Search Results

Search found 40393 results on 1616 pages for 'single table inheritance'.

Page 4/1616 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Confused about implementing Single Responsibility Principle

    - by HichemSeeSharp
    Please bear with me if the question looks not well structured. To put you in the context of my issue: I am building an application that invoices vehicles stay duration in a parking. In addition to the stay service there are some other services. Each service has its own calculation logic. Here is an illustration (please correct me if the design is wrong): public abstract class Service { public int Id { get; set; } public bool IsActivated { get; set; } public string Name { get; set } public decimal Price { get; set; } } public class VehicleService : Service { //MTM : many to many public virtual ICollection<MTMVehicleService> Vehicles { get; set; } } public class StayService : VehicleService { } public class Vehicle { public int Id { get; set; } public string ChassisNumber { get; set; } public DateTime? EntryDate { get; set; } public DateTime? DeliveryDate { get; set; } //... public virtual ICollection<MTMVehicleService> Services{ get; set; } } Now, I am focusing on the stay service as an example: I would like to know at invoicing time which class(es) would be responsible for generating the invoice item for the service and for each vehicle? This should calculate the duration cost knowing that the duration could be invoiced partially so the like is as follows: not yet invoiced stay days * stay price per day. At this moment I have InvoiceItemsGenerator do everything but I am aware that there is a better design.

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 2 – Table per Type (TPT)

    - by mortezam
    In the previous blog post you saw that there are three different approaches to representing an inheritance hierarchy and I explained Table per Hierarchy (TPH) as the default mapping strategy in EF Code First. We argued that the disadvantages of TPH may be too serious for our design since it results in denormalized schemas that can become a major burden in the long run. In today’s blog post we are going to learn about Table per Type (TPT) as another inheritance mapping strategy and we'll see that TPT doesn’t expose us to this problem. Table per Type (TPT)Table per Type is about representing inheritance relationships as relational foreign key associations. Every class/subclass that declares persistent properties—including abstract classes—has its own table. The table for subclasses contains columns only for each noninherited property (each property declared by the subclass itself) along with a primary key that is also a foreign key of the base class table. This approach is shown in the following figure: For example, if an instance of the CreditCard subclass is made persistent, the values of properties declared by the BillingDetail base class are persisted to a new row of the BillingDetails table. Only the values of properties declared by the subclass (i.e. CreditCard) are persisted to a new row of the CreditCards table. The two rows are linked together by their shared primary key value. Later, the subclass instance may be retrieved from the database by joining the subclass table with the base class table. TPT Advantages The primary advantage of this strategy is that the SQL schema is normalized. In addition, schema evolution is straightforward (modifying the base class or adding a new subclass is just a matter of modify/add one table). Integrity constraint definition are also straightforward (note how CardType in CreditCards table is now a non-nullable column). Another much more important advantage is the ability to handle polymorphic associations (a polymorphic association is an association to a base class, hence to all classes in the hierarchy with dynamic resolution of the concrete class at runtime). A polymorphic association to a particular subclass may be represented as a foreign key referencing the table of that particular subclass. Implement TPT in EF Code First We can create a TPT mapping simply by placing Table attribute on the subclasses to specify the mapped table name (Table attribute is a new data annotation and has been added to System.ComponentModel.DataAnnotations namespace in CTP5): public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } [Table("BankAccounts")] public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } [Table("CreditCards")] public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } If you prefer fluent API, then you can create a TPT mapping by using ToTable() method: protected override void OnModelCreating(ModelBuilder modelBuilder) {     modelBuilder.Entity<BankAccount>().ToTable("BankAccounts");     modelBuilder.Entity<CreditCard>().ToTable("CreditCards"); } Generated SQL For QueriesLet’s take an example of a simple non-polymorphic query that returns a list of all the BankAccounts: var query = from b in context.BillingDetails.OfType<BankAccount>() select b; Executing this query (by invoking ToList() method) results in the following SQL statements being sent to the database (on the bottom, you can also see the result of executing the generated query in SQL Server Management Studio): Now, let’s take an example of a very simple polymorphic query that requests all the BillingDetails which includes both BankAccount and CreditCard types: projects some properties out of the base class BillingDetail, without querying for anything from any of the subclasses: var query = from b in context.BillingDetails             select new { b.BillingDetailId, b.Number, b.Owner }; -- var query = from b in context.BillingDetails select b; This LINQ query seems even more simple than the previous one but the resulting SQL query is not as simple as you might expect: -- As you can see, EF Code First relies on an INNER JOIN to detect the existence (or absence) of rows in the subclass tables CreditCards and BankAccounts so it can determine the concrete subclass for a particular row of the BillingDetails table. Also the SQL CASE statements that you see in the beginning of the query is just to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type) TPT ConsiderationsEven though this mapping strategy is deceptively simple, the experience shows that performance can be unacceptable for complex class hierarchies because queries always require a join across many tables. In addition, this mapping strategy is more difficult to implement by hand— even ad-hoc reporting is more complex. This is an important consideration if you plan to use handwritten SQL in your application (For ad hoc reporting, database views provide a way to offset the complexity of the TPT strategy. A view may be used to transform the table-per-type model into the much simpler table-per-hierarchy model.) SummaryIn this post we learned about Table per Type as the second inheritance mapping in our series. So far, the strategies we’ve discussed require extra consideration with regard to the SQL schema (e.g. in TPT, foreign keys are needed). This situation changes with the Table per Concrete Type (TPC) that we will discuss in the next post. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • update table using cursor but also update records in another table

    - by Bucket
    I'm updating the IDs with new IDs, but I need to retain the same ID for the master record in table A and its dependents in table B. The chunk bracketed by comments is the part I can't figure out. I need to update all the records in table B that share the same ID with the current record I'm looking at for table A. DECLARE CURSOR_A CURSOR FOR SELECT * FROM TABLE_A FOR UPDATE OPEN CURSOR_A FETCH NEXT FROM CURSOR_A WHILE @@FETCH_STATUS = 0 BEGIN BEGIN TRANSACTION UPDATE KEYMASTERTABLE SET RUNNING_NUMBER=RUNNING_NUMBER+1 WHERE TRANSACTION_TYPE='TABLE_A_NEXT_ID' -- FOLLOWING CHUNK IS WRONG!!! UPDATE TABLE_B SET TABLE_B_ID=(SELECT RUNNING_NUMBER FROM KEYMASTERTABLE WHERE TRANSACTION_TYPE='TABLE_A_NEXT_ID') WHERE TABLE_B_ID = (SELECT TABLE_A_ID FROM CURRENT OF CURSOR A) -- END OF BAD CHUNK UPDATE TABLE_A SET TABLE_A_ID=(SELECT RUNNING_NUMBER FROM KEYMASTERTABLE WHERE TRANSACTION_TYPE='TABLE_A_NEXT_ID') WHERE CURRENT OF CURSOR_A COMMIT FETCH NEXT FROM CURSOR_A END CLOSE CURSOR_A DEALLOCATE CURSOR_A GO

    Read the article

  • HTML table headers always visible at top of window when viewing a large table

    - by Craig McQueen
    I would like to be able to "tweak" an HTML table's presentation to add a single feature: when scrolling down through the page so that the table is on the screen but the header rows are off-screen, I would like the headers to remain visible at the top of the viewing area. This would be conceptually like the "freeze panes" feature in Excel. However, an HTML page might contain several tables in it and I only would want it to happen for the table that is currently in-view, only while it is in-view. Note: I've seen one solution where the table data area is made scrollable while the headers do not scroll. That's not the solution I'm looking for.

    Read the article

  • create table from another table in different database in sql server 2005

    - by Greg
    Hi, I have a database "temp" with table "A". I created new database "temp2". I want to copy table "A" from "temp" to a new table in "temp2" . I tried this statement but it says I have incorrect syntax, here is the statement: CREATE TABLE B IN 'temp2' AS (SELECT * FROM A IN 'temp'); Here is the error: Msg 156, Level 15, State 1, Line 2 Incorrect syntax near the keyword 'IN'. Msg 156, Level 15, State 1, Line 3 Incorrect syntax near the keyword 'IN'. Anyone knows whats the problem? Thanks in advance, Greg

    Read the article

  • load table data on jsp using struts2 with fixed table structure

    - by Zahra
    Hi. I want to have a fixed table structure on my jsp page(3row, 4column). but I want to load data for this table from DataBase with using struts 2. I know if my table structure wasn't fixed I could have just get a List and iterate on it and add a data in every iteration, but how could I do this in this case. also if I don't have enough data to fill table, I want those places to be empty. I didn't find a good example, if you could help me or introduce me a good tutorial, it would be really appreciated. Thanks in advance.

    Read the article

  • Azure - Part 4 - Table Storage Service in Windows Azure

    - by Shaun
    In Windows Azure platform there are 3 storage we can use to save our data on the cloud. They are the Table, Blob and Queue. Before the Chinese New Year Microsoft announced that Azure SDK 1.1 had been released and it supports a new type of storage – Drive, which allows us to operate NTFS files on the cloud. I will cover it in the coming few posts but now I would like to talk a bit about the Table Storage.   Concept of Table Storage Service The most common development scenario is to retrieve, create, update and remove data from the data storage. In the normal way we communicate with database. When we attempt to move our application over to the cloud the most common requirement should be have a storage service. Windows Azure provides a in-build service that allow us to storage the structured data, which is called Windows Azure Table Storage Service. The data stored in the table service are like the collection of entities. And the entities are similar to rows or records in the tradtional database. An entity should had a partition key, a row key, a timestamp and set of properties. You can treat the partition key as a group name, the row key as a primary key and the timestamp as the identifer for solving the concurrency problem. Different with a table in a database, the table service does not enforce the schema for tables, which means you can have 2 entities in the same table with different property sets. The partition key is being used for the load balance of the Azure OS and the group entity transaction. As you know in the cloud you will never know which machine is hosting your application and your data. It could be moving based on the transaction weight and the number of the requests. If the Azure OS found that there are many requests connect to your Book entities with the partition key equals “Novel” it will move them to another idle machine to increase the performance. So when choosing the partition key for your entities you need to make sure they indecate the category or gourp information so that the Azure OS can perform the load balance as you wish.   Consuming the Table Although the table service looks like a database, you cannot access it through the way you are using now, neither ADO.NET nor ODBC. The table service exposed itself by ADO.NET Data Service protocol, which allows you can consume it through the RESTful style by Http requests. The Azure SDK provides a sets of classes for us to connect it. There are 2 classes we might need: TableServiceContext and TableServiceEntity. The TableServiceContext inherited from the DataServiceContext, which represents the runtime context of the ADO.NET data service. It provides 4 methods mainly used by us: CreateQuery: It will create a IQueryable instance from a given type of entity. AddObject: Add the specified entity into Table Service. UpdateObject: Update an existing entity in the Table Service. DeleteObject: Delete an entity from the Table Service. Beofre you operate the table service you need to provide the valid account information. It’s something like the connect string of the database but with your account name and the account key when you created the storage service on the Windows Azure Development Portal. After getting the CloudStorageAccount you can create the CloudTableClient instance which provides a set of methods for using the table service. A very useful method would be CreateTableIfNotExist. It will create the table container for you if it’s not exsited. And then you can operate the eneities to that table through the methods I mentioned above. Let me explain a bit more through an exmaple. We always like code rather than sentence.   Straightforward Accessing to the Table Here I would like to build a WCF service on the Windows Azure platform, and for now just one requirement: it would allow the client to create an account entity on the table service. The WCF service would have a method named Register and accept an instance of the account which the client wants to create. After perform some validation it will add the entity into the table service. So the first thing I should do is to create a Cloud Application on my VIstial Studio 2010 RC. (The Azure SDK 1.1 only supports VS2008 and VS2010 RC.) The solution should be like this below. Then I added a configuration items for the storage account through the Settings section under the cloud project. (Double click the Services file under Roles folder and navigate to the Setting section.) This setting will be used when to retrieve my storage account information. Since for now I just in the development phase I will select “UseDevelopmentStorage=true”. And then I navigated to the WebRole.cs file under my WCF project. If you have read my previous posts you would know that this file defines the process when the application start, and terminate on the cloud. What I need to do is to when the application start, set the configuration publisher to load my config file with the config name I specified. So the code would be like below. I removed the original service and contract created by the VS template and add my IAccountService contract and its implementation class - AccountService. And I add the service method Register with the parameters: email, password and it will return a boolean value to indicates the result which is very simple. At this moment if I press F5 the application will be established on my local development fabric and I can see my service runs well through the browser. Let’s implement the service method Rigister, add a new entity to the table service. As I said before the entities you want to store in the table service must have 3 properties: partition key, row key and timespan. You can create a class with these 3 properties. The Azure SDK provides us a base class for that named TableServiceEntity in Microsoft.WindowsAzure.StorageClient namespace. So what we need to do is more simply, create a class named Account and let it derived from the TableServiceEntity. And I need to add my own properties: Email, Password, DateCreated and DateDeleted. The DateDeleted is a nullable date time value to indecate whether this entity had been deleted and when. Do you notice that I missed something here? Yes it’s the partition key and row key I didn’t assigned. The TableServiceEntity base class defined 2 constructors one was a parameter-less constructor which will be used to fill values into the properties from the table service when retrieving data. The other was one with 2 parameters: partition key and row key. As I said below the partition key may affect the load balance and the row key must be unique so here I would like to use the email as the parition key and the email plus a Guid as the row key. OK now we finished the entity class we need to store onto the table service. The next step is to create a data access class for us to add it. Azure SDK gives us a base class for it named TableServiceContext as I mentioned below. So let’s create a class for operate the Account entities. The TableServiceContext need the storage account information for its constructor. It’s the combination of the storage service URI that we will create on Windows Azure platform, and the relevant account name and key. The TableServiceContext will use this information to find the related address and verify the account to operate the storage entities. Hence in my AccountDataContext class I need to override this constructor and pass the storage account into it. All entities will be saved in the table storage with one or many tables which we call them “table containers”. Before we operate an entity we need to make sure that the table container had been created on the storage. There’s a method we can use for that: CloudTableClient.CreateTableIfNotExist. So in the constructor I will perform it firstly to make sure all method will be invoked after the table had been created. Notice that I passed the storage account enpoint URI and the credentials to specify where my storage is located and who am I. Another advise is that, make your entity class name as the same as the table name when create the table. It will increase the performance when you operate it over the cloud especially querying. Since the Register WCF method will add a new account into the table service, here I will create a relevant method to add the account entity. Before implement, I should add a reference - System.Data.Services.Client to the project. This reference provides some common method within the ADO.NET Data Service which can be used in the Windows Azure Table Service. I will use its AddObject method to create my account entity. Since the table service are not fully implemented the ADO.NET Data Service, there are some methods in the System.Data.Services.Client that TableServiceContext doesn’t support, such as AddLinks, etc. Then I implemented the serivce method to add the account entity through the AccountDataContext. You can see in the service implmentation I load the storage account information through my configuration file and created the account table entity from the parameters. Then I created the AccountDataContext. If it’s my first time to invoke this method the constructor of the AccountDataContext will create a table container for me. Then I use Add method to add the account entity into the table. Next, let’s create a farely simple client application to test this service. I created a windows console application and added a service reference to my WCF service. The metadata information of the WCF service cannot be retrieved if it’s deployed on the Windows Azure even though the <serviceMetadata httpGetEnabled="true"/> had been set. If we need to get its metadata we can deploy it on the local development service and then changed the endpoint to the address which is on the cloud. In the client side app.config file I specified the endpoint to the local development fabric address. And the just implement the client to let me input an email and a password then invoke the WCF service to add my acocunt. Let’s run my application and see the result. Of course it should return TRUE to me. And in the local SQL Express I can see the data had been saved in the table.   Summary In this post I explained more about the Windows Azure Table Storage Service. I also created a small application for demostration of how to connect and consume it through the ADO.NET Data Service Managed Library provided within the Azure SDK. I only show how to create an eneity in the storage service. In the next post I would like to explain about how to query the entities with conditions thruogh LINQ. I also would like to refactor my AccountDataContext class to make it dyamic for any kinds of entities.   Hope this helps, Shaun   All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • How to get table cells evenly spaced?

    - by DaveDev
    I'm trying to create a page with a number of static html tables on them. What do I need to do to get them to display each column the same size as each other column in the table? The HTML is as follows: <span class="Emphasis">Interest rates</span><br /> <table cellpadding="0px" cellspacing="0px" class="PerformanceTable"> <tr><th class="TableHeader"></th><th class="TableHeader">Current rate as at 31 March 2010</th><th class="TableHeader">31 December 2009</th><th class="TableHeader">31 March 2009</th></tr> <tr class="TableRow"><td>Index1</td><td class="PerformanceCell">1.00%</td><td>1.00%</td><td>1.50%</td></tr> <tr class="TableRow"><td>index2</td><td class="PerformanceCell">0.50%</td><td>0.50%</td><td>0.50%</td></tr> <tr class="TableRow"><td>index3</td><td class="PerformanceCell">0.25%</td><td>0.25%</td><td>0.25%</td></tr> </table> <span>Source: Bt</span><br /><br /> <span class="Emphasis">Stock markets</span><br /> <table cellpadding="0px" cellspacing="0px" class="PerformanceTable"> <tr><th class="TableHeader"></th><th class="TableHeader">As at 31 March 2010</th><th class="TableHeader">1 month change</th><th class="TableHeader">QTD change</th><th class="TableHeader">12 months change</th></tr> <tr class="TableRow"><td>index1</td><td class="PerformanceCell">1169.43</td><td class="PerformanceCell">5.88%</td><td class="PerformanceCell">4.87%</td><td class="PerformanceCell">46.57%</td></tr> <tr class="TableRow"><td>index2</td><td class="PerformanceCell">1958.34</td><td class="PerformanceCell">7.68%</td><td class="PerformanceCell">5.27%</td><td class="PerformanceCell">58.31%</td></tr> <tr class="TableRow"><td>index3</td><td class="PerformanceCell">5679.64</td><td class="PerformanceCell">6.07%</td><td class="PerformanceCell">4.93%</td><td class="PerformanceCell">44.66%</td></tr> <tr class="TableRow"><td>index4</td><td class="PerformanceCell">2943.92</td><td class="PerformanceCell">8.30%</td><td class="PerformanceCell">-0.98%</td><td class="PerformanceCell">44.52%</td></tr> <tr class="TableRow"><td>index5</td><td class="PerformanceCell">978.81</td><td class="PerformanceCell">9.47%</td><td class="PerformanceCell">7.85%</td><td class="PerformanceCell">26.52%</td></tr> <tr class="TableRow"><td>index6</td><td class="PerformanceCell">3177.77</td><td class="PerformanceCell">10.58%</td><td class="PerformanceCell">6.82%</td><td class="PerformanceCell">44.84%</td></tr> </table> <span>Source: B</span><br /><br /> I'm also open to suggestion on how to tidy this up, if there are any? :-)

    Read the article

  • SQL SERVER – Not Possible – Delete From Multiple Table – Update Multiple Table in Single Statement

    - by pinaldave
    There are two questions which I get every single day multiple times. In my gmail, I have created standard canned reply for them. Let us see the questions here. I want to delete from multiple table in a single statement how will I do it? I want to update multiple table in a single statement how will I do it? The answer is – No, You cannot and you should not. SQL Server does not support deleting or updating from two tables in a single update. If you want to delete or update two different tables – you may want to write two different delete or update statements for it. This method has many issues – from the consistency of the data to SQL syntax. Now here is the real reason for this blog post – yesterday I was asked this question again and I replied my canned answer saying it is not possible and it should not be any way implemented that day. In the response to my reply I was pointed out to my own blog post where user suggested that I had previously mentioned this is possible and with demo example. Let us go over my conversation – you may find it interesting. Let us call the user DJ. DJ: Pinal, can we delete multiple table in a single statement or with single delete statement? Pinal: No, you cannot and you should not. DJ: Oh okey, if that is the case, why do you suggest to do that? Pinal: (baffled) I am not suggesting that. I am rather suggesting that it is not possible and it should not be possible. DJ: Hmm… but in that case why did you blog about it earlier? Pinal: (What?) No, I did not. I am pretty confident. DJ: Well, I am confident as well. You did. Pinal: In that case, it is my word against your word. Isn’t it? DJ: I have proof. Do you want to see it that you suggest it is possible? Pinal: Yes, I will be delighted too. (After 10 Minutes) DJ: Here are not one but two of your blog posts which talks about it - SQL SERVER – Curious Case of Disappearing Rows – ON UPDATE CASCADE and ON DELETE CASCADE – Part 1 of 2 SQL SERVER – Curious Case of Disappearing Rows – ON UPDATE CASCADE and ON DELETE CASCADE – T-SQL Example – Part 2 of 2 Pinal: Oh! DJ: I know I was correct. Pinal: Well, oh man, I did not mean there what you mean here. DJ: I did not understand can you explain it further. Pinal: Here we go. The example in the other blog is the example of the cascading delete or cascading update. I think you may want to understand the concept of the foreign keys and cascading update/delete. The concept of cascading exists to maintain data integrity. If there primary keys get deleted the update or delete reflects on the foreign key table to maintain the key integrity and data consistency. SQL Server follows ANSI Entry SQL with regard to referential integrity between PrimaryKey and ForeignKey columns which requires the inserting, updating, and deleting of data in related tables to be restricted to values that preserve the integrity. This is all together different concept than deleting multiple values in a single statement. When I hear that someone wants to delete or update multiple table in a single statement what I assume is something very similar to following. DELETE/UPDATE Table 1 (cols) Table 2 (cols) VALUES … which is not valid statement/syntax as well it is not ASNI standards as well. I guess, after this discussion with DJ, I realize I need to do a blog post so I can add the link to this blog post in my canned answer. Well, it was a fun conversation with DJ and I hope it the message is very clear now. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Joins, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • why does vb.net not support multiple inheritance?

    - by isolatedIterator
    I've seen some discussion on why c# does not implement multiple inheritance but very little as to why it isn't supported in vb. I understand that both c# and vb are compiled down to intermediary language and so they both need to share similar restrictions. The lack of multiple inheritance in VB seems to have been given as one reason for the lack of the feature in dot net. Does anyone know why VB doesn't support multiple inheritance? I'm hoping for a bit of history lesson and discussion on why this was never considered for VB.

    Read the article

  • why does vb not support multiple inheritance?

    - by isolatedIterator
    I've seen some discussion on why c# does not implement multiple inheritance but very little as to why it isn't supported in vb. I understand that both c# and vb are compiled down to intermediary language and so they both need to share similar restrictions. The lack of multiple inheritance in VB seems to have been given as one reason for the lack of the feature in dot net. Does anyone know why VB doesn't support multiple inheritance? I'm hoping for a bit of history lesson and discussion on why this was never considered for VB.

    Read the article

  • Composition vs Inheritance and GUI toolkits

    - by Anin Teger
    It's said that composition is preferred over inheritance. Every single open source GUI toolkit however uses inheritance for the drawn widgets (windows, labels, frames, buttons, etc). I checked Qt, wxWidgets, and GTK+. Is there an example of a GUI toolkit (written in any language) that uses composition instead of inheritance to separate the various widgets?

    Read the article

  • CSS Table Formatting to a HTML Table

    - by Rurigok
    I am attempting to provide CSS formating to two HTML tables, but I cannot. I am setting up a webpage in HTML & CSS (with the CSS in an external sheet) and the layout of the website depends on the tables. There are 2 tables, one for the head and another for the body. They are set up whereas content is situated in one middle column of 60% width, with one column on each side of the center with 20% width each, along with other table formatting. My question is - how can I format the tables in CSS? I successfully formatted them in HTML, but this will not do. This is the CSS code for the tables - each table has the id layouttable: #layouttable{border:0px;width:100%;} #layouttable td{width:20%;vertical-align:top;} #layouttable td{width:60%;vertical-align:top;background-color:#E8E8E8;} #layouttable td{width:20%;vertical-align:top;} The tables in the html document both each have, in respective order, these elements (with content inside not shown): <table id="layouttable"><tr><td></td><td></td><td></td></tr></table> Does anyone have any idea why this CSS is not working, or can write some code to fix it? If further explanation is needed, please, ask.

    Read the article

  • CSS Zebra Stripe a Specific Table tr:nth-child(even)

    - by BillR
    I want to zebra stripe only select tables using. I do not want to use jQuery for this. tbody tr:nth-child(even) td, tbody tr.even td {background:#e5ecf9;} When I put that in a css file it affects all tables on all pages that call the same stylesheet. What I would like to do is selectively apply it to specific tables. I have tried this, but it doesn't work. // in stylesheet .zebra_stripe{ tbody tr:nth-child(even) td, tbody tr.even td {background:#e5ecf9;} } // in html <table class="zebra_even"> <colgroup> <col class="width_10em" /> <col class="width_15em" /> </colgroup> <tr> <td>Odd row nice and clear.</td> <td>Some Stuff</td> </tr> <tr> <td>Even row nice and clear but it should be shaded.</td> <td>Some Stuff</td> </tr> </table> And this: <table> <colgroup> <col class="width_10em" /> <col class="width_15em" /> </colgroup> <tbody class="zebra_even"> The stylesheet works as it is properly formatting other elements of the html. Can someone help me with an answer to this problem? Thanks.

    Read the article

  • add table row before or after a table row of known ID

    - by Perpetualcoder
    In a table like this: <table> <!-- Insert Row of bun here --> <tr id="meat"> <td>Hamburger</td> </tr/> <!-- Insert Row of bun here --> </table> function AddBefore(rowId){} function AddAfter(rowId){} I need to create methods without using jquery..i am familiar with append after and append before in jquery.. but i am stuck with using palin js.

    Read the article

  • problem in below table:i had table inside table .my inner table contains some text.

    - by Ayyappan.Anbalagan
    Heading ## <tr style=" width:500px; float:left;"> <td style="border: thin ridge #008000; text-align:left;" align="left"; > <table class="" style=" border: 1px solid #800000; width:200px; float:left; height: 200px;"> <tr> <td>&nbsp;stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow&nbsp; </td> </tr> </table> stackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow stackoverflowstackoverflow statackoverflow sta</td> </tr> </table>

    Read the article

  • jquery: remove table row while iterating through table rows

    - by deostroll
    #exceptions is a html table. I try to run the code below, but it doesn't remove the table row. $('#exceptions').find('tr').each(function(){ var flag=false; var val = 'excalibur'; $(this).find('td').each(function(){ if($(this).text().toLowerCase() == val) flag = true; }); if(flag) $(this).parent().remove($(this)); }); What is the correct way to do it?

    Read the article

  • Update (ajax) only part of table without affecting whole table

    - by ile
    <table width="100%" border="0" cellspacing="0" cellpadding="0" class="list"> <tr> <th><a href="#" class="sortby">Full Name</a></th> <th><a href="#" class="sortby">City</a></th> <th><a href="#" class="sortby">Country</a></th> <th><a href="#" class="sortby">Status</a></th> <th><a href="#" class="sortby">Education</a></th> <th><a href="#" class="sortby">Tasks</a></th> </tr> <div class="dynamicData"> <tr> <td>Firstname Lastname</a></td> <td>Los Angeles</td> <td>USA</td> <td>Married</td> <td>High School</td> <td>4</td> </tr> </tr> <tr> <td>Firstname Lastname</a></td> <td>Los Angeles</td> <td>USA</td> <td>Married</td> <td>High School</td> <td>4</td> </tr> </div> </table> The idea is to update table rows when clicking on link with clasl "sortby" which is part of th table tag. I tried inserting div but this doesn't work. Separating this in two tables is not good solution because witdh in both tables cell are not following each other. Any other solution? Thanks

    Read the article

  • Display a JSON-string as a table

    - by Martin Aleksander
    I'm totally new to JSON, and have a json-string I need to display as a user-friendly table. I have this file, http://ish.tek.no/json_top_content.php?project_id=11&period=week, witch is showing ID-numbers for products (title) and the number of views. The Title-ID should be connected to this file; http://api.prisguide.no/export/product.php?id=158200 so I can get a table like this: ID | Product Name | Views 158200 | Samsung Galaxy SIII | 21049 How can I do this?

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5 Part 1: Table per Hierarchy (TPH)

    - by mortezam
    A simple strategy for mapping classes to database tables might be “one table for every entity persistent class.” This approach sounds simple enough and, indeed, works well until we encounter inheritance. Inheritance is such a visible structural mismatch between the object-oriented and relational worlds because object-oriented systems model both “is a” and “has a” relationships. SQL-based models provide only "has a" relationships between entities; SQL database management systems don’t support type inheritance—and even when it’s available, it’s usually proprietary or incomplete. There are three different approaches to representing an inheritance hierarchy: Table per Hierarchy (TPH): Enable polymorphism by denormalizing the SQL schema, and utilize a type discriminator column that holds type information. Table per Type (TPT): Represent "is a" (inheritance) relationships as "has a" (foreign key) relationships. Table per Concrete class (TPC): Discard polymorphism and inheritance relationships completely from the SQL schema.I will explain each of these strategies in a series of posts and this one is dedicated to TPH. In this series we'll deeply dig into each of these strategies and will learn about "why" to choose them as well as "how" to implement them. Hopefully it will give you a better idea about which strategy to choose in a particular scenario. Inheritance Mapping with Entity Framework Code FirstAll of the inheritance mapping strategies that we discuss in this series will be implemented by EF Code First CTP5. The CTP5 build of the new EF Code First library has been released by ADO.NET team earlier this month. EF Code-First enables a pretty powerful code-centric development workflow for working with data. I’m a big fan of the EF Code First approach, and I’m pretty excited about a lot of productivity and power that it brings. When it comes to inheritance mapping, not only Code First fully supports all the strategies but also gives you ultimate flexibility to work with domain models that involves inheritance. The fluent API for inheritance mapping in CTP5 has been improved a lot and now it's more intuitive and concise in compare to CTP4. A Note For Those Who Follow Other Entity Framework ApproachesIf you are following EF's "Database First" or "Model First" approaches, I still recommend to read this series since although the implementation is Code First specific but the explanations around each of the strategies is perfectly applied to all approaches be it Code First or others. A Note For Those Who are New to Entity Framework and Code-FirstIf you choose to learn EF you've chosen well. If you choose to learn EF with Code First you've done even better. To get started, you can find a great walkthrough by Scott Guthrie here and another one by ADO.NET team here. In this post, I assume you already setup your machine to do Code First development and also that you are familiar with Code First fundamentals and basic concepts. You might also want to check out my other posts on EF Code First like Complex Types and Shared Primary Key Associations. A Top Down Development ScenarioThese posts take a top-down approach; it assumes that you’re starting with a domain model and trying to derive a new SQL schema. Therefore, we start with an existing domain model, implement it in C# and then let Code First create the database schema for us. However, the mapping strategies described are just as relevant if you’re working bottom up, starting with existing database tables. I’ll show some tricks along the way that help you dealing with nonperfect table layouts. Let’s start with the mapping of entity inheritance. -- The Domain ModelIn our domain model, we have a BillingDetail base class which is abstract (note the italic font on the UML class diagram below). We do allow various billing types and represent them as subclasses of BillingDetail class. As for now, we support CreditCard and BankAccount: Implement the Object Model with Code First As always, we start with the POCO classes. Note that in our DbContext, I only define one DbSet for the base class which is BillingDetail. Code First will find the other classes in the hierarchy based on Reachability Convention. public abstract class BillingDetail  {     public int BillingDetailId { get; set; }     public string Owner { get; set; }             public string Number { get; set; } } public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } public class CreditCard : BillingDetail {     public int CardType { get; set; }                     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } This object model is all that is needed to enable inheritance with Code First. If you put this in your application you would be able to immediately start working with the database and do CRUD operations. Before going into details about how EF Code First maps this object model to the database, we need to learn about one of the core concepts of inheritance mapping: polymorphic and non-polymorphic queries. Polymorphic Queries LINQ to Entities and EntitySQL, as object-oriented query languages, both support polymorphic queries—that is, queries for instances of a class and all instances of its subclasses, respectively. For example, consider the following query: IQueryable<BillingDetail> linqQuery = from b in context.BillingDetails select b; List<BillingDetail> billingDetails = linqQuery.ToList(); Or the same query in EntitySQL: string eSqlQuery = @"SELECT VAlUE b FROM BillingDetails AS b"; ObjectQuery<BillingDetail> objectQuery = ((IObjectContextAdapter)context).ObjectContext                                                                          .CreateQuery<BillingDetail>(eSqlQuery); List<BillingDetail> billingDetails = objectQuery.ToList(); linqQuery and eSqlQuery are both polymorphic and return a list of objects of the type BillingDetail, which is an abstract class but the actual concrete objects in the list are of the subtypes of BillingDetail: CreditCard and BankAccount. Non-polymorphic QueriesAll LINQ to Entities and EntitySQL queries are polymorphic which return not only instances of the specific entity class to which it refers, but all subclasses of that class as well. On the other hand, Non-polymorphic queries are queries whose polymorphism is restricted and only returns instances of a particular subclass. In LINQ to Entities, this can be specified by using OfType<T>() Method. For example, the following query returns only instances of BankAccount: IQueryable<BankAccount> query = from b in context.BillingDetails.OfType<BankAccount>() select b; EntitySQL has OFTYPE operator that does the same thing: string eSqlQuery = @"SELECT VAlUE b FROM OFTYPE(BillingDetails, Model.BankAccount) AS b"; In fact, the above query with OFTYPE operator is a short form of the following query expression that uses TREAT and IS OF operators: string eSqlQuery = @"SELECT VAlUE TREAT(b as Model.BankAccount)                       FROM BillingDetails AS b                       WHERE b IS OF(Model.BankAccount)"; (Note that in the above query, Model.BankAccount is the fully qualified name for BankAccount class. You need to change "Model" with your own namespace name.) Table per Class Hierarchy (TPH)An entire class hierarchy can be mapped to a single table. This table includes columns for all properties of all classes in the hierarchy. The concrete subclass represented by a particular row is identified by the value of a type discriminator column. You don’t have to do anything special in Code First to enable TPH. It's the default inheritance mapping strategy: This mapping strategy is a winner in terms of both performance and simplicity. It’s the best-performing way to represent polymorphism—both polymorphic and nonpolymorphic queries perform well—and it’s even easy to implement by hand. Ad-hoc reporting is possible without complex joins or unions. Schema evolution is straightforward. Discriminator Column As you can see in the DB schema above, Code First has to add a special column to distinguish between persistent classes: the discriminator. This isn’t a property of the persistent class in our object model; it’s used internally by EF Code First. By default, the column name is "Discriminator", and its type is string. The values defaults to the persistent class names —in this case, “BankAccount” or “CreditCard”. EF Code First automatically sets and retrieves the discriminator values. TPH Requires Properties in SubClasses to be Nullable in the Database TPH has one major problem: Columns for properties declared by subclasses will be nullable in the database. For example, Code First created an (INT, NULL) column to map CardType property in CreditCard class. However, in a typical mapping scenario, Code First always creates an (INT, NOT NULL) column in the database for an int property in persistent class. But in this case, since BankAccount instance won’t have a CardType property, the CardType field must be NULL for that row so Code First creates an (INT, NULL) instead. If your subclasses each define several non-nullable properties, the loss of NOT NULL constraints may be a serious problem from the point of view of data integrity. TPH Violates the Third Normal FormAnother important issue is normalization. We’ve created functional dependencies between nonkey columns, violating the third normal form. Basically, the value of Discriminator column determines the corresponding values of the columns that belong to the subclasses (e.g. BankName) but Discriminator is not part of the primary key for the table. As always, denormalization for performance can be misleading, because it sacrifices long-term stability, maintainability, and the integrity of data for immediate gains that may be also achieved by proper optimization of the SQL execution plans (in other words, ask your DBA). Generated SQL QueryLet's take a look at the SQL statements that EF Code First sends to the database when we write queries in LINQ to Entities or EntitySQL. For example, the polymorphic query for BillingDetails that you saw, generates the following SQL statement: SELECT  [Extent1].[Discriminator] AS [Discriminator],  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift],  [Extent1].[CardType] AS [CardType],  [Extent1].[ExpiryMonth] AS [ExpiryMonth],  [Extent1].[ExpiryYear] AS [ExpiryYear] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] IN ('BankAccount','CreditCard') Or the non-polymorphic query for the BankAccount subclass generates this SQL statement: SELECT  [Extent1].[BillingDetailId] AS [BillingDetailId],  [Extent1].[Owner] AS [Owner],  [Extent1].[Number] AS [Number],  [Extent1].[BankName] AS [BankName],  [Extent1].[Swift] AS [Swift] FROM [dbo].[BillingDetails] AS [Extent1] WHERE [Extent1].[Discriminator] = 'BankAccount' Note how Code First adds a restriction on the discriminator column and also how it only selects those columns that belong to BankAccount entity. Change Discriminator Column Data Type and Values With Fluent API Sometimes, especially in legacy schemas, you need to override the conventions for the discriminator column so that Code First can work with the schema. The following fluent API code will change the discriminator column name to "BillingDetailType" and the values to "BA" and "CC" for BankAccount and CreditCard respectively: protected override void OnModelCreating(System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder) {     modelBuilder.Entity<BillingDetail>()                 .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue("BA"))                 .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue("CC")); } Also, changing the data type of discriminator column is interesting. In the above code, we passed strings to HasValue method but this method has been defined to accepts a type of object: public void HasValue(object value); Therefore, if for example we pass a value of type int to it then Code First not only use our desired values (i.e. 1 & 2) in the discriminator column but also changes the column type to be (INT, NOT NULL): modelBuilder.Entity<BillingDetail>()             .Map<BankAccount>(m => m.Requires("BillingDetailType").HasValue(1))             .Map<CreditCard>(m => m.Requires("BillingDetailType").HasValue(2)); SummaryIn this post we learned about Table per Hierarchy as the default mapping strategy in Code First. The disadvantages of the TPH strategy may be too serious for your design—after all, denormalized schemas can become a major burden in the long run. Your DBA may not like it at all. In the next post, we will learn about Table per Type (TPT) strategy that doesn’t expose you to this problem. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >