Search Results

Search found 8654 results on 347 pages for 'dynamic keyword'.

Page 4/347 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • adding tagged / dynamic pages in sitemap

    - by sam
    ive got a blog thats been running for about a year ive made about 200 posts, and there should be about 220 pages to index (additional pages for about / contact ect). When i go to crawl the site i get 1900 pages because of all the pages that are related to tags ive used in my blogs these 70% of these pages only contain one blog post. When submitting my site map to google should i exclude all pages with /tagged/ in the url so ill only be submitting unqiue pages, or should i submit the full site map ?

    Read the article

  • Is it good or bad to have dynamic content in page titles and/or description

    - by Gunjan
    In a local listing website, I append number of search results found in the description(not in title currntly) meta tag of the page as I think this is valuable for users for e.g. "Find address, phone numbers, blah blah blah for 21 outlets in locality. some more stuff after this..." as more places are added to the database, the description for the same page will change frequently. is this good or bad for SEO how about doing the same for title tags?

    Read the article

  • Are dynamic languages at disadvantage for agile development?

    - by Gerenuk
    From what I've read agile development often involves refactoring or reverse engineering code into diagrams. Of course there is much more than that, but if we consider the practices that rely on these two methods, are dynamically typed languages at disadvantage? It seem static typing would make refactoring and reverse engineering much easier? Refactoring or (automated) reverse engineering is hard if not impossible in dynamically typed languages? What does real world projects tell about usage of dynamically typed languages for agile methodology?

    Read the article

  • C# 4.0 'dynamic' and foreach statement

    - by ControlFlow
    Not long time before I've discovered, that new dynamic keyword doesn't work well with the C#'s foreach statement: using System; sealed class Foo { public struct FooEnumerator { int value; public bool MoveNext() { return true; } public int Current { get { return value++; } } } public FooEnumerator GetEnumerator() { return new FooEnumerator(); } static void Main() { foreach (int x in new Foo()) { Console.WriteLine(x); if (x >= 100) break; } foreach (int x in (dynamic)new Foo()) { // :) Console.WriteLine(x); if (x >= 100) break; } } } I've expected that iterating over the dynamic variable should work completely as if the type of collection variable is known at compile time. I've discovered that the second loop actually is looked like this when is compiled: foreach (object x in (IEnumerable) /* dynamic cast */ (object) new Foo()) { ... } and every access to the x variable results with the dynamic lookup/cast so C# ignores that I've specify the correct x's type in the foreach statement - that was a bit surprising for me... And also, C# compiler completely ignores that collection from dynamically typed variable may implements IEnumerable<T> interface! The full foreach statement behavior is described in the C# 4.0 specification 8.8.4 The foreach statement article. But... It's perfectly possible to implement the same behavior at runtime! It's possible to add an extra CSharpBinderFlags.ForEachCast flag, correct the emmited code to looks like: foreach (int x in (IEnumerable<int>) /* dynamic cast with the CSharpBinderFlags.ForEachCast flag */ (object) new Foo()) { ... } And add some extra logic to CSharpConvertBinder: Wrap IEnumerable collections and IEnumerator's to IEnumerable<T>/IEnumerator<T>. Wrap collections doesn't implementing Ienumerable<T>/IEnumerator<T> to implement this interfaces. So today foreach statement iterates over dynamic completely different from iterating over statically known collection variable and completely ignores the type information, specified by user. All that results with the different iteration behavior (IEnumarble<T>-implementing collections is being iterated as only IEnumerable-implementing) and more than 150x slowdown when iterating over dynamic. Simple fix will results a much better performance: foreach (int x in (IEnumerable<int>) dynamicVariable) { But why I should write code like this? It's very nicely to see that sometimes C# 4.0 dynamic works completely the same if the type will be known at compile-time, but it's very sadly to see that dynamic works completely different where IT CAN works the same as statically typed code. So my question is: why foreach over dynamic works different from foreach over anything else?

    Read the article

  • Free Content For Websites - Choosing Keyword Phrases to Insert

    The way to use keyword phrases in your free website content is to start by selecting a single keyword phrase that best describes what your website stands for. You should then focus on this keyword phrase and other related synonyms. Using the tool I usually use for this exercise, you can get dozens of similar keyword phrases.

    Read the article

  • Why is the 'this' keyword not a reference type in C++ [closed]

    - by Dave Tapley
    Possible Duplicates: Why ‘this’ is a pointer and not a reference? SAFE Pointer to a pointer (well reference to a reference) in C# The this keyword in C++ gets a pointer to the object I currently am. My question is why is the type of this a pointer type and not a reference type. Are there any conditions under which the this keyword would be NULL? My immediate thought would be in a static function, but Visual C++ at least is smart enough to spot this and report static member functions do not have 'this' pointers. Is this in the standard?

    Read the article

  • Converting dynamic to basic disk

    - by Josip Medved
    I converted basic disk to dynamic on my laptop. However, now I cannot install Windows 7 on another partition. I just get message that installing them on dynamic disk is not supported. Is there a way to convert dynamic disk to basic without losing data on already existing partition?

    Read the article

  • What is common case for @dynamic usage ?

    - by Forrest
    There is previous post about difference of @synthesize and @dynamic. I wanna to know more about dynamic from the perspective of how to use @dynamic usually. Usually we use @dynamic together with NSManagedObject // Movie.h @interface Movie : NSManagedObject { } @property (retain) NSString* title; @end // Movie.m @implementation Movie @dynamic title; @end Actually there are no generated getter/setter during compiler time according to understanding of @dynamic, so it is necessary to implement your own getter/setter. My question is that in this NSManagedObject case, what is the rough implementation of getter/setter in super class NSManagedObject ? Except above case, how many other cases to use @dynamic ? Thanks,

    Read the article

  • Dynamic JSON Parsing in .NET with JsonValue

    - by Rick Strahl
    So System.Json has been around for a while in Silverlight, but it's relatively new for the desktop .NET framework and now moving into the lime-light with the pending release of ASP.NET Web API which is bringing a ton of attention to server side JSON usage. The JsonValue, JsonObject and JsonArray objects are going to be pretty useful for Web API applications as they allow you dynamically create and parse JSON values without explicit .NET types to serialize from or into. But even more so I think JsonValue et al. are going to be very useful when consuming JSON APIs from various services. Yes I know C# is strongly typed, why in the world would you want to use dynamic values? So many times I've needed to retrieve a small morsel of information from a large service JSON response and rather than having to map the entire type structure of what that service returns, JsonValue actually allows me to cherry pick and only work with the values I'm interested in, without having to explicitly create everything up front. With JavaScriptSerializer or DataContractJsonSerializer you always need to have a strong type to de-serialize JSON data into. Wouldn't it be nice if no explicit type was required and you could just parse the JSON directly using a very easy to use object syntax? That's exactly what JsonValue, JsonObject and JsonArray accomplish using a JSON parser and some sweet use of dynamic sauce to make it easy to access in code. Creating JSON on the fly with JsonValue Let's start with creating JSON on the fly. It's super easy to create a dynamic object structure. JsonValue uses the dynamic  keyword extensively to make it intuitive to create object structures and turn them into JSON via dynamic object syntax. Here's an example of creating a music album structure with child songs using JsonValue:[TestMethod] public void JsonValueOutputTest() { // strong type instance var jsonObject = new JsonObject(); // dynamic expando instance you can add properties to dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; album.Artist = "AC/DC"; album.YearReleased = 1977; album.Songs = new JsonArray() as dynamic; dynamic song = new JsonObject(); song.SongName = "Dirty Deeds Done Dirt Cheap"; song.SongLength = "4:11"; album.Songs.Add(song); song = new JsonObject(); song.SongName = "Love at First Feel"; song.SongLength = "3:10"; album.Songs.Add(song); Console.WriteLine(album.ToString()); } This produces proper JSON just as you would expect: {"AlbumName":"Dirty Deeds Done Dirt Cheap","Artist":"AC\/DC","YearReleased":1977,"Songs":[{"SongName":"Dirty Deeds Done Dirt Cheap","SongLength":"4:11"},{"SongName":"Love at First Feel","SongLength":"3:10"}]} The important thing about this code is that there's no explicitly type that is used for holding the values to serialize to JSON. I am essentially creating this value structure on the fly by adding properties and then serialize it to JSON. This means this code can be entirely driven at runtime without compile time restraints of structure for the JSON output. Here I use JsonObject() to create a new object and immediately cast it to dynamic. JsonObject() is kind of similar in behavior to ExpandoObject in that it allows you to add properties by simply assigning to them. Internally, JsonValue/JsonObject these values are stored in pseudo collections of key value pairs that are exposed as properties through the DynamicObject functionality in .NET. The syntax gets a little tedious only if you need to create child objects or arrays that have to be explicitly defined first. Other than that the syntax looks like normal object access sytnax. Always remember though these values are dynamic - which means no Intellisense and no compiler type checking. It's up to you to ensure that the values you create are accessed consistently and without typos in your code. Note that you can also access the JsonValue instance directly and get access to the underlying type. This means you can assign properties by string, which can be useful for fully data driven JSON generation from other structures. Below you can see both styles of access next to each other:// strong type instance var jsonObject = new JsonObject(); // you can explicitly add values here jsonObject.Add("Entered", DateTime.Now); // expando style instance you can just 'use' properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; JsonValue internally stores properties keys and values in collections and you can iterate over them at runtime. You can also manipulate the collections if you need to to get the object structure to look exactly like you want. Again, if you've used ExpandoObject before JsonObject/Value are very similar in the behavior of the structure. Reading JSON strings into JsonValue The JsonValue structure supports importing JSON via the Parse() and Load() methods which can read JSON data from a string or various streams respectively. Essentially JsonValue includes the core JSON parsing to turn a JSON string into a collection of JsonValue objects that can be then referenced using familiar dynamic object syntax. Here's a simple example:[TestMethod] public void JsonValueParsingTest() { var jsonString = @"{""Name"":""Rick"",""Company"":""West Wind"",""Entered"":""2012-03-16T00:03:33.245-10:00""}"; dynamic json = JsonValue.Parse(jsonString); // values require casting string name = json.Name; string company = json.Company; DateTime entered = json.Entered; Assert.AreEqual(name, "Rick"); Assert.AreEqual(company, "West Wind"); } The JSON string represents an object with three properties which is parsed into a JsonValue object and cast to dynamic. Once cast to dynamic I can then go ahead and access the object using familiar object syntax. Note that the actual values - json.Name, json.Company, json.Entered - are actually of type JsonPrimitive and I have to assign them to their appropriate types first before I can do type comparisons. The dynamic properties will automatically cast to the right type expected as long as the compiler can resolve the type of the assignment or usage. The AreEqual() method oesn't as it expects two object instances and comparing json.Company to "West Wind" is comparing two different types (JsonPrimitive to String) which fails. So the intermediary assignment is required to make the test pass. The JSON structure can be much more complex than this simple example. Here's another example of an array of albums serialized to JSON and then parsed through with JsonValue():[TestMethod] public void JsonArrayParsingTest() { var jsonString = @"[ { ""Id"": ""b3ec4e5c"", ""AlbumName"": ""Dirty Deeds Done Dirt Cheap"", ""Artist"": ""AC/DC"", ""YearReleased"": 1977, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/61kTaH-uZBL._AA115_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/B00008BXJ4/ref=as_li_ss_tl?ie=UTF8&tag=westwindtechn-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=B00008BXJ4"", ""Songs"": [ { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Dirty Deeds Done Dirt Cheap"", ""SongLength"": ""4:11"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Love at First Feel"", ""SongLength"": ""3:10"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Big Balls"", ""SongLength"": ""2:38"" } ] }, { ""Id"": ""67280fb8"", ""AlbumName"": ""Echoes, Silence, Patience & Grace"", ""Artist"": ""Foo Fighters"", ""YearReleased"": 2007, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/41mtlesQPVL._SL500_AA280_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/B000UFAURI/ref=as_li_ss_tl?ie=UTF8&tag=westwindtechn-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=B000UFAURI"", ""Songs"": [ { ""AlbumId"": ""67280fb8"", ""SongName"": ""The Pretender"", ""SongLength"": ""4:29"" }, { ""AlbumId"": ""67280fb8"", ""SongName"": ""Let it Die"", ""SongLength"": ""4:05"" }, { ""AlbumId"": ""67280fb8"", ""SongName"": ""Erase/Replay"", ""SongLength"": ""4:13"" } ] }, { ""Id"": ""7b919432"", ""AlbumName"": ""End of the Silence"", ""Artist"": ""Henry Rollins Band"", ""YearReleased"": 1992, ""Entered"": ""2012-03-16T00:13:12.2800521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/51FO3rb1tuL._SL160_AA160_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/End-Silence-Rollins-Band/dp/B0000040OX/ref=sr_1_5?ie=UTF8&qid=1302232195&sr=8-5"", ""Songs"": [ { ""AlbumId"": ""7b919432"", ""SongName"": ""Low Self Opinion"", ""SongLength"": ""5:24"" }, { ""AlbumId"": ""7b919432"", ""SongName"": ""Grip"", ""SongLength"": ""4:51"" } ] } ]"; dynamic albums = JsonValue.Parse(jsonString); foreach (dynamic album in albums) { Console.WriteLine(album.AlbumName + " (" + album.YearReleased.ToString() + ")"); foreach (dynamic song in album.Songs) { Console.WriteLine("\t" + song.SongName ); } } Console.WriteLine(albums[0].AlbumName); Console.WriteLine(albums[0].Songs[1].SongName);}   It's pretty sweet how easy it becomes to parse even complex JSON and then just run through the object using object syntax, yet without an explicit type in the mix. In fact it looks and feels a lot like if you were using JavaScript to parse through this data, doesn't it? And that's the point…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  Web Api  JSON   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • SEO and Spelling mistakes in keyword

    - by Sushil
    I am about to register a domain name (suppose) someone.com (with proper spelling), in mind targeting the keyword "SOMEONE". But then I discovered on 'google keyword research tool' that not this but a typo "SOME1" seems to be more popular and people search this significantly more often than the proper keyword. And luckily someone.com and some1.com both are available. I understand that I can register both the domains, but I don't know on which should I keep my website and redirect the other one. Should I make the typo "some1.com" my base site? But that's a typo. P.S., my site has a totally relevant content and not just keyword targeted worthless site. What do you guys suggest? I am confused. How would that affect my SEO ranking?? EDIT: Because the competition for the keyword I am targeting is fairly low, I think nevertheless whatever domain I choose, it will appear on the search engine first page.

    Read the article

  • Java method keyword "final" and its use

    - by Lukas Eder
    When I create complex type hierarchies (several levels, several types per level), I like to use the final keyword on methods implementing some interface declaration. An example: interface Garble { int zork(); } interface Gnarf extends Garble { /** * This is the same as calling {@link #zblah(0)} */ int zblah(); int zblah(int defaultZblah); } And then abstract class AbstractGarble implements Garble { @Override public final int zork() { ... } } abstract class AbstractGnarf extends AbstractGarble implements Gnarf { // Here I absolutely want to fix the default behaviour of zblah // No Gnarf shouldn't be allowed to set 1 as the default, for instance @Override public final int zblah() { return zblah(0); } // This method is not implemented here, but in a subclass @Override public abstract int zblah(int defaultZblah); } I do this for several reasons: It helps me develop the type hierarchy. When I add a class to the hierarchy, it is very clear, what methods I have to implement, and what methods I may not override (in case I forgot the details about the hierarchy) I think overriding concrete stuff is bad according to design principles and patterns, such as the template method pattern. I don't want other developers or my users do it. So the final keyword works perfectly for me. My question is: Why is it used so rarely in the wild? Can you show me some examples / reasons where final (in a similar case to mine) would be very bad?

    Read the article

  • How to make that the LanguageBinder take precedence over the DynamicBinder

    - by rudimenter
    Hi I Have a class which implement IDynamicMetaObjectProvider I implement the BindGetMember Method from DynamicMetaObject. Now when i Generate a dynamic Object and Access a property every call gets implicit passed through the BindGetMember Method. I want that at first the language Binder get his chance before my code comes in. It is somehow doable with "binder.FallbackGetMember" but i am not sure how the expression has to look like. I call here dynamic com=CommandFactory.GetCommand(); com.testprop; //expected: "test"; but "test2" comes back public class Command : System.Dynamic.IDynamicMetaObjectProvider { public string testprop { get { return "test"; } } public object GetValue(string name) { return "test2"; } System.Dynamic.DynamicMetaObject System.Dynamic.IDynamicMetaObjectProvider.GetMetaObject(System.Linq.Expressions.Expression parameter) { return new MetaCommand(parameter, this); } private class MetaCommand : System.Dynamic.DynamicMetaObject { public MetaCommand(Expression expression, Command value) : base(expression, System.Dynamic.BindingRestrictions.Empty, value) { } public override System.Dynamic.DynamicMetaObject BindGetMember(System.Dynamic.GetMemberBinder binder) { var self = this.Expression; var bag = (Command)base.Value; Expression target; target = Expression.Call( Expression.Convert(self, typeof(Command)), typeof(Command).GetMethod("GetValue"), Expression.Constant(binder.Name) ); var restrictions = BindingRestrictions .GetInstanceRestriction(self, bag); return new DynamicMetaObject(target, restrictions); } #endregion } }

    Read the article

  • Purpose of "new" keyword

    - by Channel72
    The new keyword in languages like Java, Javascript, and C# creates a new instance of a class. This syntax seems to have been inherited from C++, where new is used specifically to allocate a new instance of a class on the heap, and return a pointer to the new instance. In C++, this is not the only way to construct an object. You can also construct an object on the stack, without using new - and in fact, this way of constructing objects is much more common in C++. So, coming from a C++ background, the new keyword in languages like Java, Javascript, and C# seemed natural and obvious to me. Then I started to learn Python, which doesn't have the new keyword. In Python, an instance is constructed simply by calling the constructor, like: f = Foo() At first, this seemed a bit off to me, until it occurred to me that there's no reason for Python to have new, because everything is an object so there's no need to disambiguate between various constructor syntaxes. But then I thought - what's really the point of new in Java? Why should we say Object o = new Object();? Why not just Object o = Object();? In C++ there's definitely a need for new, since we need to distinguish between allocating on the heap and allocating on the stack, but in Java all objects are constructed on the heap, so why even have the new keyword? The same question could be asked for Javascript. In C#, which I'm much less familiar with, I think new may have some purpose in terms of distinguishing between object types and value types, but I'm not sure. Regardless, it seems to me that many languages which came after C++ simply "inherited" the new keyword - without really needing it. It's almost like a vestigial keyword. We don't seem to need it for any reason, and yet it's there. Question: Am I correct about this? Or is there some compelling reason that new needs to be in C++-inspired memory-managed languages like Java, Javascript and C#?

    Read the article

  • C# 4.0: casting dynamic to static

    - by Kevin Won
    This is an offshoot question that's related to another I asked here. I'm splitting it off because it's really a sub-question: I'm having difficulties casting an object of type dynamic to another (known) static type. I have an ironPython script that is doing this: import clr clr.AddReference("System") from System import * def GetBclUri(): return Uri("http://google.com") note that it's simply newing up a BCL System.Uri type and returning it. So I know the static type of the returned object. now over in C# land, I'm newing up the script hosting stuff and calling this getter to return the Uri object: dynamic uri = scriptEngine.GetBclUri(); System.Uri u = uri as System.Uri; // casts the dynamic to static fine Works no problem. I now can use the strongly typed Uri object as if it was originally instantiated statically. however.... Now I want to define my own C# class that will be newed up in dynamic-land just like I did with the Uri. My simple C# class: namespace Entity { public class TestPy // stupid simple test class of my own { public string DoSomething(string something) { return something; } } } Now in Python, new up an object of this type and return it: sys.path.append(r'C:..path here...') clr.AddReferenceToFile("entity.dll") import Entity.TestPy def GetTest(): return Entity.TestPy(); // the C# class then in C# call the getter: dynamic test = scriptEngine.GetTest(); Entity.TestPy t = test as Entity.TestPy; // t==null!!! here, the cast does not work. Note that the 'test' object (dynamic) is valid--I can call the DoSomething()--it just won't cast to the known static type string s = test.DoSomething("asdf"); // dynamic object works fine so I'm perplexed. the BCL type System.Uri will cast from a dynamic type to the correct static one, but my own type won't. There's obviously something I'm not getting about this...

    Read the article

  • C# memory management: unsafe keyword and pointers

    - by Alerty
    What are the consequences (positive/negative) of using the unsafe keyword in C# to use pointers? For example, what becomes of garbage collection, what are the performance gains/losses, what are the performance gains/losses compared to other languages manual memory management, what are the dangers, in which situation is it really justifiable to make use of this language feature... ?

    Read the article

  • Keyword search on all columns of multiple tables in sql server

    - by hiralshah
    Dear all, We are maintaining the profile information’s (like profile first name, last name, address, city, state, age, religion, occupation, education, etc….) from tbl_profie table in sql server. The users can search profiles using any keywords like Example 1: MBBS, Delhi, India Example 2: MBA, Delhi, cricket Example 3 : London, Hindu Tbl_profile table defending some parent table like Tbl_city, Tbl_state, Tbl_country, Tbl_occupation, Tbl_education tables, etc. So how to fetch user search results from Tbl_profile and profiles related tables using user’s keyword with easiest way.

    Read the article

  • SQL Like keyword in Dynamic Linq

    - by Erwin
    Hi fellow programmer I want to use SQL's Like keyword in dynamic LINQ. The query that I want to make is like this select * from table_a where column_a like '%search%' Where the column_a can be dynamically changed to other column etc In this dynamic LINQ var result = db.table_a.Where( a=> (a.column_a.Contains("search")) ); But the column can't be dynamically changed , only the search key can How do we create a dynamic LINQ like var result = db.table_a.Where("column_a == \"search\""); That we can change the column and the search key dynamically

    Read the article

  • C# - Dynamic Keyword and Interface Implementations

    - by Adam Driscoll
    I'm assuming this isn't possible but before digging further is there a way to do something like this: public void ProcessInterface(ISomeInterface obj) {} //... dynamic myDyn = GetDynamic<ISomeInterface>() ProcessInterface(myDyn); I've seen a post arguing for it but it sounds like it wasn't included. A little context: .Net assembly exposed through COM - Silverlight app consuming interface-implementing classes. Would be nice to refer to the objects by interface. I really don't expect that this was what was intended...

    Read the article

  • The C++ 'new' keyword and C

    - by Florian
    In a C header file of a library I'm using one of the variables is named 'new'. Unfortunately, I'm using this library in a C++ project and the occurence of 'new' as a variable names freaks out the compiler. I'm already using extern "C" { #include<... }, but that doesn't seem to help in this respect. Do I have to aks the library developer to change the name of that variable even though from his perspective, as a C developer, the code is absolutely fine, as 'new' is not a C keyword?

    Read the article

  • C++ Little Wonders: The C++11 auto keyword redux

    - by James Michael Hare
    I’ve decided to create a sub-series of my Little Wonders posts to focus on C++.  Just like their C# counterparts, these posts will focus on those features of the C++ language that can help improve code by making it easier to write and maintain.  The index of the C# Little Wonders can be found here. This has been a busy week with a rollout of some new website features here at my work, so I don’t have a big post for this week.  But I wanted to write something up, and since lately I’ve been renewing my C++ skills in a separate project, it seemed like a good opportunity to start a C++ Little Wonders series.  Most of my development work still tends to focus on C#, but it was great to get back into the saddle and renew my C++ knowledge.  Today I’m going to focus on a new feature in C++11 (formerly known as C++0x, which is a major move forward in the C++ language standard).  While this small keyword can seem so trivial, I feel it is a big step forward in improving readability in C++ programs. The auto keyword If you’ve worked on C++ for a long time, you probably have some passing familiarity with the old auto keyword as one of those rarely used C++ keywords that was almost never used because it was the default. That is, in the code below (before C++11): 1: int foo() 2: { 3: // automatic variables (allocated and deallocated on stack) 4: int x; 5: auto int y; 6:  7: // static variables (retain their value across calls) 8: static int z; 9:  10: return 0; 11: } The variable x is assumed to be auto because that is the default, thus it is unnecessary to specify it explicitly as in the declaration of y below that.  Basically, an auto variable is one that is allocated and de-allocated on the stack automatically.  Contrast this to static variables, that are allocated statically and exist across the lifetime of the program. Because auto was so rarely (if ever) used since it is the norm, they decided to remove it for this purpose and give it new meaning in C++11.  The new meaning of auto: implicit typing Now, if your compiler supports C++ 11 (or at least a good subset of C++11 or 0x) you can take advantage of type inference in C++.  For those of you from the C# world, this means that the auto keyword in C++ now behaves a lot like the var keyword in C#! For example, many of us have had to declare those massive type declarations for an iterator before.  Let’s say we have a std::map of std::string to int which will map names to ages: 1: std::map<std::string, int> myMap; And then let’s say we want to find the age of a given person: 1: // Egad that's a long type... 2: std::map<std::string, int>::const_iterator pos = myMap.find(targetName); Notice that big ugly type definition to declare variable pos?  Sure, we could shorten this by creating a typedef of our specific map type if we wanted, but now with the auto keyword there’s no need: 1: // much shorter! 2: auto pos = myMap.find(targetName); The auto now tells the compiler to determine what type pos should be based on what it’s being assigned to.  This is not dynamic typing, it still determines the type as if it were explicitly declared and once declared that type cannot be changed.  That is, this is invalid: 1: // x is type int 2: auto x = 42; 3:  4: // can't assign string to int 5: x = "Hello"; Once the compiler determines x is type int it is exactly as if we typed int x = 42; instead, so don’t' confuse it with dynamic typing, it’s still very type-safe. An interesting feature of the auto keyword is that you can modify the inferred type: 1: // declare method that returns int* 2: int* GetPointer(); 3:  4: // p1 is int*, auto inferred type is int 5: auto *p1 = GetPointer(); 6:  7: // ps is int*, auto inferred type is int* 8: auto p2 = GetPointer(); Notice in both of these cases, p1 and p2 are determined to be int* but in each case the inferred type was different.  because we declared p1 as auto *p1 and GetPointer() returns int*, it inferred the type int was needed to complete the declaration.  In the second case, however, we declared p2 as auto p2 which means the inferred type was int*.  Ultimately, this make p1 and p2 the same type, but which type is inferred makes a difference, if you are chaining multiple inferred declarations together.  In these cases, the inferred type of each must match the first: 1: // Type inferred is int 2: // p1 is int* 3: // p2 is int 4: // p3 is int& 5: auto *p1 = GetPointer(), p2 = 42, &p3 = p2; Note that this works because the inferred type was int, if the inferred type was int* instead: 1: // syntax error, p1 was inferred to be int* so p2 and p3 don't make sense 2: auto p1 = GetPointer(), p2 = 42, &p3 = p2; You could also use const or static to modify the inferred type: 1: // inferred type is an int, theAnswer is a const int 2: const auto theAnswer = 42; 3:  4: // inferred type is double, Pi is a static double 5: static auto Pi = 3.1415927; Thus in the examples above it inferred the types int and double respectively, which were then modified to const and static. Summary The auto keyword has gotten new life in C++11 to allow you to infer the type of a variable from it’s initialization.  This simple little keyword can be used to cut down large declarations for complex types into a much more readable form, where appropriate.   Technorati Tags: C++, C++11, Little Wonders, auto

    Read the article

  • Dynamic VPN tunneling technologies

    - by Adam
    Ok, so I'm asking a more specific question this time. I'm writing a paper about Cisco's DMVPN and one of the tasks I have is to make the analysis of available network solutions which use dynamic VPN tunnels. Because the paper is about DMVPN, I have to compare those solutions to it. I know there are a lot of dynamic tunneling technologies but I'm looking for ones that can be compared to DMVPN. So the question is: are there any technologies which use dynamic VPN tunnels (not necessarily using crypto) that can be compared to DMVPN? What are those technologies?

    Read the article

  • Keyword to SQL search

    - by jdelator
    Use Case When a user goes to my website, they will be confronted with a search box much like SO. They can search for results using plan text. ".net questions", "closed questions", ".net and java", etc.. The search will function a bit different that SO, in that it will try to as much as possible of the schema of the database rather than a straight fulltext search. So ".net questions" will only search for .net questions as opposed to .net answers (probably not applicable to SO case, just an example here), "closed questions" will return questions that are closed, ".net and java" questions will return questions that relate to .net and java and nothing else. Problem I'm not too familiar with the words but I basically want to do a keyword to SQL driven search. I know the schema of the database and I also can datamine the database. I want to know any current approaches there that existing out already before I try to implement this. I guess this question is for what is a good design for the stated problem. Proposed My proposed solution so far looks something like this Clean the input. Just remove any special characters Parse the input into chunks of data. Break an input of "c# java" into c# and java Also handle the special cases like "'c# java' questions" into 'c# java' and "questions". Build a tree out of the input Bind the data into metadata. So convert stuff like closed questions and relate it to the isclosed column of a table. Convert the tree into a sql query. Thoughts/suggestions/links?

    Read the article

  • Win 8: Adding a boot volume to an MBR dynamic disk [NOT about changing to basic disks]

    - by Stilez
    (This is NOT aiming to convert to basic disk. In this question, the disk stays dynamic but becomes bootable) There doesn't seem to be a clear, well stated answer I can find, for the question "What are the criteria for Windows 8 to successfully boot from an MBR dynamic disk", or "how do I fix a dynamic MBR partition that's failing boot"? I've tried to educate myself but can't find crucial information to clear it all up. My existing HDD/SSD setup: DISK 0 ~ 60GB SSD/MBR/basic: (350MB recovery)(60GB windows 8 bootable) DISK 1 ~ 512GB SSD/MBR/dynamic: (350MB recovery)(60GB unallocated)(410GB mirrored data) DISK 2 ~ 512GB SSD/MBR/dynamic: (350MB recovery)(60GB unallocated)(410GB mirrored data) DISKS 3, 4, 5: (ignored for simplicity: 2xHDD RAID1 + caching SSD) I'm heavy duty on data crunching and virtualisation, just maxxed out 32GB RAM @ 2133 and moved to 4960X + 64GB. Disk 0 is a pure system disk of little value, and virtualisations runs off mirrored SSDs (Samsung 840 Pro 512 x 2) for double speed reading and so they snapshot in reasonable time. I'm using 4 SATA3 ports and the board only has two decent Intel ports (onboard Marvell are poorer quality). I'm wary of choosing between LSI, HighPoint and other 3rd party controllers as I'm unfamiliar with the maze of decent RAID cards (that's a whole other issue!). I want to cut down my SSD needs by moving the boot volume and caching volume to the 840 pros, giving a setup with 2 fewer SSDs: DISK 0 ~ 512GB SSD/MBR/dynamic: (350MB recovery)(60GB boot)(410GB mirrored data) DISK 1 ~ 512GB SSD/MBR/dynamic: (350MB recovery)(30GB cache for the ICH10R mirror)(30GB temp)(410GB mirrored data) DISKS 2, 3: (2xHDD RAID1) Intel's RST allows this, Win 8 allows booting off a MBR/dynamic disk, and the two 60GB SSDs are hardly the fastest SSDs anyway, they'll get repurposed. Moving the caching volume is easy. Moving the boot volume has me stumped. The difficulty is, I'm hitting a wall of knowledge here. I have a UEFI Asus motherboard with an previous traditional MBR/basic boot disk, and I want it to boot from a disk and volume that's MBR/dynamic. The disk copy is physically ok (Partition Wizard Server will copy to dynamic volumes) but then hits a light blue 0xc000000e boot error. No real surprise, I expected to have some boot fixing, but had expected Windows to boot-fix it (all drivers exist), or the usual manual fixes to work. Specifically, I don't know enough, to know what's got to be manually checked and perhaps corrected for the disk to boot (legacy/uefi/bios, odd partitions, boot tables, disk IDs, hidden boot files, oh my!), or if I need to change any of this secure boot/UEFI/legacy stuff in the bios, convert a 512 SSD to basic and then back to dynamic when working, or if the issue is pure OS config using "diskpart", "bootsect" and "bootrec" from the Win8 DVD. The old system disk still boots but I don't know enough to figure what to fix, to make the system boot as I want. The answers probably aren't hard but the real issue is my confusion and missing information. Thanks for helping!

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >