Search Results

Search found 676 results on 28 pages for 'mappings'.

Page 4/28 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Oracle Enterprise Manager 11g Application Management Suite for Oracle E-Business Suite Now Available

    - by chung.wu
    Oracle Enterprise Manager 11g Application Management Suite for Oracle E-Business Suite is now available. The management suite combines features that were available in the standalone Application Management Pack for Oracle E-Business Suite and Application Change Management Pack for Oracle E-Business Suite with Oracle's market leading real user monitoring and configuration management capabilities to provide the most complete solution for managing E-Business Suite applications. The features that were available in the standalone management packs are now packaged into Oracle E-Business Suite Plug-in 4.0, which is now fully certified with Oracle Enterprise Manager 11g Grid Control. This latest plug-in extends Grid Control with E-Business Suite specific management capabilities and features enhanced change management support. In addition, this latest release of Application Management Suite for Oracle E-Business Suite also includes numerous real user monitoring improvements. General Enhancements This new release of Application Management Suite for Oracle E-Business Suite offers the following key capabilities: Oracle Enterprise Manager 11g Grid Control Support: All components of the management suite are certified with Oracle Enterprise Manager 11g Grid Control. Built-in Diagnostic Ability: This release has numerous major enhancements that provide the necessary intelligence to determine if the product has been installed and configured correctly. There are diagnostics for Discovery, Cloning, and User Monitoring that will validate if the appropriate patches, privileges, setups, and profile options have been configured. This feature improves the setup and configuration time to be up and operational. Lifecycle Automation Enhancements Application Management Suite for Oracle E-Business Suite provides a centralized view to monitor and orchestrate changes (both functional and technical) across multiple Oracle E-Business Suite systems. In this latest release, it provides even more control and flexibility in managing Oracle E-Business Suite changes.Change Management: Built-in Diagnostic Ability: This latest release has numerous major enhancements that provide the necessary intelligence to determine if the product has been installed and configured correctly. There are diagnostics for Customization Manager, Patch Manager, and Setup Manager that will validate if the appropriate patches, privileges, setups, and profile options have been configured. Enhancing the setup time and configuration time to be up and operational. Customization Manager: Multi-Node Custom Application Registration: This feature automates the process of registering and validating custom products/applications on every node in a multi-node EBS system. Public/Private File Source Mappings and E-Business Suite Mappings: File Source Mappings & E-Business Suite Mappings can be created and marked as public or private. Only the creator/owner can define/edit his/her own mappings. Users can use public mappings, but cannot edit or change settings. Test Checkout Command for Versions: This feature allows you to test/verify checkout commands at the version level within the File Source Mapping page. Prerequisite Patch Validation: You can specify prerequisite patches for Customization packages and for Release 12 Oracle E-Business Suite packages. Destination Path Population: You can now automatically populate the Destination Path for common file types during package construction. OAF File Type Support: Ability to package Oracle Application Framework (OAF) customizations and deploy them across multiple Oracle E-Business Suite instances. Extended PLL Support: Ability to distinguish between different types of PLLs (that is, Report and Forms PLL files). Providing better granularity when managing PLL objects. Enhanced Standard Checker: Provides greater and more comprehensive list of coding standards that are verified during the package build process (for example, File Driver exceptions, Java checks, XML checks, SQL checks, etc.) HTML Package Readme: The package Readme is in HTML format and includes the file listing. Advanced Package Search Capabilities: The ability to utilize more criteria within the advanced search package (that is, Public, Last Updated by, Files Source Mapping, and E-Business Suite Mapping). Enhanced Package Build Notifications: More detailed information on the results of a package build process. Better, more detailed troubleshooting guidance in the event of build failures. Patch Manager:Staged Patches: Ability to run Patch Manager with no external internet access. Customer can download Oracle E-Business Suite patches into a shared location for Patch Manager to access and apply. Supports highly secured production environments that prohibit external internet connections. Support for Superseded Patches: Automatic check for superseded patches. Allows users to easily add superseded patches into the Patch Run. More comprehensive and correct Patch Runs. Removes many manual and laborious tasks, frees up Apps DBAs for higher value-added tasks. Automatic Primary Node Identification: Users can now specify which is the "primary node" (that is, which node hosts the Shared APPL_TOP) during the Patch Run interview process, available for Release 12 only. Setup Manager:Preview Extract Results: Ability to execute an extract in "proof mode", and examine the query results, to determine accuracy. Used in conjunction with the "where" clause in Advanced Filtering. This feature can provide better and more accurate fine tuning of extracts. Use Uploaded Extracts in New Projects: Ability to incorporate uploaded extracts in new projects via new LOV fields in package construction. Leverages the Setup Manager repository to access extracts that have been uploaded. Allows customer to reuse uploaded extracts to provision new instances. Re-use Existing (that is, historical) Extracts in New Projects: Ability to incorporate existing extracts in new projects via new LOV fields in package construction. Leverages the Setup Manager repository to access point-in-time extracts (snapshots) of configuration data. Allows customer to reuse existing extracts to provision new instances. Allows comparative historical reporting of identical APIs, executed at different times. Support for BR100 formats: Setup Manager can now automatically produce reports in the BR100 format. Native support for industry standard formats. Concurrent Manager API Support: General Foundation now provides an API for management of "Concurrent Manager" configuration data. Ability to migrate Concurrent Managers from one instance to another. Complete the setup once and never again; no need to redefine the Concurrent Managers. User Experience Management Enhancements Application Management Suite for Oracle E-Business Suite includes comprehensive capabilities for user experience management, supporting both real user and synthetic transaction based user monitoring techniques. This latest release of the management suite include numerous improvements in real user monitoring support. KPI Reporting: Configurable decimal precision for reporting of KPI and SLA values. By default, this is two decimal places. KPI numerator and denominator information. It is now possible to view KPI numerator and denominator information, and to have it available for export. Content Messages Processing: The application content message facility has been extended to distinguish between notifications and errors. In addition, it is now possible to specify matching rules that can be used to refine a selected content message specification. Note this is only available for XPath-based (not literal) message contents. Data Export: The Enriched data export facility has been significantly enhanced to provide improved performance and accessibility. Data is no longer stored within XML-based files, but is now stored within the Reporter database. However, it is possible to configure an alternative database for its storage. Access to the export data is through SQL. With this enhancement, it is now more easy than ever to use tools such as Oracle Business Intelligence Enterprise Edition to analyze correlated data collected from real user monitoring and business data sources. SNMP Traps for System Events: Previously, the SNMP notification facility was only available for KPI alerting. It has now been extended to support the generation of SNMP traps for system events, to provide external health monitoring of the RUEI system processes. Performance Improvements: Enhanced dashboard performance. The dashboard facility has been enhanced to support the parallel loading of items. In the case of dashboards containing large numbers of items, this can result in a significant performance improvement. Initial period selection within Data Browser and reports. The User Preferences facility has been extended to allow you to specify the initial period selection when first entering the Data Browser or reports facility. The default is the last hour. Performance improvement when querying the all sessions group. Technical Prerequisites, Download and Installation Instructions The Linux version of the plug-in is available for immediate download from Oracle Technology Network or Oracle eDelivery. For specific information regarding technical prerequisites, product download and installation, please refer to My Oracle Support note 1224313.1. The following certifications are in progress: * Oracle Solaris on SPARC (64-bit) (9, 10) * HP-UX Itanium (11.23, 11.31) * HP-UX PA-RISC (64-bit) (11.23, 11.31) * IBM AIX on Power Systems (64-bit) (5.3, 6.1)

    Read the article

  • Where are gnome keyboard shortcuts stored

    - by Evan Plaice
    I usually load a new version for every release to keep my OS fresh while preserving the last version on another partition as backup. I also employ a lot of custom key mappings (IMHO, the defaults suck). I've figured out how to transfer the majority of my configuration across systems so far but I can't figure out where the custom keyboard shortcut mappings are stored. Does anybody know where gnome puts these? Are there separate user config (Ie. ~/) and system config (Ie. /etc) files?

    Read the article

  • Cisco 881 losing NAT NVI translation config after reload

    - by MasterRoot24
    This is a weird one, so I'll try to explain in as much detail as I can so I'm giving the whole picture. As I've mentioned in my other questions, I'm in the process of setting up a new Cisco 881 as my WAN router and NAT firewall. I'm facing an issue where NAT NVI rules that I have configured are not enabled after a reload of the router, regardless of the fact that they are present in the startup-config. In order to clarify this a little, here's the relevant section of my current running-config: Router1#show running-config | include nat source ip nat source list 1 interface FastEthernet4 overload ip nat source list 2 interface FastEthernet4 overload ip nat source static tcp 192.168.1.x 1723 interface FastEthernet4 1723 ip nat source static tcp 192.168.1.x 80 interface FastEthernet4 80 ip nat source static tcp 192.168.1.x 443 interface FastEthernet4 443 ip nat source static tcp 192.168.1.x 25 interface FastEthernet4 25 ip nat source static tcp 192.168.1.x 587 interface FastEthernet4 587 ip nat source static tcp 192.168.1.x 143 interface FastEthernet4 143 ip nat source static tcp 192.168.1.x 993 interface FastEthernet4 993 ...and here's the mappings 'in action': Router1#show ip nat nvi translations | include --- tcp <WAN IP>:25 192.168.1.x:25 --- --- tcp <WAN IP>:80 192.168.1.x:80 --- --- tcp <WAN IP>:143 192.168.1.x:143 --- --- tcp <WAN IP>:443 192.168.1.x:443 --- --- tcp <WAN IP>:587 192.168.1.x:587 --- --- tcp <WAN IP>:993 192.168.1.x:993 --- --- tcp <WAN IP>:1723 192.168.1.x:1723 --- --- ...and here's proof that the mappings are saved to startup-config: Router1#show startup-config | include nat source ip nat source list 1 interface FastEthernet4 overload ip nat source list 2 interface FastEthernet4 overload ip nat source static tcp 192.168.1.x 1723 interface FastEthernet4 1723 ip nat source static tcp 192.168.1.x 80 interface FastEthernet4 80 ip nat source static tcp 192.168.1.x 443 interface FastEthernet4 443 ip nat source static tcp 192.168.1.x 25 interface FastEthernet4 25 ip nat source static tcp 192.168.1.x 587 interface FastEthernet4 587 ip nat source static tcp 192.168.1.x 143 interface FastEthernet4 143 ip nat source static tcp 192.168.1.x 993 interface FastEthernet4 993 However, look what happens after a reload of the router: Router1#reload Proceed with reload? [confirm]Connection to router closed by remote host. Connection to router closed. $ ssh joe@router Password: Authorized Access only Router1>en Password: Router1#show ip nat nvi translations | include --- Router1# Router1#show ip nat translations | include --- tcp 188.222.181.173:25 192.168.1.2:25 --- --- tcp 188.222.181.173:80 192.168.1.2:80 --- --- tcp 188.222.181.173:143 192.168.1.2:143 --- --- tcp 188.222.181.173:443 192.168.1.2:443 --- --- tcp 188.222.181.173:587 192.168.1.2:587 --- --- tcp 188.222.181.173:993 192.168.1.2:993 --- --- tcp 188.222.181.173:1723 192.168.1.2:1723 --- --- Router1# Here's proof that the running config should have the mappings setup as NVI: Router1#show running-config | include nat source ip nat source list 1 interface FastEthernet4 overload ip nat source list 2 interface FastEthernet4 overload ip nat source static tcp 192.168.1.2 1723 interface FastEthernet4 1723 ip nat source static tcp 192.168.1.2 80 interface FastEthernet4 80 ip nat source static tcp 192.168.1.2 443 interface FastEthernet4 443 ip nat source static tcp 192.168.1.2 25 interface FastEthernet4 25 ip nat source static tcp 192.168.1.2 587 interface FastEthernet4 587 ip nat source static tcp 192.168.1.2 143 interface FastEthernet4 143 ip nat source static tcp 192.168.1.2 993 interface FastEthernet4 993 At this point, the mappings are not working (inbound connections from WAN on the HTTP/IMAP fail). I presume that this is because my interfaces are using ip nat enable for use with NVI mappings, instead of ip nat inside/outside. So, I re-apply the mappings: Router1#configure ter Router1#configure terminal Enter configuration commands, one per line. End with CNTL/Z. Router1(config)#ip nat source static tcp 192.168.1.2 1723 interface FastEthernet4 1723 Router1(config)#ip nat source static tcp 192.168.1.2 80 interface FastEthernet4 80 Router1(config)#ip nat source static tcp 192.168.1.2 443 interface FastEthernet4 443 Router1(config)#ip nat source static tcp 192.168.1.2 25 interface FastEthernet4 25 Router1(config)#ip nat source static tcp 192.168.1.2 587 interface FastEthernet4 587 Router1(config)#ip nat source static tcp 192.168.1.2 143 interface FastEthernet4 143 Router1(config)#ip nat source static tcp 192.168.1.2 993 interface FastEthernet4 993 Router1(config)#end ... then they show up correctly: Router1#show ip nat nvi translations | include --- tcp 188.222.181.173:25 192.168.1.2:25 --- --- tcp 188.222.181.173:80 192.168.1.2:80 --- --- tcp 188.222.181.173:143 192.168.1.2:143 --- --- tcp 188.222.181.173:443 192.168.1.2:443 --- --- tcp 188.222.181.173:587 192.168.1.2:587 --- --- tcp 188.222.181.173:993 192.168.1.2:993 --- --- tcp 188.222.181.173:1723 192.168.1.2:1723 --- --- Router1# Router1#show ip nat translations | include --- Router1# ... furthermore, now from both WAN and LAN, the services mapped above now work until the next reload. All of the above is required every time I have to reload the router (which is all too often at the moment :-( ). Here's my full current config: ! ! Last configuration change at 20:20:15 UTC Tue Dec 11 2012 by xxx version 15.2 no service pad service timestamps debug datetime msec service timestamps log datetime msec service password-encryption ! hostname xxx ! boot-start-marker boot-end-marker ! ! enable secret 4 xxxx ! aaa new-model ! ! aaa authentication login local_auth local ! ! ! ! ! aaa session-id common ! memory-size iomem 10 ! crypto pki trustpoint TP-self-signed-xxx enrollment selfsigned subject-name cn=IOS-Self-Signed-Certificate-xxx revocation-check none rsakeypair TP-self-signed-xxx ! ! crypto pki certificate chain TP-self-signed-xxx certificate self-signed 01 xxx quit ip gratuitous-arps ip auth-proxy max-login-attempts 5 ip admission max-login-attempts 5 ! ! ! ! ! ip domain list dmz.xxx.local ip domain list xxx.local ip domain name dmz.xxx.local ip name-server 192.168.1.x ip cef login block-for 3 attempts 3 within 3 no ipv6 cef ! ! multilink bundle-name authenticated license udi pid CISCO881-SEC-K9 sn xxx ! ! username admin privilege 15 secret 4 xxx username joe secret 4 xxx ! ! ! ! ! ip ssh time-out 60 ! ! ! ! ! ! ! ! ! interface FastEthernet0 no ip address ! interface FastEthernet1 no ip address ! interface FastEthernet2 no ip address ! interface FastEthernet3 switchport access vlan 2 no ip address ! interface FastEthernet4 ip address dhcp ip access-group 101 in ip nat enable duplex auto speed auto ! interface Vlan1 ip address 192.168.1.x 255.255.255.0 no ip redirects no ip unreachables no ip proxy-arp ip nat enable ! interface Vlan2 ip address 192.168.0.x 255.255.255.0 ! ip forward-protocol nd ip http server ip http access-class 1 ip http authentication local ip http secure-server ! ! ip nat source list 1 interface FastEthernet4 overload ip nat source list 2 interface FastEthernet4 overload ip nat source static tcp 192.168.1.x 1723 interface FastEthernet4 1723 ! ! access-list 1 permit 192.168.0.0 0.0.0.255 access-list 2 permit 192.168.1.0 0.0.0.255 access-list 101 permit udp 193.x.x.0 0.0.0.255 any eq 5060 access-list 101 deny udp any any eq 5060 access-list 101 permit ip any any ! ! ! ! control-plane ! ! banner motd Authorized Access only ! line con 0 exec-timeout 15 0 login authentication local_auth line aux 0 exec-timeout 15 0 login authentication local_auth line vty 0 4 access-class 2 in login authentication local_auth length 0 transport input all ! ! end I'd appreciate it greatly if anyone can help me find out why these mappings are not setup correctly using the saved config after a reload.

    Read the article

  • Use a Free Tool to Edit, Delete, or Restore the Default Hosts File in Windows

    - by Lori Kaufman
    The hosts file in Windows contains mappings of IP addresses to host names, like an address book for your computer. Your PC uses IP addresses to find websites, so it needs to translate the host names into IP addresses to access websites. When you enter a host name in a browser to visit a website, that host name is looked up in DNS servers to find the IP address. If you enter IP addresses and host names for websites you visit often, these websites will load faster, because the hosts file is loaded into memory when Windows start and overrides DNS server queries, creating a shortcut to the sites. Because the hosts file is checked first, you can also use it to block websites from tracking your activities on the internet, as well as block ads, banners, third-party cookies, and other intrusive elements on webpages. Your computer has its own host address, known as its “localhost” address. The IP address for localhost is 127.0.0.1. To block sites and website elements, you can enter the host name for the unwanted site in the hosts file and associate it with the localhost address. Blocking ads and other undesirable webpage elements, can also speed up the loading of websites. You don’t have to wait for all those items to load. The default hosts file that comes with Windows does not contain any host name/IP address mappings. You can add mappings manually, such as the IP address 74.125.224.72 for www.google.com. As an example of blocking an ad server website, you can enter the following line in your hosts file to block doubleclick.net from serving you ads. How To Use USB Drives With the Nexus 7 and Other Android Devices Why Does 64-Bit Windows Need a Separate “Program Files (x86)” Folder? Why Your Android Phone Isn’t Getting Operating System Updates and What You Can Do About It

    Read the article

  • Hibernate - Problem in parsing mapping file (.hbm.xml)

    - by Yatendra Goel
    I am new to Hibernate. I have an exception while running an Hibernate-based application. The exception is as follows: 16 [main] INFO org.hibernate.cfg.Environment - Hibernate 3.3.2.GA 16 [main] INFO org.hibernate.cfg.Environment - hibernate.properties not found 16 [main] INFO org.hibernate.cfg.Environment - Bytecode provider name : javassist 31 [main] INFO org.hibernate.cfg.Environment - using JDK 1.4 java.sql.Timestamp handling 94 [main] INFO org.hibernate.cfg.Configuration - configuring from resource: /hibernate.cfg.xml 94 [main] INFO org.hibernate.cfg.Configuration - Configuration resource: /hibernate.cfg.xml 219 [main] INFO org.hibernate.cfg.Configuration - Reading mappings from resource : app/data/City.hbm.xml 266 [main] ERROR org.hibernate.util.XMLHelper - Error parsing XML: XML InputStream(12) Attribute "coloumn" must be declared for element type "property". 266 [main] ERROR org.hibernate.util.XMLHelper - Error parsing XML: XML InputStream(13) Attribute "coloumn" must be declared for element type "property". 266 [main] ERROR org.hibernate.util.XMLHelper - Error parsing XML: XML InputStream(14) Attribute "coloumn" must be declared for element type "property". It seems that it is not finding coloumn attribute of the property element in the mappings file but my mappings file do have the coloumn attribute. Below is the mappings file (City.hbm.xml) <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"> <hibernate-mapping package="app.data"> <class name="City" table="CITY"> <id column="CITY_ID" name="cityId"> <generator class="native"/> </id> <property name="cityDisplyaName" coloumn="CITY_DISPLAY_NAME" /> <property coloumn="CITY_MEANINGFUL_NAME" name="cityMeaningFulName" /> <property coloumn="CITY_URL" name="cityURL" /> </class> </hibernate-mapping>

    Read the article

  • Oracle BI Server Modeling, Part 1- Designing a Query Factory

    - by bob.ertl(at)oracle.com
      Welcome to Oracle BI Development's BI Foundation blog, focused on helping you get the most value from your Oracle Business Intelligence Enterprise Edition (BI EE) platform deployments.  In my first series of posts, I plan to show developers the concepts and best practices for modeling in the Common Enterprise Information Model (CEIM), the semantic layer of Oracle BI EE.  In this segment, I will lay the groundwork for the modeling concepts.  First, I will cover the big picture of how the BI Server fits into the system, and how the CEIM controls the query processing. Oracle BI EE Query Cycle The purpose of the Oracle BI Server is to bridge the gap between the presentation services and the data sources.  There are typically a variety of data sources in a variety of technologies: relational, normalized transaction systems; relational star-schema data warehouses and marts; multidimensional analytic cubes and financial applications; flat files, Excel files, XML files, and so on. Business datasets can reside in a single type of source, or, most of the time, are spread across various types of sources. Presentation services users are generally business people who need to be able to query that set of sources without any knowledge of technologies, schemas, or how sources are organized in their company. They think of business analysis in terms of measures with specific calculations, hierarchical dimensions for breaking those measures down, and detailed reports of the business transactions themselves.  Most of them create queries without knowing it, by picking a dashboard page and some filters.  Others create their own analysis by selecting metrics and dimensional attributes, and possibly creating additional calculations. The BI Server bridges that gap from simple business terms to technical physical queries by exposing just the business focused measures and dimensional attributes that business people can use in their analyses and dashboards.   After they make their selections and start the analysis, the BI Server plans the best way to query the data sources, writes the optimized sequence of physical queries to those sources, post-processes the results, and presents them to the client as a single result set suitable for tables, pivots and charts. The CEIM is a model that controls the processing of the BI Server.  It provides the subject areas that presentation services exposes for business users to select simplified metrics and dimensional attributes for their analysis.  It models the mappings to the physical data access, the calculations and logical transformations, and the data access security rules.  The CEIM consists of metadata stored in the repository, authored by developers using the Administration Tool client.     Presentation services and other query clients create their queries in BI EE's SQL-92 language, called Logical SQL or LSQL.  The API simply uses ODBC or JDBC to pass the query to the BI Server.  Presentation services writes the LSQL query in terms of the simplified objects presented to the users.  The BI Server creates a query plan, and rewrites the LSQL into fully-detailed SQL or other languages suitable for querying the physical sources.  For example, the LSQL on the left below was rewritten into the physical SQL for an Oracle 11g database on the right. Logical SQL   Physical SQL SELECT "D0 Time"."T02 Per Name Month" saw_0, "D4 Product"."P01  Product" saw_1, "F2 Units"."2-01  Billed Qty  (Sum All)" saw_2 FROM "Sample Sales" ORDER BY saw_0, saw_1       WITH SAWITH0 AS ( select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,      sum(T835.Units) as c3, T879.Prod_Key as c4 from      Product T879 /* A05 Product */ ,      Time_Mth T986 /* A08 Time Mth */ ,      FactsRev T835 /* A11 Revenue (Billed Time Join) */ where ( T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid) group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month ) select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3 from SAWITH0 order by c1, c2   Probably everybody reading this blog can write SQL or MDX.  However, the trick in designing the CEIM is that you are modeling a query-generation factory.  Rather than hand-crafting individual queries, you model behavior and relationships, thus configuring the BI Server machinery to manufacture millions of different queries in response to random user requests.  This mass production requires a different mindset and approach than when you are designing individual SQL statements in tools such as Oracle SQL Developer, Oracle Hyperion Interactive Reporting (formerly Brio), or Oracle BI Publisher.   The Structure of the Common Enterprise Information Model (CEIM) The CEIM has a unique structure specifically for modeling the relationships and behaviors that fill the gap from logical user requests to physical data source queries and back to the result.  The model divides the functionality into three specialized layers, called Presentation, Business Model and Mapping, and Physical, as shown below. Presentation services clients can generally only see the presentation layer, and the objects in the presentation layer are normally the only ones used in the LSQL request.  When a request comes into the BI Server from presentation services or another client, the relationships and objects in the model allow the BI Server to select the appropriate data sources, create a query plan, and generate the physical queries.  That's the left to right flow in the diagram below.  When the results come back from the data source queries, the right to left relationships in the model show how to transform the results and perform any final calculations and functions that could not be pushed down to the databases.   Business Model Think of the business model as the heart of the CEIM you are designing.  This is where you define the analytic behavior seen by the users, and the superset library of metric and dimension objects available to the user community as a whole.  It also provides the baseline business-friendly names and user-readable dictionary.  For these reasons, it is often called the "logical" model--it is a virtual database schema that persists no data, but can be queried as if it is a database. The business model always has a dimensional shape (more on this in future posts), and its simple shape and terminology hides the complexity of the source data models. Besides hiding complexity and normalizing terminology, this layer adds most of the analytic value, as well.  This is where you define the rich, dimensional behavior of the metrics and complex business calculations, as well as the conformed dimensions and hierarchies.  It contributes to the ease of use for business users, since the dimensional metric definitions apply in any context of filters and drill-downs, and the conformed dimensions enable dashboard-wide filters and guided analysis links that bring context along from one page to the next.  The conformed dimensions also provide a key to hiding the complexity of many sources, including federation of different databases, behind the simple business model. Note that the expression language in this layer is LSQL, so that any expression can be rewritten into any data source's query language at run time.  This is important for federation, where a given logical object can map to several different physical objects in different databases.  It is also important to portability of the CEIM to different database brands, which is a key requirement for Oracle's BI Applications products. Your requirements process with your user community will mostly affect the business model.  This is where you will define most of the things they specifically ask for, such as metric definitions.  For this reason, many of the best-practice methodologies of our consulting partners start with the high-level definition of this layer. Physical Model The physical model connects the business model that meets your users' requirements to the reality of the data sources you have available. In the query factory analogy, think of the physical layer as the bill of materials for generating physical queries.  Every schema, table, column, join, cube, hierarchy, etc., that will appear in any physical query manufactured at run time must be modeled here at design time. Each physical data source will have its own physical model, or "database" object in the CEIM.  The shape of each physical model matches the shape of its physical source.  In other words, if the source is normalized relational, the physical model will mimic that normalized shape.  If it is a hypercube, the physical model will have a hypercube shape.  If it is a flat file, it will have a denormalized tabular shape. To aid in query optimization, the physical layer also tracks the specifics of the database brand and release.  This allows the BI Server to make the most of each physical source's distinct capabilities, writing queries in its syntax, and using its specific functions. This allows the BI Server to push processing work as deep as possible into the physical source, which minimizes data movement and takes full advantage of the database's own optimizer.  For most data sources, native APIs are used to further optimize performance and functionality. The value of having a distinct separation between the logical (business) and physical models is encapsulation of the physical characteristics.  This encapsulation is another enabler of packaged BI applications and federation.  It is also key to hiding the complex shapes and relationships in the physical sources from the end users.  Consider a routine drill-down in the business model: physically, it can require a drill-through where the first query is MDX to a multidimensional cube, followed by the drill-down query in SQL to a normalized relational database.  The only difference from the user's point of view is that the 2nd query added a more detailed dimension level column - everything else was the same. Mappings Within the Business Model and Mapping Layer, the mappings provide the binding from each logical column and join in the dimensional business model, to each of the objects that can provide its data in the physical layer.  When there is more than one option for a physical source, rules in the mappings are applied to the query context to determine which of the data sources should be hit, and how to combine their results if more than one is used.  These rules specify aggregate navigation, vertical partitioning (fragmentation), and horizontal partitioning, any of which can be federated across multiple, heterogeneous sources.  These mappings are usually the most sophisticated part of the CEIM. Presentation You might think of the presentation layer as a set of very simple relational-like views into the business model.  Over ODBC/JDBC, they present a relational catalog consisting of databases, tables and columns.  For business users, presentation services interprets these as subject areas, folders and columns, respectively.  (Note that in 10g, subject areas were called presentation catalogs in the CEIM.  In this blog, I will stick to 11g terminology.)  Generally speaking, presentation services and other clients can query only these objects (there are exceptions for certain clients such as BI Publisher and Essbase Studio). The purpose of the presentation layer is to specialize the business model for different categories of users.  Based on a user's role, they will be restricted to specific subject areas, tables and columns for security.  The breakdown of the model into multiple subject areas organizes the content for users, and subjects superfluous to a particular business role can be hidden from that set of users.  Customized names and descriptions can be used to override the business model names for a specific audience.  Variables in the object names can be used for localization. For these reasons, you are better off thinking of the tables in the presentation layer as folders than as strict relational tables.  The real semantics of tables and how they function is in the business model, and any grouping of columns can be included in any table in the presentation layer.  In 11g, an LSQL query can also span multiple presentation subject areas, as long as they map to the same business model. Other Model Objects There are some objects that apply to multiple layers.  These include security-related objects, such as application roles, users, data filters, and query limits (governors).  There are also variables you can use in parameters and expressions, and initialization blocks for loading their initial values on a static or user session basis.  Finally, there are Multi-User Development (MUD) projects for developers to check out units of work, and objects for the marketing feature used by our packaged customer relationship management (CRM) software.   The Query Factory At this point, you should have a grasp on the query factory concept.  When developing the CEIM model, you are configuring the BI Server to automatically manufacture millions of queries in response to random user requests. You do this by defining the analytic behavior in the business model, mapping that to the physical data sources, and exposing it through the presentation layer's role-based subject areas. While configuring mass production requires a different mindset than when you hand-craft individual SQL or MDX statements, it builds on the modeling and query concepts you already understand. The following posts in this series will walk through the CEIM modeling concepts and best practices in detail.  We will initially review dimensional concepts so you can understand the business model, and then present a pattern-based approach to learning the mappings from a variety of physical schema shapes and deployments to the dimensional model.  Along the way, we will also present the dimensional calculation template, and learn how to configure the many additivity patterns.

    Read the article

  • NATUPnP IStaticPortMappingCollection::Add returns HRESULT 0x80040214

    - by dauphic
    I'm attempting to use Microsoft's NATUPnP library to create a port mapping. Unfortunately, I'm unable to. My router supports UPnP, it is enabled, and I can create mappings with other (pre-built) applications. I can also read existing mappings. When I call the Add function, it fails and returns HRESULT 0x80040214 (which is undocumented). I have absolutely no idea what might be going on. IStaticPortMapping* newMapping = NULL; hr = portMappings->Add(27015, L"TCP", 27015, L"MYCOMPUTER", VARIANT_TRUE, L"TestMapping", &newMapping); You can see the reference for this function at http://msdn.microsoft.com/en-us/library/aa366148%28v=VS.85%29.aspx. The portMappings object is, of course, valid; I use it earlier in the code to enumerate over the existing mappings. If anyone has experience with this and might know what my problem is, I'd appreciate any help.

    Read the article

  • How to configure hibernate-tools with maven to generate hibernate.cfg.xml, *.hbm.xml, POJOs and DAOs

    - by mmm
    Hi, can any one tell me how to force maven to precede mapping .hbm.xml files in the automatically generated hibernate.cfg.xml file with package path? My general idea is, I'd like to use hibernate-tools via maven to generate the persistence layer for my application. So, I need the hibernate.cfg.xml, then all my_table_names.hbm.xml and at the end the POJO's generated. Yet, the hbm2java goal won't work as I put *.hbm.xml files into the src/main/resources/package/path/ folder but hbm2cfgxml specifies the mapping files only by table name, i.e.: <mapping resource="MyTableName.hbm.xml" /> So the big question is: how can I configure hbm2cfgxml so that hibernate.cfg.xml looks like below: <mapping resource="package/path/MyTableName.hbm.xml" /> My pom.xml looks like this at the moment: <plugin> <groupId>org.codehaus.mojo</groupId> <artifactId>hibernate3-maven-plugin</artifactId> <version>2.2</version> <executions> <execution> <id>hbm2cfgxml</id> <phase>generate-sources</phase> <goals> <goal>hbm2cfgxml</goal> </goals> <inherited>false</inherited> <configuration> <components> <component> <name>hbm2cfgxml</name> <implemetation>jdbcconfiguration</implementation> <outputDirectory>src/main/resources/</outputDirectory> </component> </components> <componentProperties> <packagename>package.path</packageName> <configurationFile>src/main/resources/hibernate.cfg.xml</configurationFile> </componentProperties> </configuration> </execution> </executions> </plugin> And then the second question: is there a way to tell maven to copy resources to the target folder before executing hbm2java? At the moment I'm using mvn clean resources:resources generate-sources for that, but there must be a better way. Thanks for any help. Update: @Pascal: Thank you for your help. The path to mappings works fine now, I don't know what was wrong before, though. Maybe there is some issue with writing to hibernate.cfg.xml while reading database config from it (though the file gets updated). I've deleted the file hibernate.cfg.xml, replaced it with database.properties and run the goals hbm2cfgxml and hbm2hbmxml. I also don't use the outputDirectory nor configurationfile in those goals anymore. As a result the files hibernate.cfg.xml and all *.hbm.xml are being generated into my target/hibernate3/generated-mappings/ folder, which is the default value. Then I updated the hbm2java goal with the following: <componentProperties> <packagename>package.name</packagename> <configurationfile>target/hibernate3/generated-mappings/hibernate.cfg.xml</configurationfile> </componentProperties> But then I get the following: [INFO] --- hibernate3-maven-plugin:2.2:hbm2java (hbm2java) @ project.persistence --- [INFO] using configuration task. [INFO] Configuration XML file loaded: file:/C:/Documents%20and%20Settings/mmm/workspace/project.persistence/target/hibernate3/generated-mappings/hibernate.cfg.xml 12:15:17,484 INFO org.hibernate.cfg.Configuration - configuring from url: file:/C:/Documents%20and%20Settings/mmm/workspace/project.persistence/target/hibernate3/generated-mappings/hibernate.cfg.xml 12:15:19,046 INFO org.hibernate.cfg.Configuration - Reading mappings from resource : package.name/Messages.hbm.xml [INFO] ------------------------------------------------------------------------ [INFO] BUILD FAILURE [INFO] ------------------------------------------------------------------------ [ERROR] Failed to execute goal org.codehaus.mojo:hibernate3-maven-plugin:2.2:hbm2java (hbm2java) on project project.persistence: Execution hbm2java of goal org.codehaus.mojo:hibernate3-maven-plugin:2.2:hbm2java failed: resource: package/name/Messages.hbm.xml not found How do I deal with that? Of course I could add: <outputDirectory>src/main/resources/package/name</outputDirectory> to the hbm2hbmxml goal, but I think this is not the best approach, or is it? Is there a way to keep all the generated code and resources away from the src/ folder? I assume, the goal of this approach is not to generate any sources into my src/main/java or /resources folder, but to keep the generated code in the target folder. As I generally agree with this point of view, I'd like to continue with that eventually executing hbm2dao and packaging the project to be used as a generated persistence layer component from the business layer. Is this also what you meant?

    Read the article

  • Active Record's SessionScope in BL or DL ?

    - by StupidDeveloper
    Imagine that I have 3 projects: DL, BL and WS. DL contains Active Record implementation with all the mappings, BL has some logic (calling various DL methods) and finally WebService project exposes some BL methods (using some DTO mappings). The questions are: Should I put all data related methods in DL or is it allowed to use SessionScope in BL ? There are some complicated stuff that is right now done on BL. Should/can BL operate on classes-mappings of the Active record? The question is where should be the translation to DTO be made (at the BL level? ) ?

    Read the article

  • LLBLGen Pro v3.0 has been released!

    After two years of hard work we released v3.0 of LLBLGen Pro today! V3.0 comes with a completely new designer which has been developed from the ground up for .NET 3.5 and higher. Below I'll briefly mention some highlights of this new release: Entity Framework (v1 & v4) support NHibernate support (hbm.xml mappings & FluentNHibernate mappings) Linq to SQL support Allows both Model first and Database first development, or a mixture of both .NET 4.0 support Model views Grouping...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • ODI 12c's Mapping Designer - Combining Flow Based and Expression Based Mapping

    - by Madhu Nair
    post by David Allan ODI is renowned for its declarative designer and minimal expression based paradigm. The new ODI 12c release has extended this even further to provide an extended declarative mapping designer. The ODI 12c mapper is a fusion of ODI's new declarative designer with the familiar flow based designer while retaining ODI’s key differentiators of: Minimal expression based definition, The ability to incrementally design an interface and to extract/load data from any combination of sources, and most importantly Backed by ODI’s extensible knowledge module framework. The declarative nature of the product has been extended to include an extensible library of common components that can be used to easily build simple to complex data integration solutions. Big usability improvements through consistent interactions of components and concepts all constructed around the familiar knowledge module framework provide the utmost flexibility. Here is a little taster: So what is a mapping? A mapping comprises of a logical design and at least one physical design, it may have many. A mapping can have many targets, of any technology and can be arbitrarily complex. You can build reusable mappings and use them in other mappings or other reusable mappings. In the example below all of the information from an Oracle bonus table and a bonus file are joined with an Oracle employees table before being written to a target. Some things that are cool include the one-click expression cross referencing so you can easily see what's used where within the design. The logical design in a mapping describes what you want to accomplish  (see the animated GIF here illustrating how the above mapping was designed) . The physical design lets you configure how it is to be accomplished. So you could have one logical design that is realized as an initial load in one physical design and as an incremental load in another. In the physical design below we can customize how the mapping is accomplished by picking Knowledge Modules, in ODI 12c you can pick multiple nodes (on logical or physical) and see common properties. This is useful as we can quickly compare property values across objects - below we can see knowledge modules settings on the access points between execution units side by side, in the example one table is retrieved via database links and the other is an external table. In the logical design I had selected an append mode for the integration type, so by default the IKM on the target will choose the most suitable/default IKM - which in this case is an in-built Oracle Insert IKM (see image below). This supports insert and select hints for the Oracle database (the ANSI SQL Insert IKM does not support these), so by default you will get direct path inserts with Oracle on this statement. In ODI 12c, the mapper is just that, a mapper. Design your mapping, write to multiple targets, the targets can be in the same data server, in different data servers or in totally different technologies - it does not matter. ODI 12c will derive and generate a plan that you can use or customize with knowledge modules. Some of the use cases which are greatly simplified include multiple heterogeneous targets, multi target inserts for Oracle and writing of XML. Let's switch it up now and look at a slightly different example to illustrate expression reuse. In ODI you can define reusable expressions using user functions. These can be reused across mappings and the implementations specialized per technology. So you can have common expressions across Oracle, SQL Server, Hive etc. shielding the design from the physical aspects of the generated language. Another way to reuse is within a mapping itself. In ODI 12c expressions can be defined and reused within a mapping. Rather than replicating the expression text in larger expressions you can decompose into smaller snippets, below you can see UNIT_TAX AMOUNT has been defined and is used in two downstream target columns - its used in the TOTAL_TAX_AMOUNT plus its used in the UNIT_TAX_AMOUNT (a recording of the calculation).  You can see the columns that the expressions depend on (upstream) and the columns the expression is used in (downstream) highlighted within the mapper. Also multi selecting attributes is a convenient way to see what's being used where, below I have selected the TOTAL_TAX_AMOUNT in the target datastore and the UNIT_TAX_AMOUNT in UNIT_CALC. You can now see many expressions at once now and understand much more at the once time without needlessly clicking around and memorizing information. Our mantra during development was to keep it simple and make the tool more powerful and do even more for the user. The development team was a fusion of many teams from Oracle Warehouse Builder, Sunopsis and BEA Aqualogic, debating and perfecting the mapper in ODI 12c. This was quite a project from supporting the capabilities of ODI in 11g to building the flow based mapping tool to support the future. I hope this was a useful insight, there is so much more to come on this topic, this is just a preview of much more that you will see of the mapper in ODI 12c.

    Read the article

  • Reference Data Management and Master Data: Are Relation ?

    - by Mala Narasimharajan
    Submitted By:  Rahul Kamath  Oracle Data Relationship Management (DRM) has always been extremely powerful as an Enterprise Master Data Management (MDM) solution that can help manage changes to master data in a way that influences enterprise structure, whether it be mastering chart of accounts to enable financial transformation, or revamping organization structures to drive business transformation and operational efficiencies, or restructuring sales territories to enable equitable distribution of leads to sales teams following the acquisition of new products, or adding additional cost centers to enable fine grain control over expenses. Increasingly, DRM is also being utilized by Oracle customers for reference data management, an emerging solution space that deserves some explanation. What is reference data? How does it relate to Master Data? Reference data is a close cousin of master data. While master data is challenged with problems of unique identification, may be more rapidly changing, requires consensus building across stakeholders and lends structure to business transactions, reference data is simpler, more slowly changing, but has semantic content that is used to categorize or group other information assets – including master data – and gives them contextual value. In fact, the creation of a new master data element may require new reference data to be created. For example, when a European company acquires a US business, chances are that they will now need to adapt their product line taxonomy to include a new category to describe the newly acquired US product line. Further, the cross-border transaction will also result in a revised geo hierarchy. The addition of new products represents changes to master data while changes to product categories and geo hierarchy are examples of reference data changes.1 The following table contains an illustrative list of examples of reference data by type. Reference data types may include types and codes, business taxonomies, complex relationships & cross-domain mappings or standards. Types & Codes Taxonomies Relationships / Mappings Standards Transaction Codes Industry Classification Categories and Codes, e.g., North America Industry Classification System (NAICS) Product / Segment; Product / Geo Calendars (e.g., Gregorian, Fiscal, Manufacturing, Retail, ISO8601) Lookup Tables (e.g., Gender, Marital Status, etc.) Product Categories City à State à Postal Codes Currency Codes (e.g., ISO) Status Codes Sales Territories (e.g., Geo, Industry Verticals, Named Accounts, Federal/State/Local/Defense) Customer / Market Segment; Business Unit / Channel Country Codes (e.g., ISO 3166, UN) Role Codes Market Segments Country Codes / Currency Codes / Financial Accounts Date/Time, Time Zones (e.g., ISO 8601) Domain Values Universal Standard Products and Services Classification (UNSPSC), eCl@ss International Classification of Diseases (ICD) e.g., ICD9 à IC10 mappings Tax Rates Why manage reference data? Reference data carries contextual value and meaning and therefore its use can drive business logic that helps execute a business process, create a desired application behavior or provide meaningful segmentation to analyze transaction data. Further, mapping reference data often requires human judgment. Sample Use Cases of Reference Data Management Healthcare: Diagnostic Codes The reference data challenges in the healthcare industry offer a case in point. Part of being HIPAA compliant requires medical practitioners to transition diagnosis codes from ICD-9 to ICD-10, a medical coding scheme used to classify diseases, signs and symptoms, causes, etc. The transition to ICD-10 has a significant impact on business processes, procedures, contracts, and IT systems. Since both code sets ICD-9 and ICD-10 offer diagnosis codes of very different levels of granularity, human judgment is required to map ICD-9 codes to ICD-10. The process requires collaboration and consensus building among stakeholders much in the same way as does master data management. Moreover, to build reports to understand utilization, frequency and quality of diagnoses, medical practitioners may need to “cross-walk” mappings -- either forward to ICD-10 or backwards to ICD-9 depending upon the reporting time horizon. Spend Management: Product, Service & Supplier Codes Similarly, as an enterprise looks to rationalize suppliers and leverage their spend, conforming supplier codes, as well as product and service codes requires supporting multiple classification schemes that may include industry standards (e.g., UNSPSC, eCl@ss) or enterprise taxonomies. Aberdeen Group estimates that 90% of companies rely on spreadsheets and manual reviews to aggregate, classify and analyze spend data, and that data management activities account for 12-15% of the sourcing cycle and consume 30-50% of a commodity manager’s time. Creating a common map across the extended enterprise to rationalize codes across procurement, accounts payable, general ledger, credit card, procurement card (P-card) as well as ACH and bank systems can cut sourcing costs, improve compliance, lower inventory stock, and free up talent to focus on value added tasks. Change Management: Point of Sales Transaction Codes and Product Codes In the specialty finance industry, enterprises are confronted with usury laws – governed at the state and local level – that regulate financial product innovation as it relates to consumer loans, check cashing and pawn lending. To comply, it is important to demonstrate that transactions booked at the point of sale are posted against valid product codes that were on offer at the time of booking the sale. Since new products are being released at a steady stream, it is important to ensure timely and accurate mapping of point-of-sale transaction codes with the appropriate product and GL codes to comply with the changing regulations. Multi-National Companies: Industry Classification Schemes As companies grow and expand across geographies, a typical challenge they encounter with reference data represents reconciling various versions of industry classification schemes in use across nations. While the United States, Mexico and Canada conform to the North American Industry Classification System (NAICS) standard, European Union countries choose different variants of the NACE industry classification scheme. Multi-national companies must manage the individual national NACE schemes and reconcile the differences across countries. Enterprises must invest in a reference data change management application to address the challenge of distributing reference data changes to downstream applications and assess which applications were impacted by a given change. References 1 Master Data versus Reference Data, Malcolm Chisholm, April 1, 2006.

    Read the article

  • What are safe keys to remap in vim?

    - by Weeble
    So far I've been trying to use Vim in as vanilla a configuration as possible, so as to save myself hassle when moving between machines. However, there are a few things I'd really like to bind keys, such as to shorten "_diwP which I use often to delete the word under the cursor and replace it with one from the clipboard. Are there any particular keys that are conventionally reserved for user-defined mappings? The point of this question is mostly that I would like to avoid hassle later on when I decide to install some plugin or take my configuration files to vim on another OS and find that my key mappings clash with something else.

    Read the article

  • Mapping Help in the EDM Designer

    The mapping details window that displays the mappings between an entity and database table(s) is pretty straightforward. When you join two related tables in a Table Per Hierarchy inheritance things can get a little confusing when it comes to the mappings for inherited properties. But did you know that the Mapping Details window uses the Properties window to help? Here are two entities in a TPH hierarchy. Customer inherits Contact. Customer maps to a Customers table which uses ContactID as...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • What are safe keys to remap in vim?

    - by Weeble
    So far I've been trying to use Vim in as vanilla a configuration as possible, so as to save myself hassle when moving between machines. However, there are a few things I'd really like to bind keys, such as to shorten "_diwP which I use often to delete the word under the cursor and replace it with one from the clipboard. Are there any particular keys that are conventionally reserved for user-defined mappings? The point of this question is mostly that I would like to avoid hassle later on when I decide to install some plugin or take my configuration files to vim on another OS and find that my key mappings clash with something else.

    Read the article

  • LLBLGen Pro v3.0 has been released!

    After two years of hard work we released v3.0 of LLBLGen Pro today! V3.0 comes with a completely new designer which has been developed from the ground up for .NET 3.5 and higher. Below I'll briefly mention some highlights of this new release: Entity Framework (v1 & v4) support NHibernate support (hbm.xml mappings & FluentNHibernate mappings) Linq to SQL support Allows both Model first and Database first development, or a mixture of both .NET 4.0 support Model views Grouping...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • script to list user's mapped drive not giving results or error

    - by user223631
    We are in the process of migrating two file servers to a new server. We have mapped drives via user group in group policy. Many users have manually mapped drives and we need to find these mappings. I have created a PowerShell script to run that remotely get the drive mappings. It works on most computers but there are many that are not returning results and I am not getting any error messages. Each workstation on the list creates a text file and the ones that are not returning results have no text in the files. I can ping these machines. If the machine is not turned on, it does come up error message that the RPC server is not available. My domain user account is in a group that is in the local admin account. I have no idea why some are not working. Here is the script. # Load list into variable, which will become an array of strings If( !(Test-Path C:\Scripts)) { New-Item C:\Scripts -ItemType directory } If( !(Test-Path C:\Scripts\Computers)) { New-Item C:\Scripts\Computers -ItemType directory } If( !(Test-Path C:\Scripts\Workstations.txt)) { "No Workstations found. Please enter a list of Workstations under Workstation.txt"; Return} If( !(Test-Path C:\Scripts\KnownMaps.txt)) { "No Mapping to check against. Please enter a list of Known Mappings under KnownMaps.txt"; Return} $computerlist = Get-Content C:\Scripts\Workstations.txt # Loop through each item in the array (each computer in the list of computers we loaded into the variable) ForEach ($computer in $computerlist) { $diskObject = Get-WmiObject Win32_MappedLogicalDisk -computerName $computer | Select Name,ProviderName | Out-File C:\Tester\Computers\$computer.txt -width 200 } Select-String -Path C:\Tester\Computers\*.txt -Pattern cmsfiles | Out-File C:\Tester\Drivemaps-all.txt $strings = Get-Content C:\Tester\KnownMaps.txt Select-String -Path C:\Tester\Drivemaps-all.txt -Pattern $strings -notmatch -simplematch | Out-File C:\Tester\Drivemaps-nonmatch.txt -Width 200 Select-String -Path C:\Tester\Drivemaps-all.txt -Pattern $strings -simplematch | Out-File C:\Tester\Drivemaps-match.txt -Width 200

    Read the article

  • Custom Tags and cfimport

    - by cf_PhillipSenn
    Do Custom Tags work with mappings? I'm trying not to have to address the CustomTags folder as a relative address. I've tried: <cfset this.mappings["/CT"] = Expandpath("/myProjects/Project1/CustomTags")> inside of Application.cfc and then <cfimport prefix="tag" taglib="/CT"> inside of my page, but it doesn't. It says: Cannot import the tag library specified by /CT. The following error was encountered: C:\Inetpub\wwwroot\CT. Ensure that you have specified a valid tag library.

    Read the article

  • informatica mapping examples

    - by user223541
    i want to devlope generic mapping for handling data bases errors in Informatica. Can any one give me any examples of such mappings ? Also can u suggent me some resources for informatica samples mappings (livw webiste or links)

    Read the article

  • ODI 12c - Parallel Table Load

    - by David Allan
    In this post we will look at the ODI 12c capability of parallel table load from the aspect of the mapping developer and the knowledge module developer - two quite different viewpoints. This is about parallel table loading which isn't to be confused with loading multiple targets per se. It supports the ability for ODI mappings to be executed concurrently especially if there is an overlap of the datastores that they access, so any temporary resources created may be uniquely constructed by ODI. Temporary objects can be anything basically - common examples are staging tables, indexes, views, directories - anything in the ETL to help the data integration flow do its job. In ODI 11g users found a few workarounds (such as changing the technology prefixes - see here) to build unique temporary names but it was more of a challenge in error cases. ODI 12c mappings by default operate exactly as they did in ODI 11g with respect to these temporary names (this is also true for upgraded interfaces and scenarios) but can be configured to support the uniqueness capabilities. We will look at this feature from two aspects; that of a mapping developer and that of a developer (of procedures or KMs). 1. Firstly as a Mapping Developer..... 1.1 Control when uniqueness is enabled A new property is available to set unique name generation on/off. When unique names have been enabled for a mapping, all temporary names used by the collection and integration objects will be generated using unique names. This property is presented as a check-box in the Property Inspector for a deployment specification. 1.2 Handle cleanup after successful execution Provided that all temporary objects that are created have a corresponding drop statement then all of the temporary objects should be removed during a successful execution. This should be the case with the KMs developed by Oracle. 1.3 Handle cleanup after unsuccessful execution If an execution failed in ODI 11g then temporary tables would have been left around and cleaned up in the subsequent run. In ODI 12c, KM tasks can now have a cleanup-type task which is executed even after a failure in the main tasks. These cleanup tasks will be executed even on failure if the property 'Remove Temporary Objects on Error' is set. If the agent was to crash and not be able to execute this task, then there is an ODI tool (OdiRemoveTemporaryObjects here) you can invoke to cleanup the tables - it supports date ranges and the like. That's all there is to it from the aspect of the mapping developer it's much, much simpler and straightforward. You can now execute the same mapping concurrently or execute many mappings using the same resource concurrently without worrying about conflict.  2. Secondly as a Procedure or KM Developer..... In the ODI Operator the executed code shows the actual name that is generated - you can also see the runtime code prior to execution (introduced in 11.1.1.7), for example below in the code type I selected 'Pre-executed Code' this lets you see the code about to be processed and you can also see the executed code (which is the default view). References to the collection (C$) and integration (I$) names will be automatically made unique by using the odiRef APIs - these objects will have unique names whenever concurrency has been enabled for a particular mapping deployment specification. It's also possible to use name uniqueness functions in procedures and your own KMs. 2.1 New uniqueness tags  You can also make your own temporary objects have unique names by explicitly including either %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG in the name passed to calls to the odiRef APIs. Such names would always include the unique tag regardless of the concurrency setting. To illustrate, let's look at the getObjectName() method. At <% expansion time, this API will append %UNIQUE_STEP_TAG to the object name for collection and integration tables. The name parameter passed to this API may contain  %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG. This API always generates to the <? version of getObjectName() At execution time this API will replace the unique tag macros with a string that is unique to the current execution scope. The returned name will conform to the name-length restriction for the target technology, and its pattern for the unique tag. Any necessary truncation will be performed against the initial name for the object and any other fixed text that may have been specified. Examples are:- <?=odiRef.getObjectName("L", "%COL_PRFEMP%UNIQUE_STEP_TAG", "D")?> SCOTT.C$_EABH7QI1BR1EQI3M76PG9SIMBQQ <?=odiRef.getObjectName("L", "EMP%UNIQUE_STEP_TAG_AE", "D")?> SCOTT.EMPAO96Q2JEKO0FTHQP77TMSAIOSR_ Methods which have this kind of support include getFrom, getTableName, getTable, getObjectShortName and getTemporaryIndex. There are APIs for retrieving this tag info also, the getInfo API has been extended with the following properties (the UNIQUE* properties can also be used in ODI procedures); UNIQUE_STEP_TAG - Returns the unique value for the current step scope, e.g. 5rvmd8hOIy7OU2o1FhsF61 Note that this will be a different value for each loop-iteration when the step is in a loop. UNIQUE_SESSION_TAG - Returns the unique value for the current session scope, e.g. 6N38vXLrgjwUwT5MseHHY9 IS_CONCURRENT - Returns info about the current mapping, will return 0 or 1 (only in % phase) GUID_SRC_SET - Returns the UUID for the current source set/execution unit (only in % phase) The getPop API has been extended with the IS_CONCURRENT property which returns info about an mapping, will return 0 or 1.  2.2 Additional APIs Some new APIs are provided including getFormattedName which will allow KM developers to construct a name from fixed-text or ODI symbols that can be optionally truncate to a max length and use a specific encoding for the unique tag. It has syntax getFormattedName(String pName[, String pTechnologyCode]) This API is available at both the % and the ? phase.  The format string can contain the ODI prefixes that are available for getObjectName(), e.g. %INT_PRF, %COL_PRF, %ERR_PRF, %IDX_PRF alongwith %UNIQUE_STEP_TAG or %UNIQUE_SESSION_TAG. The latter tags will be expanded into a unique string according to the specified technology. Calls to this API within the same execution context are guaranteed to return the same unique name provided that the same parameters are passed to the call. e.g. <%=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG_AE", "ORACLE")%> <?=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG_AE", "ORACLE")?> C$_MY_TAB7wDiBe80vBog1auacS1xB_AE <?=odiRef.getFormattedName("%COL_PRFMY_TABLE%UNIQUE_STEP_TAG.log", "FILE")?> C2_MY_TAB7wDiBe80vBog1auacS1xB.log 2.3 Name length generation  As part of name generation, the length of the generated name will be compared with the maximum length for the target technology and truncation may need to be applied. When a unique tag is included in the generated string it is important that uniqueness is not compromised by truncation of the unique tag. When a unique tag is NOT part of the generated name, the name will be truncated by removing characters from the end - this is the existing 11g algorithm. When a unique tag is included, the algorithm will first truncate the <postfix> and if necessary  the <prefix>. It is recommended that users will ensure there is sufficient uniqueness in the <prefix> section to ensure uniqueness of the final resultant name. SUMMARY To summarize, ODI 12c make it much simpler to utilize mappings in concurrent cases and provides APIs for helping developing any procedures or custom knowledge modules in such a way they can be used in highly concurrent, parallel scenarios. 

    Read the article

  • Start a Mapping or Process Flow from OWB Browser

    - by Dong Ruirong
    Basically, we start a Mapping or Process Flow from Oracle Warehouse Builder (OWB) Design Client. But actually we can also start a Mapping or Process Flow from OWB Browser. This paper will introduce the Start Report first and then introduce how to start/rerun a Mapping or Process Flow from OWB Browser. Start Report Start Report is used to start an execution of a Mapping or Process Flow. So there are two kinds of Start Report: Mapping Start Report (See Figure 1) and Process Flow Start Report (See Figure 2). Start Report shows the Mapping or Process Flow identification properties, including latest deployment and latest execution, lists all execution parameters for the Mapping or Process Flow, which were specified by the latest deployment, and assigns parameter default values from the latest deployment specification. You can do a couple of things from Start Report: Sort execution parameters on name, category. Table 1 lists all parameters of a Mapping. Table 2 lists all parameters of a Process Flow. Change values of any input parameter where permitted. For some parameters, selection lists are provided. For example, Mapping’s parameter Audit Level has a selection list. Reset all parameter settings to their default values. Apply basic validation to parameter values before starting an execution. Start the Mapping or Process Flow, which means it is executed immediately. Navigate to Deployment Report for latest deployment details of the Mapping or Process Flow. Navigate to Execution Job Report for latest execution of current Mapping or Process Flow Link to on-link help Warehouse Report Page, Deployment Report, Execution Report, Execution Schedule Report and Execution Summary Report. Figure 1 Mapping Start Report Table 1 Execution Parameters and default values for a Mapping Category Name Mode Input Value System Audit Level In Error Details System Bulk Size In 1000 System Commit Frequency In 1000 System EXECUTE_RESUME_TASK In FALSE System FORCE_RESUME_OPTION In FALSE System Max No of Errors In 50 System NUMBER_OF_TIMES_TO_RETRY In 2 System Operating Mode In Set Based Fail Over to Row Based System PARALLEL_LEVEL In 0 System Procedure Name In main System Purge Group In WB Figure 2 Process Flow Start Report Table 2 Execution Parameters and default values for a Process Flow Category Name Mode Input Value System EVAL_LOCATION In   System Item Key In-Out   System Item Type In PFPKG_1 Start a Mapping or Process Flow To navigate to Start Report, it’s better to login OWB Browser with Control Center option; if not, after logging in OWB Browser, go to Control Center first. Then you can follow the ways introduced in this section to navigate to Start Report. One more thing you need to pay attention to is that you are not allowed to deploy any Mappings and Process Flows from OWB Browser as it’s not supported. So it’s necessary to deploy the Mappings and Process Flows first before starting them from OWB Browser. If you have deployed a Mapping or Process Flow but have not started it, please navigate from Object Summary Report or Deployment Schedule Report to Start Report. 1. Navigating from Object Summary Report to Start Report Open the Object Summary Report to see all deployed Mappings and Process Flows. Click the Mapping Name or Process Flow Name link to see its Deployment Report. Select the Start link in the Available Reports tab for the given Mapping or Process Flow to display a Start Report for the Mapping or Process Flow. The execution parameters have the default deployment-time settings. Change any of the input parameter values as required. Click Start Execution button to execute the Mapping or Process Flow. 2. Navigating from Deployment Schedule Report to Start Report Open the Deployment Schedule Report to see deployment details of Mapping and Process Flow. Expand the project trees to find the deployed Mappings and Process Flows. Click the Mapping Name or Process Flow Name link to see its Deployment Report. Select the Start link in the Available Reports tab for the given Mapping or Process Flow to display a Start Report for the Mapping or Process Flow. The execution parameters have the default deployment-time settings. Change any of the input parameter values as required. Click Start Execution button to execute the Mapping or Process Flow. Re-run a Mapping or Process Flow If you have executed a Mapping or Process Flow, you can navigate from Object Summary Report, Deployment Schedule Report, Execution Summary Report or Execution Schedule Report to Start Report. 1. Navigating from the Execution Summary Report to Start Report Open the Execution Summary Report to see all execution jobs including Mapping jobs and Process Flow jobs. Click on the Mapping Name or Process Flow Name to see its Execution Report. Select the Start link in the Available Reports tab for the given Mapping or Process Flow to display a Start Report for the Mapping or Process Flow. The execution parameters have the default deployment-time settings. Change any of the input parameter values as required. Click Start Execution button to execute the Mapping or Process Flow. 2. Navigating from the Execution Schedule Report to Start Report Open the Execution Schedule Report to see list of all executions of Mapping and Process Flow. Click on the Mapping Name or Process Flow Name to see its Execution Report. Select the Start link in the Available Reports tab for the given Mapping or Process Flow to display a Start Report for the Mapping or Process Flow. The execution parameters have the default deployment-time settings. Change any of the input parameter values as required. Click Start Execution button to execute the Mapping or Process Flow. If the execution of a Mapping or Process Flow is successful, you will see this message from the Start Report: Start Execution request successful. (See Figure 3) Figure 3 Execution Result You can also confirm the execution of the Mapping or Process Flow by referring to Execution Report of the current Mapping or Process Flow by clicking the link in the Available Reports tab for the given Mapping or Process Flow. One new record of execution job details is added to Execution Report of the Mapping or Process Flow which shows the details of the execution such as Start Time, Elapsed Time, Status, the number of records selected, inserted, updated, deleted etc.

    Read the article

  • Combination of Operating Mode and Commit Strategy

    - by Kevin Yang
    If you want to populate a source into multiple targets, you may also want to ensure that every row from the source affects all targets uniformly (or separately). Let’s consider the Example Mapping below. If a row from SOURCE causes different changes in multiple targets (TARGET_1, TARGET_2 and TARGET_3), for example, it can be successfully inserted into TARGET_1 and TARGET_3, but failed to be inserted into TARGET_2, and the current Mapping Property TLO (target load order) is “TARGET_1 -> TARGET_2 -> TARGET_3”. What should Oracle Warehouse Builder do, in order to commit the appropriate data to all affected targets at the same time? If it doesn’t behave as you intended, the data could become inaccurate and possibly unusable.                                               Example Mapping In OWB, we can use Mapping Configuration Commit Strategies and Operating Modes together to achieve this kind of requirements. Below we will explore the combination of these two features and how they affect the results in the target tables Before going to the example, let’s review some of the terms we will be using (Details can be found in white paper Oracle® Warehouse Builder Data Modeling, ETL, and Data Quality Guide11g Release 2): Operating Modes: Set-Based Mode: Warehouse Builder generates a single SQL statement that processes all data and performs all operations. Row-Based Mode: Warehouse Builder generates statements that process data row by row. The select statement is in a SQL cursor. All subsequent statements are PL/SQL. Row-Based (Target Only) Mode: Warehouse Builder generates a cursor select statement and attempts to include as many operations as possible in the cursor. For each target, Warehouse Builder inserts each row into the target separately. Commit Strategies: Automatic: Warehouse Builder loads and then automatically commits data based on the mapping design. If the mapping has multiple targets, Warehouse Builder commits and rolls back each target separately and independently of other targets. Use the automatic commit when the consequences of multiple targets being loaded unequally are not great or are irrelevant. Automatic correlated: It is a specialized type of automatic commit that applies to PL/SQL mappings with multiple targets only. Warehouse Builder considers all targets collectively and commits or rolls back data uniformly across all targets. Use the correlated commit when it is important to ensure that every row in the source affects all affected targets uniformly. Manual: select manual commit control for PL/SQL mappings when you want to interject complex business logic, perform validations, or run other mappings before committing data. Combination of the commit strategy and operating mode To understand the effects of each combination of operating mode and commit strategy, I’ll illustrate using the following example Mapping. Firstly we insert 100 rows into the SOURCE table and make sure that the 99th row and 100th row have the same ID value. And then we create a unique key constraint on ID column for TARGET_2 table. So while running the example mapping, OWB tries to load all 100 rows to each of the targets. But the mapping should fail to load the 100th row to TARGET_2, because it will violate the unique key constraint of table TARGET_2. With different combinations of Commit Strategy and Operating Mode, here are the results ¦ Set-based/ Correlated Commit: Configuration of Example mapping:                                                     Result:                                                      What’s happening: A single error anywhere in the mapping triggers the rollback of all data. OWB encounters the error inserting into Target_2, it reports an error for the table and does not load the row. OWB rolls back all the rows inserted into Target_1 and does not attempt to load rows to Target_3. No rows are added to any of the target tables. ¦ Row-based/ Correlated Commit: Configuration of Example mapping:                                                   Result:                                                  What’s happening: OWB evaluates each row separately and loads it to all three targets. Loading continues in this way until OWB encounters an error loading row 100th to Target_2. OWB reports the error and does not load the row. It rolls back the row 100th previously inserted into Target_1 and does not attempt to load row 100 to Target_3. Then, if there are remaining rows, OWB will continue loading them, resuming with loading rows to Target_1. The mapping completes with 99 rows inserted into each target. ¦ Set-based/ Automatic Commit: Configuration of Example mapping: Result: What’s happening: When OWB encounters the error inserting into Target_2, it does not load any rows and reports an error for the table. It does, however, continue to insert rows into Target_3 and does not roll back the rows previously inserted into Target_1. The mapping completes with one error message for Target_2, no rows inserted into Target_2, and 100 rows inserted into Target_1 and Target_3 separately. ¦ Row-based/Automatic Commit: Configuration of Example mapping: Result: What’s happening: OWB evaluates each row separately for loading into the targets. Loading continues in this way until OWB encounters an error loading row 100 to Target_2 and reports the error. OWB does not roll back row 100th from Target_1, does insert it into Target_3. If there are remaining rows, it will continue to load them. The mapping completes with 99 rows inserted into Target_2 and 100 rows inserted into each of the other targets. Note: Automatic Correlated commit is not applicable for row-based (target only). If you design a mapping with the row-based (target only) and correlated commit combination, OWB runs the mapping but does not perform the correlated commit. In set-based mode, correlated commit may impact the size of your rollback segments. Space for rollback segments may be a concern when you merge data (insert/update or update/insert). Correlated commit operates transparently with PL/SQL bulk processing code. The correlated commit strategy is not available for mappings run in any mode that are configured for Partition Exchange Loading or that include a Queue, Match Merge, or Table Function operator. If you want to practice in your own environment, you can follow the steps: 1. Import the MDL file: commit_operating_mode.mdl 2. Fix the location for oracle module ORCL and deploy all tables under it. 3. Insert sample records into SOURCE table, using below plsql code: begin     for i in 1..99     loop         insert into source values(i, 'col_'||i);     end loop;     insert into source values(99, 'col_99'); end; 4. Configure MAPPING_1 to any combinations of operating mode and commit strategy you want to test. And make sure feature TLO of mapping is open. 5. Deploy Mapping “MAPPING_1”. 6. Run the mapping and check the result.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >