Search Results

Search found 545 results on 22 pages for 'overlap'.

Page 4/22 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • How to play the same Sound multiple times with overlap, using OpenAL or Finch?

    - by mystify
    Finch uses OpenAL. However, when I have an instance of Sound, and say -play, the sound plays. When I call -play multiple times one after another in a fast paced way, every -play makes the current sound playback of that sound stop and restart it. That's not what I want. Would I have to create multiple sources or buffers to get that working? Or would I just instantiate multiple Sounds with the same file?

    Read the article

  • Clustered Graphs Visualization Techniques

    - by jameszhao00
    I need to visualize a relatively large graph (6K nodes, 8K edges) that has the following properties: Distinct Clusters. Approximately 50-100 Nodes per cluster and moderate interconnectivity at the cluster level Minimal (5-10 inter-cluster edges per cluster) interconnectivity between clusters Let global edge overlap = The edge overlaps caused by directly visualizing a graph of Clusters = {A, B, C, D, E}, Edges = {Pentagram of those clusters, which is non-planar by the way and will definitely generate edge overlap if you draw it out directly} Let Local Edge Overlap = the above but { A, B, C, D, E } are just nodes. I need to visualize graphs with the above in a way that satisfies the following requirements No global edge overlap (i.e. edge overlaps caused by inter-cluster properties is not okay) Local edge overlap within a cluster is fine Anyone have thoughts on how to best visualize a graph with the requirements above? One solution I've come up with to deal with the global edge overlap is to make sure a cluster A can only have a max of 1 direct edge to another cluster (B) during visualization. Any additional inter-cluster edges between cluster A - C, A - D, ... are disconnected and additional node/edges A - A_C, C - C_A, A - A_D, D - D_A... are created. Anyone have any thoughts?

    Read the article

  • Check for bodies within a specific circle in Box2D

    - by ltjax
    I'm trying to find positions to insert new bodies into my world. For that, I'd like to have a "free" spot where this body wouldn't overlap with anything else. So my plan was to sample "random" positions and check whether they overlap with my "potential" new body. Since my bodies are always circular, I'd need to test within a given circle. So far, the only way to use box2d for this seems to use b2World::QueryAABB around my circle and manually doing an overlap test with all the fixtures it gives me (Box2D doesn't event seem to allow me to tap into its overlapping tests?!). It seems to me like Box2D should already provide such functionality - is there a way that lets me do this without reinventing most of the wheel again?

    Read the article

  • Seperation of project responsibilities in new project

    - by dreza
    We have very recently started a new project (MVC 3.0) and some of our early discussion has been around how the work and development will be split amongst the team members to ensure we get the least amount of overlap of work and so help make it a bit easier for each developer to get on and do their work. The project is expected to take about 6 months - 1 year (although not all developers are likely to be on and might filter off towards the end), Our team is going to be small so this will help out a bit I believe. The team will essentially consist of: 3 x developers (1 a slightly more experienced and will be the lead) 1 x project manager / product owner / tester An external company responsbile for doing our design work General project/development decisions so far have included: Develop in an Agile way using SCRUM techniques (We are still very much learning this approach as a company) Use MVVM archectecture Use Ninject and DI where possible Attempt to use as TDD as much as possible to drive development. Keep our controllers as skinny as possible Keep our views as simple as possible During our discussions two approaches have been broached as too how to seperate the workload given our objectives outlined above. OPTION 1: A framework seperation where each person is responsible for conceptual areas with overlap and discussion primarily in the integration areas. The integration areas would the responsibily of both developers as required. View prototypes (**Graphic designer**) | - Mockups | Views (Razor and view helpers etc) & Javascript (**Developer 1**) | - View models (Integration point) | Controllers and Application logic (**Developer 2**) | - Models (Integration point) | Domain model and persistence (**Developer 3**) PROS: Integration points are quite clear and so developers can work without dependencies on others fairly easily Code practices such as naming conventions and style is more easily managed in regards to consistancy as primarily only one developer will be handling an area CONS: Completion of an entire feature becomes a bit grey as no single person is responsible for an entire feature (story?) A person might not have a full appreciation for all areas of the project and so code overlap might be lacking if suddenly that person left. OPTION 2: A more task orientated approach where each person is responsible for the completion of the entire task from view - controller - model. PROS: A person is responsible for one entire feature so it's "complete" state can be clearly defined Code overlap into different areas will occur so each individual has good coverage over the entire application CONS: Overlap of development will occur in all the modules and developers can develop/extend without a true understanding of what the original code owner was intending. This could potentially lead more easily to code bloat? Following a convention might be harder as developers are adding to all areas of the project If a developer sets up a way of doing things would it be harder to enforce the other developers to follow that convention or even build on it (or even discuss it?). Dunno.. Bugs could more easily be introduced into areas not thought about by the developer It's easier to possibly to carry a team member in so far as one member just hacks code together to complete a task whilst another takes time to build a foundation that could be used by others and so help make future tasks easier i.e. starts building a framework? QUESTION: As it might appear I'm more in favor of option 1, however I'm interested to see how others might have approached this or what is the standard or best or preferred way of undertaking a project. Or indeed any different approach to handling this?

    Read the article

  • What is an Efficient algorithm to find Area of Overlapping Rectangles

    - by namenlos
    My situation Input: a set of rectangles each rect is comprised of 4 doubles like this: (x0,y0,x1,y1) they are not "rotated" at any angle, all they are "normal" rectangles that go "up/down" and "left/right" with respect to the screen they are randomly placed - they may be touching at the edges, overlapping , or not have any contact I will have several hundred rectangles this is implemented in C# I need to find The area that is formed by their overlap - all the area in the canvas that more than one rectangle "covers" (for example with two rectangles, it would be the intersection) I don't need the geometry of the overlap - just the area (example: 4 sq inches) Overlaps shouldn't be counted multiple times - so for example imagine 3 rects that have the same size and position - they are right on top of each other - this area should be counted once (not three times) Example The image below contains thre rectangles: A,B,C A and B overlap (as indicated by dashes) B and C overlap (as indicated by dashes) What I am looking for is the area where the dashes are shown - AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAA--------------BBB AAAAAAAAAAAAAAAA--------------BBB AAAAAAAAAAAAAAAA--------------BBB AAAAAAAAAAAAAAAA--------------BBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBB-----------CCCCCCCC BBBBBB-----------CCCCCCCC BBBBBB-----------CCCCCCCC CCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCC

    Read the article

  • uimapview annotations ordering

    - by suk
    i add annotation one by one but annotation may be need some overlapping but the annotation overlapping another annotation look like random. sometimes annotation 1 overlap annotation 2 sometimes annotation 2 overlap annotation 1 how can i force annotation 1 overlap annotation 2? Thank you

    Read the article

  • Algorithm for spreading labels in a visually appealing and intuitive way

    - by mac
    Short version Is there a design pattern for distributing vehicle labels in a non-overlapping fashion, placing them as close as possible to the vehicle they refer to? If not, is any of the method I suggest viable? How would you implement this yourself? Extended version In the game I'm writing I have a bird-eye vision of my airborne vehicles. I also have next to each of the vehicles a small label with key-data about the vehicle. This is an actual screenshot: Now, since the vehicles could be flying at different altitudes, their icons could overlap. However I would like to never have their labels overlapping (or a label from vehicle 'A' overlap the icon of vehicle 'B'). Currently, I can detect collisions between sprites and I simply push away the offending label in a direction opposite to the otherwise-overlapped sprite. This works in most situations, but when the airspace get crowded, the label can get pushed very far away from its vehicle, even if there was an alternate "smarter" alternative. For example I get: B - label A -----------label C - label where it would be better (= label closer to the vehicle) to get: B - label label - A C - label EDIT: It also has to be considered that beside the overlapping vehicles case, there might be other configurations in which vehicles'labels could overlap (the ASCII-art examples show for example three very close vehicles in which the label of A would overlap the icon of B and C). I have two ideas on how to improve the present situation, but before spending time implementing them, I thought to turn to the community for advice (after all it seems like a "common enough problem" that a design pattern for it could exist). For what it's worth, here's the two ideas I was thinking to: Slot-isation of label space In this scenario I would divide all the screen into "slots" for the labels. Then, each vehicle would always have its label placed in the closest empty one (empty = no other sprites at that location. Spiralling search From the location of the vehicle on the screen, I would try to place the label at increasing angles and then at increasing radiuses, until a non-overlapping location is found. Something down the line of: try 0°, 10px try 10°, 10px try 20°, 10px ... try 350°, 10px try 0°, 20px try 10°, 20px ...

    Read the article

  • Physics Engine [Collision Response, 2-dimensional] experts, help!! My stack is unstable!

    - by Register Sole
    Previously, I struggle with the sequential impulse-based method I developed. Thanks to jedediah referring me to this paper, I managed to rebuild the codes and implement the simultaneous impulse based method with Projected-Gauss-Seidel (PGS) iterative solver as described by Erin Catto (mentioned in the reference of the paper as [Catt05]). So here's how it currently is: The simulation handles 2-dimensional rotating convex polygons. Detection is using separating-axis test, with a SKIN, meaning closest points between two polygons is detected and determined if their distance is less than SKIN. To resolve collision, simultaneous impulse-based method is used. It is solved using iterative solver (PGS-solver) as in Erin Catto's paper. Error-correction is implemented using Baumgarte's stabilization (you can refer to either paper for this) using J V = beta/dt*overlap, J is the Jacobian for the constraints, V the matrix containing the velocities of the bodies, beta an error-correction parameter that is better be < 1, dt the time-step taken by the engine, and overlap, the overlap between the bodies (true overlap, so SKIN is ignored). However, it is still less stable than I expected :s I tried to stack hexagons (or squares, doesn't really matter), and even with only 4 to 5 of them, they hardly stand still! Also note that I am not looking for a sleeping scheme. But I would settle if you have any explicit scheme to handle resting contacts. That said, I would be more than happy if you have a way of treating it generally (as continuous collision, instead of explicitly as a special state). Ideas I have: I would try adding a damping term (proportional to velocity) to the Baumgarte. Is this a good idea in general? If not I would not want to waste my time trying to tune the parameter hoping it magically works. Ideas I have tried: Using simultaneous position based error correction as described in the paper in section 5.3.2, turned out to be worse than the current scheme. If you want to know the parameters I used: Hexagons, side 50 (pixels) gravity 2400 (pixels/sec^2) time-step 1/60 (sec) beta 0.1 restitution 0 to 0.2 coeff. of friction 0.2 PGS iteration 10 initial separation 10 (pixels) mass 1 (unit is irrelevant for now, i modified velocity directly<-impulse method) inertia 1/1000 Thanks in advance! I really appreciate any help from you guys!! :)

    Read the article

  • How do you write a consistent UI Automation for MS? MSAA & UI Automation don't seem to overlap.

    - by Greg
    Working on a general Automation tool, considering moving from Win32 Message hooks to .net UI Automation, however the feature set of UI Automation doesn't cover all we have in Win32 and still doesn't seem to support all the GUI on Windows. One such example is Windows Live Messenger. Windows Live messenger 2009 is still using the older DirectUIHwnd to draw the gui. This means that you can't use windows messages to send to the controls, because the controls don't have their own HWND. It also seems to defeat the new .net UI Automation framework though the documentation seems to make out as if it can be joined in the UI Automation and Microsoft Active Accessibility document. Looking at MS Accessibility pointed to Active Accessibility 2.0 SDK Tools which showed that MSAA can interact with the contents. Is there some trick to getting the older MSAA technology that UI Automation seems to be trying to replace to actually work with UI Automation? I'd rather not have multiple solutions trying to automate the same windows for windows unlike Windows Live Messenger where each of these techniques is valid and will work.

    Read the article

  • Player & Level class structure in 2D python console game?

    - by Markus Meskanen
    I'm trying to create a 2D console game, where I have a player who can freely move around in a level (~map, but map is a reserved keyword) and interfere with other objects. Levels construct out of multiple Blocks, such as player(s), rocks, etc. Here's the Block class: class Block(object): def __init__(self, x=0, y=0, char=' ', solid=False): self.x = x self.y = y self.char = char self.solid = solid As you see, each block has a position (x, y) and a character to represent the block when it's printed. Each block also has a solid attribute, defining whether it can overlap with other solids or not. (Two solid blocks cannot overlap) I've now created few subclasses from Block (Rock might be useless for now) class Rock(Block): def __init__(self, x=0, y=0): super(Rock, self).__init__(x, y, 'x', True) class Player(Block): def __init__(self, x=0, y=0): super(Player, self).__init__(x, y, 'i', True) def move_left(self, x=1): ... # How do I make sure Player wont overlap with rocks? self.x -= x And here's the Level class: class Level(object): def __init__(self, name='', blocks=None): self.name = name self.blocks = blocks or [] Only way I can think of is to store a Player instance into Level's attributes (self.player=Player(), or so) and then give Level a method: def player_move_left(self): for block in self.blocks: if block.x == self.player.x - 1 and block.solid: return False But this doesn't really make any sense, why have a Player class if it can't even be moved without Level? Imo. player should be moved by a method inside Player. Am I wrong at something here, if not, how could I implement such behavior?

    Read the article

  • How to make a stack stable? Need help for an explicit resting contact scheme (2-dimensional)

    - by Register Sole
    Previously, I struggle with the sequential impulse-based method I developed. Thanks to jedediah referring me to this paper, I managed to rebuild the codes and implement the simultaneous impulse based method with Projected-Gauss-Seidel (PGS) iterative solver as described by Erin Catto (mentioned in the reference of the paper as [Catt05]). So here's how it currently is: The simulation handles 2-dimensional rotating convex polygons. Detection is using separating-axis test, with a SKIN, meaning closest points between two polygons is detected and determined if their distance is less than SKIN. To resolve collision, simultaneous impulse-based method is used. It is solved using iterative solver (PGS-solver) as in Erin Catto's paper. Error-correction is implemented using Baumgarte's stabilization (you can refer to either paper for this) using J V = beta/dt*overlap, J is the Jacobian for the constraints, V the matrix containing the velocities of the bodies, beta an error-correction parameter that is better be < 1, dt the time-step taken by the engine, and overlap, the overlap between the bodies (true overlap, so SKIN is ignored). However, it is still less stable than I expected :s I tried to stack hexagons (or squares, doesn't really matter), and even with only 4 to 5 of them, they would swing! Also note that I am not looking for a sleeping scheme. But I would settle if you have any explicit scheme to handle resting contacts. That said, I would be more than happy if you have a way of treating it generally (as continuous collision, instead of explicitly as a special state). Ideas I have tried: Using simultaneous position based error correction as described in the paper in section 5.3.2, turned out to be worse than the current scheme. If you want to know the parameters I used: Hexagons, side 50 (pixels) gravity 2400 (pixels/sec^2) time-step 1/60 (sec) beta 0.1 restitution 0 to 0.2 coeff. of friction 0.2 PGS iteration 10 initial separation 10 (pixels) mass 1 (unit is irrelevant for now, i modified velocity directly<-impulse method) inertia 1/1000 Thanks in advance! I really appreciate any help from you guys!! :) EDIT In response to Cholesky's comment about warm starting the solver and Baumgarte: Oh right, I forgot to mention! I do save the contact history and the impulse determined in this time step to be used as initial guess in the next time step. As for the Baumgarte, here's what actually happens in the code. Collision is detected when the bodies' closest distance is less than SKIN, meaning they are actually still separated. If at this moment, I used the PGS solver without Baumgarte, restitution of 0 alone would be able to stop the bodies, separated by a distance of ~SKIN, in mid-air! So this isn't right, I want to have the bodies touching each other. So I turn on the Baumgarte, where its role is actually to pull the bodies together! Weird I know, a scheme intended to push the body apart becomes useful for the reverse. Also, I found that if I increase the number of iteration to 100, stacks become much more stable, though the program becomes so slow. UPDATE Since the stack swings left and right, could it be something is wrong with my friction model? Current friction constraint: relative_tangential_velocity = 0

    Read the article

  • CSS vertical centering split background image not overlapping

    - by user295292
    is it possible to split 2 images vertically and when resizing the browser, it wont overlap but stay vertically centered? can the left image stay fixed so the right side of it won't cut off(overlap) this is what i have now, but when resizing the browser smaller, it pushes the left image underneath the right. rather have the images cut off on the outer sides and never overlap each other in the middle, make sense? #wrapper { width:1680px; max-width:1680px; height:500px; margin: 0 auto; } #left-image { width: 50%; position:absolute; left: auto; height:500px; } #right-image { width: 50%; position:absolute; right: 0px; height:500px; }

    Read the article

  • CSS vertcial centering split background image not overlapping

    - by user295292
    is it possible to split 2 images vertically and when resizing the browser, it wont overlap but stay vertically centered? can the left image stay fixed so the right side of it won't cut off(overlap) this is what i have now, but when resizing the browser smaller, it pushes the left image underneath the right. rather have the images cut off on the outer sides and never overlap each other in the middle, make sense? wrapper { width:1680px; max-width:1680px; height:500px; margin: 0 auto; } left-image { width: 50%; position:absolute; left: auto; height:500px; } right-image { width: 50%; position:absolute; right: 0px; height:500px; }

    Read the article

  • Composite Moon Map Offers Stunning Views of the Lunar Surface [Astronomy]

    - by Jason Fitzpatrick
    Researchers at Arizona State University have stitched together a massive high-resolution map of the moon; seen the moon in astounding detail. Using images fro the Lunar Reconnaissance Orbiter (LRO) they carefully stitch a massive map of the moon with a higher resolution than the public has ever seen before: The WAC has a pixel scale of about 75 meters, and with an average altitude of 50 km, a WAC image swath is 70 km wide across the ground-track. Because the equatorial distance between orbits is about 30 km, there is nearly complete orbit-to-orbit stereo overlap all the way around the Moon, every month. Using digital photogrammetric techniques, a terrain model was computed from this stereo overlap. Hit up the link below to check out the images and the process they used. Lunar Topography as Never Seen Before [via NASA] How to Make the Kindle Fire Silk Browser *Actually* Fast! Amazon’s New Kindle Fire Tablet: the How-To Geek Review HTG Explains: How Hackers Take Over Web Sites with SQL Injection / DDoS

    Read the article

  • Is there any difference between storing textures and baked lighting for environment meshes?

    - by Ben Hymers
    I assume that when texturing environments, one or several textures will be used, and the UVs of the environment geometry will likely overlap on these textures, so that e.g. a tiling brick texture can be used by many parts of the environment, rather than UV unwrapping the entire thing, and having several areas of the texture be identical. If my assumption is wrong, please let me know! Now, when thinking about baking lighting, clearly this can't be done the same way - lighting in general will be unique to every face so the environment must be UV unwrapped without overlap, and lighting must be baked onto unique areas of one or several textures, to give each surface its own texture space to store its lighting. My questions are: Have I got this wrong? If so, how? Isn't baking lighting going to use a lot of texture space? Will the geometry need two UV sets, one used for the colour/normal texture and one for the lighting texture? Anything else you'd like to add? :)

    Read the article

  • Multi Pass Blend

    - by Kirk Patrick
    I am seeking the simplest working example of a two pass HLSL pixel shader. It can do anything really, but the main idea is to perform "ping ponging" to take the output of the first pass and then send it for the second pass. In my example I want to draw to the R channel and then draw to the G channel and produce a simple Venn Diagram in the shader, but need to detect overlap. I can currently detect one or the other but not overlap. There are a red and green circle overlapping, and I want to put a dynamic texture map in the overlap region. I can currently put it in either or. Below is how it looks in the shader. -------------------------------- Texture2D shaderTexture; SamplerState SampleType; ////////////// // TYPEDEFS // ////////////// struct PixelInputType { float4 position : SV_POSITION; float2 tex0 : TEXCOORD0; float2 tex1 : TEXCOORD1; float4 color : COLOR; }; //////////////////////////////////////////////////////////////////////////////// // Pixel Shader //////////////////////////////////////////////////////////////////////////////// float4 main(PixelInputType input) : SV_TARGET { float4 textureColor0; float4 textureColor1; // Sample the pixel color from the texture using the sampler at this texture coordinate location. textureColor0 = shaderTexture.Sample(SampleType, input.tex0); textureColor1 = shaderTexture.Sample(SampleType, input.tex1); if (input.color[0]==1.0f && input.color[1]==1.0f) // Requires multi-pass textureColor0 = textureColor1; return textureColor0; } Here is the calling code (that needs to be modified) m_d3dContext->IASetVertexBuffers(0, 2, vbs, strides, offsets); m_d3dContext->IASetIndexBuffer(m_indexBuffer.Get(), DXGI_FORMAT_R32_UINT,0); m_d3dContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST); m_d3dContext->IASetInputLayout(m_inputLayout.Get()); m_d3dContext->VSSetShader(m_vertexShader.Get(), nullptr, 0); m_d3dContext->VSSetConstantBuffers(0, 1, m_constantBuffer.GetAddressOf()); m_d3dContext->PSSetShader(m_pixelShader.Get(), nullptr, 0); m_d3dContext->PSSetShaderResources(0, 1, m_SRV.GetAddressOf()); m_d3dContext->PSSetSamplers(0, 1, m_QuadsTexSamplerState.GetAddressOf());

    Read the article

  • Collision Resolution

    - by CiscoIPPhone
    I know quite well how to check for collisions, but I don't know how to handle the collision in a good way. Simplified, if two objects collide I use some calculations to change the velocity direction. If I don't move the two objects they will still overlap and if the velocity is not big enough they will still collide after next update. This can cause objects to get stuck in each other. But what if I try to move the two objects so they do not overlap. This sounds like a good idea but I have realised that if there is more than two objects this becomes very complicated. What if I move the two objects and one of them collides with other objects so I have to move them too and they may collide with walls etc. I have a top down 2D game in mind but I don't think that has much to do with it. How are collisions usually handled? This question is asked on behalf of Wooh

    Read the article

  • Windows 2008 R2 DHCP Overlapping Scopes

    - by Buska
    We are trying to troubleshoot a scope overlap problem. We have multiple device types we wish to give all different ranges of a 16 bit subnet. IE. X device we wish to give 192.168.2.1-192.168.2.254/16, Y devices we wish to give 192.168.3.1-192.168.3.254/16. We are trying to accomplish this by creating different scopes and using the 60 class identifier. The problem is DHCP won't allow us to give these scopes with 16 bit masks because of the potential overlap. We aren't overlapping the address pool so why does DHCP care and can we work around this? If this isn't possible, how can i assign specific ranges by device type without creating multiple scopes? Any thoughts would be helpful. UPDATE: Entire Scope is 192.168.0.0/16 Gateway is 192.168.1.1/16 Device Hardware A - 192.168.20.1-192.168.20.254/16 Device Hardware B - 192.168.26.1-192.168.26.254/16 Device Hardware C - 192.168.85.1-192.168.85.254/16 We tried to setup multiple scopes for each device type (A,B,C) but couldn't specify a 16 bit mask as Scope A could technically overlap Scope B even thought our start and end addresses don't. I hope this makes more sense. Thanks for your thoughts.

    Read the article

  • Managing Operational Risk of Financial Services Processes – part 1/ 2

    - by Sanjeevio
    Financial institutions view compliance as a regulatory burden that incurs a high initial capital outlay and recurring costs. By its very nature regulation takes a prescriptive, common-for-all, approach to managing financial and non-financial risk. Needless to say, no longer does mere compliance with regulation will lead to sustainable differentiation.  Genuine competitive advantage will stem from being able to cope with innovation demands of the present economic environment while meeting compliance goals with regulatory mandates in a faster and cost-efficient manner. Let’s first take a look at the key factors that are limiting the pursuit of the above goal. Regulatory requirements are growing, driven in-part by revisions to existing mandates in line with cross-border, pan-geographic, nature of financial value chains today and more so by frequent systemic failures that have destabilized the financial markets and the global economy over the last decade.  In addition to the increase in regulation, financial institutions are faced with pressures of regulatory overlap and regulatory conflict. Regulatory overlap arises primarily from two things: firstly, due to the blurring of boundaries between lines-of-businesses with complex organizational structures and secondly, due to varying requirements of jurisdictional directives across geographic boundaries e.g. a securities firm with operations in US and EU would be subject different requirements of “Know-Your-Customer” (KYC) as per the PATRIOT ACT in US and MiFiD in EU. Another consequence and concomitance of regulatory change is regulatory conflict, which again, arises primarily from two things: firstly, due to diametrically opposite priorities of line-of-business and secondly, due to tension that regulatory requirements create between shareholders interests of tighter due-diligence and customer concerns of privacy. For instance, Customer Due Diligence (CDD) as per KYC requires eliciting detailed information from customers to prevent illegal activities such as money-laundering, terrorist financing or identity theft. While new customers are still more likely to comply with such stringent background checks at time of account opening, existing customers baulk at such practices as a breach of trust and privacy. As mentioned earlier regulatory compliance addresses both financial and non-financial risks. Operational risk is a non-financial risk that stems from business execution and spans people, processes, systems and information. Operational risk arising from financial processes in particular transcends other sources of such risk. Let’s look at the factors underpinning the operational risk of financial processes. The rapid pace of innovation and geographic expansion of financial institutions has resulted in proliferation and ad-hoc evolution of back-office, mid-office and front-office processes. This has had two serious implications on increasing the operational risk of financial processes: ·         Inconsistency of processes across lines-of-business, customer channels and product/service offerings. This makes it harder for the risk function to enforce a standardized risk methodology and in turn breaches harder to detect. ·         The proliferation of processes coupled with increasingly frequent change-cycles has resulted in accidental breaches and increased vulnerability to regulatory inadequacies. In summary, regulatory growth (including overlap and conflict) coupled with process proliferation and inconsistency is driving process compliance complexity In my next post I will address the implications of this process complexity on financial institutions and outline the role of BPM in lowering specific aspects of operational risk of financial processes.

    Read the article

  • Find the "largest" dense sub matrix in a large sparse matrix

    - by BCS
    Given a large sparse matrix (say 10k+ by 1M+) I need to find a subset, not necessarily continuous, of the rows and columns that form a dense matrix (all non-zero elements). I want this sub matrix to be as large as possible (not the largest sum, but the largest number of elements) within some aspect ratio constraints. Are there any known exact or aproxamate solutions to this problem? A quick scan on Google seems to give a lot of close-but-not-exactly results. What terms should I be looking for? edit: Just to clarify; the sub matrix need not be continuous. In fact the row and column order is completely arbitrary so adjacency is completely irrelevant. A thought based on Chad Okere's idea Order the rows from largest count to smallest count (not necessary but might help perf) Select two rows that have a "large" overlap Add all other rows that won't reduce the overlap Record that set Add whatever row reduces the overlap by the least Repeat at #3 until the result gets to small Start over at #2 with a different starting pair Continue until you decide the result is good enough

    Read the article

  • What is the best approach to 2D collision detection on the iPhone?

    - by Magic Bullet Dave
    Been working on this problem of collision detection and there appears to be 3 main approaches I could take: Sprite and mask approach. (AND the overlap of the sprites and check for a non-zero number in the resulting sprite pixel data). Bounding circles, rectangles or polygons. (Create one or more shapes that enclose the sprites and do the basic maths to check for overlaps). Use an existing sprite library. The first approach, even though it would have been the way I would have done it in the old days of 16x16 sprite blocks, it appears that there just isn’t an easy way of getting at the individual image pixel data and/or alpha channel within Quartz (or OPENGL for that matter). Detecting the overlap of the bounding box is easy, but then creating a 3rd image from the overlap and then testing it for pixels is complicated and my gut feel is that even if we could get it to work would be slow. Am I missing something neat here? The second approach involves dividing up our sprites into several polygons and testing them for overlaps. The more polygons the more accurate the collision detection. The benefit is that it is fast, and can be accurate. The downside is it makes the sprite creation more complicated. i.e., we have to create the polygons for each sprite. For speed the best approach is to create a tree of polygons. The 3rd approach I’m not sure about as it involves buying code (or using an open source licence). I am not sure what the best library to use is or whether this would make life easier or give us a problem integrating this into our app. So in short I am favouring the polygon and tree approach and would appreciate you views on this before I go and write lots of code. Best regards Dave

    Read the article

  • How to define 2-bit numbers in C, if possible?

    - by Eddy
    For my university process I'm simulating a process called random sequential adsorption. One of the things I have to do involves randomly depositing squares (which cannot overlap) onto a lattice until there is no more room left, repeating the process several times in order to find the average 'jamming' coverage %. Basically I'm performing operations on a large array of integers, of which 3 possible values exist: 0, 1 and 2. The sites marked with '0' are empty, the sites marked with '1' are full. Initially the array is defined like this: int i, j; int n = 1000000000; int array[n][n]; for(j = 0; j < n; j++) { for(i = 0; i < n; i++) { array[i][j] = 0; } } Say I want to deposit 5*5 squares randomly on the array (that cannot overlap), so that the squares are represented by '1's. This would be done by choosing the x and y coordinates randomly and then creating a 5*5 square of '1's with the topleft point of the square starting at that point. I would then mark sites near the square as '2's. These represent the sites that are unavailable since depositing a square at those sites would cause it to overlap an existing square. This process would continue until there is no more room left to deposit squares on the array (basically, no more '0's left on the array) Anyway, to the point. I would like to make this process as efficient as possible, by using bitwise operations. This would be easy if I didn't have to mark sites near the squares. I was wondering whether creating a 2-bit number would be possible, so that I can account for the sites marked with '2'. Sorry if this sounds really complicated, I just wanted to explain why I want to do this.

    Read the article

  • Movement and Collision with AABB

    - by Jeremy Giberson
    I'm having a little difficulty figuring out the following scenarios. http://i.stack.imgur.com/8lM6i.png In scenario A, the moving entity has fallen to (and slightly into the floor). The current position represents the projected position that will occur if I apply the acceleration & velocity as usual without worrying about collision. The Next position, represents the corrected projection position after collision check. The resulting end position is the falling entity now rests ON the floor--that is, in a consistent state of collision by sharing it's bottom X axis with the floor's top X axis. My current update loop looks like the following: // figure out forces & accelerations and project an objects next position // check collision occurrence from current position -> projected position // if a collision occurs, adjust projection position Which seems to be working for the scenario of my object falling to the floor. However, the situation becomes sticky when trying to figure out scenario's B & C. In scenario B, I'm attempt to move along the floor on the X axis (player is pressing right direction button) additionally, gravity is pulling the object into the floor. The problem is, when the object attempts to move the collision detection code is going to recognize that the object is already colliding with the floor to begin with, and auto correct any movement back to where it was before. In scenario C, I'm attempting to jump off the floor. Again, because the object is already in a constant collision with the floor, when the collision routine checks to make sure moving from current position to projected position doesn't result in a collision, it will fail because at the beginning of the motion, the object is already colliding. How do you allow movement along the edge of an object? How do you allow movement away from an object you are already colliding with. Extra Info My collision routine is based on AABB sweeping test from an old gamasutra article, http://www.gamasutra.com/view/feature/3383/simple_intersection_tests_for_games.php?page=3 My bounding box implementation is based on top left/bottom right instead of midpoint/extents, so my min/max functions are adjusted. Otherwise, here is my bounding box class with collision routines: public class BoundingBox { public XYZ topLeft; public XYZ bottomRight; public BoundingBox(float x, float y, float z, float w, float h, float d) { topLeft = new XYZ(); bottomRight = new XYZ(); topLeft.x = x; topLeft.y = y; topLeft.z = z; bottomRight.x = x+w; bottomRight.y = y+h; bottomRight.z = z+d; } public BoundingBox(XYZ position, XYZ dimensions, boolean centered) { topLeft = new XYZ(); bottomRight = new XYZ(); topLeft.x = position.x; topLeft.y = position.y; topLeft.z = position.z; bottomRight.x = position.x + (centered ? dimensions.x/2 : dimensions.x); bottomRight.y = position.y + (centered ? dimensions.y/2 : dimensions.y); bottomRight.z = position.z + (centered ? dimensions.z/2 : dimensions.z); } /** * Check if a point lies inside a bounding box * @param box * @param point * @return */ public static boolean isPointInside(BoundingBox box, XYZ point) { if(box.topLeft.x <= point.x && point.x <= box.bottomRight.x && box.topLeft.y <= point.y && point.y <= box.bottomRight.y && box.topLeft.z <= point.z && point.z <= box.bottomRight.z) return true; return false; } /** * Check for overlap between two bounding boxes using separating axis theorem * if two boxes are separated on any axis, they cannot be overlapping * @param a * @param b * @return */ public static boolean isOverlapping(BoundingBox a, BoundingBox b) { XYZ dxyz = new XYZ(b.topLeft.x - a.topLeft.x, b.topLeft.y - a.topLeft.y, b.topLeft.z - a.topLeft.z); // if b - a is positive, a is first on the axis and we should use its extent // if b -a is negative, b is first on the axis and we should use its extent // check for x axis separation if ((dxyz.x >= 0 && a.bottomRight.x-a.topLeft.x < dxyz.x) // negative scale, reverse extent sum, flip equality ||(dxyz.x < 0 && b.topLeft.x-b.bottomRight.x > dxyz.x)) return false; // check for y axis separation if ((dxyz.y >= 0 && a.bottomRight.y-a.topLeft.y < dxyz.y) // negative scale, reverse extent sum, flip equality ||(dxyz.y < 0 && b.topLeft.y-b.bottomRight.y > dxyz.y)) return false; // check for z axis separation if ((dxyz.z >= 0 && a.bottomRight.z-a.topLeft.z < dxyz.z) // negative scale, reverse extent sum, flip equality ||(dxyz.z < 0 && b.topLeft.z-b.bottomRight.z > dxyz.z)) return false; // not separated on any axis, overlapping return true; } public static boolean isContactEdge(int xyzAxis, BoundingBox a, BoundingBox b) { switch(xyzAxis) { case XYZ.XCOORD: if(a.topLeft.x == b.bottomRight.x || a.bottomRight.x == b.topLeft.x) return true; return false; case XYZ.YCOORD: if(a.topLeft.y == b.bottomRight.y || a.bottomRight.y == b.topLeft.y) return true; return false; case XYZ.ZCOORD: if(a.topLeft.z == b.bottomRight.z || a.bottomRight.z == b.topLeft.z) return true; return false; } return false; } /** * Sweep test min extent value * @param box * @param xyzCoord * @return */ public static float min(BoundingBox box, int xyzCoord) { switch(xyzCoord) { case XYZ.XCOORD: return box.topLeft.x; case XYZ.YCOORD: return box.topLeft.y; case XYZ.ZCOORD: return box.topLeft.z; default: return 0f; } } /** * Sweep test max extent value * @param box * @param xyzCoord * @return */ public static float max(BoundingBox box, int xyzCoord) { switch(xyzCoord) { case XYZ.XCOORD: return box.bottomRight.x; case XYZ.YCOORD: return box.bottomRight.y; case XYZ.ZCOORD: return box.bottomRight.z; default: return 0f; } } /** * Test if bounding box A will overlap bounding box B at any point * when box A moves from position 0 to position 1 and box B moves from position 0 to position 1 * Note, sweep test assumes bounding boxes A and B's dimensions do not change * * @param a0 box a starting position * @param a1 box a ending position * @param b0 box b starting position * @param b1 box b ending position * @param aCollisionOut xyz of box a's position when/if a collision occurs * @param bCollisionOut xyz of box b's position when/if a collision occurs * @return */ public static boolean sweepTest(BoundingBox a0, BoundingBox a1, BoundingBox b0, BoundingBox b1, XYZ aCollisionOut, XYZ bCollisionOut) { // solve in reference to A XYZ va = new XYZ(a1.topLeft.x-a0.topLeft.x, a1.topLeft.y-a0.topLeft.y, a1.topLeft.z-a0.topLeft.z); XYZ vb = new XYZ(b1.topLeft.x-b0.topLeft.x, b1.topLeft.y-b0.topLeft.y, b1.topLeft.z-b0.topLeft.z); XYZ v = new XYZ(vb.x-va.x, vb.y-va.y, vb.z-va.z); // check for initial overlap if(BoundingBox.isOverlapping(a0, b0)) { // java pass by ref/value gotcha, have to modify value can't reassign it aCollisionOut.x = a0.topLeft.x; aCollisionOut.y = a0.topLeft.y; aCollisionOut.z = a0.topLeft.z; bCollisionOut.x = b0.topLeft.x; bCollisionOut.y = b0.topLeft.y; bCollisionOut.z = b0.topLeft.z; return true; } // overlap min/maxs XYZ u0 = new XYZ(); XYZ u1 = new XYZ(1,1,1); float t0, t1; // iterate axis and find overlaps times (x=0, y=1, z=2) for(int i = 0; i < 3; i++) { float aMax = max(a0, i); float aMin = min(a0, i); float bMax = max(b0, i); float bMin = min(b0, i); float vi = XYZ.getCoord(v, i); if(aMax < bMax && vi < 0) XYZ.setCoord(u0, i, (aMax-bMin)/vi); else if(bMax < aMin && vi > 0) XYZ.setCoord(u0, i, (aMin-bMax)/vi); if(bMax > aMin && vi < 0) XYZ.setCoord(u1, i, (aMin-bMax)/vi); else if(aMax > bMin && vi > 0) XYZ.setCoord(u1, i, (aMax-bMin)/vi); } // get times of collision t0 = Math.max(u0.x, Math.max(u0.y, u0.z)); t1 = Math.min(u1.x, Math.min(u1.y, u1.z)); // collision only occurs if t0 < t1 if(t0 <= t1 && t0 != 0) // not t0 because we already tested it! { // t0 is the normalized time of the collision // then the position of the bounding boxes would // be their original position + velocity*time aCollisionOut.x = a0.topLeft.x + va.x*t0; aCollisionOut.y = a0.topLeft.y + va.y*t0; aCollisionOut.z = a0.topLeft.z + va.z*t0; bCollisionOut.x = b0.topLeft.x + vb.x*t0; bCollisionOut.y = b0.topLeft.y + vb.y*t0; bCollisionOut.z = b0.topLeft.z + vb.z*t0; return true; } else return false; } }

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >