Search Results

Search found 1584 results on 64 pages for 'generator'.

Page 4/64 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Yet Another Static Blog Generator

    - by prabhpreet
    In the spirit of hobbyist adventures, I made a static blog generator in C# with the help of MarkdownSharp (from the StackOverflow Guys, I think). Inspired from static blog generators like Jekyll, it does things Jekyll can’t do (aren’t built in)- it has a GUI and can generate feeds. Of course, it’s Windows Only and it’s somewhat limited too. But it works. If someone wants to port it to Mac and Linux, code is available on the site since it’s open source. Enjoy! Link

    Read the article

  • Web-based data generator

    - by John Paul Cook
    One of my coworkers told me about Mockaroo , a web-based data generator. I needed some test data for upcoming blog posts, so I decided to give it a try. It’s pretty good. I had to use Firefox because of problems running Mockaroo on Internet Explorer 11. Using the defaults except for changing the format to SQL, it generated output that looked something like the following. Mockaroo is so good that it generates fake data that could accidentally be real, such as email addresses. Consequently, I edited...(read more)

    Read the article

  • JHeadstart search with default values

    - by christian.bischof
    JHeadstart has a powerful generator for ADF Faces pages. One of the features of the generator is the generation of search functionality into a page. The search functionality offers a "Quicksearch" with a single search item and an "Advanced Search" for multiple search criteria. Sometimes it would be nice to have initial values for the search criteria, but this is not supplied by JHeadstart by default.

    Read the article

  • Procedural... house with rooms generator

    - by pek
    I've been looking at some algorithms and articles about procedurally generating a dungeon. The problem is, I'm trying to generate a house with rooms, and they don't seem to fit my requirements. For one, dungeons have corridors, where houses have halls. And while initially they might seem the same, a hall is nothing more than the area that isn't a room, whereas a corridor is specifically designed to connect one area to another. Another important difference with a house is that you have a specific width and height, and you have to fill the entire thing with rooms and halls, whereas with a dungeon, there is empty space. I think halls in a house is something in between a dungeon corridor (gets you to other rooms) and an empty space in the dungeon (it's not explicitly defined in code). More specifically, the requirements are: There is a set of predefined rooms I cannot create walls and doors on the fly. Rooms can be rotated but not resized Again, because I have a predefined set of rooms, I can only rotate them, not resize them. The house dimensions are set and has to be entirely filled with rooms (or halls) I.e. I want to fill a 14x20 house with the available rooms making sure there is no empty space. Here are some images to make this a little more clear: As you can see, in the house, the "empty space" is still walkable and it gets you from one room to another. So, having said all this, maybe a house is just a really really tightly packed dungeon with corridors. Or it's something easier than a dungeon. Maybe there is something out there and I haven't found it because I don't really know what to search for. This is where I'd like your help: could you give me pointers on how to design this algorithm? Any thoughts on what steps it will take? If you have created a dungeon generator, how would you modify it to fit my requirements? You can be as specific or as generic as you like. I'm looking to pick your brains, really.

    Read the article

  • Defining a function that is both a generator and recursive [on hold]

    - by user96454
    I am new to python, so this code might not necessarily be clean, it's just for learning purposes. I had the idea of writing this function that would display the tree down the specified path. Then, i added the global variable number_of_py to count how many python files were in that tree. That worked as well. Finally, i decided to turn the whole thing into a generator, but the recursion breaks. My understanding of generators is that once next() is called python just executes the body of the function and "yields" a value until we hit the end of the body. Can someone explain why this doesn't work? Thanks. import os from sys import argv script, path = argv number_of_py = 0 lines_of_code = 0 def list_files(directory, key=''): global number_of_py files = os.listdir(directory) for f in files: real_path = os.path.join(directory, f) if os.path.isdir(real_path): list_files(real_path, key=key+' ') else: if real_path.split('.')[-1] == 'py': number_of_py += 1 with open(real_path) as g: yield len(g.read()) print key+real_path for i in list_files(argv[1]): lines_of_code += i print 'total number of lines of code: %d' % lines_of_code print 'total number of py files: %d' % number_of_py

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • WCF Routing Service Filter Generator

    - by Michael Stephenson
    Recently I've been working with the WCF routing service and in our case we were simply routing based on the SOAP Action. This is a pretty good approach for a standard redirection of the message when all messages matching a SOAP Action will go to the same endpoint. Using the SOAP Action also lets you be specific about which methods you expose via the router. One of the things which was a pain was the number of routing rules I needed to create because we were routing for a lot of different methods. I could have explored the option of using a regular expression to match the message to its routing but I wanted to be very specific about what's routed and not risk exposing methods I shouldn't via the router. I decided to put together a little spreadsheet so that I can generate part of the configuration I would need to put in the configuration file rather than have to type this by hand. To show how this works download the spreadsheet from the following url: https://s3.amazonaws.com/CSCBlogSamples/WCF+Routing+Generator.xlsx In the spreadsheet you will see that the squares in green are the ones which you need to amend. In the below picture you can see that you specify a prefix and suffix for the filter name. The core namespace from the web service your generating routing rules for and the WCF endpoint name which you want to route to. In column A you will see the green cells where you add the list of method names which you want to include routing rules for. The spreadsheet will workout what the full SOAP Action would be then the name you will use for that filter in your WCF Routing filters. In column D the spreadsheet will have generated the XML snippet which you can add to the routing filters section in your configuration file. In column E the spreadsheet will have created the XML snippet which you can add to the routing table to send messages matching each filter to the appropriate WCF client endpoint to forward the message to the required destination. Hopefully you can see that with this spreadsheet it would be very easy to produce accurate XML for the WCF Routing configuration if you had a large number of routing rules. If you had additional methods in other services you can simply copy the worksheet and add multiple copies to the Excel workbook. One worksheet per service would work well.

    Read the article

  • How to make a random number generator in matlab that is based on percentages?

    - by Ben Fossen
    I am currently using the built in random number generator. for example nAsp = randi([512, 768],[1,1]); 512 is the lower bound and 768 is the upper bound, the random number generator chooses a number from between these two values. What I want is to have two ranges for nAsp but I want one of them to get called 25% of the time and the other 75% of the time. Then gets plugged into he equation. Does anyone have any ideas how to do this or if there is a built in function in matlab already? for example nAsp = randi([512, 768],[1,1]); gets called 25% of the time nAsp = randi([690, 720],[1,1]); gets called 75% of the time

    Read the article

  • Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design

    - by SeanMcAlinden
    Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and caching mechanism For the latest code go to http://rapidioc.codeplex.com/ Before getting too involved in generating the proxy, I thought it would be worth while going through the intended design, this is important as the next step is to start creating the constructors for the proxy. Each proxy derives from a specified type The proxy has a corresponding constructor for each of the base type constructors The proxy has overrides for all methods and properties marked as Virtual on the base type For each overridden method, there is also a private method whose sole job is to call the base method. For each overridden method, a delegate is created whose sole job is to call the private method that calls the base method. The following class diagram shows the main classes and interfaces involved in the interception process. I’ll go through each of them to explain their place in the overall proxy.   IProxy Interface The proxy implements the IProxy interface for the sole purpose of adding custom interceptors. This allows the created proxy interface to be cast as an IProxy and then simply add Interceptors by calling it’s AddInterceptor method. This is done internally within the proxy building process so the consumer of the API doesn’t need knowledge of this. IInterceptor Interface The IInterceptor interface has one method: Handle. The handle method accepts a IMethodInvocation parameter which contains methods and data for handling method interception. Multiple classes that implement this interface can be added to the proxy. Each method override in the proxy calls the handle method rather than simply calling the base method. How the proxy fully works will be explained in the next section MethodInvocation. IMethodInvocation Interface & MethodInvocation class The MethodInvocation will contain one main method and multiple helper properties. Continue Method The method Continue() has two functions hidden away from the consumer. When Continue is called, if there are multiple Interceptors, the next Interceptors Handle method is called. If all Interceptors Handle methods have been called, the Continue method then calls the base class method. Properties The MethodInvocation will contain multiple helper properties including at least the following: Method Name (Read Only) Method Arguments (Read and Write) Method Argument Types (Read Only) Method Result (Read and Write) – this property remains null if the method return type is void Target Object (Read Only) Return Type (Read Only) DefaultInterceptor class The DefaultInterceptor class is a simple class that implements the IInterceptor interface. Here is the code: DefaultInterceptor namespace Rapid.DynamicProxy.Interception {     /// <summary>     /// Default interceptor for the proxy.     /// </summary>     /// <typeparam name="TBase">The base type.</typeparam>     public class DefaultInterceptor<TBase> : IInterceptor<TBase> where TBase : class     {         /// <summary>         /// Handles the specified method invocation.         /// </summary>         /// <param name="methodInvocation">The method invocation.</param>         public void Handle(IMethodInvocation<TBase> methodInvocation)         {             methodInvocation.Continue();         }     } } This is automatically created in the proxy and is the first interceptor that each method override calls. It’s sole function is to ensure that if no interceptors have been added, the base method is still called. Custom Interceptor Example A consumer of the Rapid.DynamicProxy API could create an interceptor for logging when the FirstName property of the User class is set. Just for illustration, I have also wrapped a transaction around the methodInvocation.Coninue() method. This means that any overriden methods within the user class will run within a transaction scope. MyInterceptor public class MyInterceptor : IInterceptor<User<int, IRepository>> {     public void Handle(IMethodInvocation<User<int, IRepository>> methodInvocation)     {         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name seting to: " + methodInvocation.Arguments[0]);         }         using (TransactionScope scope = new TransactionScope())         {             methodInvocation.Continue();         }         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name has been set to: " + methodInvocation.Arguments[0]);         }     } } Overridden Method Example To show a taster of what the overridden methods on the proxy would look like, the setter method for the property FirstName used in the above example would look something similar to the following (this is not real code but will look similar): set_FirstName public override void set_FirstName(string value) {     set_FirstNameBaseMethodDelegate callBase =         new set_FirstNameBaseMethodDelegate(this.set_FirstNameProxyGetBaseMethod);     object[] arguments = new object[] { value };     IMethodInvocation<User<IRepository>> methodInvocation =         new MethodInvocation<User<IRepository>>(this, callBase, "set_FirstName", arguments, interceptors);          this.Interceptors[0].Handle(methodInvocation); } As you can see, a delegate instance is created which calls to a private method on the class, the private method calls the base method and would look like the following: calls base setter private void set_FirstNameProxyGetBaseMethod(string value) {     base.set_FirstName(value); } The delegate is invoked when methodInvocation.Continue() is called within an interceptor. The set_FirstName parameters are loaded into an object array. The current instance, delegate, method name and method arguments are passed into the methodInvocation constructor (there will be more data not illustrated here passed in when created including method info, return types, argument types etc.) The DefaultInterceptor’s Handle method is called with the methodInvocation instance as it’s parameter. Obviously methods can have return values, ref and out parameters etc. in these cases the generated method override body will be slightly different from above. I’ll go into more detail on these aspects as we build them. Conclusion I hope this has been useful, I can’t guarantee that the proxy will look exactly like the above, but at the moment, this is pretty much what I intend to do. Always worth downloading the code at http://rapidioc.codeplex.com/ to see the latest. There will also be some tests that you can debug through to help see what’s going on. Cheers, Sean.

    Read the article

  • C++/boost generator module, feedback/critic please

    - by aaa
    hello. I wrote this generator, and I think to submit to boost people. Can you give me some feedback about it it basically allows to collapse multidimensional loops to flat multi-index queue. Loop can be boost lambda expressions. Main reason for doing this is to make parallel loops easier and separate algorithm from controlling structure (my fieldwork is computational chemistry where deep loops are common) 1 #ifndef _GENERATOR_HPP_ 2 #define _GENERATOR_HPP_ 3 4 #include <boost/array.hpp> 5 #include <boost/lambda/lambda.hpp> 6 #include <boost/noncopyable.hpp> 7 8 #include <boost/mpl/bool.hpp> 9 #include <boost/mpl/int.hpp> 10 #include <boost/mpl/for_each.hpp> 11 #include <boost/mpl/range_c.hpp> 12 #include <boost/mpl/vector.hpp> 13 #include <boost/mpl/transform.hpp> 14 #include <boost/mpl/erase.hpp> 15 16 #include <boost/fusion/include/vector.hpp> 17 #include <boost/fusion/include/for_each.hpp> 18 #include <boost/fusion/include/at_c.hpp> 19 #include <boost/fusion/mpl.hpp> 20 #include <boost/fusion/include/as_vector.hpp> 21 22 #include <memory> 23 24 /** 25 for loop generator which can use lambda expressions. 26 27 For example: 28 @code 29 using namespace generator; 30 using namespace boost::lambda; 31 make_for(N, N, range(bind(std::max<int>, _1, _2), N), range(_2, _3+1)); 32 // equivalent to pseudocode 33 // for l=0,N: for k=0,N: for j=max(l,k),N: for i=k,j 34 @endcode 35 36 If range is given as upper bound only, 37 lower bound is assumed to be default constructed 38 Lambda placeholders may only reference first three indices. 39 */ 40 41 namespace generator { 42 namespace detail { 43 44 using boost::lambda::constant_type; 45 using boost::lambda::constant; 46 47 /// lambda expression identity 48 template<class E, class enable = void> 49 struct lambda { 50 typedef E type; 51 }; 52 53 /// transform/construct constant lambda expression from non-lambda 54 template<class E> 55 struct lambda<E, typename boost::disable_if< 56 boost::lambda::is_lambda_functor<E> >::type> 57 { 58 struct constant : boost::lambda::constant_type<E>::type { 59 typedef typename boost::lambda::constant_type<E>::type base_type; 60 constant() : base_type(boost::lambda::constant(E())) {} 61 constant(const E &e) : base_type(boost::lambda::constant(e)) {} 62 }; 63 typedef constant type; 64 }; 65 66 /// range functor 67 template<class L, class U> 68 struct range_ { 69 typedef boost::array<int,4> index_type; 70 range_(U upper) : bounds_(typename lambda<L>::type(), upper) {} 71 range_(L lower, U upper) : bounds_(lower, upper) {} 72 73 template< typename T, size_t N> 74 T lower(const boost::array<T,N> &index) { 75 return bound<0>(index); 76 } 77 78 template< typename T, size_t N> 79 T upper(const boost::array<T,N> &index) { 80 return bound<1>(index); 81 } 82 83 private: 84 template<bool b, typename T> 85 T bound(const boost::array<T,1> &index) { 86 return (boost::fusion::at_c<b>(bounds_))(index[0]); 87 } 88 89 template<bool b, typename T> 90 T bound(const boost::array<T,2> &index) { 91 return (boost::fusion::at_c<b>(bounds_))(index[0], index[1]); 92 } 93 94 template<bool b, typename T, size_t N> 95 T bound(const boost::array<T,N> &index) { 96 using boost::fusion::at_c; 97 return (at_c<b>(bounds_))(index[0], index[1], index[2]); 98 } 99 100 boost::fusion::vector<typename lambda<L>::type, 101 typename lambda<U>::type> bounds_; 102 }; 103 104 template<typename T, size_t N> 105 struct for_base { 106 typedef boost::array<T,N> value_type; 107 virtual ~for_base() {} 108 virtual value_type next() = 0; 109 }; 110 111 /// N-index generator 112 template<typename T, size_t N, class R, class I> 113 struct for_ : for_base<T,N> { 114 typedef typename for_base<T,N>::value_type value_type; 115 typedef R range_tuple; 116 for_(const range_tuple &r) : r_(r), state_(true) { 117 boost::fusion::for_each(r_, initialize(index)); 118 } 119 /// @return new generator 120 for_* new_() { return new for_(r_); } 121 /// @return next index value and increment 122 value_type next() { 123 value_type next; 124 using namespace boost::lambda; 125 typename value_type::iterator n = next.begin(); 126 typename value_type::iterator i = index.begin(); 127 boost::mpl::for_each<I>(*(var(n))++ = var(i)[_1]); 128 129 state_ = advance<N>(r_, index); 130 return next; 131 } 132 /// @return false if out of bounds, true otherwise 133 operator bool() { return state_; } 134 135 private: 136 /// initialize indices 137 struct initialize { 138 value_type &index_; 139 mutable size_t i_; 140 initialize(value_type &index) : index_(index), i_(0) {} 141 template<class R_> void operator()(R_& r) const { 142 index_[i_++] = r.lower(index_); 143 } 144 }; 145 146 /// advance index[0:M) 147 template<size_t M> 148 struct advance { 149 /// stop recursion 150 struct stop { 151 stop(R r, value_type &index) {} 152 }; 153 /// advance index 154 /// @param r range tuple 155 /// @param index index array 156 advance(R &r, value_type &index) : index_(index), i_(0) { 157 namespace fusion = boost::fusion; 158 index[M-1] += 1; // increment index 159 fusion::for_each(r, *this); // update indices 160 state_ = index[M-1] >= fusion::at_c<M-1>(r).upper(index); 161 if (state_) { // out of bounds 162 typename boost::mpl::if_c<(M > 1), 163 advance<M-1>, stop>::type(r, index); 164 } 165 } 166 /// apply lower bound of range to index 167 template<typename R_> void operator()(R_& r) const { 168 if (i_ >= M) index_[i_] = r.lower(index_); 169 ++i_; 170 } 171 /// @return false if out of bounds, true otherwise 172 operator bool() { return state_; } 173 private: 174 value_type &index_; ///< index array reference 175 mutable size_t i_; ///< running index 176 bool state_; ///< out of bounds state 177 }; 178 179 value_type index; 180 range_tuple r_; 181 bool state_; 182 }; 183 184 185 /// polymorphic generator template base 186 template<typename T,size_t N> 187 struct For : boost::noncopyable { 188 typedef boost::array<T,N> value_type; 189 /// @return next index value and increment 190 value_type next() { return for_->next(); } 191 /// @return false if out of bounds, true otherwise 192 operator bool() const { return for_; } 193 protected: 194 /// reset smart pointer 195 void reset(for_base<T,N> *f) { for_.reset(f); } 196 std::auto_ptr<for_base<T,N> > for_; 197 }; 198 199 /// range [T,R) type 200 template<typename T, typename R> 201 struct range_type { 202 typedef range_<T,R> type; 203 }; 204 205 /// range identity specialization 206 template<typename T, class L, class U> 207 struct range_type<T, range_<L,U> > { 208 typedef range_<L,U> type; 209 }; 210 211 namespace fusion = boost::fusion; 212 namespace mpl = boost::mpl; 213 214 template<typename T, size_t N, class R1, class R2, class R3, class R4> 215 struct range_tuple { 216 // full range vector 217 typedef typename mpl::vector<R1,R2,R3,R4> v; 218 typedef typename mpl::end<v>::type end; 219 typedef typename mpl::advance_c<typename mpl::begin<v>::type, N>::type pos; 220 // [0:N) range vector 221 typedef typename mpl::erase<v, pos, end>::type t; 222 // transform into proper range fusion::vector 223 typedef typename fusion::result_of::as_vector< 224 typename mpl::transform<t,range_type<T, mpl::_1> >::type 225 >::type type; 226 }; 227 228 229 template<typename T, size_t N, 230 class R1, class R2, class R3, class R4, 231 class O> 232 struct for_type { 233 typedef typename range_tuple<T,N,R1,R2,R3,R4>::type range_tuple; 234 typedef for_<T, N, range_tuple, O> type; 235 }; 236 237 } // namespace detail 238 239 240 /// default index order, [0:N) 241 template<size_t N> 242 struct order { 243 typedef boost::mpl::range_c<size_t,0, N> type; 244 }; 245 246 /// N-loop generator, 0 < N <= 5 247 /// @tparam T index type 248 /// @tparam N number of indices/loops 249 /// @tparam R1,... range types 250 /// @tparam O index order 251 template<typename T, size_t N, 252 class R1, class R2 = void, class R3 = void, class R4 = void, 253 class O = typename order<N>::type> 254 struct for_ : detail::for_type<T, N, R1, R2, R3, R4, O>::type { 255 typedef typename detail::for_type<T, N, R1, R2, R3, R4, O>::type base_type; 256 typedef typename base_type::range_tuple range_tuple; 257 for_(const range_tuple &range) : base_type(range) {} 258 }; 259 260 /// loop range [L:U) 261 /// @tparam L lower bound type 262 /// @tparam U upper bound type 263 /// @return range 264 template<class L, class U> 265 detail::range_<L,U> range(L lower, U upper) { 266 return detail::range_<L,U>(lower, upper); 267 } 268 269 /// make 4-loop generator with specified index ordering 270 template<typename T, class R1, class R2, class R3, class R4, class O> 271 for_<T, 4, R1, R2, R3, R4, O> 272 make_for(R1 r1, R2 r2, R3 r3, R4 r4, const O&) { 273 typedef for_<T, 4, R1, R2, R3, R4, O> F; 274 return F(F::range_tuple(r1, r2, r3, r4)); 275 } 276 277 /// polymorphic generator template forward declaration 278 template<typename T,size_t N> 279 struct For; 280 281 /// polymorphic 4-loop generator 282 template<typename T> 283 struct For<T,4> : detail::For<T,4> { 284 /// generator with default index ordering 285 template<class R1, class R2, class R3, class R4> 286 For(R1 r1, R2 r2, R3 r3, R4 r4) { 287 this->reset(make_for<T>(r1, r2, r3, r4).new_()); 288 } 289 /// generator with specified index ordering 290 template<class R1, class R2, class R3, class R4, class O> 291 For(R1 r1, R2 r2, R3 r3, R4 r4, O o) { 292 this->reset(make_for<T>(r1, r2, r3, r4, o).new_()); 293 } 294 }; 295 296 } 297 298 299 #endif /* _GENERATOR_HPP_ */

    Read the article

  • How does a cryptographically secure random number generator work?

    - by Byron Whitlock
    I understand how standard random number generators work. But when working with crytpography, the random numbers really have to be random. I know there are instruments that read cosmic white noise to help generate secure hashes, but your standard PC doesn't have this. How does a cryptographically secure random number generator get its values with no repeatable patterns?

    Read the article

  • QR code - where can I find (free) code to embed my own generator on a web page?

    - by Robbert Huisman
    Hi, couldn't find it exactly from earlier questions, but I am probably repeating an earlier question, so apologies upfront ;-) I am looking for a simple code to embed a QR 2D code generator on a website I am building. I assume their should be some free open source code for that but I could only find paid software. Can anyone point me in the right direction? would be mostly appreciated! best regards, Robbert

    Read the article

  • SyFy Channel Original Movie Title Generator

    - by Most Valuable Yak (Rob Volk)
    Saw this linked on reddit today and couldn't resist going through all the combinations: create table #pre(name varchar(20))create table #post(name varchar(20), pre varchar(10))insert #pre select 'Dino' union all select'Alien' union all select'Shark' union all select'Raptor' union all select'Tractor' union all select'Arachno' union all select'Cyber' union all select'Robo' union all select'Choco' union all select'Chupa' union all select'Grizzly' union all select'Mega' union all select'Were' union all select'Sabre' union all select'Man' insert #post select 'dactyl','a' union all select'pus','to' union all select'conda','a' union all select'droid',null union all select'dile','o' union all select'bear',null union all select'vampire',null union all select'squito',null union all select'saurus','a' union all select'wolf',null union all select'ghost',null union all select'viper',null union all select'cabra','a' union all select'yeti',null union all select'shark',null select a.name +case when right(a.name,1) not like '[aeiouy]' and b.pre is not null then b.pre else '' end +b.namefrom #pre a cross join #post bwhere a.name<>b.name -- optional, to eliminate the "SharkShark" optionorder by 1  Which one is your favorite?  I like most of the -squito versions, especially Chupasquito and Grizzlysquito.

    Read the article

  • Sprite sheet generator

    - by Andrea Tucci
    I need to generate a sprite sheet with squared sprite for a 2D game. How can I generate a sprite sheet where each frame has x = y? The only think I have to do is to "insert" some blank space between sprites (in case y were x in the original sprite). Is there any program that I can use to trasform "irregular" sprite sheets to "squared" sprite sheets? An example of non-squared sprite sheet: http://spriters-resource.com/gameboy_advance/khcom/sheet/1138

    Read the article

  • Big label generator

    - by jamiet
    Sometimes I write blog posts mainly so that I can find stuff when I need it later. This is such a blog post. Of late I have been writing lots of deployment scripts and I am fan of putting big labels into deployment scripts (which, these days, reside in SSDT) so one can easily see what’s going on as they execute. Here’s such an example from my current project: which results in this being displayed when the script is run: In case you care….PM_EDW is the name of one of our databases. I’m almost embarrassed to admit that I spent about half an hour crafting that and a few others for my current project because a colleague has just alerted me to a website that would have done it for me, and given me lots of options for how to present it too: http://www.patorjk.com/software/taag/#p=testall&f=Banner3&t=PM__EDW Very useful indeed. Nice one! And yes, I’m sure there are a myriad of sites that do the same thing - I’m a latecomer, ok? @Jamiet

    Read the article

  • Thoughts on my new template language/HTML generator?

    - by Ralph
    I guess I should have pre-faced this with: Yes, I know there is no need for a new templating language, but I want to make a new one anyway, because I'm a fool. That aside, how can I improve my language: Let's start with an example: using "html5" using "extratags" html { head { title "Ordering Notice" jsinclude "jquery.js" } body { h1 "Ordering Notice" p "Dear @name," p "Thanks for placing your order with @company. It's scheduled to ship on {@ship_date|dateformat}." p "Here are the items you've ordered:" table { tr { th "name" th "price" } for(@item in @item_list) { tr { td @item.name td @item.price } } } if(@ordered_warranty) p "Your warranty information will be included in the packaging." p(class="footer") { "Sincerely," br @company } } } The "using" keyword indicates which tags to use. "html5" might include all the html5 standard tags, but your tags names wouldn't have to be based on their HTML counter-parts at all if you didn't want to. The "extratags" library for example might add an extra tag, called "jsinclude" which gets replaced with something like <script type="text/javascript" src="@content"></script> Tags can be optionally be followed by an opening brace. They will automatically be closed at the closing brace. If no brace is used, they will be closed after taking one element. Variables are prefixed with the @ symbol. They may be used inside double-quoted strings. I think I'll use single-quotes to indicate "no variable substitution" like PHP does. Filter functions can be applied to variables like @variable|filter. Arguments can be passed to the filter @variable|filter:@arg1,arg2="y" Attributes can be passed to tags by including them in (), like p(class="classname"). You will also be able to include partial templates like: for(@item in @item_list) include("item_partial", item=@item) Something like that I'm thinking. The first argument will be the name of the template file, and subsequent ones will be named arguments where @item gets the variable name "item" inside that template. I also want to have a collection version like RoR has, so you don't even have to write the loop. Thoughts on this and exact syntax would be helpful :) Some questions: Which symbol should I use to prefix variables? @ (like Razor), $ (like PHP), or something else? Should the @ symbol be necessary in "for" and "if" statements? It's kind of implied that those are variables. Tags and controls (like if,for) presently have the exact same syntax. Should I do something to differentiate the two? If so, what? This would make it more clear that the "tag" isn't behaving like just a normal tag that will get replaced with content, but controls the flow. Also, it would allow name-reuse. Do you like the attribute syntax? (round brackets) How should I do template inheritance/layouts? In Django, the first line of the file has to include the layout file, and then you delimit blocks of code which get stuffed into that layout. In CakePHP, it's kind of backwards, you specify the layout in the controller.view function, the layout gets a special $content_for_layout variable, and then the entire template gets stuffed into that, and you don't need to delimit any blocks of code. I guess Django's is a little more powerful because you can have multiple code blocks, but it makes your templates more verbose... trying to decide what approach to take Filtered variables inside quotes: "xxx {@var|filter} yyy" "xxx @{var|filter} yyy" "xxx @var|filter yyy" i.e, @ inside, @ outside, or no braces at all. I think no-braces might cause problems, especially when you try adding arguments, like @var|filter:arg="x", then the quotes would get confused. But perhaps a braceless version could work for when there are no quotes...? Still, which option for braces, first or second? I think the first one might be better because then we're consistent... the @ is always nudged up against the variable. I'll add more questions in a few minutes, once I get some feedback.

    Read the article

  • A Hover Ad Generator Guide

    While popup ads have been the subject of controversy among many webmasters and Internet users, the fact remains that they can be extremely lucrative. Because many webmasters have been afraid to use popups due to the controversy that surrounds them, the few webmasters who endorse them have been able to make enormous profits. However, these profits haven't come without problems and limitations.

    Read the article

  • Super-quick MIDI generator with nonrestrictive license?

    - by Ricket
    I'm working on my Ludum Dare entry and trying to figure out how in the world I'm ever going to get background music. I found WolframTones, but the license is too restrictive: Unless otherwise specified, this Site and content presented on this Site are for your personal and noncommercial use. You may not modify, copy, distribute, transmit, display, perform, reproduce, publish, license, create derivative works from, transfer, or sell any information or content obtained from this Site. For commercial and other uses, contact us. But I really like the interface! It's a lot like sfxr - click a genre and download a song. That's so cool. Is there another program that does this same sort of thing but without a restrictive license, so that I can generate a bgm and use it in my game?

    Read the article

  • Simple dependency tree diagram generator

    - by foampile
    I have a need to produce a simple dependency tree diagram. The input data would be in the following simple format: ITEM_NAME DEPENDENCY ---------------------------- ITEM_101 ITEM_75 ITEM_102 ITEM_77 ITEM_102 ITEM_61 ITEM_102 ITEM_11 This means that ITEM_101 depends on ITEM_75 and ITEM_102 depends on items ITEM_77, ITEM_61 and ITEM_11. So the diagram would have items ITEM_77, ITEM_61 and ITEM_11 in one vertical level and ITEM_102 would be below it with a line connecting each of the three dependencies to ITEM_102. The same would be for ITEM_101, ITEM_75 would be somewhere above it and there would be a line connecting it. In the real world this tree represents a hierarchy of scheduling jobs. We have a very extensive workload automation hierarchy in Autosys and I have heard that its front end utility has something like this tree visual representation, however, for some reason, that utility has been disabled by admins. My business users want to see this hierarchy in an easy-to-consume format. I was hoping that I won't have to program something like this from scratch because it seems like quite a common reporting requirement and the input data is simply formatted. My question is: is there a FOSS tool that takes standardized data input and produces such a hierarchical tree? Thanks

    Read the article

  • Architecture of a "website generator" web application

    - by Resorath
    What is the most maintainable and efficient way to architect a web application who's purpose is to host and generate websites which can be customized to a certain degree? There are a lot of these style of applications in the wild that generate all kinds of sites, from sites that host World of Warcraft guilds like guildlaunch to other sites like my wedding for wedding site hosting. My question is, what is the basic architecture that these sites operate on? I imagine there are two ways of thinking about this. A central set of code that all sites on the host run against, and it acts differently based on which site was visited. In this manner, when the base code is updated all sites are updated simultaneously. Or, the code for an individual site exists in a silo, and is simply replicated to a new directory each time a site is created. When an update needs to be applied, the code is pushed out to each site silo. In my case, I am working in PHP with the CodeIgniter framework, however the answer need not be limited to this case. Which method (if any) creates a more maintainable and efficient architecture to manage this style of web application?

    Read the article

  • C# and SQL data layer code generator

    I've created a simple yet efficient tool to help generate stored procedures and a C# data access layer from a table.  Instead of using an ORM, this uses standard ADO .NET (SqlConnection, SqlDataReader, etc).  Check it out at www.asteio.com.  It's saved me a ton of time and I'm hoping it does the same for you....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >