looking forward to that more than I am to my own talk,” he remarked. “Heinz will be the third non-Sun/Oracle employee to present a lab and the first since Oracle began hosting JavaOne. He's got a great message. He's spent a ton of time making sure things are going to work, and we've got a great team of proctors to help out. After that, getting my talk done, the Java Champion's panel session and then kicking back and just meeting up and talking to some Java heads."Finally, what should Java developers know that they currently do not know? “’Write Once, Run Everywhere’ is a great slogan and Java has come closer to that dream than any other technology stack that I've used. That said, different hardware bits work differently and as hard as we try, the JVM can't hide all the differences. Plus, if we are to get good performance we need to work with our hardware and not against it. All this implies that Java developers need to know more about the hardware they are deploying to.”

    Read the article

  • Troubleshooting a COM+ application deadlock

    - by Chris Karcher
    I'm trying to troubleshoot a COM+ application that deadlocks intermittently. The last time it locked up, I was able to take a usermode dump of the dllhost process and analyze it using WinDbg. After inspecting all the threads and locks, it all boils down to a critical section owned by this thread: ChildEBP RetAddr Args to Child 0deefd00 7c822114 77e6bb08 000004d4 00000000 ntdll!KiFastSystemCallRet 0deefd04 77e6bb08 000004d4 00000000 0deefd48 ntdll!ZwWaitForSingleObject+0xc 0deefd74 77e6ba72 000004d4 00002710 00000000 kernel32!WaitForSingleObjectEx+0xac 0deefd88 75bb22b9 000004d4 00002710 00000000 kernel32!WaitForSingleObject+0x12 0deeffb8 77e660b9 000a5cc0 00000000 00000000 comsvcs!PingThread+0xf6 0deeffec 00000000 75bb21f1 000a5cc0 00000000 kernel32!BaseThreadStart+0x34 The object it's waiting on is an event: 0:016> !handle 4d4 f Handle 000004d4 Type Event Attributes 0 GrantedAccess 0x1f0003: Delete,ReadControl,WriteDac,WriteOwner,Synch QueryState,ModifyState HandleCount 2 PointerCount 4 Name <none> No object specific information available As far as I can tell, the event never gets signaled, causing the thread to hang and hold up several other threads in the process. Does anyone have any suggestions for next steps in figuring out what's going on? Now, seeing as the method is called PingThread, is it possible that it's trying to ping another thread in the process that's already deadlocked? UPDATE This actually turned out to be a bug in the Oracle 10.2.0.1 client. Although, I'm still interested in ideas on how I could have figured this out without finding the bug in Oracle's bug database.

    Read the article

  • Transaction Isolation Level of Serializable not working for me

    - by Shahriar
    I have a website which is used by all branches of a store and what it does is that it records customer purchases into a table called myTransactions.myTransactions table has a column named SerialNumber.For each purchase i create a record in the transactions table and assign a serial to it.The stored procedure that does this calls a UDF function to get a new serialNumber before inserting the record.Like below : Create Procedure mytransaction_Insert as begin insert into myTransactions(column1,column2,column3,...SerialNumber) values( Value1 ,Value2,Value3,...., getTransactionNSerialNumber()) end Create function getTransactionNSerialNumber as begin RETURN isnull(SELECT TOP (1) SerialNumber FROM myTransactions READUNCOMMITTED ORDER BY SerialNumber DESC),0) + 1 end The website is being used by so many users in different stores at the same time and it is creating many duplicate serialNumbers(same SerialNumbers).So i added a Sql transaction with ReadCommitted level to the transaction and i still got duplicate transaction numbers.I changed it to SERIALIZABLE in order to lock the resources and i not only got duplicate transaction numbers(!!HOW!!) but i also got sporadic deadlocks between the same stored procedure calls.This is what i tried : (With ommissions of try catch blocks and rollbacks) Create Procedure mytransaction_Insert as begin SET TRANSACTION ISOLATION LEVEL SERIALIZABLE BEGIN TRASNACTION ins insert into myTransactions(column1,column2,column3,...SerialNumber) values( Value1 ,Value2 , Value3, ...., getTransactionNSerialNumber()) COMMIT TRANSACTION ins SET TRANSACTION ISOLATION READCOMMITTED end I even copied the function that gets the serial number directly into the stored procedure instead of the UDF function call and still got duplicate serialNumbers.So,How can a stored procedure line create something Like the c# lock() {} block. By the way,i have to implement the transaction serial number using the same pattern and i can't change the serialNumber to any other identity field or whatever.And for some reasons i need to generate the serialNumber inside the databse and i can't move SerialNumber generation to application level. Thank you.

    Read the article

  • Doing large updates against indexed view

    - by user217136
    We have an indexed view that runs across three large tables. Two of these tables (A & B) are constantly getting updated with user transactions and the other table (C) contains data product info that is needs to be updated once a week. This product table contains over 6 million records. We need this view across these three tables for our core business process and unfortunately we cannot change this aspect. We even had a sql server MVP come in to help test under load to make sure we have the most efficient configuration. There is one column in the product table that gets utilized in the view and has to be updated each week. The problem we are now encountering is that as volume is increasing on our transactions against tables A & B, the update to Table C is causing deadlocks. I have tried several different methods to no avail: 1) I was hoping that we could change the view so that table C could be a dirty read "WITH (NOLOCK)" but apparently that functionality is not available with indexes views. 2) I thought about updating a new column in Table C and then just renaming it when the process is done but you cannot do that due to the dependency in the view. 3) I also entertained the idea of writing this value to a temporary product table, and then running an ALTER statement against the view to have it point to my new table. however when i did that the indexes on my view were dropped and it took quite a bit of time to recreate them. 4) we tried to do the weekly update in small chunks (as small as 100 records at a time) but we still run into dead locks. questions: a) we are using sql server 2005. Does sql server 2008 have a new functionality with their indexed views that would help us? Is there now a way to do dirty reads w/ an indexed view? b) a better approach to altering an existing view to point to a new table? thanks!

    Read the article

  • Delphi Application using COMMIT and ROLLBACK for Multiple SQL Updates

    - by Matt
    Is it possible to use the SQL BEGIN TRANSACTION, COMMIT TRANSACTION, ROLLBACK TRANSACTION when embedding SQL Queries into an application with mutiple calls to the SQL for Table Updates. For example I have the following code: Q.SQL.ADD(<UPDATE A RECORD>); Q.ExecSQL; Q.Close; Q.SQL.Clear; Q.SQL.ADD(<Select Some Data>); Q.Open; Set Some Variables Q.Close; Q.SQL.Clear; Q.SQL.ADD(<UPDATE A RECORD>); Q.ExecSQL; What I would like to do is if the second update fails I want to roll back the first transaction. If I set a unique notation for the BEGIN, COMMIT, ROLLBACK so as to specify what is being committed or rolled back, is it feasible. i.e. before the first Update specify BEGIN TRANSACTION_A then after the last update specify COMMIT TRANSACTION_A I hope that makes sense. If I was doing this in a SQL Stored Procedure then I would be able to specify this at the start and end of the procedure, but I have had to break the code down into manageable chunks due to process blocks and deadlocks on a heavy loaded SQL Server.

    Read the article

  • notify listener inside or outside inner synchronization

    - by Jary Zeels
    Hello all, I am struggling with a decision. I am writing a thread-safe library/API. Listeners can be registered, so the client is notified when something interesting happens. Which of the two implementations is most common? class MyModule { protected Listener listener; protected void somethingHappens() { synchronized(this) { ... do useful stuff ... listener.notify(); } } } or class MyModule { protected Listener listener; protected void somethingHappens() { Listener l = null; synchronized(this) { ... do useful stuff ... l = listener; } l.notify(); } } In the first implementation, the listener is notified inside the synchronization. In the second implementation, this is done outside the synchronization. I feel that the second one is advised, as it makes less room for potential deadlocks. But I am having trouble to convince myself. A downside of the second imlementation is that the client might receive 'incorrect' notifications, which happens if it accessed the module prior to the l.notify() statement. thanks a lot

    Read the article

  • TransactionScope Prematurely Completed

    - by Chris
    I have a block of code that runs within a TransactionScope and within this block of code I make several calls to the DB. Selects, Updates, Creates, and Deletes, the whole gamut. When I execute my delete I execute it using an extension method of the SqlCommand that will automatically resubmit the query if it deadlocks as this query could potentially hit a deadlock. I believe the problem occurs when a deadlock is hit and the function tries to resubmit the query. This is the error I receive: The transaction associated with the current connection has completed but has not been disposed. The transaction must be disposed before the connection can be used to execute SQL statements. This is the simple code that executes the query (all of the code below executes within the using of the TransactionScope): using (sqlCommand.Connection = new SqlConnection(ConnectionStrings.App)) { sqlCommand.Connection.Open(); sqlCommand.ExecuteNonQueryWithDeadlockHandling(); } Here is the extension method that resubmits the deadlocked query: public static class SqlCommandExtender { private const int DEADLOCK_ERROR = 1205; private const int MAXIMUM_DEADLOCK_RETRIES = 5; private const int SLEEP_INCREMENT = 100; public static void ExecuteNonQueryWithDeadlockHandling(this SqlCommand sqlCommand) { int count = 0; SqlException deadlockException = null; do { if (count > 0) Thread.Sleep(count * SLEEP_INCREMENT); deadlockException = ExecuteNonQuery(sqlCommand); count++; } while (deadlockException != null && count < MAXIMUM_DEADLOCK_RETRIES); if (deadlockException != null) throw deadlockException; } private static SqlException ExecuteNonQuery(SqlCommand sqlCommand) { try { sqlCommand.ExecuteNonQuery(); } catch (SqlException exception) { if (exception.Number == DEADLOCK_ERROR) return exception; throw; } return null; } } The error occurs on the line that executes the nonquery: sqlCommand.ExecuteNonQuery();

    Read the article

  • Systems design question: DB connection management in load-balanced n-tier

    - by aoven
    I'm wondering about the best approach to designing a DB connection manager for a load-balanced n-tier system. Classic n-tier looks like this: Client -> BusinessServer -> DBServer A load-balancing solution as I see it would then look like this: +--> ... +--+ +--> BusinessServer +--+--> SessionServer --+ Client -> Gateway --+--> BusinessServer +--| +--> DBServer +--> BusinessServer +--+--------------------+ +--> ... +--+ As pictured, the business server component is being load-balanced via multiple instances, and a hardware gateway is distributing the load among them. Session server probably needs to be situated outside the load-balancing array, because it manages state, which mustn't be duplicated. Barring any major errors in design so far, what is the best way to implement DB connection management? I've come up with a couple of options, but there may be others I'm not aware of: Introduce a new Broker component between the DBServer and the other components and let it handle the DB connections. The upside is that all the connections can be managed from a single point, which is very convenient. The downside is that now there is an additional "single point of failure" in the system. Other components must go through it for every request that involves DB in some way, which also makes this a bottleneck. Move the DB connection management into BusinessServer and SessionServer components and let each handle its own DB connections. The upside is that there is no additional "single point of failure" or bottleneck components. The downside is that there is also no control over possible conflicts and deadlocks apart from what DBServer itself can provide. What else can be done? FWIW: Technology is .NET, but none of the vendor-specific stacks are used (e.g. no WCF, MSMQ or the like).

    Read the article

  • ASP.NET, C#: timeout when trying to Transaction.Commit() to database; potential deadlock?

    - by user1843921
    I have a web page that has coding structured somewhat as follows: SqlConnection conX =new SqlConnection(blablabla); conX.Open(); SqlTransaction tran=conX.BeginTransaction(); try{ SqlCommand cmdInsert =new SqlCommand("INSERT INTO Table1(ColX,ColY) VALUES @x,@y",conX); cmdInsert.Transaction=tran; cmdInsert.ExecuteNonQuery(); SqlCommand cmdSelect=new SqlCOmmand("SELECT * FROM Table1",conX); cmdSelect.Transaction=tran; SqlDataReader dtr=cmdSelect.ExecuteReader(); //read stuff from dtr dtr.Close(); cmdInsert=new SqlCommand("UPDATE Table2 set ColA=@a",conX); cmdInsert.Transaction=tran; cmdInsert.ExecuteNonQuery(); //display MiscMessage tran.Commit(); //display SuccessMessage } catch(Exception x) { tran.Rollback(); //display x.Message } finally { conX.Close(); } So, everything seems to work until MiscMessage. Then, after a while (maybe 15-ish seconds?) x.Message pops up, saying that: "Timeout expired. The timeout period elapsed prior to completion of the operation or the server is not responding." So something wrong with my trans.Commit()? The database is not updated so I assume the trans.Rollback works... I have read that deadlocks can cause timeouts...is this problem cause by my SELECT statement selecting from Table1, which is being used by the first INSERT statement? If so, what should I do? If that ain't the problem, what is?

    Read the article

  • Java semaphore to syncronize printing to screen

    - by Travis Griswald
    I'm currently stuck on a bit of homework and was wondering if anyone could help - I have to use semaphores in java to syncronize printing letters from 2 threads - one printing "A" and one printing "B". I cannot print out more than 2 of the same character in a row, so output should look like AABABABABABBABABABABAABBAABBABABA At the moment I have 3 semaphores, a binary mutex set to 1, and a counting semaphore, and my thread classes look something like this - public void run() { while (true) { Time.delay(RandomGenerator.integer(0,20)); Semaphores.mutex.down (); System.out.println (produce()); if (printCount > 1) { printCount = 0; Semaphores.mutex.up (); Semaphores.printB.up(); } } } public String produce() { printCount++; return "A"; } public void run() { while (true) { Time.delay(RandomGenerator.integer(0,20)); Semaphores.mutex.down (); System.out.println (produce()); if (printCount > 1) { printCount = 0; Semaphores.mutex.up (); Semaphores.printA.up(); } } } public String produce() { printCount++; return "B"; } Yet whatever I try it either deadlocks, or it seems to be working only printing 2 in a row at most, but always seems to print 3 in a row every now and again! Any help is much appreciated, not looking code or anything just a few pointers if possible :)

    Read the article

  • SQL Server race condition issue with range lock

    - by Freek
    I'm implementing a queue in SQL Server (please no discussions about this) and am running into a race condition issue. The T-SQL of interest is the following: set transaction isolation level serializable begin tran declare @RecordId int declare @CurrentTS datetime2 set @CurrentTS=CURRENT_TIMESTAMP select top 1 @RecordId=Id from QueuedImportJobs with (updlock) where Status=@Status and (LeaseTimeout is null or @CurrentTS>LeaseTimeout) order by Id asc if @@ROWCOUNT> 0 begin update QueuedImportJobs set LeaseTimeout = DATEADD(mi,5,@CurrentTS), LeaseTicket=newid() where Id=@RecordId select * from QueuedImportJobs where Id = @RecordId end commit tran RecordId is the PK and there is also an index on Status,LeaseTimeout. What I'm basically doing is select a record of which the lease happens to be expired, while simultaneously updating the lease time with 5 minutes and setting a new lease ticket. So the problem is that I'm getting deadlocks when I run this code in parallel using a couple of threads. I've debugged it up to the point where I found out that the update statement sometimes gets executing twice for the same record. Now, I was under the impression that the with (updlock) should prevent this (it also happens with xlock btw, not with tablockx). So it actually look like there is a RangeS-U and a RangeX-X lock on the same range of records, which ought to be impossible. So what am I missing? I'm thinking it might have something to do with the top 1 clause or that SQL Server does not know that where Id=@RecordId is actually in the locked range? Deadlock graph: Table schema (simplified):

    Read the article

  • Trouble with go tour crawler exercise

    - by David Mason
    I'm going through the go tour and I feel like I have a pretty good understanding of the language except for concurrency. On slide 71 there is an exercise that asks the reader to parallelize a web crawler (and to make it not cover repeats but I haven't gotten there yet.) Here is what I have so far: func Crawl(url string, depth int, fetcher Fetcher, ch chan string) { if depth <= 0 { return } body, urls, err := fetcher.Fetch(url) if err != nil { ch <- fmt.Sprintln(err) return } ch <- fmt.Sprintf("found: %s %q\n", url, body) for _, u := range urls { go Crawl(u, depth-1, fetcher, ch) } } func main() { ch := make(chan string, 100) go Crawl("http://golang.org/", 4, fetcher, ch) for i := range ch { fmt.Println(i) } } The issue I have is where to put the close(ch) call. If I put a defer close(ch) somewhere in the Crawl method, then I end up writing to a closed channel in one of the spawned goroutines, since the method will finish execution before the spawned goroutines do. If I omit the call to close(ch), as is shown in my example code, the program deadlocks after all the goroutines finish executing but the main thread is still waiting on the channel in the for loop since the channel was never closed.

    Read the article

  • Help me find article on Multi-threading and Event Handling in Java

    - by JDR
    I once read an article on how to properly write event handlers for multi-threading in Java, but I can't for the life of me find it anymore. It described the pitfalls and potentials for deadlocks that can occur when firing events (not Swing events mind you, but general events like model update notifications). To clarify, the situation would be as such: // let's say this is code from an MVC model somewhere public void setSomeProperty(String myProperty){ if(!this.myProperty.equals(myProperty)){ this.myProperty = myProperty; fireMyPropertyChangedEvent(...); } } The article described how passing control to arbitrary external listener code was a potential cause for deadlock. I now find myself in a situation where I need to fire such events in a multithreaded environment and I would very much like to read the article again to see what it has to say before I continue. Does anyone know the article I'm referring to? I believe it came as a (fairly short) PDF. It started off with an initial naive implementation and incrementally pointed out flaws and improved upon it. It ended with a sort of final proper-way-to-fire-multithreaded-events. I've searched endlessly in my browse history and on google, but all I could find were endless amounts topics on Swing event dispatch threads. Thank you.

    Read the article

< Previous Page | 1 2 3 4 5  | Next Page >