Search Results

Search found 4861 results on 195 pages for 'embedded movie'.

Page 4/195 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • RPi and Java Embedded GPIO: Java code to blink more LEDs

    - by hinkmond
    Now, it's time to blink the other GPIO ports with the other LEDs connected to them. This is easy using Java Embedded, since the Java programming language is powerful and flexible. Embedded developers are not used to this, since the C programming language is more popular but less easy to develop in. We just need to use a dynamic Java String array to map to the pinouts of the GPIO port names from the previous diagram posted. This way we can address each "channel" with an index into that String array. static String[] GpioChannels = { "0", "1", "4", "17", "21", "22", "10", "9" }; With this new dynamic array, we can streamline the main() of this Java program to activate all the ports. /** * @param args the command line arguments */ public static void main(String[] args) { FileWriter[] commandChannels; try { /*** Init GPIO port for output ***/ // Open file handles to GPIO port unexport and export controls FileWriter unexportFile = new FileWriter("/sys/class/gpio/unexport"); FileWriter exportFile = new FileWriter("/sys/class/gpio/export"); for (String gpioChannel : GpioChannels) { System.out.println(gpioChannel); // Reset the port unexportFile.write(gpioChannel); unexportFile.flush(); // Set the port for use exportFile.write(gpioChannel); exportFile.flush(); // Open file handle to port input/output control FileWriter directionFile = new FileWriter("/sys/class/gpio/gpio" + gpioChannel + "/direction"); // Set port for output directionFile.write(GPIO_OUT); directionFile.flush(); } And, then simply add array code to where we blink the LED to make it blink all the LEDS on and off at once. /*** Send commands to GPIO port ***/ commandChannels = new FileWriter[GpioChannels.length]; for (int channum=0; channum It's easier than falling off a log... or at least easier than C programming. Hinkmond

    Read the article

  • Advancing my Embedded knowledge.....with a CS degree.

    - by Mercfh
    So I graduated last December with a B.S. in Computer Science, in a pretty good well known engineering college. However towards the end I realized that I actually like Assembly/Lower level C programming more than I actually enjoy higher level abstracted OO stuff. (Like I Programmed my own Device Drivers for USB stuff in Linux, stuff like that) But.....I mean we really didn't concentrate much on that in college, perhaps an EE/CE degree would've been better, but I knew the classes......and things weren't THAT much different. I've messed around with Atmel AVR's/Arduino stuff (Mostly robotics) and Linux Kernals/Device Drivers. but I really want to enhance my skills and maybe one day get a job doing embedded stuff. (I have a job now, it's An entry level software dev/tester job, it's a good job but not exactly what my passion lies in) (Im pretty good with C and certain ASM's for specific microcontrollers) Is this even possible with a CS degree? or am I screwed? (since technically my degree usually doesn't involve much embedded stuff) If Im NOT screwed then what should I be studying/learning? How would I even go about it........ I guess I could eventually say "Experienced with XXXX Microcontrollers/ASM/etc...." but still, it wouldn't be the same as having a CE/EE degree. Also....going back to college isn't an option. just fyi. edit: Any book recommendations for "getting used to this stuff" I have ARM System-on-Chip Architecture (2nd edition) it's good.....for ARM stuff lol

    Read the article

  • Freescale One Box Unboxing (then installing Java SE Embedded technology)

    - by hinkmond
    So, I get a FedEx delivery the other day... "What cool device could be inside this FedEx Overnight Express Large Box?" I was wondering... Could it be a new Linux/ARM target device board, faster than a Raspberry Pi and better than a BeagleBone Black??? Why, yes! Yes, it was a Linux/ARM target device board, faster than anything around! It was a Freescale i.MX6 Sabre Smart Device Board (SDB)! Cool... Quad Core ARM Cortex A9 1GHz with 1GB of RAM. So, cool... I installed the Freescale One Box OpenWRT Linux image onto its SD card and booted it up into Linux. But, wait! One thing was missing... What was it? What could be missing? Why, it had no Java SE Embedded installed on it yet, of course! So, I went to the JDK 7u45 download link. Clicked on "Accept License Agreement", and clicked on "jdk-7u45-linux-arm-vfp-sflt.tar.gz", installed the bad boy, and all was good. Java SE Embedded 7u45 on a Freescale One Box. Nice... Hinkmond

    Read the article

  • Languages on embedded systems in aeronautic and spatial sector

    - by Niels
    I know that my question is very broad but a general answer would be nice. I would like to know which are the main languages used in aeronautic and spatial sector. I know that the OS which run on embedded systems are RTOS (Real time OS) and I think that, this languages must be checked correctly by different methods (formal methods, unit tests) and must permit a sure verification of whole process of a program.

    Read the article

  • Java SE Embedded-Enabled Raspberry Pi Ice Bucket Challenge

    - by hinkmond
    Help fight ALS at: http://www.alsa.org/fight-als/ See: Java SE Embedded-Enabled Raspberry Pi Ice Bucket Challenge My Java SE Enabled Raspberry Pi accepts the nomination for the ALS Ice Bucket Challenge and I hereby nominate the Nest thermostat, the Fitbit fitness tracker, and Apple TV. Take the Ice Bucket Challenge. Help find the cure for ALS: http://www.alsa.org/fight-als/ice-bucket-challenge.html Hinkmond

    Read the article

  • RPi and Java Embedded GPIO: It all begins with hardware

    - by hinkmond
    So, you want to connect low-level peripherals (like blinky-blinky LEDs) to your Raspberry Pi and use Java Embedded technology to program it, do you? You sick foolish masochist. No, just kidding! That's awesome! You've come to the right place. I'll step you though it. And, as with many embedded projects, it all begins with hardware. So, the first thing to do is to get acquainted with the GPIO header on your RPi board. A "header" just means a thingy with a bunch of pins sticking up from it where you can connect wires. See the the red box outline in the photo. Now, there are many ways to connect to that header outlined by the red box in the photo (which the RPi folks call the P1 header). One way is to use a breakout kit like the one at Adafruit. But, we'll just use jumper wires in this example. So, to connect jumper wires to the header you need a map of where to connect which wire. That's why you need to study the pinout in the photo. That's your map for connecting wires. But, as with many things in life, it's not all that simple. RPi folks have made things a little tricky. There are two revisions of the P1 header pinout. One for older boards (RPi boards made before Sep 2012), which is called Revision 1. And, one for those fancy 512MB boards that were shipped after Sep 2012, which is called Revision 2. So, first make sure which board you have: either you have the Model A or B with 128MB or 256MB built before Sep 2012 and you need to look at the pinout for Rev. 1, or you have the Model B with 512MB and need to look at Rev. 2. That's all you need for now. More to come... Hinkmond

    Read the article

  • Better Embedded 2013

    - by Valter Minute
    Originally posted on: http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2013/07/30/better-embedded-2013.aspx On July 8th and 9th I had a chance to attend and speak at the Better Embedded 2013 conference in Florence. Visiting Florence is always a pleasure, but having a chance to attend to such an interesting conference and to meet Marco Dal Pino, Paolo Patierno, Mirco Vanini and many other embedded developers made those two days an experience to be remembered. I did two sessions, one on Windows Embedded Standard and “PCs” usage in the embedded world and another one on Android for Embedded devices, you can find the slides on the better embedded website: www.betterembedded.it. You can also find slides for many other interesting session, ranging from the .NET microframework to Linux Embedded, from QT Quick to software licenses. Packing many different resources about embedded systems in a conference was not easy but the result is a very nice mix of contents ranging from firmware development to cloud-based systems. This is a great way to have an overview of what’s new or interesting in embedded systems and to get great ideas about how to build your new device. Don’t forget to follow @Better_Embedded on twitter to not miss next year conference! Thanks to the better embedded team for having allowed me to use some of the official pictures in this blog post. You can find a good selection of those pictures (just to experience the atmosphere of the conference) on its Facebook page: http://dvlr.it/DHDB

    Read the article

  • Videos: Getting Started with Java Embedded

    - by Tori Wieldt
    Are you a Java developer? That means you can write applications for embedded processors! There are new six new videos up on the YouTube/Java channel that you can watch to get more information. To get an overview, watch James Allen of Oracle Global Business Development give OTN a tour of the Oracle booth at ARM Techcon. He also explains the huge opportunity for Java in the embedded space. These videos from Oracle Engineering show you how to leverage your knowledge to seamlessly develop in a space that is really taking off. Java SE Embedded Development Made Easy, Part 1 This video demonstrates how developers already familiar with the Java SE development paradigm can leverage their knowledge to seamlessly develop on very capable embedded processors. Part one of a two-part series. Java SE Embedded Development Made Easy, Part 2 This video demonstrates how developers already familiar with the Java SE development paradigm can leverage their knowledge to seamlessly develop on very capable embedded processors. Part two of a two-part series. Mobile Database Synchronization - Healthcare Demonstration This video demonstrates how a good portion of Oracle's embedded technologies (Java SE-Embedded, Berkeley DB, Database Mobile Server) can be applied to a medical application. Tomcat Micro Cluster See how multiple embedded devices installed with Java Standard Edition HotSpot for Armv5/Linux and Apache Tomcat can be configured as a micro cluster. Java Embedded Partnerships Kevin Smith of Oracle Technical Business Development explains what's new for partners and Java developers in the embedded space. Learn how you can start prototyping for Qualcomm's new Orion board before it's available. (Sorry about the video quality, the booth lights were weird.)   Visit the YouTube/Java channel for other great Java videos. <fade to black>

    Read the article

  • Problem in displaying the movie file in silverlight

    - by BALAMURUGAN
    I am developing a portal for online theatre system. I will show the movie in online website daily in shows(like 6-10 PM Shows). I am using Silverlight to display the video in web application. I am holding my movie file in Windows Azure Blob. I am having a problem displaying the movie file. Consider if ay user login to web system @6 The movie will show from starting.. If the user login to the system @7 the movie should start whats going now in the screen for other user not from the begining of the movie. How can I achieve tis.

    Read the article

  • WinXP Movie Maker Codec Error

    - by Bob Rivers
    Hi, I'm trying to use Windows XP Movie Maker, but when I try to import an AVI video, it shows an error telling me that it wasn't import due to an the fact that the codec wasn't available (I'm able to see the video using the windows media player) First, the error message suggested to enable the option "download codecs automatically" under "tools options general". I did it. But know the error tells me that the codec wasn't available and, if I already installed it, I should reinitialize movie maker. I also already did it... The error msg is: The file D:\movie1.avi cannot be imported because the codec required to play the file is not installed on your computer. If you have already tried to download and install the codec, close and restart Windows Movie Maker, and then try to import the file again. Any hint? TIA, Bob

    Read the article

  • WinXP Movie Maker Codec Error

    - by Bob Rivers
    I'm trying to use Windows XP Movie Maker, but when I try to import an AVI video, it shows an error telling me that it wasn't import due to an the fact that the codec wasn't available (I'm able to see the video using the windows media player) First, the error message suggested to enable the option "download codecs automatically" under "tools options general". I did it. But know the error tells me that the codec wasn't available and, if I already installed it, I should reinitialize movie maker. I also already did it... The error msg is: The file D:\movie1.avi cannot be imported because the codec required to play the file is not installed on your computer. If you have already tried to download and install the codec, close and restart Windows Movie Maker, and then try to import the file again. Any hints?

    Read the article

  • Saving 16:9 video in Movie Maker without black border

    - by Tschareck
    I'm editing my video in Windows Live Movie Maker from Live Essentials 2011. My source video is from camera and is .mp4 format with size of 1280 x 720. After editing in Movie Maker, I save the movie. And no matter what option I chose, I always end up with .wmv file, that is either 4:3 image with black stripes above and below the video, or 16:9 with black frame all around the image. What settings should I use, to be able to export or save the video in 1280 x 720 without any black border?

    Read the article

  • RPi and Java Embedded GPIO: Writing Java code to blink LED

    - by hinkmond
    So, you've followed the previous steps to install Java Embedded on your Raspberry Pi ?, you went to Fry's and picked up some jumper wires, LEDs, and resistors ?, you hooked up the wires, LED, and resistor the the correct pins ?, and now you want to start programming in Java on your RPi? Yes? ???????! OK, then... Here we go. You can use the following source code to blink your first LED on your RPi using Java. In the code you can see that I'm not using any complicated gpio libraries like wiringpi or pi4j, and I'm not doing any low-level pin manipulation like you can in C. And, I'm not using python (hell no!). This is Java programming, so we keep it simple (and more readable) than those other programming languages. See: Write Java code to do this In the Java code, I'm opening up the RPi Debian Wheezy well-defined file handles to control the GPIO ports. First I'm resetting everything using the unexport/export file handles. (On the RPi, if you open the well-defined file handles and write certain ASCII text to them, you can drive your GPIO to perform certain operations. See this GPIO reference). Next, I write a "1" then "0" to the value file handle of the GPIO0 port (see the previous pinout diagram). That makes the LED blink. Then, I loop to infinity. Easy, huh? import java.io.* /* * Java Embedded Raspberry Pi GPIO app */ package jerpigpio; import java.io.FileWriter; /** * * @author hinkmond */ public class JerpiGPIO { static final String GPIO_OUT = "out"; static final String GPIO_ON = "1"; static final String GPIO_OFF = "0"; static final String GPIO_CH00="0"; /** * @param args the command line arguments */ public static void main(String[] args) { FileWriter commandFile; try { /*** Init GPIO port for output ***/ // Open file handles to GPIO port unexport and export controls FileWriter unexportFile = new FileWriter("/sys/class/gpio/unexport"); FileWriter exportFile = new FileWriter("/sys/class/gpio/export"); // Reset the port unexportFile.write(GPIO_CH00); unexportFile.flush(); // Set the port for use exportFile.write(GPIO_CH00); exportFile.flush(); // Open file handle to port input/output control FileWriter directionFile = new FileWriter("/sys/class/gpio/gpio"+GPIO_CH00+"/direction"); // Set port for output directionFile.write(GPIO_OUT); directionFile.flush(); /*--- Send commands to GPIO port ---*/ // Opne file handle to issue commands to GPIO port commandFile = new FileWriter("/sys/class/gpio/gpio"+GPIO_CH00+"/value"); // Loop forever while (true) { // Set GPIO port ON commandFile.write(GPIO_ON); commandFile.flush(); // Wait for a while java.lang.Thread.sleep(200); // Set GPIO port OFF commandFile.write(GPIO_OFF); commandFile.flush(); // Wait for a while java.lang.Thread.sleep(200); } } catch (Exception exception) { exception.printStackTrace(); } } } Hinkmond

    Read the article

  • RPi and Java Embedded GPIO: Sensor Reading using Java Code

    - by hinkmond
    And, now to program the Java code for reading the fancy-schmancy static electricity sensor connected to your Raspberry Pi, here is the source code we'll use: First, we need to initialize ourselves... /* * Java Embedded Raspberry Pi GPIO Input app */ package jerpigpioinput; import java.io.FileWriter; import java.io.RandomAccessFile; import java.text.DateFormat; import java.text.SimpleDateFormat; import java.util.Calendar; /** * * @author hinkmond */ public class JerpiGPIOInput { static final String GPIO_IN = "in"; // Add which GPIO ports to read here static String[] GpioChannels = { "7" }; /** * @param args the command line arguments */ public static void main(String[] args) { try { /*** Init GPIO port(s) for input ***/ // Open file handles to GPIO port unexport and export controls FileWriter unexportFile = new FileWriter("/sys/class/gpio/unexport"); FileWriter exportFile = new FileWriter("/sys/class/gpio/export"); for (String gpioChannel : GpioChannels) { System.out.println(gpioChannel); // Reset the port unexportFile.write(gpioChannel); unexportFile.flush(); // Set the port for use exportFile.write(gpioChannel); exportFile.flush(); // Open file handle to input/output direction control of port FileWriter directionFile = new FileWriter("/sys/class/gpio/gpio" + gpioChannel + "/direction"); // Set port for input directionFile.write(GPIO_IN); directionFile.flush(); } And, next we will open up a RandomAccessFile pointer to the GPIO port. /*** Read data from each GPIO port ***/ RandomAccessFile[] raf = new RandomAccessFile[GpioChannels.length]; int sleepPeriod = 10; final int MAXBUF = 256; byte[] inBytes = new byte[MAXBUF]; String inLine; int zeroCounter = 0; // Get current timestamp with Calendar() Calendar cal; DateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss.SSS"); String dateStr; // Open RandomAccessFile handle to each GPIO port for (int channum=0; channum Then, loop forever to read in the values to the console. // Loop forever while (true) { // Get current timestamp for latest event cal = Calendar.getInstance(); dateStr = dateFormat.format(cal.getTime()); // Use RandomAccessFile handle to read in GPIO port value for (int channum=0; channum Rinse, lather, and repeat... Compile this Java code on your host PC or Mac with javac from the JDK. Copy over the JAR or class file to your Raspberry Pi, "sudo -i" to become root, then start up this Java app in a shell on your RPi. That's it! You should see a "1" value get logged each time you bring a statically charged item (like a balloon you rub on the cat) near the antenna of the sensor. There you go. You've just seen how Java Embedded technology on the Raspberry Pi is an easy way to access sensors. Hinkmond

    Read the article

  • Web application framework for embedded systems?

    - by datenwolf
    I'm currently developing the software for a measurement and control system. In addition to the usual SCPI interface I'd also give it a nice HTTP frontend. Now I don't want to reinvent the wheel all over again. I already have a simple HTTPD running, but I don't want to implement all the other stuff. So what I'm looking for is a web application toolkit targeted at embedded system development. In particular this has to run on a ARM Cortex-M4, and I have some 8k of RAM available for this. It must be written in C. Is there such a thing or do I have to implement this myself?

    Read the article

  • How difficult is it to change from Embedded programming to a high level programming [on hold]

    - by anudeep shetty
    I have a background in Computer Science. I worked on Embedded programming on Linux file systems, after I finished my Bachelor's degree, for over a year. After that I pursued my masters where most of my course choices involved working on web, java and databases. Now I have an offer to work with a company that is offering a job to work on the OS level. The company is pretty good but I am feeling that my Masters has gone to waste. I wanted to know is it common that a Computer Science major works on low-level coding and is there a possibility that I can work in this company for some years and then move onto an opportunity where I can work on high-level coding? Also is working on low-level programming a safe choice in terms of job opportunities?

    Read the article

  • Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 2)

    - by hinkmond
    To start out our ghost hunting here at the Oracle Santa Clara campus office, we first need a ghost sensor. It's pretty easy to build one, since all we need to do is to create a circuit that can detect small fluctuations in the electromagnetic field, just like the fluctuations that ghosts cause when they pass by... Naturally, right? So, we build a static charge sensor and will use a Java Embedded app to monitor for changes in the sensor value, running analytics using Java technology on a Raspberry Pi. Bob's your uncle, and there you have it: a ghost sensor. See: Ghost Detector So, go out to Radio Shack and buy up these items: shopping list: 1 - NTE312 JFET N-channel transistor (this is in place of the MPF-102) 1 - Set of Jumper Wires 1 - LED 1 - 300 ohm resistor 1 - set of header pins Then, grab a flashlight, your Raspberry Pi, and come back here for more instructions... Don't be afraid... Yet. Hinkmond

    Read the article

  • Playing online video on iphone web, the iphone seems to cache the reference movie

    - by Mad Oxyn
    We are working on an online mobile video app, and are trying to play a reference movie on an iphone from the iphone browser. The problem is, the movie plays the first time, but when we try to play a different movie the second time, it doesnt. Quicktime gives a general error message sayin "Cannot Play Movie". More precisely this is what we are trying to do: Connect with an iPhone to a webserver that serves a reference movie (generated with quicktime pro). The ref movie automatically gets downloaded to the iphone by quicktime. Quicktime then chooses one of the 3 references in the reference movie, based on the connection speed, and tries to download the designated movie via a relative path. A servlet gets called and forwards the relative path to the right movie. This all works the first time. However the second time when we want download different movies, we get the quicktime error. Test case: Open reference movie 1 Movie plays in Quicktime Open reference movie 2 ERROR: Quicktime gives an error - Cannot Play Movie Shut down Iphone Turn Iphone on again Open reference movie 2 Iphone plays movie Open movie ERROR: Quicktime gives an error - Cannot Play Movie Did anyone encounter similar issues with quicktime and the use of reference movies and is there something we can do to work around that?

    Read the article

  • Embedded .swf file in .pfd-Ubuntu 10.04

    - by Thanos
    I have just finished a presentation in LaTeX. In this very .pdf file I have included a .swf animation(done with adobe flash CS5 in windows) which starts when you click on it. While I have already installed a relevant player(swfdec flash player) neither document viewer nor okular are able to reproduce it. I tried with my player to make sure that the file is not corrupted and the result was that it can be produced. I tried the same .pdf file in windows using adobe reader and there is no problem there. The embedded file can be reproduced with no problem. So I thought of installing adobe in ubuntu. I tried there to see if the problem was solved. Things got a bit better. Adobe could understand that there is something there, so when clicked I got a message that I had to get the proper player. When I clicked on a relevant button I expected to open my browser in a player's page. Instead nothing happened. If I place my mouse's cursor next to the space that defines my animation the is a "message" stating "Media File(application/x-shockwave flash)". The next step was to install Adobe Flash player, but I couldn't find the standallone player;only the browser's plugs... How can I get this .swf file play in pdf?

    Read the article

  • How to access an encrypted INI file from C on an embedded system with little RAM

    - by Mawg
    I want to encrypt an INI file using a Delphi program on a Windows PC. Then I need to decrypt & access it in C on an embedded system with little RAM. I will do that once & fetch all info; I will not be consutinuously accessing the INI file whenever my program needs data from the file. Any advice as to which encryption to use? Nothing too heavyweight, just good enough for "Security through obscurity" and FOSS for both Delphi & C. And how can I decrypt, get all the info from the INI file - using as little RAM as possible, and then free any allocated RAM? I hope that someone can help. [Update] I am currently using an Atmel UC3, although I am not sure if that will be the final case. It has 512kB falsh & 128kB RAM. For an INI file, I am talking of max 8 sections, with a total of max 256 entries, each max 8 chars. I chose INI (but am not married to it), because i have had major problems in the past when the format of a data fiel changes, no matter whether binary, or text. For tex, I prefer the free format of INI (on PC), but suppose I could switch to line_1=data_1, line_2=data_2 and accept that if I add new fields in future software erleases they must come at the end, even if it is not pretty when read directly by humans. I suppose if I choose a fixed format text file then I never need get more than one line into RAM at a time ...

    Read the article

  • Skynet Big Data Demo Using Hexbug Spider Robot, Raspberry Pi, and Java SE Embedded (Part 3)

    - by hinkmond
    In Part 2, I described what connections you need to make for this demo using a Hexbug Spider Robot, a Raspberry Pi, and Java SE Embedded for programming. Here are some photos of me doing the soldering. Software engineers should not be afraid of a little soldering work. It's all good. See: Skynet Big Data Demo (Part 2) One thing to watch out for when you open the remote is that there may be some glue covering the contact points. Make sure to use an Exacto knife or small screwdriver to scrape away any glue or non-conductive material covering each place where you need to solder. And after you are done with your soldering and you gave the solder enough time to cool, make sure all your connections are marked so that you know which wire goes where. Give each wire a very light tug to make sure it is soldered correctly and is making good contact. There are lots of videos on the Web to help you if this is your first time soldering. Check out Laday Ada's (from adafruit.com) links on how to solder if you need some additional help: http://www.ladyada.net/learn/soldering/thm.html If everything looks good, zip everything back up and meet back here for how to connect these wires to your Raspberry Pi. That will be it for the hardware part of this project. See, that wasn't so bad. Hinkmond

    Read the article

  • Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 3)

    - by hinkmond
    So, let's now connect the parts together to make a Java Embedded ghost sensor using a Raspberry Pi. Grab your JFET transistor, LED light, wires, and breadboard and follow the connections on this diagram. The JFET transistor plugs into the breadboard with the flat part facing left. Then, plug in a wire to the same breadboard hole row as the top JFET lead (green in the diagram) and keep it unconnected to act as an antenna. Then, connect a wire (red) from the middle lead of the JFET transistor to Pin 1 on your RPi GPIO header. And, connect another wire (blue) from the lower lead of the JFET transistor to Pin 25 on your RPi GPIO header, then connect another (blue) wire from the lower lead of the JFET transistor to the long end of a common cathode LED, and finally connect the short end of the LED with a wire (black) to Pin 6 (ground) of the RPi GPIO header. That's it. Easy. Now test it. See: Ghost Sensor Testing Here's a video of me testing the Ghost Sensor circuit on my Raspberry Pi. We'll cover the Java SE app needed to record the ghost analytics in the next post. Hinkmond

    Read the article

  • Junit with Embedded Glassfish fails - JMS Resource Adapter should be EMBEDDED

    - by Hank
    I'm trying to test a session bean (NetBeans 6.8, Glassfish V3). Unfortunately, the embedded glassfish is unable to start properly, as it tries to connect to a remote JMS Provider (at localhost:7676): $ ant test ... [junit] Mar 23, 2010 12:13:51 PM com.sun.messaging.jms.ra.ResourceAdapter start [junit] INFO: MQJMSRA_RA1101: SJSMQ JMS Resource Adapter starting: REMOTE [junit] Mar 23, 2010 12:13:51 PM com.sun.messaging.jmq.jmsclient.ExceptionHandler throwConnectionException [junit] WARNING: [C4003]: Error occurred on connection creation [localhost:7676]. - cause: java.net.ConnectException: Connection refused The error is in itself correct, as no (other) JMS provider is running. I was expecting the embedded glassfish to start the JMS provider in EMBEDDED mode. My test uses javax.ejb.embeddable.EJBContainer : @BeforeClass public static void initContainer() throws Exception { ec = EJBContainer.createEJBContainer(); ctx = ec.getContext(); } When I start glassfish normally, it's fine: $ bin/asadmin get server.jms-service.type server.jms-service.type=EMBEDDED How can I get my junit tests to use an embedded glassfish with an EMBEDDED JMS Provider?

    Read the article

  • Embedded Development Board

    - by ALF3130
    I'm new to the embedded development world and am looking to get my very first board. After some research, I realize that there aren't many choices with FPUs. This is important in my project as I'm going to be doing quite a bit of floating point computations. I found the Mini2440 which seems to run on the ARM920T core. This particular unit is perfect for my needs (decent price, all the right I/O ports, and a touch screen to boot) but it seems that it doesn't have an FPU. I don't know how big of a penalty I'd be paying for FP emulation, so I'm unsure of whether to pull the trigger on this one. That said: Can someone please confirm whether this product (Mini2440) has an FPU or not? My project will do image capture and analysis. Does anyone have any experience with running things like OpenMP on such platforms? Please suggest any other similar boards in the = $200 price range that have an FPU. This world is new to me. Any other advice or things I should be aware of is much appreciated.

    Read the article

  • How Back to the Future Should have Ended (In a Galaxy Far Far Away) [Video]

    - by Asian Angel
    Everyone is familiar with Doc Brown’s statement that they would not need roads where they were going. If only he had known just how true the ‘no roads’ part was going to be! Alternate Ending – Back to the Future [via Geeks are Sexy] HTG Explains: When Do You Need to Update Your Drivers? How to Make the Kindle Fire Silk Browser *Actually* Fast! Amazon’s New Kindle Fire Tablet: the How-To Geek Review

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >