Search Results

Search found 102 results on 5 pages for 'ienumerator'.

Page 4/5 | < Previous Page | 1 2 3 4 5  | Next Page >

  • Move a sphere along the swipe?

    - by gameOne
    I am trying to get a sphere curl based on the swipe. I know this has been asked many times, but still it's yearning to be answered. I have managed to add force on the direction of the swipe and it works near perfect. I also have all the swipe positions stored in a list. Now I would like to know how can the curl be achieved. I believe the the curve in the swipe can be calculated by the Vector dot product If theta is 0, then there is no need to add the swipe. If it is not, then add the curl. Maybe this condition is redundant if I managed to find how to curl the sphere along the swipe position The code that adds the force to sphere based on the swipe direction is as below: using UnityEngine; using System.Collections; using System.Collections.Generic; public class SwipeControl : MonoBehaviour { //First establish some variables private Vector3 fp; //First finger position private Vector3 lp; //Last finger position private Vector3 ip; //some intermediate finger position private float dragDistance; //Distance needed for a swipe to register public float power; private Vector3 footballPos; private bool canShoot = true; private float factor = 40f; private List<Vector3> touchPositions = new List<Vector3>(); void Start(){ dragDistance = Screen.height*20/100; Physics.gravity = new Vector3(0, -20, 0); footballPos = transform.position; } // Update is called once per frame void Update() { //Examine the touch inputs foreach (Touch touch in Input.touches) { /*if (touch.phase == TouchPhase.Began) { fp = touch.position; lp = touch.position; }*/ if (touch.phase == TouchPhase.Moved) { touchPositions.Add(touch.position); } if (touch.phase == TouchPhase.Ended) { fp = touchPositions[0]; lp = touchPositions[touchPositions.Count-1]; ip = touchPositions[touchPositions.Count/2]; //First check if it's actually a drag if (Mathf.Abs(lp.x - fp.x) > dragDistance || Mathf.Abs(lp.y - fp.y) > dragDistance) { //It's a drag //Now check what direction the drag was //First check which axis if (Mathf.Abs(lp.x - fp.x) > Mathf.Abs(lp.y - fp.y)) { //If the horizontal movement is greater than the vertical movement... if ((lp.x>fp.x) && canShoot) //If the movement was to the right) { //Right move float x = (lp.x - fp.x) / Screen.height * factor; rigidbody.AddForce((new Vector3(x,10,16))*power); Debug.Log("right "+(lp.x-fp.x));//MOVE RIGHT CODE HERE canShoot = false; //rigidbody.AddForce((new Vector3((lp.x-fp.x)/30,10,16))*power); StartCoroutine(ReturnBall()); } else { //Left move float x = (lp.x - fp.x) / Screen.height * factor; rigidbody.AddForce((new Vector3(x,10,16))*power); Debug.Log("left "+(lp.x-fp.x));//MOVE LEFT CODE HERE canShoot = false; //rigidbody.AddForce(new Vector3((lp.x-fp.x)/30,10,16)*power); StartCoroutine(ReturnBall()); } } else { //the vertical movement is greater than the horizontal movement if (lp.y>fp.y) //If the movement was up { //Up move float y = (lp.y-fp.y)/Screen.height*factor; float x = (lp.x - fp.x) / Screen.height * factor; rigidbody.AddForce((new Vector3(x,y,16))*power); Debug.Log("up "+(lp.x-fp.x));//MOVE UP CODE HERE canShoot = false; //rigidbody.AddForce(new Vector3((lp.x-fp.x)/30,10,16)*power); StartCoroutine(ReturnBall()); } else { //Down move Debug.Log("down "+lp+" "+fp);//MOVE DOWN CODE HERE } } } else { //It's a tap Debug.Log("none");//TAP CODE HERE } } } } IEnumerator ReturnBall() { yield return new WaitForSeconds(5.0f); rigidbody.velocity = Vector3.zero; rigidbody.angularVelocity = Vector3.zero; transform.position = footballPos; canShoot =true; isKicked = false; } }

    Read the article

  • How can I Fail a WebTest?

    - by craigb
    I'm using Microsoft WebTest and want to be able to do something similar to NUnit's Assert.Fail(). The best i have come up with is to throw new webTestException() but this shows in the test results as an Error rather than a Failure. Other than reflecting on the WebTest to set a private member variable to indicate the failure, is there something I've missed? EDIT: I have also used the Assert.Fail() method, but this still shows up as an error rather than a failure when used from within WebTest, and the Outcome property is read-only (has no public setter). EDIT: well now I'm really stumped. I used reflection to set the Outcome property to Failed but the test still passes! Here's the code that sets the Oucome to failed: public static class WebTestExtensions { public static void Fail(this WebTest test) { var method = test.GetType().GetMethod("set_Outcome", BindingFlags.NonPublic | BindingFlags.Instance); method.Invoke(test, new object[] {Outcome.Fail}); } } and here's the code that I'm trying to fail: public override IEnumerator<WebTestRequest> GetRequestEnumerator() { this.Fail(); yield return new WebTestRequest("http://google.com"); } Outcome is getting set to Oucome.Fail but apparently the WebTest framework doesn't really use this to determine test pass/fail results.

    Read the article

  • Merging sequences by type With LINQ

    - by jankor
    I want to use LINQ to convert this IEnumerable<int>[] value1ByType = new IEnumerable<int>[3]; value1ByType[0]= new [] { 0}; value1ByType[1]= new [] {10,11}; value1ByType[2]= new [] {20}; var value2ToType = new Dictionary<int,int> { {100,0}, {101,1}, {102,2}, {103,1}}; to this var value2ToValue1 = new Dictionary<int,int> { {100, 0}, {101,10}, {102,20}, {103,11}}; Is there a way to do this with LINQ? Without LINQ I would use multiple IEnumerators, one for each IEnumerable of value1ByType. like this: // create enumerators var value1TypeEnumerators = new List<IEnumerator<int>>(); for (int i = 0; i < value1ByType.Length; i++) { value1TypeEnumerators.Add(value1ByType[i].GetEnumerator()); value1TypeEnumerators[i].MoveNext(); } // create wanted dictionary var value2ToValue1 = new Dictionary<int, int>(); foreach (var item in Value2ToType) { int value1=value1TypeEnumerators[item.Value].Current; value2ToValue1.Add(item.Key, value1); value1TypeEnumerators[item.Value].MoveNext(); } Any Idea how to do this in LINQ?

    Read the article

  • Pair-wise iteration in C# or sliding window enumerator

    - by f3lix
    If I have an IEnumerable like: string[] items = new string[] { "a", "b", "c", "d" }; I would like to loop thru all the pairs of consecutive items (sliding window of size 2). Which would be ("a","b"), ("b", "c"), ("c", "d") My solution was is this public static IEnumerable<Pair<T, T>> Pairs(IEnumerable<T> enumerable) { IEnumerator<T> e = enumerable.GetEnumerator(); e.MoveNext(); T current = e.Current; while ( e.MoveNext() ) { T next = e.Current; yield return new Pair<T, T>(current, next); current = next; } } // used like this : foreach (Pair<String,String> pair in IterTools<String>.Pairs(items)) { System.Out.PrintLine("{0}, {1}", pair.First, pair.Second) } When I wrote this code, I wondered if there are already functions in the .NET framework that do the same thing and do it not just for pairs but for any size tuples. IMHO there should be a nice way to do this kind of sliding window operations. I use C# 2.0 and I can imagine that with C# 3.0 (w/ LINQ) there are more (and nicer) ways to do this, but I'm primarily interested in C# 2.0 solutions. Though, I will also appreciate C# 3.0 solutions.

    Read the article

  • ftp .net getdirectory size

    - by Xaver
    hi i write method which must to know that is size of specified directory i get response from server which contains flags of file name size and other info and on the different ftp servers format of answer is different how to know format of answer? unsigned long long GetFtpDirSize(String^ ftpDir) { unsigned long long size = 0; int j = 0; StringBuilder^ result = gcnew StringBuilder(); StreamReader^ reader; FtpWebRequest^ reqFTP; reqFTP = (FtpWebRequest^)FtpWebRequest::Create(gcnew Uri(ftpDir)); reqFTP->UseBinary = true; reqFTP->Credentials = gcnew NetworkCredential("anonymous", "123"); reqFTP->Method = WebRequestMethods::Ftp::ListDirectoryDetails; reqFTP->KeepAlive = false; reqFTP->UsePassive = false; try { WebResponse^ resp = reqFTP->GetResponse(); Encoding^ code; code = Encoding::GetEncoding(1251); reader = gcnew StreamReader(resp->GetResponseStream(), code); String^ line = reader->ReadToEnd(); array<Char>^delimiters = gcnew array<Char>{ '\r', '\n' }; array<Char>^delimiters2 = gcnew array<Char>{ ' ' }; array<String^>^words = line->Split(delimiters, StringSplitOptions::RemoveEmptyEntries); array<String^>^DetPr; System::Collections::IEnumerator^ myEnum = words->GetEnumerator(); while ( myEnum->MoveNext() ) { String^ word = safe_cast<String^>(myEnum->Current); DetPr = word->Split(delimiters2); } }

    Read the article

  • Is it possible to implement an infinite IEnumerable without using yield with only C# code?

    - by sinelaw
    Edit: Apparently off topic...moving to Programmers.StackExchange.com. This isn't a practical problem, it's more of a riddle. Problem I'm curious to know if there's a way to implement something equivalent to the following, but without using yield: IEnumerable<T> Infinite<T>() { while (true) { yield return default(T); } } Rules You can't use the yield keyword Use only C# itself directly - no IL code, no constructing dynamic assemblies etc. You can only use the basic .NET lib (only mscorlib.dll, System.Core.dll? not sure what else to include). However if you find a solution with some of the other .NET assemblies (WPF?!), I'm also interested. Don't implement IEnumerable or IEnumerator. Notes The closest I've come yet: IEnumerable<int> infinite = null; infinite = new int[1].SelectMany(x => new int[1].Concat(infinite)); This is "correct" but hits a StackOverflowException after 14399 iterations through the enumerable (not quite infinite). I'm thinking there might be no way to do this due to the CLR's lack of tail recursion optimization. A proof would be nice :)

    Read the article

  • CompositeDataBoundControl - databound values overwritten before event is fired due to DummyDataSourc

    - by Vidar Langberget
    I have a custom servercontrol that inherits from CompositeDataBoundControl. I have three templates: one header template, one footer template and one item template. The item template can contain a checkbox that I use to decide if I should delete the item. In the footer and/or header templates I have a button with a CommandName of "DeleteItem". When that button is clicked, I handle the event in OnBubbleEvent: if (cea.CommandName == "DeleteItem") { //loop through the item list and get the selected rows List<int> itemsToDelete = new List<int>(); foreach(Control c in this.Controls){ if (c is ItemData) { ItemData oid = (ItemData)c; CheckBox chkSel = (CheckBox)oid.FindControl("chkSelected"); if (chkSel.Checked) { itemsToDelete.Add(oid.Item.Id); } } } foreach (int id in itemsToDelete) { DeleteItem(id); } } } The problem is that Item is null since the CreateChildControls method already has been run as asp.net needs to recreate the control hierarchy before the event fire. It uses the DummyDataSource and a list of null objects to recreate the control hierarchy: IEnumerator e = dataSource.GetEnumerator(); if (e != null) { while (e.MoveNext()) { ItemData container = new ItemData (e.Current as OrderItem); ITemplate itemTemplate = this.ItemTemplate; if (itemTemplate == null) { itemTemplate = new DefaultItemTemplate(); } itemTemplate.InstantiateIn(container); Controls.Add(container); if (dataBinding) { container.DataBind(); } counter++; } } The problem is this line: ItemData container = new ItemData (e.Current as OrderItem); When the control hierarchy is rebuilt before the event is fired, the e.Current is null, so when I try to find out which item was marked for deletion, I get 0 since the original value has been overwritten. Any suggestions on how to fix this?

    Read the article

  • How to retrieve the Description property from SettingsProperty?

    - by BadNinja
    For each item in my application's settings, I've added text to its Description Property which I want to retrieve at runtime. I'm sure I'm missing some basic logical nuance here, but everything I've tried has failed. Clearly, my understanding of what value needs to be passed to the Attributes property of the SettingsProperty class is wrong. I'm further confused by the fact that when I iterate through all they keys returned by SettingsProperty.Attributes.Keys, I can see "System.Configuration.SettingsDescriptionAttribute", but when I pass that string in as the key to the Attributes property, null is returned. Any insight into how to properly retrieve the value Description Property would be very much appreciated. Thanks. :) public void MyMethod() { SettingsPropertyCollection MyAppProperties = Properties.Settings.Default.Properties; IEnumerator enumerator = MyAppProperties.GetEnumerator(); // Iterate through all the keys to see what we have.... while (enumerator.MoveNext()) { SettingsProperty property = (SettingsProperty)enumerator.Current; ICollection myKeys = property.Attributes.Keys; foreach (object theKey in myKeys) System.Diagnostics.Debug.Print(theKey.ToString()); // One of the keys returned is: System.Configuration.SettingsDescriptionAttribute } enumerator.Reset(); while (enumerator.MoveNext()) { SettingsProperty property = (SettingsProperty)enumerator.Current; string propertyValue = property.DefaultValue.ToString(); // This fails: Null Reference string propertyDescription = property.Attributes["System.Configuration.SettingsDescriptionAttribute"].ToString(); // Do stuff with strings... } }

    Read the article

  • Creating a blocking Queue<T> in .NET?

    - by spoon16
    I have a scenario where I have multiple threads adding to a queue and multiple threads reading from the same queue. If the queue reaches a specific size all threads that are filling the queue will be blocked on add until an item is removed from the queue. The solution below is what I am using right now and my question is: How can this be improved? Is there an object that already enables this behavior in the BCL that I should be using? internal class BlockingCollection<T> : CollectionBase, IEnumerable { //todo: might be worth changing this into a proper QUEUE private AutoResetEvent _FullEvent = new AutoResetEvent(false); internal T this[int i] { get { return (T) List[i]; } } private int _MaxSize; internal int MaxSize { get { return _MaxSize; } set { _MaxSize = value; checkSize(); } } internal BlockingCollection(int maxSize) { MaxSize = maxSize; } internal void Add(T item) { Trace.WriteLine(string.Format("BlockingCollection add waiting: {0}", Thread.CurrentThread.ManagedThreadId)); _FullEvent.WaitOne(); List.Add(item); Trace.WriteLine(string.Format("BlockingCollection item added: {0}", Thread.CurrentThread.ManagedThreadId)); checkSize(); } internal void Remove(T item) { lock (List) { List.Remove(item); } Trace.WriteLine(string.Format("BlockingCollection item removed: {0}", Thread.CurrentThread.ManagedThreadId)); } protected override void OnRemoveComplete(int index, object value) { checkSize(); base.OnRemoveComplete(index, value); } internal new IEnumerator GetEnumerator() { return List.GetEnumerator(); } private void checkSize() { if (Count < MaxSize) { Trace.WriteLine(string.Format("BlockingCollection FullEvent set: {0}", Thread.CurrentThread.ManagedThreadId)); _FullEvent.Set(); } else { Trace.WriteLine(string.Format("BlockingCollection FullEvent reset: {0}", Thread.CurrentThread.ManagedThreadId)); _FullEvent.Reset(); } } }

    Read the article

  • MyContainer derived from FrameworkElement with binding support.

    - by alex2k8
    To understand how the binding works, I implemented MyContainer derived from FrameworkElement. This container allowes to set Children and adds them into the logical tree. But the binding by ElementName does not work. What can I do with MyContainer to make it work, leaving the parent as FrameworkElement? C#: public class MyContainer : FrameworkElement { public MyContainer() { Children = new List<FrameworkElement>(); } public List<FrameworkElement> Children { get; set; } protected override IEnumerator LogicalChildren { get { return Children.GetEnumerator(); } } } XAML: <Window x:Class="WpfLogicalTree.Window1" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:WpfLogicalTree" Title="Window1" Height="300" Width="300"> <StackPanel> <local:MyContainer> <local:MyContainer.Children> <TextBlock Text="Foo" x:Name="_source" /> <TextBlock Text="{Binding Path=Text, ElementName=_source}" x:Name="_target"/> </local:MyContainer.Children> </local:MyContainer> <Button Click="Button_Click">Test</Button> </StackPanel> </Window> Window1.cs private void Button_Click(object sender, RoutedEventArgs e) { MessageBox.Show(_target.Text); }

    Read the article

  • Dynamically Run IQueryable Method

    - by Micah
    Hi! I'm trying to run the Count() function of a Linq statement in an overriden Gridview function. Basically, I want to be able to assign a linq query to a gridview, and on the OnDataBound(e) event in my new extended gridview have it retrieve the count, using the IQueryable. This is where I'm at so far: protected override void OnDataBound(EventArgs e) { IEnumerable _data = null; if (this.DataSource is IQueryable) { _data = (IQueryable)this.DataSource; } System.Type dataSourceType = _data.GetType(); System.Type dataItemType = typeof(object); if (dataSourceType.HasElementType) { dataItemType = dataSourceType.GetElementType(); } else if (dataSourceType.IsGenericType) { dataItemType = dataSourceType.GetGenericArguments()[0]; } else if (_data is IEnumerable) { IEnumerator dataEnumerator = _data.GetEnumerator(); if (dataEnumerator.MoveNext() && dataEnumerator.Current != null) { dataItemType = dataEnumerator.Current.GetType(); } } Object o = Activator.CreateInstance(dataItemType); object[] objArray = new object[] { o }; RowCount = (int)dataSourceType.GetMethod("Count").Invoke(_data, objArray); Any ideas? I'm really new with working with IQueryables and Linq so I may be way off. How can I get my _data to allow me to run the Count function?

    Read the article

  • Modified map2 (without truncation of lists) in F# - how to do it idiomatically?

    - by Maciej Piechotka
    I'd like to rewrite such function into F#: zipWith' :: (a -> b -> c) -> (a -> c) -> (b -> c) -> [a] -> [b] -> [c] zipWith' _ _ h [] bs = h `map` bs zipWith' _ g _ as [] = g `map` as zipWith' f g h (a:as) (b:bs) = f a b:zipWith f g h as bs My first attempt was: let inline private map2' (xs : seq<'T>) (ys : seq<'U>) (f : 'T -> 'U -> 'S) (g : 'T -> 'S) (h : 'U -> 'S) = let xenum = xs.GetEnumerator() let yenum = ys.GetEnumerator() seq { let rec rest (zenum : IEnumerator<'A>) (i : 'A -> 'S) = seq { yield i(zenum.Current) if zenum.MoveNext() then yield! (rest zenum i) else zenum.Dispose() } let rec merge () = seq { if xenum.MoveNext() then if yenum.MoveNext() then yield (f xenum.Current yenum.Current); yield! (merge ()) else yenum.Dispose(); yield! (rest xenum g) else xenum.Dispose() if yenum.MoveNext() then yield! (rest yenum h) else yenum.Dispose() } yield! (merge ()) } However it can hardly be considered idiomatic. I heard about LazyList but I cannot find it anywhere.

    Read the article

  • Distinct() to return List<> returning Duplicates

    - by KDM
    I have a list of Filters that are passed into a webservice and I iterate over the collection and do Linq query and then add to the list of products but when I do a GroupBy and Distinct() it doesn't remove the duplicates. I am using a IEnumerable because when you use Disinct it converts it to IEnumerable. If you know how to construct this better and make my function return a type of List<Product> that would be appreciated thanks. Here is my code in C#: if (Tab == "All-Items") { List<Product> temp = new List<Product>(); List<Product> Products2 = new List<Product>(); foreach (Filter filter in Filters) { List<Product> products = (from p in db.Products where p.Discontinued == false && p.DepartmentId == qDepartment.Id join f in db.Filters on p.Id equals f.ProductId join x in db.ProductImages on p.Id equals x.ProductId where x.Dimension == "180X180" && f.Name == filter.Name /*Filter*/ select new Product { Id = p.Id, Title = p.Title, ShortDescription = p.ShortDescription, Brand = p.Brand, Model = p.Model, Image = x.Path, FriendlyUrl = p.FriendlyUrl, SellPrice = p.SellPrice, DiscountPercentage = p.DiscountPercentage, Votes = p.Votes, TotalRating = p.TotalRating }).ToList<Product>(); foreach (Product p in products) { temp.Add(p); } IEnumerable temp2 = temp.GroupBy(x => x.Id).Distinct(); IEnumerator e = temp.GetEnumerator(); while (e.MoveNext()) { Product c = e.Current as Product; Products2.Add(c); } } pf.Products = Products2;// return type must be List<Product> }

    Read the article

  • Saving a reference to a int.

    - by Scott Chamberlain
    Here is a much simplified version of what I am trying to do static void Main(string[] args) { int test = 0; int test2 = 0; Test A = new Test(ref test); Test B = new Test(ref test); Test C = new Test(ref test2); A.write(); //Writes 1 should write 1 B.write(); //Writes 1 should write 2 C.write(); //Writes 1 should write 1 Console.ReadLine(); } class Test { int _a; public Test(ref int a) { _a = a; //I loose the reference here } public void write() { var b = System.Threading.Interlocked.Increment(ref _a); Console.WriteLine(b); } } In my real code I have a int that will be incremented by many threads however where the threads a called it will not be easy to pass it the parameter that points it at the int(In the real code this is happening inside a IEnumerator). So a requirement is the reference must be made in the constructor. Also not all threads will be pointing at the same single base int so I can not use a global static int either. I know I can just box the int inside a class and pass the class around but I wanted to know if that is the correct way of doing something like this? What I think could be the correct way: static void Main(string[] args) { Holder holder = new Holder(0); Holder holder2 = new Holder(0); Test A = new Test(holder); Test B = new Test(holder); Test C = new Test(holder2); A.write(); //Writes 1 should write 1 B.write(); //Writes 2 should write 2 C.write(); //Writes 1 should write 1 Console.ReadLine(); } class Holder { public Holder(int i) { num = i; } public int num; } class Test { Holder _holder; public Test(Holder holder) { _holder = holder; } public void write() { var b = System.Threading.Interlocked.Increment(ref _holder.num); Console.WriteLine(b); } } Is there a better way than this?

    Read the article

  • How to manipulate file paths intelligently in .Net 3.0?

    - by Hamish Grubijan
    Scenario: I am maintaining a function which helps with an install - copies files from PathPart1/pending_install/PathPart2/fileName to PathPart1/PathPart2/fileName. It seems that String.Replace() and Path.Combine() do not play well together. The code is below. I added this section: // The behavior of Path.Combine is weird. See: // http://stackoverflow.com/questions/53102/why-does-path-combine-not-properly-concatenate-filenames-that-start-with-path-dir while (strDestFile.StartsWith(@"\")) { strDestFile = strDestFile.Substring(1); // Remove any leading backslashes } Debug.Assert(!Path.IsPathRooted(strDestFile), "This will make the Path.Combine(,) fail)."); in order to take care of a bug (code is sensitive to a constant @"pending_install\" vs @"pending_install" which I did not like and changed (long story, but there was a good opportunity for constant reuse). Now the whole function: //You want to uncompress only the files downloaded. Not every file in the dest directory. private void UncompressFiles() { string strSrcDir = _application.Client.TempDir; ArrayList arrFiles = new ArrayList(); GetAllCompressedFiles(ref arrFiles, strSrcDir); IEnumerator enumer = arrFiles.GetEnumerator(); while (enumer.MoveNext()) { string strDestFile = enumer.Current.ToString().Replace(_application.Client.TempDir, String.Empty); // The behavior of Path.Combine is weird. See: // http://stackoverflow.com/questions/53102/why-does-path-combine-not-properly-concatenate-filenames-that-start-with-path-dir while (strDestFile.StartsWith(@"\")) { strDestFile = strDestFile.Substring(1); // Remove any leading backslashes } Debug.Assert(!Path.IsPathRooted(strDestFile), "This will make the Path.Combine(,) fail)."); strDestFile = Path.Combine(_application.Client.BaseDir, strDestFile); strDestFile = strDestFile.Replace(Path.GetExtension(strDestFile), String.Empty); ZSharpLib.ZipExtractor.ExtractZip(enumer.Current.ToString(), strDestFile); FileUtility.DeleteFile(enumer.Current.ToString()); } } Please do not laugh at the use of ArrayList and the way it is being iterated - it was pioneered by a C++ coder during a .Net 1.1 era. I will change it. What I am interested in: what is a better way of replacing PathPart1/pending_install/PathPart2/fileName with PathPart1/PathPart2/fileName within the current code. Note that _application.Client.TempDir is just _application.Client.BaseDir + @"\pending_install". While there are many ways to improve the code, I am mainly concerned with the part which has to do with String.Replace(...) and Path.Combine(,). I do not want to make changes outside of this function. I wish Path.Combine(,) took an optional bool flag, but it does not. So ... given my constraints, how can I rework this so that it starts to sucks less? Thanks!

    Read the article

  • T-SQL generated from LINQ to SQL is missing a where clause

    - by Jimmy W
    I have extended some functionality to a DataContext object (called "CodeLookupAccessDataContext") such that the object exposes some methods to return results of LINQ to SQL queries. Here are the methods I have defined: public List<CompositeSIDMap> lookupCompositeSIDMap(int regionId, int marketId) { var sidGroupId = CompositeSIDGroupMaps.Where(x => x.RegionID.Equals(regionId) && x.MarketID.Equals(marketId)) .Select(x => x.CompositeSIDGroup); IEnumerator<int> sidGroupIdEnum = sidGroupId.GetEnumerator(); if (sidGroupIdEnum.MoveNext()) return lookupCodeInfo<CompositeSIDMap, CompositeSIDMap>(x => x.CompositeSIDGroup.Equals(sidGroupIdEnum.Current), x => x); else return null; } private List<TResult> lookupCodeInfo<T, TResult>(Func<T, bool> compLambda, Func<T, TResult> selectLambda) where T : class { System.Data.Linq.Table<T> dataTable = this.GetTable<T>(); var codeQueryResult = dataTable.Where(compLambda) .Select(selectLambda); List<TResult> codeList = new List<TResult>(); foreach (TResult row in codeQueryResult) codeList.Add(row); return codeList; } CompositeSIDGroupMap and CompositeSIDMap are both tables in our database that are represented as objects in my DataContext object. I wrote the following code to call these methods and display the T-SQL generated after calling these methods: using (CodeLookupAccessDataContext codeLookup = new CodeLookupAccessDataContext()) { codeLookup.Log = Console.Out; List<CompositeSIDMap> compList = codeLookup.lookupCompositeSIDMap(5, 3); } I got the following results in my log after invoking this code: SELECT [t0].[CompositeSIDGroup] FROM [dbo].[CompositeSIDGroupMap] AS [t0] WHERE ([t0].[RegionID] = @p0) AND ([t0].[MarketID] = @p1) -- @p0: Input Int (Size = 0; Prec = 0; Scale = 0) [5] -- @p1: Input Int (Size = 0; Prec = 0; Scale = 0) [3] -- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.30729.1 SELECT [t0].[PK_CSM], [t0].[CompositeSIDGroup], [t0].[InputSID], [t0].[TargetSID], [t0].[StartOffset], [t0].[EndOffset], [t0].[Scale] FROM [dbo].[CompositeSIDMap] AS [t0] -- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.30729.1 The first T-SQL statement contains a where clause as specified and returns one column as expected. However, the second statement is missing a where clause and returns all columns, even though I did specify which rows I wanted to view and which columns were of interest. Why is the second T-SQL statement generated the way it is, and what should I do to ensure that I filter out the data according to specifications via the T-SQL? Also note that I would prefer to keep lookupCodeInfo() and especially am interested in keeping it enabled to accept lambda functions for specifying which rows/columns to return.

    Read the article

  • How to manipulate file paths intelligently in .Net 3.5?

    - by Hamish Grubijan
    Scenario: I am maintaining a function which helps with an install - copies files from PathPart1/pending_install/PathPart2/fileName to PathPart1/PathPart2/fileName. It seems that String.Replace() and Path.Combine() do not play well together. The code is below. I added this section: // The behavior of Path.Combine is weird. See: // http://stackoverflow.com/questions/53102/why-does-path-combine-not-properly-concatenate-filenames-that-start-with-path-dir while (strDestFile.StartsWith(@"\")) { strDestFile = strDestFile.Substring(1); // Remove any leading backslashes } Debug.Assert(!Path.IsPathRooted(strDestFile), "This will make the Path.Combine(,) fail)."); in order to take care of a bug (code is sensitive to a constant @"pending_install\" vs @"pending_install" which I did not like and changed (long story, but there was a good opportunity for constant reuse). Now the whole function: //You want to uncompress only the files downloaded. Not every file in the dest directory. private void UncompressFiles() { string strSrcDir = _application.Client.TempDir; ArrayList arrFiles = new ArrayList(); GetAllCompressedFiles(ref arrFiles, strSrcDir); IEnumerator enumer = arrFiles.GetEnumerator(); while (enumer.MoveNext()) { string strDestFile = enumer.Current.ToString().Replace(_application.Client.TempDir, String.Empty); // The behavior of Path.Combine is weird. See: // http://stackoverflow.com/questions/53102/why-does-path-combine-not-properly-concatenate-filenames-that-start-with-path-dir while (strDestFile.StartsWith(@"\"")) { strDestFile = strDestFile.Substring(1); // Remove any leading backslashes } Debug.Assert(!Path.IsPathRooted(strDestFile), "This will make the Path.Combine(,) fail)."); strDestFile = Path.Combine(_application.Client.BaseDir, strDestFile); strDestFile = strDestFile.Replace(Path.GetExtension(strDestFile), String.Empty); ZSharpLib.ZipExtractor.ExtractZip(enumer.Current.ToString(), strDestFile); FileUtility.DeleteFile(enumer.Current.ToString()); } } Please do not laugh at the use of ArrayList and the way it is being iterated - it was pioneered by a C++ coder during a .Net 1.1 era. I will change it. What I am interested in: what is a better way of replacing PathPart1/pending_install/PathPart2/fileName with PathPart1/PathPart2/fileName within the current code. Note that _application.Client.TempDir is just _application.Client.BaseDir + @"\pending_install". While there are many ways to improve the code, I am mainly concerned with the part which has to do with String.Replace(...) and Path.Combine(,). I do not want to make changes outside of this function. I wish Path.Combine(,) took an optional bool flag, but it does not. So ... given my constraints, how can I rework this so that it starts to suck less?

    Read the article

  • Change HttpContext.Request.InputStream

    - by user320478
    I am getting lot of errors for HttpRequestValidationException in my event log. Is it possible to HTMLEncode all the inputs from override of ProcessRequest on web page. I have tried this but it gives context.Request.InputStream.CanWrite == false always. Is there any way to HTMLEncode all the feilds when request is made? public override void ProcessRequest(HttpContext context) { if (context.Request.InputStream.CanRead) { IEnumerator en = HttpContext.Current.Request.Form.GetEnumerator(); while (en.MoveNext()) { //Response.Write(Server.HtmlEncode(en.Current + " = " + //HttpContext.Current.Request.Form[(string)en.Current])); } long nLen = context.Request.InputStream.Length; if (nLen > 0) { string strInputStream = string.Empty; context.Request.InputStream.Position = 0; byte[] bytes = new byte[nLen]; context.Request.InputStream.Read(bytes, 0, Convert.ToInt32(nLen)); strInputStream = Encoding.Default.GetString(bytes); if (!string.IsNullOrEmpty(strInputStream)) { List<string> stream = strInputStream.Split('&').ToList<string>(); Dictionary<int, string> data = new Dictionary<int, string>(); if (stream != null && stream.Count > 0) { int index = 0; foreach (string str in stream) { if (str.Length > 3 && str.Substring(0, 3) == "txt") { string textBoxData = str; string temp = Server.HtmlEncode(str); //stream[index] = temp; data.Add(index, temp); index++; } } if (data.Count > 0) { List<string> streamNew = stream; foreach (KeyValuePair<int, string> kvp in data) { streamNew[kvp.Key] = kvp.Value; } string newStream = string.Join("", streamNew.ToArray()); byte[] bytesNew = Encoding.Default.GetBytes(newStream); if (context.Request.InputStream.CanWrite) { context.Request.InputStream.Flush(); context.Request.InputStream.Position = 0; context.Request.InputStream.Write(bytesNew, 0, bytesNew.Length); //Request.InputStream.Close(); //Request.InputStream.Dispose(); } } } } } } base.ProcessRequest(context); }

    Read the article

  • Parallelism in .NET – Part 5, Partitioning of Work

    - by Reed
    When parallelizing any routine, we start by decomposing the problem.  Once the problem is understood, we need to break our work into separate tasks, so each task can be run on a different processing element.  This process is called partitioning. Partitioning our tasks is a challenging feat.  There are opposing forces at work here: too many partitions adds overhead, too few partitions leaves processors idle.  Trying to work the perfect balance between the two extremes is the goal for which we should aim.  Luckily, the Task Parallel Library automatically handles much of this process.  However, there are situations where the default partitioning may not be appropriate, and knowledge of our routines may allow us to guide the framework to making better decisions. First off, I’d like to say that this is a more advanced topic.  It is perfectly acceptable to use the parallel constructs in the framework without considering the partitioning taking place.  The default behavior in the Task Parallel Library is very well-behaved, even for unusual work loads, and should rarely be adjusted.  I have found few situations where the default partitioning behavior in the TPL is not as good or better than my own hand-written partitioning routines, and recommend using the defaults unless there is a strong, measured, and profiled reason to avoid using them.  However, understanding partitioning, and how the TPL partitions your data, helps in understanding the proper usage of the TPL. I indirectly mentioned partitioning while discussing aggregation.  Typically, our systems will have a limited number of Processing Elements (PE), which is the terminology used for hardware capable of processing a stream of instructions.  For example, in a standard Intel i7 system, there are four processor cores, each of which has two potential hardware threads due to Hyperthreading.  This gives us a total of 8 PEs – theoretically, we can have up to eight operations occurring concurrently within our system. In order to fully exploit this power, we need to partition our work into Tasks.  A task is a simple set of instructions that can be run on a PE.  Ideally, we want to have at least one task per PE in the system, since fewer tasks means that some of our processing power will be sitting idle.  A naive implementation would be to just take our data, and partition it with one element in our collection being treated as one task.  When we loop through our collection in parallel, using this approach, we’d just process one item at a time, then reuse that thread to process the next, etc.  There’s a flaw in this approach, however.  It will tend to be slower than necessary, often slower than processing the data serially. The problem is that there is overhead associated with each task.  When we take a simple foreach loop body and implement it using the TPL, we add overhead.  First, we change the body from a simple statement to a delegate, which must be invoked.  In order to invoke the delegate on a separate thread, the delegate gets added to the ThreadPool’s current work queue, and the ThreadPool must pull this off the queue, assign it to a free thread, then execute it.  If our collection had one million elements, the overhead of trying to spawn one million tasks would destroy our performance. The answer, here, is to partition our collection into groups, and have each group of elements treated as a single task.  By adding a partitioning step, we can break our total work into small enough tasks to keep our processors busy, but large enough tasks to avoid overburdening the ThreadPool.  There are two clear, opposing goals here: Always try to keep each processor working, but also try to keep the individual partitions as large as possible. When using Parallel.For, the partitioning is always handled automatically.  At first, partitioning here seems simple.  A naive implementation would merely split the total element count up by the number of PEs in the system, and assign a chunk of data to each processor.  Many hand-written partitioning schemes work in this exactly manner.  This perfectly balanced, static partitioning scheme works very well if the amount of work is constant for each element.  However, this is rarely the case.  Often, the length of time required to process an element grows as we progress through the collection, especially if we’re doing numerical computations.  In this case, the first PEs will finish early, and sit idle waiting on the last chunks to finish.  Sometimes, work can decrease as we progress, since previous computations may be used to speed up later computations.  In this situation, the first chunks will be working far longer than the last chunks.  In order to balance the workload, many implementations create many small chunks, and reuse threads.  This adds overhead, but does provide better load balancing, which in turn improves performance. The Task Parallel Library handles this more elaborately.  Chunks are determined at runtime, and start small.  They grow slowly over time, getting larger and larger.  This tends to lead to a near optimum load balancing, even in odd cases such as increasing or decreasing workloads.  Parallel.ForEach is a bit more complicated, however. When working with a generic IEnumerable<T>, the number of items required for processing is not known in advance, and must be discovered at runtime.  In addition, since we don’t have direct access to each element, the scheduler must enumerate the collection to process it.  Since IEnumerable<T> is not thread safe, it must lock on elements as it enumerates, create temporary collections for each chunk to process, and schedule this out.  By default, it uses a partitioning method similar to the one described above.  We can see this directly by looking at the Visual Partitioning sample shipped by the Task Parallel Library team, and available as part of the Samples for Parallel Programming.  When we run the sample, with four cores and the default, Load Balancing partitioning scheme, we see this: The colored bands represent each processing core.  You can see that, when we started (at the top), we begin with very small bands of color.  As the routine progresses through the Parallel.ForEach, the chunks get larger and larger (seen by larger and larger stripes). Most of the time, this is fantastic behavior, and most likely will out perform any custom written partitioning.  However, if your routine is not scaling well, it may be due to a failure in the default partitioning to handle your specific case.  With prior knowledge about your work, it may be possible to partition data more meaningfully than the default Partitioner. There is the option to use an overload of Parallel.ForEach which takes a Partitioner<T> instance.  The Partitioner<T> class is an abstract class which allows for both static and dynamic partitioning.  By overriding Partitioner<T>.SupportsDynamicPartitions, you can specify whether a dynamic approach is available.  If not, your custom Partitioner<T> subclass would override GetPartitions(int), which returns a list of IEnumerator<T> instances.  These are then used by the Parallel class to split work up amongst processors.  When dynamic partitioning is available, GetDynamicPartitions() is used, which returns an IEnumerable<T> for each partition.  If you do decide to implement your own Partitioner<T>, keep in mind the goals and tradeoffs of different partitioning strategies, and design appropriately. The Samples for Parallel Programming project includes a ChunkPartitioner class in the ParallelExtensionsExtras project.  This provides example code for implementing your own, custom allocation strategies, including a static allocator of a given chunk size.  Although implementing your own Partitioner<T> is possible, as I mentioned above, this is rarely required or useful in practice.  The default behavior of the TPL is very good, often better than any hand written partitioning strategy.

    Read the article

  • Using IIS Logs for Performance Testing with Visual Studio

    - by Tarun Arora
    In this blog post I’ll show you how you can play back the IIS Logs in Visual Studio to automatically generate the web performance tests. You can also download the sample solution I am demo-ing in the blog post. Introduction Performance testing is as important for new websites as it is for evolving websites. If you already have your website running in production you could mine the information available in IIS logs to analyse the dense zones (most used pages) and performance test those pages rather than wasting time testing & tuning the least used pages in your application. What are IIS Logs To help with server use and analysis, IIS is integrated with several types of log files. These log file formats provide information on a range of websites and specific statistics, including Internet Protocol (IP) addresses, user information and site visits as well as dates, times and queries. If you are using IIS 7 and above you will find the log files in the following directory C:\Interpub\Logs\ Walkthrough 1. Download and Install Log Parser from the Microsoft download Centre. You should see the LogParser.dll in the install folder, the default install location is C:\Program Files (x86)\Log Parser 2.2. LogParser.dll gives us a library to query the iis log files programmatically. By the way if you haven’t used Log Parser in the past, it is a is a powerful, versatile tool that provides universal query access to text-based data such as log files, XML files and CSV files, as well as key data sources on the Windows operating system such as the Event Log, the Registry, the file system, and Active Directory. More details… 2. Create a new test project in Visual Studio. Let’s call it IISLogsToWebPerfTestDemo.   3.  Delete the UnitTest1.cs class that gets created by default. Right click the solution and add a project of type class library, name it, IISLogsToWebPerfTestEngine. Delete the default class Program.cs that gets created with the project. 4. Under the IISLogsToWebPerfTestEngine project add a reference to Microsoft.VisualStudio.QualityTools.WebTestFramework – c:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\PublicAssemblies\Microsoft.VisualStudio.QualityTools.WebTestFramework.dll LogParser also called MSUtil - c:\users\tarora\documents\visual studio 2010\Projects\IisLogsToWebPerfTest\IisLogsToWebPerfTestEngine\obj\Debug\Interop.MSUtil.dll 5. Right click IISLogsToWebPerfTestEngine project and add a new classes – IISLogReader.cs The IISLogReader class queries the iis logs using the log parser. using System; using System.Collections.Generic; using System.Text; using MSUtil; using LogQuery = MSUtil.LogQueryClassClass; using IISLogInputFormat = MSUtil.COMIISW3CInputContextClassClass; using LogRecordSet = MSUtil.ILogRecordset; using Microsoft.VisualStudio.TestTools.WebTesting; using System.Diagnostics; namespace IisLogsToWebPerfTestEngine { // By making use of log parser it is possible to query the iis log using select queries public class IISLogReader { private string _iisLogPath; public IISLogReader(string iisLogPath) { _iisLogPath = iisLogPath; } public IEnumerable<WebTestRequest> GetRequests() { LogQuery logQuery = new LogQuery(); IISLogInputFormat iisInputFormat = new IISLogInputFormat(); // currently these columns give us suffient information to construct the web test requests string query = @"SELECT s-ip, s-port, cs-method, cs-uri-stem, cs-uri-query FROM " + _iisLogPath; LogRecordSet recordSet = logQuery.Execute(query, iisInputFormat); // Apply a bit of transformation while (!recordSet.atEnd()) { ILogRecord record = recordSet.getRecord(); if (record.getValueEx("cs-method").ToString() == "GET") { string server = record.getValueEx("s-ip").ToString(); string path = record.getValueEx("cs-uri-stem").ToString(); string querystring = record.getValueEx("cs-uri-query").ToString(); StringBuilder urlBuilder = new StringBuilder(); urlBuilder.Append("http://"); urlBuilder.Append(server); urlBuilder.Append(path); if (!String.IsNullOrEmpty(querystring)) { urlBuilder.Append("?"); urlBuilder.Append(querystring); } // You could make substitutions by introducing parameterized web tests. WebTestRequest request = new WebTestRequest(urlBuilder.ToString()); Debug.WriteLine(request.UrlWithQueryString); yield return request; } recordSet.moveNext(); } Console.WriteLine(" That's it! Closing the reader"); recordSet.close(); } } }   6. Connect the dots by adding the project reference ‘IisLogsToWebPerfTestEngine’ to ‘IisLogsToWebPerfTest’. Right click the ‘IisLogsToWebPerfTest’ project and add a new class ‘WebTest1Coded.cs’ The WebTest1Coded.cs inherits from the WebTest class. By overriding the GetRequestMethod we can inject the log files to the IISLogReader class which uses Log parser to query the log file and extract the web requests to generate the web test request which is yielded back for play back when the test is run. namespace IisLogsToWebPerfTest { using System; using System.Collections.Generic; using System.Text; using Microsoft.VisualStudio.TestTools.WebTesting; using Microsoft.VisualStudio.TestTools.WebTesting.Rules; using IisLogsToWebPerfTestEngine; // This class is a coded web performance test implementation, that simply passes // the path of the iis logs to the IisLogReader class which does the heavy // lifting of reading the contents of the log file and converting them to tests. // You could have multiple such classes that inherit from WebTest and implement // GetRequestEnumerator Method and pass differnt log files for different tests. public class WebTest1Coded : WebTest { public WebTest1Coded() { this.PreAuthenticate = true; } public override IEnumerator<WebTestRequest> GetRequestEnumerator() { // substitute the highlighted path with the path of the iis log file IISLogReader reader = new IISLogReader(@"C:\Demo\iisLog1.log"); foreach (WebTestRequest request in reader.GetRequests()) { yield return request; } } } }   7. Its time to fire the test off and see the iis log playback as a web performance test. From the Test menu choose Test View Window you should be able to see the WebTest1Coded test show up. Highlight the test and press Run selection (you can also debug the test in case you face any failures during test execution). 8. Optionally you can create a Load Test by keeping ‘WebTest1Coded’ as the base test. Conclusion You have just helped your testing team, you now have become the coolest developer in your organization! Jokes apart, log parser and web performance test together allow you to save a lot of time by not having to worry about what to test or even worrying about how to record the test. If you haven’t already, download the solution from here. You can take this to the next level by using LogParser to extract the log files as part of an end of day batch to a database. See the usage trends by user this solution over a longer term and have your tests consume the web requests now stored in the database to generate the web performance tests. If you like the post, don’t forget to share … Keep RocKiNg!

    Read the article

  • Imperative vs. LINQ Performance on WP7

    - by Bil Simser
    Jesse Liberty had a nice post presenting the concepts around imperative, LINQ and fluent programming to populate a listbox. Check out the post as it’s a great example of some foundational things every .NET programmer should know. I was more interested in what the IL code that would be generated from imperative vs. LINQ was like and what the performance numbers are and how they differ. The code at the instruction level is interesting but not surprising. The imperative example with it’s creating lists and loops weighs in at about 60 instructions. .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: .method private hidebysig instance void ImperativeMethod() cil managed 2: { 3: .maxstack 3 4: .locals init ( 5: [0] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> someData, 6: [1] class [mscorlib]System.Collections.Generic.List`1<int32> inLoop, 7: [2] int32 n, 8: [3] class [mscorlib]System.Collections.Generic.IEnumerator`1<int32> CS$5$0000, 9: [4] bool CS$4$0001) 10: L_0000: nop 11: L_0001: ldc.i4.1 12: L_0002: ldc.i4.s 50 13: L_0004: call class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> [System.Core]System.Linq.Enumerable::Range(int32, int32) 14: L_0009: stloc.0 15: L_000a: newobj instance void [mscorlib]System.Collections.Generic.List`1<int32>::.ctor() 16: L_000f: stloc.1 17: L_0010: nop 18: L_0011: ldloc.0 19: L_0012: callvirt instance class [mscorlib]System.Collections.Generic.IEnumerator`1<!0> [mscorlib]System.Collections.Generic.IEnumerable`1<int32>::GetEnumerator() 20: L_0017: stloc.3 21: L_0018: br.s L_003a 22: L_001a: ldloc.3 23: L_001b: callvirt instance !0 [mscorlib]System.Collections.Generic.IEnumerator`1<int32>::get_Current() 24: L_0020: stloc.2 25: L_0021: nop 26: L_0022: ldloc.2 27: L_0023: ldc.i4.5 28: L_0024: cgt 29: L_0026: ldc.i4.0 30: L_0027: ceq 31: L_0029: stloc.s CS$4$0001 32: L_002b: ldloc.s CS$4$0001 33: L_002d: brtrue.s L_0039 34: L_002f: ldloc.1 35: L_0030: ldloc.2 36: L_0031: ldloc.2 37: L_0032: mul 38: L_0033: callvirt instance void [mscorlib]System.Collections.Generic.List`1<int32>::Add(!0) 39: L_0038: nop 40: L_0039: nop 41: L_003a: ldloc.3 42: L_003b: callvirt instance bool [mscorlib]System.Collections.IEnumerator::MoveNext() 43: L_0040: stloc.s CS$4$0001 44: L_0042: ldloc.s CS$4$0001 45: L_0044: brtrue.s L_001a 46: L_0046: leave.s L_005a 47: L_0048: ldloc.3 48: L_0049: ldnull 49: L_004a: ceq 50: L_004c: stloc.s CS$4$0001 51: L_004e: ldloc.s CS$4$0001 52: L_0050: brtrue.s L_0059 53: L_0052: ldloc.3 54: L_0053: callvirt instance void [mscorlib]System.IDisposable::Dispose() 55: L_0058: nop 56: L_0059: endfinally 57: L_005a: nop 58: L_005b: ldarg.0 59: L_005c: ldfld class [System.Windows]System.Windows.Controls.ListBox PerfTest.MainPage::LB1 60: L_0061: ldloc.1 61: L_0062: callvirt instance void [System.Windows]System.Windows.Controls.ItemsControl::set_ItemsSource(class [mscorlib]System.Collections.IEnumerable) 62: L_0067: nop 63: L_0068: ret 64: .try L_0018 to L_0048 finally handler L_0048 to L_005a 65: } 66:   67: Compare that to the IL generated for the LINQ version which has about half of the instructions and just gets the job done, no fluff. .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: .method private hidebysig instance void LINQMethod() cil managed 2: { 3: .maxstack 4 4: .locals init ( 5: [0] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> someData, 6: [1] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> queryResult) 7: L_0000: nop 8: L_0001: ldc.i4.1 9: L_0002: ldc.i4.s 50 10: L_0004: call class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> [System.Core]System.Linq.Enumerable::Range(int32, int32) 11: L_0009: stloc.0 12: L_000a: ldloc.0 13: L_000b: ldsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 14: L_0010: brtrue.s L_0025 15: L_0012: ldnull 16: L_0013: ldftn bool PerfTest.MainPage::<LINQProgramming>b__4(int32) 17: L_0019: newobj instance void [System.Core]System.Func`2<int32, bool>::.ctor(object, native int) 18: L_001e: stsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 19: L_0023: br.s L_0025 20: L_0025: ldsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 21: L_002a: call class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0> [System.Core]System.Linq.Enumerable::Where<int32>(class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0>, class [System.Core]System.Func`2<!!0, bool>) 22: L_002f: ldsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 23: L_0034: brtrue.s L_0049 24: L_0036: ldnull 25: L_0037: ldftn int32 PerfTest.MainPage::<LINQProgramming>b__5(int32) 26: L_003d: newobj instance void [System.Core]System.Func`2<int32, int32>::.ctor(object, native int) 27: L_0042: stsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 28: L_0047: br.s L_0049 29: L_0049: ldsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 30: L_004e: call class [mscorlib]System.Collections.Generic.IEnumerable`1<!!1> [System.Core]System.Linq.Enumerable::Select<int32, int32>(class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0>, class [System.Core]System.Func`2<!!0, !!1>) 31: L_0053: stloc.1 32: L_0054: ldarg.0 33: L_0055: ldfld class [System.Windows]System.Windows.Controls.ListBox PerfTest.MainPage::LB2 34: L_005a: ldloc.1 35: L_005b: callvirt instance void [System.Windows]System.Windows.Controls.ItemsControl::set_ItemsSource(class [mscorlib]System.Collections.IEnumerable) 36: L_0060: nop 37: L_0061: ret 38: } Again, not surprising here but a good indicator that you should consider using LINQ where possible. In fact if you have ReSharper installed you’ll see a squiggly (technical term) in the imperative code that says “Hey Dude, I can convert this to LINQ if you want to be c00L!” (or something like that, it’s the 2010 geek version of Clippy). What about the fluent version? As Jon correctly pointed out in the comments, when you compare the IL for the LINQ code and the IL for the fluent code it’s the same. LINQ and the fluent interface are just syntactical sugar so you decide what you’re most comfortable with. At the end of the day they’re both the same. Now onto the numbers. Again I expected the imperative version to be better performing than the LINQ version (before I saw the IL that was generated). Call it womanly instinct. A gut feel. Whatever. Some of the numbers are interesting though. For Jesse’s example of 50 items, the numbers were interesting. The imperative sample clocked in at 7ms while the LINQ version completed in 4. As the number of items went up, the elapsed time didn’t necessarily climb exponentially. At 500 items they were pretty much the same and the results were similar up to about 50,000 items. After that I tried 500,000 items where the gap widened but not by much (2.2 seconds for imperative, 2.3 for LINQ). It wasn’t until I tried 5,000,000 items where things were noticeable. Imperative filled the list in 20 seconds while LINQ took 8 seconds longer (although personally I wouldn’t suggest you put 5 million items in a list unless you want your users showing up at your door with torches and pitchforks). Here’s the table with the full results. Method/Items 50 500 5,000 50,000 500,000 5,000,000 Imperative 7ms 7ms 38ms 223ms 2230ms 20974ms LINQ/Fluent 4ms 6ms 41ms 240ms 2310ms 28731ms Like I said, at the end of the day it’s not a huge difference and you really don’t want your users waiting around for 30 seconds on a mobile device filling lists. In fact if Windows Phone 7 detects you’re taking more than 10 seconds to do any one thing, it considers the app hung and shuts it down. The results here are for Windows Phone 7 but frankly they're the same for desktop and web apps so feel free to apply it generally. From a programming perspective, choose what you like. Some LINQ statements can get pretty hairy so I usually fall back with my simple mind and write it imperatively. If you really want to impress your friends, write it old school then let ReSharper do the hard work for! Happy programming!

    Read the article

  • Passing integer lists in a sql query, best practices

    - by Artiom Chilaru
    I'm currently looking at ways to pass lists of integers in a SQL query, and try to decide which of them is best in which situation, what are the benefots of each, and what are the pitfalls, what should be avoided :) Right now I know of 3 ways that we currently use in our application. 1) Table valued parameter: Create a new Table Valued Parameter in sql server: CREATE TYPE [dbo].[TVP_INT] AS TABLE( [ID] [int] NOT NULL ) Then run the query against it: using (var conn = new SqlConnection(DataContext.GetDefaultConnectionString)) { var comm = conn.CreateCommand(); comm.CommandType = CommandType.Text; comm.CommandText = @" UPDATE DA SET [tsLastImportAttempt] = CURRENT_TIMESTAMP FROM [Account] DA JOIN @values IDs ON DA.ID = IDs.ID"; comm.Parameters.Add(new SqlParameter("values", downloadResults.Select(d => d.ID).ToDataTable()) { TypeName = "TVP_INT" }); conn.Open(); comm.ExecuteScalar(); } The major disadvantages of this method is the fact that Linq doesn't support table valued params (if you create an SP with a TVP param, linq won't be able to run it) :( 2) Convert the list to Binary and use it in Linq! This is a bit better.. Create an SP, and you can run it within linq :) To do this, the SP will have an IMAGE parameter, and we'll be using a user defined function (udf) to convert this to a table.. We currently have implementations of this function written in C++ and in assembly, both have pretty much the same performance :) Basically, each integer is represented by 4 bytes, and passed to the SP. In .NET we have an extension method that convers an IEnumerable to a byte array The extension method: public static Byte[] ToBinary(this IEnumerable intList) { return ToBinaryEnum(intList).ToArray(); } private static IEnumerable<Byte> ToBinaryEnum(IEnumerable<Int32> intList) { IEnumerator<Int32> marker = intList.GetEnumerator(); while (marker.MoveNext()) { Byte[] result = BitConverter.GetBytes(marker.Current); Array.Reverse(result); foreach (byte b in result) yield return b; } } The SP: CREATE PROCEDURE [Accounts-UpdateImportAttempts] @values IMAGE AS BEGIN UPDATE DA SET [tsLastImportAttempt] = CURRENT_TIMESTAMP FROM [Account] DA JOIN dbo.udfIntegerArray(@values, 4) IDs ON DA.ID = IDs.Value4 END And we can use it by running the SP directly, or in any linq query we need using (var db = new DataContext()) { db.Accounts_UpdateImportAttempts(downloadResults.Select(d => d.ID).ToBinary()); // or var accounts = db.Accounts .Where(a => db.udfIntegerArray(downloadResults.Select(d => d.ID).ToBinary(), 4) .Select(i => i.Value4) .Contains(a.ID)); } This method has the benefit of using compiled queries in linq (which will have the same sql definition, and query plan, so will also be cached), and can be used in SPs as well. Both these methods are theoretically unlimited, so you can pass millions of ints at a time :) 3) The simple linq .Contains() It's a more simple approach, and is perfect in simple scenarios. But is of course limited by this. using (var db = new DataContext()) { var accounts = db.Accounts .Where(a => downloadResults.Select(d => d.ID).Contains(a.ID)); } The biggest drawback of this method is that each integer in the downloadResults variable will be passed as a separate int.. In this case, the query is limited by sql (max allowed parameters in a sql query, which is a couple of thousand, if I remember right). So I'd like to ask.. What do you think is the best of these, and what other methods and approaches have I missed?

    Read the article

  • S#harp architecture mapping many to many and ado.net data services: A single resource was expected f

    - by Leg10n
    Hi, I'm developing an application that reads data from a SQL server database (migrated from a legacy DB) with nHibernate and s#arp architecture through ADO.NET Data services. I'm trying to map a many-to-many relationship. I have a Error class: public class Error { public virtual int ERROR_ID { get; set; } public virtual string ERROR_CODE { get; set; } public virtual string DESCRIPTION { get; set; } public virtual IList<ErrorGroup> GROUPS { get; protected set; } } And then I have the error group class: public class ErrorGroup { public virtual int ERROR_GROUP_ID {get; set;} public virtual string ERROR_GROUP_NAME { get; set; } public virtual string DESCRIPTION { get; set; } public virtual IList<Error> ERRORS { get; protected set; } } And the overrides: public class ErrorGroupOverride : IAutoMappingOverride<ErrorGroup> { public void Override(AutoMapping<ErrorGroup> mapping) { mapping.Table("ERROR_GROUP"); mapping.Id(x => x.ERROR_GROUP_ID, "ERROR_GROUP_ID"); mapping.IgnoreProperty(x => x.Id); mapping.HasManyToMany<Error>(x => x.Error) .Table("ERROR_GROUP_LINK") .ParentKeyColumn("ERROR_GROUP_ID") .ChildKeyColumn("ERROR_ID").Inverse().AsBag(); } } public class ErrorOverride : IAutoMappingOverride<Error> { public void Override(AutoMapping<Error> mapping) { mapping.Table("ERROR"); mapping.Id(x => x.ERROR_ID, "ERROR_ID"); mapping.IgnoreProperty(x => x.Id); mapping.HasManyToMany<ErrorGroup>(x => x.GROUPS) .Table("ERROR_GROUP_LINK") .ParentKeyColumn("ERROR_ID") .ChildKeyColumn("ERROR_GROUP_ID").AsBag(); } } When I view the Data service in the browser like: http://localhost:1905/DataService.svc/Errors it shows the list of errors with no problems, and using it like http://localhost:1905/DataService.svc/Errors(123) works too. The Problem When I want to see the Errors in a group or the groups form an error, like: "http://localhost:1905/DataService.svc/Errors(123)?$expand=GROUPS" I get the XML Document, but the browser says: The XML page cannot be displayed Cannot view XML input using XSL style sheet. Please correct the error and then click the Refresh button, or try again later. -------------------------------------------------------------------------------- Only one top level element is allowed in an XML document. Error processing resource 'http://localhost:1905/DataServic... <error xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"> -^ I view the sourcecode, and I get the data. However it comes with an exception: <error xmlns="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"> <code></code> <message xml:lang="en-US">An error occurred while processing this request.</message> <innererror xmlns="xmlns"> <message>A single resource was expected for the result, but multiple resources were found.</message> <type>System.InvalidOperationException</type> <stacktrace> at System.Data.Services.Serializers.Serializer.WriteRequest(IEnumerator queryResults, Boolean hasMoved)&#xD; at System.Data.Services.ResponseBodyWriter.Write(Stream stream)</stacktrace> </innererror> </error> A I missing something??? Where does this error come from?

    Read the article

  • Thread locking issue with FileHelpers between calling engine.ReadNext() method and readign engine.Li

    - by Rad
    I use producer/consumer pattern with FileHelpers library to import data from one file (which can be huge) using multiple threads. Each thread is supposed to import a chunk of that file and I would like to use LineNumber property of the FileHelperAsyncEngine instance that is reading the file as primary key for imported rows. FileHelperAsyncEngine internally has an IEnumerator IEnumerable.GetEnumerator(); which is iterated over using engine.ReadNext() method. That internally sets LineNumber property (which seems is not thread safe). Consumers will have Producers assiciated with them that will supply DataTables to Consumers which will consume them via SqlBulkLoad class which will use IDataReader implementation which will iterate over a collection of DataTables which are internal to a Consumer instance. Each instance of will have one SqlBulkCopy instance associate with it. I have thread locking issue. Below is how I create multiple Producer threads. I start each thread afterwords. Produce method on a producer instance will be called determining which chunk of input file will be processed. It seems that engine.LineNumber is not thread safe and I doesn't import a proper LineNumber in the database. It seems that by the time engine.LineNumber is read some other thread called engine.ReadNext() and changed engine.LineNumber property. I don't want to lock the loop that is supposed to process a chunk of input file because I loose parallelism. How to reorganize the code to solve this threading issue? Thanks Rad for (int i = 0; i < numberOfProducerThreads; i++) DataConsumer consumer = dataConsumers[i]; //create a new producer DataProducer producer = new DataProducer(); //consumer has already being created consumer.Subscribe(producer); FileHelperAsyncEngine orderDetailEngine = new FileHelperAsyncEngine(recordType); orderDetailEngine.Options.RecordCondition.Condition = RecordCondition.ExcludeIfBegins; orderDetailEngine.Options.RecordCondition.Selector = STR_ORDR; int skipLines = i * numberOfBufferTablesToProcess * DataBuffer.MaxBufferRowCount; Thread newThread = new Thread(() => { producer.Produce(consumer, inputFilePath, lineNumberFieldName, dict, orderDetailEngine, skipLines, numberOfBufferTablesToProcess); consumer.SetEndOfData(producer); }); producerThreads.Add(newThread); thread.Start();} public void Produce(DataConsumer consumer, string inputFilePath, string lineNumberFieldName, Dictionary<string, object> dict, FileHelperAsyncEngine engine, int skipLines, int numberOfBufferTablesToProcess) { lock (this) { engine.Options.IgnoreFirstLines = skipLines; engine.BeginReadFile(inputFilePath); } int rowCount = 1; DataTable buffer = consumer.BufferDataTable; while (engine.ReadNext() != null) { lock (this) { dict[lineNumberFieldName] = engine.LineNumber; buffer.Rows.Add(ObjectFieldsDataRowMapper.MapObjectFieldsToDataRow(engine.LastRecord, dict, buffer)); if (rowCount % DataBuffer.MaxBufferRowCount == 0) { consumer.AddBufferDataTable(buffer); buffer = consumer.BufferDataTable; } if (rowCount % (numberOfBufferTablesToProcess * DataBuffer.MaxBufferRowCount) == 0) { break; } rowCount++; } } if (buffer.Rows.Count > 0) { consumer.AddBufferDataTable(buffer); } engine.Close(); }

    Read the article

  • Error: '<method1>' and '<method2>' cannot overload each other

    - by serhio
    I override a list in VB. In C# the code compiles and looks like this: class MyObjectCollection : IList { ... /// <summary> /// Gets or sets the element at the specified index. /// </summary> public MyObject this[int index] { get { return (MyObject)innerArray[index]; } set { innerArray[index] = value; } } ... } in VB.NET I transform: Class MyObjectCollection Implements IList ... ''' <summary> ' ''' Gets or sets the element at the specified index. ' ''' </summary> ' Default Public Overrides Property Item(ByVal index As Integer) As MyObject Get Return DirectCast(innerArray(index), MyObject) End Get Set(ByVal value As MyObject) innerArray(index) = value End Set End Property ... End Class Error: 'Public Overrides Default Property Item(index As Integer) As MyObject' and 'Public Default Property Item(index As Integer) As Object' cannot overload each other because they differ only by return types Whole collection class in C# public class MyObjectCollection : IList { private ArrayList innerArray; public MyObjectCollection() { innerArray = new ArrayList(); } public int Count { get { return innerArray.Count; } } public bool IsFixedSize { get { return false; } } public bool IsReadOnly { get { return false; } } public bool IsSynchronized { get { return false; } } object ICollection.SyncRoot { get { return null; } } public MyObject this[int index] { get { return (MyObject)innerArray[index]; } set { innerArray[index] = value; } } public int Add(MyObject value) { int index = innerArray.Add(value); return index; } public void AddRange(MyObject[] array) { innerArray.AddRange(array); } public void Clear() { innerArray.Clear(); } public bool Contains(MyObject item) { return innerArray.Contains(item); } public bool Contains(string name) { foreach (MyObject spec in innerArray) if (spec.Name == name) return true; return false; } public void CopyTo(MyObject[] array) { innerArray.CopyTo(array); } public void CopyTo(MyObject[] array, int index) { innerArray.CopyTo(array, index); } public IEnumerator GetEnumerator() { return innerArray.GetEnumerator(); } public int IndexOf(MyObject value) { return innerArray.IndexOf(value); } public int IndexOf(string name) { int i = 0; foreach (MyObject spec in innerArray) { if (spec.Name == name) return i; i++; } return -1; } public void Insert(int index, MyObject value) { innerArray.Insert(index, value); } public void Remove(MyObject obj) { innerArray.Remove(obj); } public void Remove(string name) { int index = IndexOf(name); RemoveAt(index); } public void RemoveAt(int index) { innerArray.RemoveAt(index); } public MyObject[] ToArray() { return (MyObject[])innerArray.ToArray(typeof(MyObject)); } #region Explicit interface implementations for ICollection and IList void ICollection.CopyTo(Array array, int index) { CopyTo((MyObject[])array, index); } int IList.Add(object value) { return Add((MyObject)value); } bool IList.Contains(object obj) { return Contains((MyObject)obj); } object IList.this[int index] { get { return ((MyObjectCollection)this)[index]; } set { ((MyObjectCollection)this)[index] = (MyObject)value; } } int IList.IndexOf(object obj) { return IndexOf((MyObject)obj); } void IList.Insert(int index, object value) { Insert(index, (MyObject)value); } void IList.Remove(object value) { Remove((MyObject)value); } #endregion }

    Read the article

< Previous Page | 1 2 3 4 5  | Next Page >