Search Results

Search found 2880 results on 116 pages for 'deep linking'.

Page 4/116 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Danger from the Deep

    <b>Linux Journal:</b> "If you remember my December Linux Journal column, I was excited about a particularly cool-looking submarine simulator, Danger from the Deep. This month, I'm proud to feature it."

    Read the article

  • A Deep Dive into Transport Queues (Part 2)

    Johan Veldhuis completes his 'Deep Dive' by plunging even deeper into the mysteries of MS Exchange's Transport queues that are used to temporarily store messages which are waiting until they are passed through to the next stage, and explains how to change the way they work via configuration settings.

    Read the article

  • Deep-protocol analysis of UNIX networks

    <b>developerWorks: </b>"Whether you are monitoring your network to identify performance issues, debugging an application, or have found an application on your network that you do not recognize, occasionally you need to look deep into the protocols being used on your UNIX network to understand what they are doing."

    Read the article

  • Logging errors caused by exceptions deep in the application

    - by Kaleb Pederson
    What are best-practices for logging deep within an application's source? Is it bad practice to have multiple event log entries for a single error? For example, let's say that I have an ETL system whose transform step involves: a transformer, pipeline, processing algorithm, and processing engine. In brief, the transformer takes in an input file, parses out records, and sends the records through the pipeline. The pipeline aggregates the results of the processing algorithm (which could do serial or parallel processing). The processing algorithm sends each record through one or more processing engines. So, I have at least four levels: Transformer - Pipeline - Algorithm - Engine. My code might then look something like the following: class Transformer { void Process(InputSource input) { try { var inRecords = _parser.Parse(input.Stream); var outRecords = _pipeline.Transform(inRecords); } catch (Exception ex) { var inner = new ProcessException(input, ex); _logger.Error("Unable to parse source " + input.Name, inner); throw inner; } } } class Pipeline { IEnumerable<Result> Transform(IEnumerable<Record> records) { // NOTE: no try/catch as I have no useful information to provide // at this point in the process var results = _algorithm.Process(records); // examine and do useful things with results return results; } } class Algorithm { IEnumerable<Result> Process(IEnumerable<Record> records) { var results = new List<Result>(); foreach (var engine in Engines) { foreach (var record in records) { try { engine.Process(record); } catch (Exception ex) { var inner = new EngineProcessingException(engine, record, ex); _logger.Error("Engine {0} unable to parse record {1}", engine, record); throw inner; } } } } } class Engine { Result Process(Record record) { for (int i=0; i<record.SubRecords.Count; ++i) { try { Validate(record.subRecords[i]); } catch (Exception ex) { var inner = new RecordValidationException(record, i, ex); _logger.Error( "Validation of subrecord {0} failed for record {1}", i, record ); } } } } There's a few important things to notice: A single error at the deepest level causes three log entries (ugly? DOS?) Thrown exceptions contain all important and useful information Logging only happens when failure to do so would cause loss of useful information at a lower level. Thoughts and concerns: I don't like having so many log entries for each error I don't want to lose important, useful data; the exceptions contain all the important but the stacktrace is typically the only thing displayed besides the message. I can log at different levels (e.g., warning, informational) The higher level classes should be completely unaware of the structure of the lower-level exceptions (which may change as the different implementations are replaced). The information available at higher levels should not be passed to the lower levels. So, to restate the main questions: What are best-practices for logging deep within an application's source? Is it bad practice to have multiple event log entries for a single error?

    Read the article

  • Chrome Apps Office Hours: Storage API Deep Dive

    Chrome Apps Office Hours: Storage API Deep Dive Ask and vote for questions at: goo.gl Join us next week as we take a deeper dive into the new storage APIs available to Chrome Packaged Apps. We've invited Eric Bidelman, author of the HTML5 File System API book to join Paul Kinlan, Paul Lewis, Pete LePage and Renato Dias for our weekly Chrome Apps Office Hours in which we will pick apart some of the sample Chrome Apps and explain how we've used the storage APIs and why we made the decisions we did. From: GoogleDevelopers Views: 0 0 ratings Time: 00:00 More in Science & Technology

    Read the article

  • Google I/O 2012 - Deep Dive into the Next Version of the Google Drive API

    Google I/O 2012 - Deep Dive into the Next Version of the Google Drive API Ali Afshar, Ivan Lee This session discusses a number of best practices with the new Google Drive API. We'll cover how to properly sync files, how to manage sharing, and how to make your applications faster and more efficient than ever before. We'll go through an entire working application that exposes best practices. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 17 0 ratings Time: 45:50 More in Science & Technology

    Read the article

  • Google I/O 2012 - Writing Polished Apps that have Deep Integration into the Google Drive UI

    Google I/O 2012 - Writing Polished Apps that have Deep Integration into the Google Drive UI Mike Procopio, Steve Bazyl We'll go through how to implement complete Drive apps. This is not an introduction to Drive apps, but rather how to build your product into Google Drive, and ensure that the experience is seamless for a user. We will also discuss how to effectively distribute your app in the Chrome Web Store. The example app built in this talk will demonstrate an example use case, but otherwise be production-ready. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 829 5 ratings Time: 50:59 More in Science & Technology

    Read the article

  • Looking for the better way to combine deep architecture refactoring with feature based development

    - by voroninp
    Problem statement: Given: TFS as Source Control Heavy desktop client application with tons of legacy code with bad or almost absent architecture design. Clients constantly requiring new features with sound quality, fast delivery and constantly complaining on user unfriendly UI. Problem: Application undoubtedly requires deep refactoring. This process inevitably makes application unstable and dedicated stabilization phase is needed. We've tried: Refactoring in master with periodical merges from master (MB) to feature branch (FB). (my mistake) Result: Many unstable branches. What we are advised: Create additional branch for refactoring (RB) periodically synchronizing it with MB via merge from MB to RB. After RB is stabilized we substitute master with RB and create new branch for further refactoring. This is the plan. But here I expect the real hell of merging MB to RB after merging any FB to MB. The main advantage: Stable master most of the time. Are there any better alternatives to the procees?

    Read the article

  • Nagging As A Strategy For Better Linking: -z guidance

    - by user9154181
    The link-editor (ld) in Solaris 11 has a new feature that we call guidance that is intended to help you build better objects. The basic idea behind guidance is that if (and only if) you request it, the link-editor will issue messages suggesting better options and other changes you might make to your ld command to get better results. You can choose to take the advice, or you can disable specific types of guidance while acting on others. In some ways, this works like an experienced friend leaning over your shoulder and giving you advice — you're free to take it or leave it as you see fit, but you get nudged to do a better job than you might have otherwise. We use guidance to build the core Solaris OS, and it has proven to be useful, both in improving our objects, and in making sure that regressions don't creep back in later. In this article, I'm going to describe the evolution in thinking and design that led to the implementation of the -z guidance option, as well as give a brief description of how it works. The guidance feature issues non-fatal warnings. However, experience shows that once developers get used to ignoring warnings, it is inevitable that real problems will be lost in the noise and ignored or missed. This is why we have a zero tolerance policy against build noise in the core Solaris OS. In order to get maximum benefit from -z guidance while maintaining this policy, I added the -z fatal-warnings option at the same time. Much of the material presented here is adapted from the arc case: PSARC 2010/312 Link-editor guidance The History Of Unfortunate Link-Editor Defaults The Solaris link-editor is one of the oldest Unix commands. It stands to reason that this would be true — in order to write an operating system, you need the ability to compile and link code. The original link-editor (ld) had defaults that made sense at the time. As new features were needed, command line option switches were added to let the user use them, while maintaining backward compatibility for those who didn't. Backward compatibility is always a concern in system design, but is particularly important in the case of the tool chain (compilers, linker, and related tools), since it is a basic building block for the entire system. Over the years, applications have grown in size and complexity. Important concepts like dynamic linking that didn't exist in the original Unix system were invented. Object file formats changed. In the case of System V Release 4 Unix derivatives like Solaris, the ELF (Extensible Linking Format) was adopted. Since then, the ELF system has evolved to provide tools needed to manage today's larger and more complex environments. Features such as lazy loading, and direct bindings have been added. In an ideal world, many of these options would be defaults, with rarely used options that allow the user to turn them off. However, the reality is exactly the reverse: For backward compatibility, these features are all options that must be explicitly turned on by the user. This has led to a situation in which most applications do not take advantage of the many improvements that have been made in linking over the last 20 years. If their code seems to link and run without issue, what motivation does a developer have to read a complex manpage, absorb the information provided, choose the features that matter for their application, and apply them? Experience shows that only the most motivated and diligent programmers will make that effort. We know that most programs would be improved if we could just get you to use the various whizzy features that we provide, but the defaults conspire against us. We have long wanted to do something to make it easier for our users to use the linkers more effectively. There have been many conversations over the years regarding this issue, and how to address it. They always break down along the following lines: Change ld Defaults Since the world would be a better place the newer ld features were the defaults, why not change things to make it so? This idea is simple, elegant, and impossible. Doing so would break a large number of existing applications, including those of ISVs, big customers, and a plethora of existing open source packages. In each case, the owner of that code may choose to follow our lead and fix their code, or they may view it as an invitation to reconsider their commitment to our platform. Backward compatibility, and our installed base of working software, is one of our greatest assets, and not something to be lightly put at risk. Breaking backward compatibility at this level of the system is likely to do more harm than good. But, it sure is tempting. New Link-Editor One might create a new linker command, not called 'ld', leaving the old command as it is. The new one could use the same code as ld, but would offer only modern options, with the proper defaults for features such as direct binding. The resulting link-editor would be a pleasure to use. However, the approach is doomed to niche status. There is a vast pile of exiting code in the world built around the existing ld command, that reaches back to the 1970's. ld use is embedded in large and unknown numbers of makefiles, and is used by name by compilers that execute it. A Unix link-editor that is not named ld will not find a majority audience no matter how good it might be. Finally, a new linker command will eventually cease to be new, and will accumulate its own burden of backward compatibility issues. An Option To Make ld Do The Right Things Automatically This line of reasoning is best summarized by a CR filed in 2005, entitled 6239804 make it easier for ld(1) to do what's best The idea is to have a '-z best' option that unchains ld from its backward compatibility commitment, and allows it to turn on the "best" set of features, as determined by the authors of ld. The specific set of features enabled by -z best would be subject to change over time, as requirements change. This idea is more realistic than the other two, but was never implemented because it has some important issues that we could never answer to our satisfaction: The -z best proposal assumes that the user can turn it on, and trust it to select good options without the user needing to be aware of the options being applied. This is a fallacy. Features such as direct bindings require the user to do some analysis to ensure that the resulting program will still operate properly. A user who is willing to do the work to verify that what -z best does will be OK for their application is capable of turning on those features directly, and therefore gains little added benefit from -z best. The intent is that when a user opts into -z best, that they understand that z best is subject to sometimes incompatible evolution. Experience teaches us that this won't work. People will use this feature, the meaning of -z best will change, code that used to build will fail, and then there will be complaints and demands to retract the change. When (not if) this occurs, we will of course defend our actions, and point at the disclaimer. We'll win some of those debates, and lose others. Ultimately, we'll end up with -z best2 (-z better), or other compromises, and our goal of simplifying the world will have failed. The -z best idea rolls up a set of features that may or may not be related to each other into a unit that must be taken wholesale, or not at all. It could be that only a subset of what it does is compatible with a given application, in which case the user is expected to abandon -z best and instead set the options that apply to their application directly. In doing so, they lose one of the benefits of -z best, that if you use it, future versions of ld may choose a different set of options, and automatically improve the object through the act of rebuilding it. I drew two conclusions from the above history: For a link-editor, backward compatibility is vital. If a given command line linked your application 10 years ago, you have every reason to expect that it will link today, assuming that the libraries you're linking against are still available and compatible with their previous interfaces. For an application of any size or complexity, there is no substitute for the work involved in examining the code and determining which linker options apply and which do not. These options are largely orthogonal to each other, and it can be reasonable not to use any or all of them, depending on the situation, even in modern applications. It is a mistake to tie them together. The idea for -z guidance came from consideration of these points. By decoupling the advice from the act of taking the advice, we can retain the good aspects of -z best while avoiding its pitfalls: -z guidance gives advice, but the decision to take that advice remains with the user who must evaluate its merit and make a decision to take it or not. As such, we are free to change the specific guidance given in future releases of ld, without breaking existing applications. The only fallout from this will be some new warnings in the build output, which can be ignored or dealt with at the user's convenience. It does not couple the various features given into a single "take it or leave it" option, meaning that there will never be a need to offer "-zguidance2", or other such variants as things change over time. Guidance has the potential to be our final word on this subject. The user is given the flexibility to disable specific categories of guidance without losing the benefit of others, including those that might be added to future versions of the system. Although -z fatal-warnings stands on its own as a useful feature, it is of particular interest in combination with -z guidance. Used together, the guidance turns from advice to hard requirement: The user must either make the suggested change, or explicitly reject the advice by specifying a guidance exception token, in order to get a build. This is valuable in environments with high coding standards. ld Command Line Options The guidance effort resulted in new link-editor options for guidance and for turning warnings into fatal errors. Before I reproduce that text here, I'd like to highlight the strategic decisions embedded in the guidance feature: In order to get guidance, you have to opt in. We hope you will opt in, and believe you'll get better objects if you do, but our default mode of operation will continue as it always has, with full backward compatibility, and without judgement. Guidance suggestions always offers specific advice, and not vague generalizations. You can disable some guidance without turning off the entire feature. When you get guidance warnings, you can choose to take the advice, or you can specify a keyword to disable guidance for just that category. This allows you to get guidance for things that are useful to you, without being bothered about things that you've already considered and dismissed. As the world changes, we will add new guidance to steer you in the right direction. All such new guidance will come with a keyword that let's you turn it off. In order to facilitate building your code on different versions of Solaris, we quietly ignore any guidance keywords we don't recognize, assuming that they are intended for newer versions of the link-editor. If you want to see what guidance tokens ld does and does not recognize on your system, you can use the ld debugging feature as follows: % ld -Dargs -z guidance=foo,nodefs debug: debug: Solaris Linkers: 5.11-1.2275 debug: debug: arg[1] option=-D: option-argument: args debug: arg[2] option=-z: option-argument: guidance=foo,nodefs debug: warning: unrecognized -z guidance item: foo The -z fatal-warning option is straightforward, and generally useful in environments with strict coding standards. Note that the GNU ld already had this feature, and we accept their option names as synonyms: -z fatal-warnings | nofatal-warnings --fatal-warnings | --no-fatal-warnings The -z fatal-warnings and the --fatal-warnings option cause the link-editor to treat warnings as fatal errors. The -z nofatal-warnings and the --no-fatal-warnings option cause the link-editor to treat warnings as non-fatal. This is the default behavior. The -z guidance option is defined as follows: -z guidance[=item1,item2,...] Provide guidance messages to suggest ld options that can improve the quality of the resulting object, or which are otherwise considered to be beneficial. The specific guidance offered is subject to change over time as the system evolves. Obsolete guidance offered by older versions of ld may be dropped in new versions. Similarly, new guidance may be added to new versions of ld. Guidance therefore always represents current best practices. It is possible to enable guidance, while preventing specific guidance messages, by providing a list of item tokens, representing the class of guidance to be suppressed. In this way, unwanted advice can be suppressed without losing the benefit of other guidance. Unrecognized item tokens are quietly ignored by ld, allowing a given ld command line to be executed on a variety of older or newer versions of Solaris. The guidance offered by the current version of ld, and the item tokens used to disable these messages, are as follows. Specify Required Dependencies Dynamic executables and shared objects should explicitly define all of the dependencies they require. Guidance recommends the use of the -z defs option, should any symbol references remain unsatisfied when building dynamic objects. This guidance can be disabled with -z guidance=nodefs. Do Not Specify Non-Required Dependencies Dynamic executables and shared objects should not define any dependencies that do not satisfy the symbol references made by the dynamic object. Guidance recommends that unused dependencies be removed. This guidance can be disabled with -z guidance=nounused. Lazy Loading Dependencies should be identified for lazy loading. Guidance recommends the use of the -z lazyload option should any dependency be processed before either a -z lazyload or -z nolazyload option is encountered. This guidance can be disabled with -z guidance=nolazyload. Direct Bindings Dependencies should be referenced with direct bindings. Guidance recommends the use of the -B direct, or -z direct options should any dependency be processed before either of these options, or the -z nodirect option is encountered. This guidance can be disabled with -z guidance=nodirect. Pure Text Segment Dynamic objects should not contain relocations to non-writable, allocable sections. Guidance recommends compiling objects with Position Independent Code (PIC) should any relocations against the text segment remain, and neither the -z textwarn or -z textoff options are encountered. This guidance can be disabled with -z guidance=notext. Mapfile Syntax All mapfiles should use the version 2 mapfile syntax. Guidance recommends the use of the version 2 syntax should any mapfiles be encountered that use the version 1 syntax. This guidance can be disabled with -z guidance=nomapfile. Library Search Path Inappropriate dependencies that are encountered by ld are quietly ignored. For example, a 32-bit dependency that is encountered when generating a 64-bit object is ignored. These dependencies can result from incorrect search path settings, such as supplying an incorrect -L option. Although benign, this dependency processing is wasteful, and might hide a build problem that should be solved. Guidance recommends the removal of any inappropriate dependencies. This guidance can be disabled with -z guidance=nolibpath. In addition, -z guidance=noall can be used to entirely disable the guidance feature. See Chapter 7, Link-Editor Quick Reference, in the Linker and Libraries Guide for more information on guidance and advice for building better objects. Example The following example demonstrates how the guidance feature is intended to work. We will build a shared object that has a variety of shortcomings: Does not specify all it's dependencies Specifies dependencies it does not use Does not use direct bindings Uses a version 1 mapfile Contains relocations to the readonly allocable text (not PIC) This scenario is sadly very common — many shared objects have one or more of these issues. % cat hello.c #include <stdio.h> #include <unistd.h> void hello(void) { printf("hello user %d\n", getpid()); } % cat mapfile.v1 # This version 1 mapfile will trigger a guidance message % cc hello.c -o hello.so -G -M mapfile.v1 -lelf As you can see, the operation completes without error, resulting in a usable object. However, turning on guidance reveals a number of things that could be better: % cc hello.c -o hello.so -G -M mapfile.v1 -lelf -zguidance ld: guidance: version 2 mapfile syntax recommended: mapfile.v1 ld: guidance: -z lazyload option recommended before first dependency ld: guidance: -B direct or -z direct option recommended before first dependency Undefined first referenced symbol in file getpid hello.o (symbol belongs to implicit dependency /lib/libc.so.1) printf hello.o (symbol belongs to implicit dependency /lib/libc.so.1) ld: warning: symbol referencing errors ld: guidance: -z defs option recommended for shared objects ld: guidance: removal of unused dependency recommended: libelf.so.1 warning: Text relocation remains referenced against symbol offset in file .rodata1 (section) 0xa hello.o getpid 0x4 hello.o printf 0xf hello.o ld: guidance: position independent (PIC) code recommended for shared objects ld: guidance: see ld(1) -z guidance for more information Given the explicit advice in the above guidance messages, it is relatively easy to modify the example to do the right things: % cat mapfile.v2 # This version 2 mapfile will not trigger a guidance message $mapfile_version 2 % cc hello.c -o hello.so -Kpic -G -Bdirect -M mapfile.v2 -lc -zguidance There are situations in which the guidance does not fit the object being built. For instance, you want to build an object without direct bindings: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance ld: guidance: -B direct or -z direct option recommended before first dependency ld: guidance: see ld(1) -z guidance for more information It is easy to disable that specific guidance warning without losing the overall benefit from allowing the remainder of the guidance feature to operate: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance=nodirect Conclusions The linking guidelines enforced by the ld guidance feature correspond rather directly to our standards for building the core Solaris OS. I'm sure that comes as no surprise. It only makes sense that we would want to build our own product as well as we know how. Solaris is usually the first significant test for any new linker feature. We now enable guidance by default for all builds, and the effect has been very positive. Guidance helps us find suboptimal objects more quickly. Programmers get concrete advice for what to change instead of vague generalities. Even in the cases where we override the guidance, the makefile rules to do so serve as documentation of the fact. Deciding to use guidance is likely to cause some up front work for most code, as it forces you to consider using new features such as direct bindings. Such investigation is worthwhile, but does not come for free. However, the guidance suggestions offer a structured and straightforward way to tackle modernizing your objects, and once that work is done, for keeping them that way. The investment is often worth it, and will replay you in terms of better performance and fewer problems. I hope that you find guidance to be as useful as we have.

    Read the article

  • Sesame Data Browser: filtering, sorting, selecting and linking

    - by Fabrice Marguerie
    I have deferred the post about how Sesame is built in favor of publishing a new update.This new release offers major features such as the ability to quickly filter and sort data, select columns, and create hyperlinks to OData. Filtering, sorting, selecting In order to filter data, you just have to use the filter row, which becomes available when you click on the funnel button: You can then type some text and select an operator: The data grid will be refreshed immediately after you apply a filter. It works in the same way for sorting. Clicking on a column will immediately update the query and refresh the grid.Note that multi-column sorting is possible by using SHIFT-click: Viewing data is not enough. You can also view and copy the query string that returns that data: One more thing you can to shape data is to select which columns are displayed. Simply use the Column Chooser and you'll be done: Again, this will update the data and query string in real time: Linking to Sesame, linking to OData The other main feature of this release is the ability to create hyperlinks to Sesame. That's right, you can ask Sesame to give you a link you can display on a webpage, send in an email, or type in a chat session. You can get a link to a connection: or to a query: You'll note that you can also decide to embed Sesame in a webpage... Here are some sample links created via Sesame: Netflix movies with high ratings, sorted by release year Netflix horror movies from the 21st century Northwind discontinued products with remaining stock Netflix empty connection I'll give more examples in a post to follow. There are many more minor improvements in this release, but I'll let you find out about them by yourself :-)Please try Sesame Data Browser now and let me know what you think! PS: if you use Sesame from the desktop, please use the "Remove this application" command in the context menu of the destkop app and then "Install on desktop" again in your web browser. I'll activate automatic updates with the next release.

    Read the article

  • Linking Libraries in iOS?

    - by Joey Green
    This is probably a totally noob question but I have missing links in my mind when thinking about linking libraries in iOS. I usually just add a new library that's been cross compiled and set the build and linker paths without really know what I'm doing. I'm hoping someone can help me fill in some gaps. Let's take the OpenCV library for instance. I have this totally working btw because of a really well written tutorial( http://niw.at/articles/2009/03/14/using-opencv-on-iphone/en ), but I'm just wanting to know what is exactly going on. What I'm thinking is happening is that when I build OpenCV for iOS is that your creating object code that gets placed in the .a files. This object code is just the implementation files( .m ) compiled. One reason you would want to do this is to make it hard to see the source code and so that you don't have to compile that source code every time. The .h files won't be put in the library ( .a ). You include the .h in your source files and these header files communicate with the object code library ( .a ) in some way. You also have to include the header files for your library in the Build Path and the Library itself in the Linker Path. So, is the way I view linking libraries correct? If , not can someone correct me on this ?

    Read the article

  • Linking Libraries in iOS?

    - by Bob Dole
    This is probably a totally noob question but I have missing links in my mind when thinking about linking libraries in iOS. I usually just add a new library that's been cross compiled and set the build and linker paths without really know what I'm doing. I'm hoping someone can help me fill in some gaps. Let's take the OpenCV library for instance. I have this totally working btw because of a really well written tutorial( http://niw.at/articles/2009/03/14/using-opencv-on-iphone/en ), but I'm just wanting to know what is exactly going on. What I'm thinking is happening is that when I build OpenCV for iOS is that your creating object code that gets placed in the .a files. This object code is just the implementation files( .m ) compiled. One reason you would want to do this is to make it hard to see the source code and so that you don't have to compile that source code every time. The .h files won't be put in the library ( .a ). You include the .h in your source files and these header files communicate with the object code library ( .a ) in some way. You also have to include the header files for your library in the Build Path and the Library itself in the Linker Path. So, is the way I view linking libraries correct? If , not can someone correct me on this ?

    Read the article

  • Can I automate the finding of -l parameter I use when linking based on header files (gcc)?

    - by kavic
    Normally when linking against a static library, I have to specify a library directory and the name of a libX.so (or its symbolic link) as -lX flag for linking [and its directory with -L flag]. Can I automate this based on my header files (in c/c++) only? Or maybe it is not a good idea? Is there a software for locating the -L and -l parameters automatically? Is some table stored somewhere on the system about this on popular linux systems or even cygwin?

    Read the article

  • Trade offs of linking versus skinning geometry

    - by Jeff
    What are the trade offs between inherent in linking geometry to a node versus using skinned geometry? Specifically: What capabilities do you gain / lose from using each method? What are the performance impacts of doing one over the other? What are the specific situations where you would want to do one over the other? In addition, do the answers to these questions tend to be engine specific? If so, how much?

    Read the article

  • Every Linking Strategy Starts with Great Content

    Having great content is at the core of every effective linking strategy. In order to develop back links you absolutely must give other sites a reason to link to you in the first place. Having some ty... [Author: TJ Philpott - Web Design and Development - May 20, 2010]

    Read the article

  • Deep Cloning C++ class that inherits CCNode in Cocos2dx

    - by A Devanney
    I stuck with something in Cocos2dx ... I'm trying to deep clone one of my classes that inherits CCNode. Basically i have.... GameItem* pTemp = new GameItem(*_actualItem); // loops through all the blocks in gameitem and updates their position pTemp->moveDown(); // if in boundary or collision etc... if (_gameBoard->isValidMove(pTemp)) { _actualItem = pTemp; // display the position CCLog("pos (1) --- (X : %d,Y : %d)", _actualItem->getGridX(),_actualItem->getGridY()); } Then doesn't work, because the gameitem inherits CCNode and has the collection of another class that also inherits CCNode. its just creating a shallow copy and when you look at children of the gameitem node in the copy, just point to the original? class GameItem : public CCNode { // maps to the actual grid position of the shape CCPoint* _rawPosition; // tracks the current grid position int _gridX, _gridY; // tracks the change if the item has moved CCPoint _offset; public: //constructors GameItem& operator=(const GameItem& item); GameItem(Shape shape); ... } then in the implementation.... GameItem& GameItem::operator=(const GameItem& item) { _gridX = item.getGridX(); _gridY = item.getGridY(); _offset = item.getOffSet(); _rawPosition = item.getRawPosition(); // how do i copy the node? return *this; } // shape contains an array of position for the game character GameItem::GameItem(Shape shape) { _rawPosition = shape.getShapePositions(); //loop through all blocks in position for (int i = 0; i < 7; i++) { // get the position of the first block in the shape and add to the position of the first block int x = (int) (getRawPosition()[i].x + getGridX()); int y = (int) (getRawPosition()[i].y + getGridY()); //instantiate a block with the position and type Block* block = Block::blockWithFile(x,y,(i+1), shape); // add the block to the this node this->addChild(block); } } And for clarity here is the block class class Block : public CCNode{ private: // using composition over inheritance CCSprite* _sprite; // tracks the current grid position int _gridX, _gridY; // used to store actual image number int _blockNo; public: Block(void); Block(int gridX, int gridY, int blockNo); Block& operator=(const Block& block); // static constructor for the creation of a block static Block* blockWithFile(int gridX, int gridY,int blockNo, Shape shape); ... } The blocks implementation..... Block& Block::operator=(const Block& block) { _sprite = new CCSprite(*block._sprite); _gridX = block._gridX; _gridY = block._gridY; _blockNo = block._blockNo; //again how to clone CCNode? return *this; } Block* Block::blockWithFile(int gridX, int gridY,int blockNo, Shape shape) { Block* block = new Block(); if (block && block->initBlockWithFile(gridX, gridY,blockNo, shape)) { block->autorelease(); return block; } CC_SAFE_DELETE(block); return NULL; } bool Block::initBlockWithFile(int gridX, int gridY,int blockNo, Shape shape) { setGridX(gridX); setGridY(gridY); setBlockNo(blockNo); const char* characterImg = helperFunctions::Format(shape.getFileName(),blockNo); // add to the spritesheet CCTexture2D* gameArtTexture = CCTextureCache::sharedTextureCache()->addImage("Character.pvr.ccz"); CCSpriteBatchNode::createWithTexture(gameArtTexture); // block settings _sprite = CCSprite::createWithSpriteFrameName(characterImg); // set the position of the block and add it to the layer this->setPosition(CONVERTGRIDTOACTUALPOS_X_Y(gridX,gridY)); this->addChild(_sprite); return true; } Any ideas are welcome at this point!! thanks

    Read the article

  • The Power of Heading Tags and Internal Linking

    When it comes to SEO (search engine optimization) and your website the proper keywords in your heading tags will make a significant difference in your page ranking. Then when you combine internal linking to relevant content within you site using anchor text links your site becomes a search engine magnet.

    Read the article

  • Internal Linking Structure - Getting Ahead in SEO

    Would you like to get more from your website? Internal Linking is something that gets over looked and there is a lot you can do to benefit from it. In This article we take a look at a couple of ways you can gain some leverage from building internal link plans.

    Read the article

  • Deep Copy using Reflection in an Extension Method for Silverlight?

    - by didibus
    So I'm trying to find a generic extension method that creates a deep copy of an object using reflection, that would work in Silverlight. Deep copy using serialization is not so great in Silverlight, since it runs in partial trust and the BinaryFormatter does not exist. I also know that reflection would be faster then serialization for cloning. It would be nice to have a method that works to copy public, private and protected fields, and is recursive so that it can copy objects in objects, and that would also be able to handle collections, arrays, etc. I have searched online, and can only find shallow copy implementations using reflection. I don't understand why, since you can just use MemberwiseClone, so to me, those implementations are useless. Thank You.

    Read the article

  • Why does C++ linking use virtually no CPU? (updated)

    - by John
    On a native C++ project, linking right now can take a minute or two, yet during this time CPU drops from 100% during compilation to virtually zero. Does this mean linking is primarily a disk activity? If so, is this the main area an SSD would make big changes? But, why aren't all my OBJ files (or as many as possible) kept in RAM after compilation to avoid this? With 4Gb of RAM I should be able to save a lot of disk access and make it CPU-bound again, no? update: so the obvious follow-up is, can VC++ compiler and linker talk together better to streamline things and keep OBJ files in memory, similar to how Delphi does?

    Read the article

  • linking Google AdWords account to Google Analytics account

    - by crmpicco
    I have a Google Analytics account that has two profiles, one for www.ayrshireminis.com and one for www.crmpicco.co.uk. I have a Google AdWords account that I would like to link to my Google Analytics account, but for some reason the Google AdWords admin is telling me I cannot do that. Within the AdWords admin and the My Account Linked Accounts Google Analytics section both profiles show as Not Available ... it also has this message... None of your profiles are available for linking due to your account settings. How can I link these two accounts?

    Read the article

  • Dotfuscator Deep Dive with WP7

    - by Bil Simser
    I thought I would share some experience with code obfuscation (specifically the Dotfuscator product) and Windows Phone 7 apps. These days twitter is a buzz with black hat and white operations coming out about how the marketplace is insecure and Microsoft failed, blah, blah, blah. So it’s that much more important to protect your intellectual property. You should protect it no matter what when releasing apps into the wild but more so when someone is paying for them. You want to protect the time and effort that went into your code and have some comfort that the casual hacker isn’t going to usurp your next best thing. Enter code obfuscation. Code obfuscation is one tool that can help protect your IP. Basically it goes into your compiled assemblies, rewrites things at an IL level (like renaming methods and classes and hiding logic flow) and rewrites it back so that the assembly or executable is still fully functional but prying eyes using a tool like ILDASM or Reflector can’t see what’s going on.  You can read more about code obfuscation here on Wikipedia. A word to the wise. Code obfuscation isn’t 100% secure. More so on the WP7 platform where the OS expects certain things to be as they were meant to be. So don’t expect 100% obfuscation of every class and every method and every property. It’s just not going to happen. What this does do is give you some level of protection but don’t put all your eggs in one basket and call it done. Like I said, this is just one step in the process. There are a few tools out there that provide code obfuscation and support the Windows Phone 7 platform (see links to other tools at the end of this post). One such tool is Dotfuscator from PreEmptive solutions. The thing about Dotfuscator is that they’ve struck a deal with Microsoft to provide a *free* copy of their commercial product for Windows Phone 7. The only drawback is that it only runs until March 31, 2010. However it’s a good place to start and the focus of this article. Getting Started When you fire up Dotfuscator you’re presented with a dialog to start a new project or load a previous one. We’ll start with a new project. You’re then looking at a somewhat blank screen that shows an Input tab (among others) and you’re probably wondering what to do? Click on the folder icon (first one) and browse to where your xap file is. At this point you can save the project and click on the arrow to start the process. Bam! You’re done. Right? Think again. The program did indeed run and create a new version of your xap (doing it’s thing and rewriting back your *obfuscated* assemblies) but let’s take a look at the assembly in Reflector to see the end result. Remember a xap file is really just a glorified zip file (or cab file if you prefer). When you ran Dotfuscator for the first time with the default settings you’ll see it created a new version of your xap in a folder under “My Documents” called “Dotfuscated” (you can configure the output directory in settings). Here’s the new xap file. Since a xap is just a zip, rename it to .cab or .zip or something and open it with your favorite unarchive program (I use WinRar but it doesn’t matter as long as it can unzip files). If you already have the xap file associated with your unarchive tool the rename isn’t needed. Once renamed extract the contents of the xap to your hard drive: Now you’ll have a folder with the contents of the xap file extracted: Double click or load up your assembly (WindowsPhoneDataBoundApplication1.dll in the example) in Reflector and let’s see the results: Hmm. That doesn’t look right. I can see all the methods and the code is all there for my LoadData method I wanted to protect. Product failure. Let’s return it for a refund. Hold your horses. We need to check out the settings in the program first. Remember when we loaded up our xap file. It started us on the Input tab but there was a settings tab before that. Wonder what it does? Here’s the default settings: Renaming Taking a closer look, all of the settings in Feature are disabled. WTF? Yeah, it leaves me scratching my head why an obfuscator by default doesn’t obfuscate. However it’s a simple fix to change these settings. Let’s enable Renaming as it sounds like a good start. Renaming obscures code by renaming methods and fields to names that are not understandable. Great. Run the tool again and go through the process of unzipping the updated xap and let’s take a look in Reflector again at our project. This looks a lot better. Lots of methods named a, b, c, d, etc. That’ll help slow hackers down a bit. What about our logic that we spent days weeks on? Let’s take a look at the LoadData method: What gives? We have renaming enabled but all of our code is still there. If you look through all your methods you’ll find it’s still sitting there out in the open. Control Flow Back to the settings page again. Let’s enable Control Flow now. Control Flow obfuscation synthesizes branching, conditional, and iterative constructs (such as if, for, and while) that produce valid executable logic, but yield non-deterministic semantic results when decompilation is attempted. In other words, the code runs as before, but decompilers cannot reproduce the original code. Do the dance again and let’s see the results in Reflector. Ahh, that’s better. Methods renamed *and* nobody can look at our LoadData method now. Life is good. More than Minimum This is the bare minimum to obfuscate your xap to at least a somewhat comfortable level. However I did find that while this worked in my Hello World demo, it didn’t work on one of my real world apps. I had to do some extra tweaking with that. Below are the screens that I used on one app that worked. I’m not sure what it was about the app that the approach above didn’t work with (maybe the extra assembly?) but it works and I’m happy with it. YMMV. Remember to test your obfuscated app on your device first before submitting to ensure you haven’t obfuscated the obfuscator. settings tab: rename tab: string encryption tab: premark tab: A few final notes Play with the settings and keep bumping up the bar to try to get as much obfuscation as you can. The more the better but remember you can overdo it. Always (always, always, always) deploy your obfuscated xap to your device and test it before submitting to the marketplace. I didn’t and got rejected because I had gone overboard with the obfuscation so the app wouldn’t launch at all. Not everything is going to be obfuscated. Specifically I don’t see a way to obfuscate auto properties and a few other language features. Again, if you crank the settings up you might hide these but I haven’t spent a lot of time optimizing the process. Some people might say to obfuscate your xaml using string encryption but again, test, test, test. Xaml is picky so too much obfuscation (or any) might disable your app or produce odd rendering effets. Remember, obfuscation is not 100% secure! Don’t rely on it as a sole way of protecting your assets. Other Tools Dotfuscator is one just product and isn’t the end-all be-all to obfuscation so check out others below. For example, Crypto can make it so Reflector doesn’t even recognize the app as a .NET one and won’t open it. Others can encrypt resources and Xaml markup files. Here are some other obfuscators that support the Windows Phone 7 platform. Feel free to give them a try and let people know your experience with them! Dotfuscator Windows Phone Edition Crypto Obfuscator for .NET DeepSea Obfuscation

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >