Search Results

Search found 406 results on 17 pages for 'paradigm'.

Page 4/17 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Differences & Similarities Between Programming Paradigms

    - by DaveDev
    Hi Guys I've been working as a developer for the past 4 years, with the 4 years previous to that studying software development in college. In my 4 years in the industry I've done some work in VB6 (which was a joke), but most of it has been in C#/ASP.NET. During this time, I've moved from an "object-aware" procedural paradigm to an object-oriented paradigm. Lately I've been curious about other programming paradigms out there, so I thought I'd ask other developers their opinions on the similarities & differences between these paradigms, specifically to OOP? In OOP, I find that there's a strong focus on the relationships and logical interactions between concepts. What are the mind frames you have to be in for the other paradigms? Thanks Dave

    Read the article

  • solutions for rapid front-end development?

    - by fayer
    im using mvc framework and i have learned some techniques that help me with different parts of RAD. models: doctrine/visual paradigm controllers/libraries: various design patterns now i only need to know what technique/solution i should use for the views so that i can create views more rapidly. cause i don't think it's efficient to code css/html manually, even though i understand it. its the same principle when using visual paradigm to create both my mysql database tables and doctrine model classes. i believe in using right tools will boost up development speed. so what could i use for the views to save time and energy and don't reinvent the wheel all the time? dreamweaver? any css generation tools? 960/blueprint for layout? suggestions? thanks

    Read the article

  • O&rsquo;Reilly Deal of the Day 10/June/2014 - AngularJS Directives

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2014/06/10/orsquoreilly-deal-of-the-day-10june2014---angularjs-directives.aspxToday’s half-price E-Book offer from O’Reilly at http://shop.oreilly.com/product/9781783280339.do is AngularJS Directives. “AngularJS, propelled by Google, is quickly becoming one of the most popular JavaScript MVC frameworks available, working to invert the development paradigm and bring data-driven modularity to the web frontend. Directives serve as the core building blocks in AngularJS and enable you to create reusable models that mold around your data structures and breathe new life into the intersection of HTML and JavaScript.”

    Read the article

  • Introduction to Lean Software Development and Kanban Systems

    - by Ben Griswold
    Last year I took myself through a crash course on Lean Software Development and Kanban Systems in preparation for an in-house presentation.  I learned a bunch.  In this series, I’ll be sharing what I learned with you.   If your career looks anything like mine, you have probably been affiliated with a company or two which pushed requirements gathering and documentation to the nth degree. To add insult to injury, they probably added planning process (documentation, requirements, policies, meetings, committees) to the extent that it possibly retarded any progress. In my opinion, the typical company resembles the quote from Tom DeMarco. It isn’t enough just to do things right – we also had to say in advance exactly what we intended to do and then do exactly that. In the 1980s, Toyota turned the tables and revolutionize the automobile industry with their approach of “Lean Manufacturing.” A massive paradigm shift hit factories throughout the US and Europe. Mass production and scientific management techniques from the early 1900’s were questioned as Japanese manufacturing companies demonstrated that ‘Just-in-Time’ was a better paradigm. The widely adopted Japanese manufacturing concepts came to be known as ‘lean production’. Lean Thinking capitalizes on the intelligence of frontline workers, believing that they are the ones who should determine and continually improve the way they do their jobs. Lean puts main focus on people and communication – if people who produce the software are respected and they communicate efficiently, it is more likely that they will deliver good product and the final customer will be satisfied. In time, the abstractions behind lean production spread to logistics, and from there to the military, to construction, and to the service industry. As it turns out, principles of lean thinking are universal and have been applied successfully across many disciplines. Lean has been adopted by companies including Dell, FedEx, Lens Crafters, LLBean, SW Airlines, Digital River and eBay. Lean thinking got its name from a 1990’s best seller called The Machine That Changed the World : The Story of Lean Production. This book chronicles the movement of automobile manufacturing from craft production to mass production to lean production. Tom and Mary Poppendieck, that is.  Here’s one of their books: Implementing Lean Software Thinking: From Concept to Cash Our in-house presentations are supposed to run no more than 45 minutes.  I really cranked and got through my 87 slides in just under an hour. Of course, I had to cheat a little – I only covered the 7 principles and a single practice. In the next part of the series, we’ll dive into Principle #1: Eliminate Waste. And I am going to be a little obnoxious about listing my Lean and Kanban references with every series post.  The references are great and they deserve this sort of attention. 

    Read the article

  • OOP vs Frameworks (DRY, Organisation, Readability)

    - by benhowdle89
    In terms of organisation, code-readability and DRY programming, which, between OOP and Frameworks shows more of these 3 attributes? I'm aware that inline, procedural coding is viewed by many as a thing of the past, so which is the best route to take for these two? Just to clarify what i mean by OOP and frameworks From Wikipedia: Object-oriented programming (OOP) is a programming paradigm In computer programming, a software framework is an abstraction in which common code providing generic functionality can be selectively overridden or specialized by user code, thus providing specific functionality

    Read the article

  • Why is multithreading often preferred for improving performance?

    - by user1849534
    I have a question, it's about why programmers seems to love concurrency and multi-threaded programs in general. I'm considering 2 main approaches here: an async approach basically based on signals, or just an async approach as called by many papers and languages like the new C# 5.0 for example, and a "companion thread" that manages the policy of your pipeline a concurrent approach or multi-threading approach I will just say that I'm thinking about the hardware here and the worst case scenario, and I have tested this 2 paradigms myself, the async paradigm is a winner at the point that I don't get why people 90% of the time talk about multi-threading when they want to speed up things or make a good use of their resources. I have tested multi-threaded programs and async program on an old machine with an Intel quad-core that doesn't offer a memory controller inside the CPU, the memory is managed entirely by the motherboard, well in this case performances are horrible with a multi-threaded application, even a relatively low number of threads like 3-4-5 can be a problem, the application is unresponsive and is just slow and unpleasant. A good async approach is, on the other hand, probably not faster but it's not worst either, my application just waits for the result and doesn't hangs, it's responsive and there is a much better scaling going on. I have also discovered that a context change in the threading world it's not that cheap in real world scenario, it's in fact quite expensive especially when you have more than 2 threads that need to cycle and swap among each other to be computed. On modern CPUs the situation it's not really that different, the memory controller it's integrated but my point is that an x86 CPUs is basically a serial machine and the memory controller works the same way as with the old machine with an external memory controller on the motherboard. The context switch is still a relevant cost in my application and the fact that the memory controller it's integrated or that the newer CPU have more than 2 core it's not bargain for me. For what i have experienced the concurrent approach is good in theory but not that good in practice, with the memory model imposed by the hardware, it's hard to make a good use of this paradigm, also it introduces a lot of issues ranging from the use of my data structures to the join of multiple threads. Also both paradigms do not offer any security abut when the task or the job will be done in a certain point in time, making them really similar from a functional point of view. According to the X86 memory model, why the majority of people suggest to use concurrency with C++ and not just an async approach ? Also why not considering the worst case scenario of a computer where the context switch is probably more expensive than the computation itself ?

    Read the article

  • Paradigms fit for UI programming

    - by Inca
    This is a more specific question (or actually two, but they are related) coming from the comments of OOP technology death where someone stated that OOP is not the right paradigm for GUI programming. Reading the comments there and here I still have the feeling there are things to learn: which programming paradigms are considered good fits and why are they better than others (perhaps with examples to illustrate?) I removed the tk-example from the title and question

    Read the article

  • Aspect-oriented Programming and Code Contracts in ASP.NET MVC

    There are some aspects to application programming, such as logging, tracing, profiling, authentication and authorization that cut across the business objects. These are difficult to deal with in an object-oriented paradigm without resorting to code-injection, code-duplication or interdependencies. In ASP.NET MVC, you can use attributes in the form of action filters to provide a neater way of implementing these cross-curring concerns.

    Read the article

  • Does MVC apply only to web

    - by Deeptechtons
    It is almost and instantaneous whenever I talk to developers about Model View Controller (MVC) they say you make a request to a url the server builds a entity (MODEL) and provides you with visual representation of that model. So does this mean MVC is only for the web or have I been meeting people who are just developers who employ MVC for writing web applications? Are there usages for MVC on desktop style applications? I for one am new to paradigm and would like to know of any super-set to MVC

    Read the article

  • How to Write Manageable Code With Functional Programming?

    - by dade
    I just started with Functional Programming(Node.Js) and from the look of things it looks as if the code am writing would grow to be one hell of a code base to manage, when compared to Programming languages that have a sort of Object Oriented Paradigm. With OOP I am familair with practices that would ensure your code is easily managed and extensible. But am nore sure of similar convention with Functional Programming.

    Read the article

  • Criteria for a programming language to be considered "mature"

    - by Giorgio
    I was recently reading an answer to this question, and I was struck by the statement "The language is mature". So I was wondering what we actually mean when we say that "A programming language is mature"? Normally, a programming language is initially developed out of a need, e.g. Try out / implement a new programming paradigm or a new combination of features that cannot be found in existing languages. Try to solve a problem or overcome a limitation of an existing language. Create a language for teaching programming. Create a language that solves a particular class of problems (e.g. concurrency). Create a language and an API for a special application field, e.g. the web (in this case the language might reuse a well-known paradigm, but the whole API must be new). Create a language to push your competitor out of the market (in this case the creator might want the new language to be very similar to an existing one, in order to attract developers to the new programming language and platform). Regardless of what the original motivation and scenario in which a language has been created, eventually some languages are considered mature. In my intuition, this means that the language has achieved (at least one of) its goals, e.g. "We can now use language X as a reliable tool for writing web applications." This is however a bit vague, so I wanted to ask what you consider the most important criteria (if any) that are applied when saying that a language is mature. IMPORTANT NOTE This question is (on purpose) language-agnostic because I am only interested in general criteria. Please write only language-agnostic answers and comments! I am not asking whether any specific "language X is mature" or "which programming languages can be considered mature", or whether "language X is more mature than language Y": please avoid posting any opinions or reference about any specific languages because these are out of the scope of this question. EDIT To make the question more precise, by criteria I mean such things as "tool support", "adoption by the industry", "stability", "rich API", "large user community", "successful application record", "standardization", "clean and uniform semantics", and so on.

    Read the article

  • Why C++ people loves multithreading when it comes to performances?

    - by user1849534
    I have a question, it's about why programmers seems to love concurrency and multi-threaded programs in general. I'm considering 2 main approach here: an async approach basically based on signals, or just an async approach as called by many papers and languages like the new C# 5.0 for example, and a "companion thread" that maanges the policy of your pipeline a concurrent approach or multi-threading approach I will just say that I'm thinking about the hardware here and the worst case scenario, and I have tested this 2 paradigms myself, the async paradigm is a winner at the point that I don't get why people 90% of the time talk about concurrency when they wont to speed up things or make a good use of their resources. I have tested multi-threaded programs and async program on an old machine with an Intel quad-core that doesn't offer a memory controller inside the CPU, the memory is managed entirely by the motherboard, well in this case performances are horrible with a multi-threaded application, even a relatively low number of threads like 3-4-5 can be a problem, the application is unresponsive and is just slow and unpleasant. A good async approach is, on the other hand, probably not faster but it's not worst either, my application just waits for the result and doesn't hangs, it's responsive and there is a much better scaling going on. I have also discovered that a context change in the threading world it's not that cheap in real world scenario, it's infact quite expensive especially when you have more than 2 threads that need to cycle and swap among each other to be computed. On modern CPUs the situation it's not really that different, the memory controller it's integrated but my point is that an x86 CPUs is basically a serial machine and the memory controller works the same way as with the old machine with an external memory controller on the motherboard. The context switch is still a relevant cost in my application and the fact that the memory controller it's integrated or that the newer CPU have more than 2 core it's not bargain for me. For what i have experienced the concurrent approach is good in theory but not that good in practice, with the memory model imposed by the hardware, it's hard to make a good use of this paradigm, also it introduces a lot of issues ranging from the use of my data structures to the join of multiple threads. Also both paradigms do not offer any security abut when the task or the job will be done in a certain point in time, making them really similar from a functional point of view. According to the X86 memory model, why the majority of people suggest to use concurrency with C++ and not just an async aproach ? Also why not considering the worst case scenario of a computer where the context switch is probably more expensive than the computation itself ?

    Read the article

  • The Evolution Of C#

    - by Paulo Morgado
    The first release of C# (C# 1.0) was all about building a new language for managed code that appealed, mostly, to C++ and Java programmers. The second release (C# 2.0) was mostly about adding what wasn’t time to built into the 1.0 release. The main feature for this release was Generics. The third release (C# 3.0) was all about reducing the impedance mismatch between general purpose programming languages and databases. To achieve this goal, several functional programming features were added to the language and LINQ was born. Going forward, new trends are showing up in the industry and modern programming languages need to be more: Declarative With imperative languages, although having the eye on the what, programs need to focus on the how. This leads to over specification of the solution to the problem in hand, making next to impossible to the execution engine to be smart about the execution of the program and optimize it to run it more efficiently (given the hardware available, for example). Declarative languages, on the other hand, focus only on the what and leave the how to the execution engine. LINQ made C# more declarative by using higher level constructs like orderby and group by that give the execution engine a much better chance of optimizing the execution (by parallelizing it, for example). Concurrent Concurrency is hard and needs to be thought about and it’s very hard to shoehorn it into a programming language. Parallel.For (from the parallel extensions) looks like a parallel for because enough expressiveness has been built into C# 3.0 to allow this without having to commit to specific language syntax. Dynamic There was been lots of debate on which ones are the better programming languages: static or dynamic. The fact is that both have good qualities and users of both types of languages want to have it all. All these trends require a paradigm switch. C# is, in many ways, already a multi-paradigm language. It’s still very object oriented (class oriented as some might say) but it can be argued that C# 3.0 has become a functional programming language because it has all the cornerstones of what a functional programming language needs. Moving forward, will have even more. Besides the influence of these trends, there was a decision of co-evolution of the C# and Visual Basic programming languages. Since its inception, there was been some effort to position C# and Visual Basic against each other and to try to explain what should be done with each language or what kind of programmers use one or the other. Each language should be chosen based on the past experience and familiarity of the developer/team/project/company and not by particular features. In the past, every time a feature was added to one language, the users of the other wanted that feature too. Going forward, when a feature is added to one language, the other will work hard to add the same feature. This doesn’t mean that XML literals will be added to C# (because almost the same can be achieved with LINQ To XML), but Visual Basic will have auto-implemented properties. Most of these features require or are built on top of features of the .NET Framework and, the focus for C# 4.0 was on dynamic programming. Not just dynamic types but being able to talk with anything that isn’t a .NET class. Also introduced in C# 4.0 is co-variance and contra-variance for generic interfaces and delegates. Stay tuned for more on the new C# 4.0 features.

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • ArchBeat Link-o-Rama for 2012-06-26

    - by Bob Rhubart
    Software Architecture for High Availability in the Cloud | Brian Jimerson Brian Jimerson looks at the paradigm shifts from machine-based architectures to cloud-based architectures when designing fault tolerance, and how enterprise applications need to be engineered to ensure the highest level of availability in the cloud. SOA, Cloud & Service Technology Symposium 2012 London - Special Oracle Discount Registration is now open for one of the premier SOA, Cloud, and Service Technology events. Once again, the Oracle community is well-represented in the session schedule. And now you can save on registration with a special Oracle discount code. Progress 4GL and DB to Oracle and cloud | Tom Laszewski "Getting from client/server based 4GLs and databases where the 4GL is tightly linked to the database to Oracle and the cloud is not easy," says cloud migration expert Tom Laszewski. "The least risky and expensive option...is to use the Progress OpenEdge DataServer for Oracle." Embrace 'big data' now or fall behind the competition, analyst warns | TechTarget TechTarget's Mark Brunelli's story says, in essence, that Big Data is not your fathers Business Intelligence. Calculating the Size (in Bytes and MB) of a Oracle Coherence Cache | Ricardo Ferreira Ferreira illustrates a programmatic way to use the Oracle Coherence API to calculate the total size of a specific cache that resides in the data grid. WebCenter Portal Tutorial Part 7: Integrating Discussions and Link service | Yannick Ongena The latest chapter in Oracle ACE Yannick Ongena's ongoing series. How to Setup JDeveloper workspace for ADF Fusion Applications to run Business Component Tester? | Jack Desai Helpful technical tips from yet another member of the Oracle Fusion Middleware Architecture Team. Big Data for the Enterprise; Software Architecture for High Availability in the Cloud; Why Cloud Computing is a Paradigm Shift - And Why It Isn't This week on the OTN Solution Architect Homepage, along with an updated events list and this weeks list of selected community blog posts. Worst Practices for Big Data | Dain Hansen Dain Hansen shares some insight on what NOT to do if you want to captialize on Big Data. Free Virtual Developer Day - Oracle Fusion Development | Grant Ronald "The online conference will include seminars, hands-on lab and live chats with our technical staff including me!" says Grant Ronald. "And the best bit, it doesn't cost you a single penny. It's free and available right on your desktop." Penguin is Getting Ready for Oracle OpenWorld 2012 | Zeynep Koch Linux fan? Check out Zeynep Koch's post for a list of Linux-based sessions at Oracle OpenWorld 2012 in San Francisco. Amazon Web Services (AWS) Autoscaling | Frank Munz "Autoscaling on AWS can only be configured with lengthy commands from the command line but not from the web cased AWS console," says Frank Munz. "Getting all the parameters right can be tricky." He demonstrates one easy example in this video. Oracle Fusion Applications Design Patterns Now Available For Developers | Ultan O'Broin "These Oracle Fusion Applications UX Design Patterns, or blueprints, enable Oracle applications developers and system implementers everywhere to leverage professional usability insight," says O'Broin. How Much Data Is Created Every Minute? [INFOGRAPHIC] | Mashable Explaining what the "Big" in Big Data really means -- and it's more than a little mind-boggling. Thought for the Day "Real, though miniature, Turing Tests are happening all the time, every day, whenever a person puts up with stupid computer software." — Jaron Lanier Source: SoftwareQuotes.com

    Read the article

  • Get data on jquery ajax success

    - by jbatson
    anyone know how i would get from opening <table> to </table> in this data that is returned from ajax with jquery. // BEGIN Subsys_JsHttpRequest_Js Subsys_JsHttpRequest_Js.dataReady( '3599', // this ID is passed from JavaScript frontend '<table border=\"0\" width=\"100%\" cellspacing=\"0\" cellpadding=\"0\">\n <tr>\n <td>\n <script type=\"text/javascript\" language=\"javascript\" src=\"includes/ajax_sc.js\"></script>\n <div id=\"divShoppingCard\">\n\n <div class=\"infoBoxHeading\"><a href=\"shopping_cart.php\">Shopping Cart</a></div>\n\n <div>\n <div class=\"boxText\">\n<script language=\"javascript\" type=\"text/javascript\">\nfunction couponpopupWindow(url) {\n window.open(url,\"popupWindow\",\"toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=yes,copyhistory=no,width=450,height=280,screenX=150,screenY=150,top=150,left=150\")\n}\n//--></script><table width=\"100%\" cellspacing=\"0\" cellpadding=\"0\"><tr><td align=\"left\" valign=\"top\" class=\"infoBoxContents\"><span class=\"infoBoxContents\">1&nbsp;x&nbsp;</span></td><td valign=\"top\" class=\"infoBoxContents\"><a href=\"http://beta.vikingwholesale.com/catalog/eagle-vanguard-limited-edition-p-3769.html\"><span class=\"infoBoxContents\">192 Eagle Vanguard Limited Edition</span></a></td></tr><tr><td align=\"left\" valign=\"top\" class=\"infoBoxContents\"><span class=\"newItemInCart\">4&nbsp;x&nbsp;</span></td><td valign=\"top\" class=\"infoBoxContents\"><a href=\"http://beta.vikingwholesale.com/catalog/family-traditions-adrenaline-avid-black-p-3599.html\"><span class=\"newItemInCart\">085 Family Traditions Adrenaline - Avid, Black</span></a></td></tr><tr><td align=\"left\" valign=\"top\" class=\"infoBoxContents\"><span class=\"infoBoxContents\">1&nbsp;x&nbsp;</span></td><td valign=\"top\" class=\"infoBoxContents\"><a href=\"http://beta.vikingwholesale.com/catalog/painted-pony-paradigm-p-4022.html\"><span class=\"infoBoxContents\">336 Painted Pony Paradigm</span></a></td></tr></table></div>\n\n\n <div class=\"boxText\"><img src=\"images/pixel_black.gif\" width=\"100%\" height=\"1\" alt=\"\"/></div>\n\n\n <div class=\"boxText\">$940.00</div>\n\n\n</div>\n\n\n \n </div><!--end of divShoppingCard-->\n </td>\n </tr></table>', null ) // END Subsys_JsHttpRequest_Js

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • Sam Abraham To Speak about MVC & MVVM at InterClick on May 19th

    - by Sam Abraham
    My next speaking engagement will be taking place at InterClick in Boca Raton, FL on Wednesday May 19th 2010.  Here is a quick abstract of what I will be blabbing about: MVC & MVVM are two of many buzzwords under the Architecture Spotlight as means of achieving true separation of concerns between data, business logic and UI layers. In this session, we will be discussing the basic concepts of Microsoft MVC and demonstrating the ease of creating a new MVC project and related Unit Tests within VS2010. We will then move to introduce MVVM as a design paradigm and incorporating that into an MS MVC application structure. Next, we will take a look at MVVM in the context of a sample Silverlight application. Throughout our talk we will be demonstrating various features of the latest and greatest VS2010. You can get more information about the event and the speaker, as well as register to attend at this link: http://sherstaff.com/EventSignUp.aspx?EventID=777 Look forward to seeing you all there.

    Read the article

  • LLBLGen Pro v3.5 has been released!

    - by FransBouma
    Last weekend we released LLBLGen Pro v3.5! Below the list of what's new in this release. Of course, not everything is on this list, like the large amount of work we put in refactoring the runtime framework. The refactoring was necessary because our framework has two paradigms which are added to the framework at a different time, and from a design perspective in the wrong order (the paradigm we added first, SelfServicing, should have been built on top of Adapter, the other paradigm, which was added more than a year after the first released version). The refactoring made sure the framework re-uses more code across the two paradigms (they already shared a lot of code) and is better prepared for the future. We're not done yet, but refactoring a massive framework like ours without breaking interfaces and existing applications is ... a bit of a challenge ;) To celebrate the release of v3.5, we give every customer a 30% discount! Use the coupon code NR1ORM with your order :) The full list of what's new: Designer Rule based .NET Attribute definitions. It's now possible to specify a rule using fine-grained expressions with an attribute definition to define which elements of a given type will receive the attribute definition. Rules can be assigned to attribute definitions on the project level, to make it even easier to define attribute definitions in bulk for many elements in the project. More information... Revamped Project Settings dialog. Multiple project related properties and settings dialogs have been merged into a single dialog called Project Settings, which makes it easier to configure the various settings related to project elements. It also makes it easier to find features previously not used  by many (e.g. type conversions) More information... Home tab with Quick Start Guides. To make new users feel right at home, we added a home tab with quick start guides which guide you through four main use cases of the designer. System Type Converters. Many common conversions have been implemented by default in system type converters so users don't have to develop their own type converters anymore for these type conversions. Bulk Element Setting Manipulator. To change setting values for multiple project elements, it was a little cumbersome to do that without a lot of clicking and opening various editors. This dialog makes changing settings for multiple elements very easy. EDMX Importer. It's now possible to import entity model data information from an existing Entity Framework EDMX file. Other changes and fixes See for the full list of changes and fixes the online documentation. LLBLGen Pro Runtime Framework WCF Data Services (OData) support has been added. It's now possible to use your LLBLGen Pro runtime framework powered domain layer in a WCF Data Services application using the VS.NET tools for WCF Data Services. WCF Data Services is a Microsoft technology for .NET 4 to expose your domain model using OData. More information... New query specification and execution API: QuerySpec. QuerySpec is our new query specification and execution API as an alternative to Linq and our more low-level API. It's build, like our Linq provider, on top of our lower-level API. More information... SQL Server 2012 support. The SQL Server DQE allows paging using the new SQL Server 2012 style. More information... System Type converters. For a common set of types the LLBLGen Pro runtime framework contains built-in type conversions so you don't need to write your own type converters anymore. Public/NonPublic property support. It's now possible to mark a field / navigator as non-public which is reflected in the runtime framework as an internal/friend property instead of a public property. This way you can hide properties from the public interface of a generated class and still access it through code added to the generated code base. FULL JOIN support. It's now possible to perform FULL JOIN joins using the native query api and QuerySpec. It's left to the developer to check whether the used target database supports FULL (OUTER) JOINs. Using a FULL JOIN with entity fetches is not recommended, and should only be used when both participants in the join aren't the target of the fetch. Dependency Injection Tracing. It's now possible to enable tracing on dependency injection. Enable tracing at level '4' on the traceswitch 'ORMGeneral'. This will emit trace information about which instance of which type got an instance of type T injected into property P. Entity Instances in projections in Linq. It's now possible to return an entity instance in a custom Linq projection. It's now also possible to pass this instance to a method inside the query projection. Inheritance fully supported in this construct. Entity Framework support The Entity Framework has been updated in the recent year with code-first support and a new simpler context api: DbContext (with DbSet). The amount of code to generate is smaller and the context simpler. LLBLGen Pro v3.5 comes with support for DbContext and DbSet and generates code which utilizes these new classes. NHibernate support NHibernate v3.2+ built-in proxy factory factory support. By default the built-in ProxyFactoryFactory is selected. FluentNHibernate Session Manager uses 1.2 syntax. Fluent NHibernate mappings generate a SessionManager which uses the v1.2 syntax for the ProxyFactoryFactory location Optionally emit schema / catalog name in mappings Two settings have been added which allow the user to control whether the catalog name and/or schema name as known in the project in the designer is emitted into the mappings.

    Read the article

  • Scrum for a single programmer?

    - by Rob Perkins
    I'm billed as the "Windows Expert" in my very small company, which consists of myself, a mechanical engineer working in a sales and training role, and the company's president, working in a design, development, and support role. My role is equally as general, but primarily I design and implement whatever programming on our product needs to get done in order for our stuff to run on whichever versions of Windows are current. I just finished watching a high-level overview of the Scrum paradigm, given in a webcast. My question is: Is it worth my time to learn more about this approach to product development, given that my development work items are usually given at a very high level, such as "internationalize and localize the product". If it is, how would you suggest adapting Scrum for the use of just one programmer? What tools, cloud-based or otherwise, would be useful to that end? If it is not, what approach would you suggest for a single programmer to organize his efforts from day to day? (Perhaps the question reduces to that simple question.)

    Read the article

  • What Functional features are worth a little OOP confusion for the benefits they bring?

    - by bonomo
    After learning functional programming in Haskell and F#, the OOP paradigm seems ass-backwards with classes, interfaces, objects. Which aspects of FP can I bring to work that my co-workers can understand? Are any FP styles worth talking to my boss about retraining my team so that we can use them? Possible aspects of FP: Immutability Partial Application and Currying First Class Functions (function pointers / Functional Objects / Strategy Pattern) Lazy Evaluation (and Monads) Pure Functions (no side effects) Expressions (vs. Statements - each line of code produces a value instead of, or in addition to causing side effects) Recursion Pattern Matching Is it a free-for-all where we can do whatever the programming language supports to the limit that language supports it? Or is there a better guideline?

    Read the article

  • Why is Reinforcement Learning so rarely used in pathfinding?

    - by doug
    The venerable shortest-path graph theoretic algorithm A* and subsequent improvements (e.g., Hierarchical Annotated A*) is clearly the technique of choice for pathfinding in game development. Instead, it just seems to me that RL is a more natural paradigm to move a character around a game space. And yet I'm not aware of a single game developer who has implemented a Reinforcement Learning-based pathfinding engine. (I don't infer from this that the application of RL in pathfinding is 0, just that it's very small relative to A* and friends.) Whatever the reason, it's not because these developers are unaware of RL, as evidenced by the fact that RL is frequently used elsewhere in the game engine. This question is not a pretext for offering an opinion on RL in pathfinding; in fact, i am assuming that the tacit preference for A* et al. over RL is correct--but that preference is not obviously to me and i'm very curious about the reason for it, particularly from anyone who has tried to use RL for pathfinding.

    Read the article

  • Delegates and Events in C#

    - by hakanbilge
    Events and their underlying mechanism "Delegates" are very powerful tools of a developer and Event Driven Programming is one of the main Programming Paradigms. Its wiki definition is "event-driven programming or event-based programming is a programming paradigm in which the flow of the program is determined by events?i.e., sensor outputs or user actions (mouse clicks, key presses) or messages from other programs or threads." That means, your program can go its own way sequentially and in the case of anything that requires attention is done (when an event fires) by somebody or something, you can response it by using that event's controller method (this mechanism is like interrupt driven programming in embedded systems). There are many real world scenarios for events, for example, ASP.NET uses events to catch a click on a button or in your app, controller has notice of a change in UI by handling events exposed by view (in MVC pattern). Delegates in C# C# delegates correspond to function pointers in  [read more....]

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >