Search Results

Search found 976 results on 40 pages for 'typedef'.

Page 4/40 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Why typedef char CHAR

    - by Knowing me knowing you
    Guys, having quick look in Winnt.h I have discovered that there is a lots of typedefs and one of them is for example CHAR for a char. Why? What was the purpose of these typdefs? Why not use what's already there (char, int etc.)? Thank you.

    Read the article

  • BYTE typedef in VC++ and windows.h

    - by jules
    Hi, I am using Visual C++, and I am trying to include a file that uses BYTE (as well as DOUBLE, LPCONTEXT...) , which by default is not a defined type. If I include windows.h, it works fine, but windows.h also defines GetClassName wich I don't need. I am looking for an alternative to windows.h include, that would work with VC++ and would define most of the types like BYTE, DOUBLE ... Thanks

    Read the article

  • Extract all related class type aliasing and enum into one file or not

    - by Chen OT
    I have many models in my project, and some other classes just need the class declaration and pointer type aliasing. It does not need to know the class definition, so I don't want to include the model header file. I extract all the model's declaration into one file to let every classes reference one file. model_forward.h class Cat; typedef std::shared_ptr<Cat> CatPointerType; typedef std::shared_ptr<const Cat> CatConstPointerType; class Dog; typedef std::shared_ptr<Dog> DogPointerType; typedef std::shared_ptr<const Dog> DogConstPointerType; class Fish; typedef std::shared_ptr<Fish> FishPointerType; typedef std::shared_ptr<const Fish> FishConstPointerType; enum CatType{RED_CAT, YELLOW_CAT, GREEN_CAT, PURPLE_CAT} enum DogType{HATE_CAT_DOG, HUSKY, GOLDEN_RETRIEVER} enum FishType{SHARK, OCTOPUS, SALMON} Is it acceptable practice? Should I make every unit, which needs a class declaration, depends on one file? Does it cause high coupling? Or I should put these pointer type aliasing and enum definition inside the class back? cat.h class Cat { typedef std::shared_ptr<Cat> PointerType; typedef std::shared_ptr<const Cat> ConstPointerType; enum Type{RED_CAT, YELLOW_CAT, GREEN_CAT, PURPLE_CAT} ... }; dog.h class Dog { typedef std::shared_ptr<Dog> PointerType; typedef std::shared_ptr<const Dog> ConstPointerType; enum Type{HATE_CAT_DOG, HUSKY, GOLDEN_RETRIEVER} ... } fish.h class Fish { ... }; Any suggestion will be helpful.

    Read the article

  • Mallocing an unsigned char array to store ints

    - by Max Desmond
    I keep getting a segmentation fault when i test the following code. I am currently unable to find an answer after having searched the web. a = (byte *)malloc(sizeof(byte) * x ) ; for( i = 0 ; i < x-1 ; i++ ) { scanf("%d", &y ) ; a[i] = y ; } Both y and x are initialized. X is the size of the array determined by the user. The segmentation fault is on the second to last integer to be added, i found this by adding printf("roar") ; before setting a[i] to y and entering one number at a time. Byte is a typedef of an unsigned char. Note: I've also tried using a[i] = (byte)y ; A is ininitalized as follows byte *a ; If you need to view the entire code it is this: #include <stdio.h> #include <stdlib.h> #include "sort.h" int p_cmp_f () ; int main( int argc, char *argv[] ) { int x, y, i, choice ; byte *a ; while( choice !=2 ) { printf( "Would you like to sort integers?\n1. Yes\n2. No\n" ) ; scanf("%d", &choice ) ; switch(choice) { case 1: printf( "Enter the length of the array: " ) ; scanf( "%d", &x ) ; a = (byte *)malloc(sizeof( byte ) * x ) ; printf( "Enter %d integers to add to the array: ", x ) ; for( i = 0 ; i < x -1 ; i++ ) { scanf( "%d", &y ) ; a[i] = y ; } switch( choice ) { case 1: bubble_sort( a, x, sizeof(int), p_cmp_f ) ; for( i = 0 ; i < x ; i++ ) printf( "%d", a[i] ; break ; case 2: selection_sort( a, x, sizeof(int), p_cmp_f ) ; for( i = 0 ; i < x; i++ ) printf( "%d", a[i] ; break ; case 3: insertion_sort( a, x, sizeof(int), p_cmp_f ) ; for( i = 0 ; i < x ; i++ ) printf( "%d", a[i] ; break ; case 4: merge_sort( a, x, sizeof(int), p_cmp_f ) ; for( i = 0 ; i < x ; i++ ) printf( "%d", a[i] ; break ; case 5: quick_sort( a, x, sizeof(int), p_cmp_f ) ; for( i = 0 ; i < x ; i++ ) printf( "%d", a[i] ; break ; default: printf("Enter either 1,2,3,4, or 5" ) ; break ; } case 2: printf( "Thank you for using this program\n" ) ; return 0 ; break ; default: printf( "Enter either 1 or 2: " ) ; break ; } } free(a) ; return 0 ; } int p_cmp_f( byte *element1, byte *element2 ) { return *((int *)element1) - *((int *)element2) ; }

    Read the article

  • Why is the Objective-C Boolean data type defined as a signed char?

    - by EddieCatflap
    Something that has piqued my interest is Objective-C's BOOL type definition. Why is it defined as a signed char (which could cause unexpected behaviour if a value greater than 1 byte in length is assigned to it) rather than as an int, as C does (much less margin for error: a zero value is false, a non-zero value is true)? The only reason I can think of is the Objective-C designers micro-optimising storage because the char will use less memory than the int. Please can someone enlighten me?

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 2

    - by Simon Cooper
    Before we look any further at the CLR metadata, we need a quick diversion to understand how the metadata is actually stored. Encoding table information As an example, we'll have a look at a row in the TypeDef table. According to the spec, each TypeDef consists of the following: Flags specifying various properties of the class, including visibility. The name of the type. The namespace of the type. What type this type extends. The field list of this type. The method list of this type. How is all this data actually represented? Offset & RID encoding Most assemblies don't need to use a 4 byte value to specify heap offsets and RIDs everywhere, however we can't hard-code every offset and RID to be 2 bytes long as there could conceivably be more than 65535 items in a heap or more than 65535 fields or types defined in an assembly. So heap offsets and RIDs are only represented in the full 4 bytes if it is required; in the header information at the top of the #~ stream are 3 bits indicating if the #Strings, #GUID, or #Blob heaps use 2 or 4 bytes (the #US stream is not accessed from metadata), and the rowcount of each table. If the rowcount for a particular table is greater than 65535 then all RIDs referencing that table throughout the metadata use 4 bytes, else only 2 bytes are used. Coded tokens Not every field in a table row references a single predefined table. For example, in the TypeDef extends field, a type can extend another TypeDef (a type in the same assembly), a TypeRef (a type in a different assembly), or a TypeSpec (an instantiation of a generic type). A token would have to be used to let us specify the table along with the RID. Tokens are always 4 bytes long; again, this is rather wasteful of space. Cutting the RID down to 2 bytes would make each token 3 bytes long, which isn't really an optimum size for computers to read from memory or disk. However, every use of a token in the metadata tables can only point to a limited subset of the metadata tables. For the extends field, we only need to be able to specify one of 3 tables, which we can do using 2 bits: 0x0: TypeDef 0x1: TypeRef 0x2: TypeSpec We could therefore compress the 4-byte token that would otherwise be needed into a coded token of type TypeDefOrRef. For each type of coded token, the least significant bits encode the table the token points to, and the rest of the bits encode the RID within that table. We can work out whether each type of coded token needs 2 or 4 bytes to represent it by working out whether the maximum RID of every table that the coded token type can point to will fit in the space available. The space available for the RID depends on the type of coded token; a TypeOrMethodDef coded token only needs 1 bit to specify the table, leaving 15 bits available for the RID before a 4-byte representation is needed, whereas a HasCustomAttribute coded token can point to one of 18 different tables, and so needs 5 bits to specify the table, only leaving 11 bits for the RID before 4 bytes are needed to represent that coded token type. For example, a 2-byte TypeDefOrRef coded token with the value 0x0321 has the following bit pattern: 0 3 2 1 0000 0011 0010 0001 The first two bits specify the table - TypeRef; the other bits specify the RID. Because we've used the first two bits, we've got to shift everything along two bits: 000000 1100 1000 This gives us a RID of 0xc8. If any one of the TypeDef, TypeRef or TypeSpec tables had more than 16383 rows (2^14 - 1), then 4 bytes would need to be used to represent all TypeDefOrRef coded tokens throughout the metadata tables. Lists The third representation we need to consider is 1-to-many references; each TypeDef refers to a list of FieldDef and MethodDef belonging to that type. If we were to specify every FieldDef and MethodDef individually then each TypeDef would be very large and a variable size, which isn't ideal. There is a way of specifying a list of references without explicitly specifying every item; if we order the MethodDef and FieldDef tables by the owning type, then the field list and method list in a TypeDef only have to be a single RID pointing at the first FieldDef or MethodDef belonging to that type; the end of the list can be inferred by the field list and method list RIDs of the next row in the TypeDef table. Going back to the TypeDef If we have a look back at the definition of a TypeDef, we end up with the following reprensentation for each row: Flags - always 4 bytes Name - a #Strings heap offset. Namespace - a #Strings heap offset. Extends - a TypeDefOrRef coded token. FieldList - a single RID to the FieldDef table. MethodList - a single RID to the MethodDef table. So, depending on the number of entries in the heaps and tables within the assembly, the rows in the TypeDef table can be as small as 14 bytes, or as large as 24 bytes. Now we've had a look at how information is encoded within the metadata tables, in the next post we can see how they are arranged on disk.

    Read the article

  • typedef boost::shared_ptr<MyJob> Ptr; or #define Ptr boost::shared_ptr

    - by danio
    I've just started wrking on a new codebase where each class contains a shared_ptr typedef (similar to this) like: typedef boost::shared_ptr<MyClass> Ptr; Is the only purpose to save typing boost::shared_ptr? If that is the case why not do #define Ptr boost::shared_ptr in one common header? Then you can do: Ptr<MyClass> myClass(new MyClass); which is no more typing than MyClass::Ptr myClass(new MyClass); and saves the Ptr definition in each class.

    Read the article

  • C++/boost generator module, feedback/critic please

    - by aaa
    hello. I wrote this generator, and I think to submit to boost people. Can you give me some feedback about it it basically allows to collapse multidimensional loops to flat multi-index queue. Loop can be boost lambda expressions. Main reason for doing this is to make parallel loops easier and separate algorithm from controlling structure (my fieldwork is computational chemistry where deep loops are common) 1 #ifndef _GENERATOR_HPP_ 2 #define _GENERATOR_HPP_ 3 4 #include <boost/array.hpp> 5 #include <boost/lambda/lambda.hpp> 6 #include <boost/noncopyable.hpp> 7 8 #include <boost/mpl/bool.hpp> 9 #include <boost/mpl/int.hpp> 10 #include <boost/mpl/for_each.hpp> 11 #include <boost/mpl/range_c.hpp> 12 #include <boost/mpl/vector.hpp> 13 #include <boost/mpl/transform.hpp> 14 #include <boost/mpl/erase.hpp> 15 16 #include <boost/fusion/include/vector.hpp> 17 #include <boost/fusion/include/for_each.hpp> 18 #include <boost/fusion/include/at_c.hpp> 19 #include <boost/fusion/mpl.hpp> 20 #include <boost/fusion/include/as_vector.hpp> 21 22 #include <memory> 23 24 /** 25 for loop generator which can use lambda expressions. 26 27 For example: 28 @code 29 using namespace generator; 30 using namespace boost::lambda; 31 make_for(N, N, range(bind(std::max<int>, _1, _2), N), range(_2, _3+1)); 32 // equivalent to pseudocode 33 // for l=0,N: for k=0,N: for j=max(l,k),N: for i=k,j 34 @endcode 35 36 If range is given as upper bound only, 37 lower bound is assumed to be default constructed 38 Lambda placeholders may only reference first three indices. 39 */ 40 41 namespace generator { 42 namespace detail { 43 44 using boost::lambda::constant_type; 45 using boost::lambda::constant; 46 47 /// lambda expression identity 48 template<class E, class enable = void> 49 struct lambda { 50 typedef E type; 51 }; 52 53 /// transform/construct constant lambda expression from non-lambda 54 template<class E> 55 struct lambda<E, typename boost::disable_if< 56 boost::lambda::is_lambda_functor<E> >::type> 57 { 58 struct constant : boost::lambda::constant_type<E>::type { 59 typedef typename boost::lambda::constant_type<E>::type base_type; 60 constant() : base_type(boost::lambda::constant(E())) {} 61 constant(const E &e) : base_type(boost::lambda::constant(e)) {} 62 }; 63 typedef constant type; 64 }; 65 66 /// range functor 67 template<class L, class U> 68 struct range_ { 69 typedef boost::array<int,4> index_type; 70 range_(U upper) : bounds_(typename lambda<L>::type(), upper) {} 71 range_(L lower, U upper) : bounds_(lower, upper) {} 72 73 template< typename T, size_t N> 74 T lower(const boost::array<T,N> &index) { 75 return bound<0>(index); 76 } 77 78 template< typename T, size_t N> 79 T upper(const boost::array<T,N> &index) { 80 return bound<1>(index); 81 } 82 83 private: 84 template<bool b, typename T> 85 T bound(const boost::array<T,1> &index) { 86 return (boost::fusion::at_c<b>(bounds_))(index[0]); 87 } 88 89 template<bool b, typename T> 90 T bound(const boost::array<T,2> &index) { 91 return (boost::fusion::at_c<b>(bounds_))(index[0], index[1]); 92 } 93 94 template<bool b, typename T, size_t N> 95 T bound(const boost::array<T,N> &index) { 96 using boost::fusion::at_c; 97 return (at_c<b>(bounds_))(index[0], index[1], index[2]); 98 } 99 100 boost::fusion::vector<typename lambda<L>::type, 101 typename lambda<U>::type> bounds_; 102 }; 103 104 template<typename T, size_t N> 105 struct for_base { 106 typedef boost::array<T,N> value_type; 107 virtual ~for_base() {} 108 virtual value_type next() = 0; 109 }; 110 111 /// N-index generator 112 template<typename T, size_t N, class R, class I> 113 struct for_ : for_base<T,N> { 114 typedef typename for_base<T,N>::value_type value_type; 115 typedef R range_tuple; 116 for_(const range_tuple &r) : r_(r), state_(true) { 117 boost::fusion::for_each(r_, initialize(index)); 118 } 119 /// @return new generator 120 for_* new_() { return new for_(r_); } 121 /// @return next index value and increment 122 value_type next() { 123 value_type next; 124 using namespace boost::lambda; 125 typename value_type::iterator n = next.begin(); 126 typename value_type::iterator i = index.begin(); 127 boost::mpl::for_each<I>(*(var(n))++ = var(i)[_1]); 128 129 state_ = advance<N>(r_, index); 130 return next; 131 } 132 /// @return false if out of bounds, true otherwise 133 operator bool() { return state_; } 134 135 private: 136 /// initialize indices 137 struct initialize { 138 value_type &index_; 139 mutable size_t i_; 140 initialize(value_type &index) : index_(index), i_(0) {} 141 template<class R_> void operator()(R_& r) const { 142 index_[i_++] = r.lower(index_); 143 } 144 }; 145 146 /// advance index[0:M) 147 template<size_t M> 148 struct advance { 149 /// stop recursion 150 struct stop { 151 stop(R r, value_type &index) {} 152 }; 153 /// advance index 154 /// @param r range tuple 155 /// @param index index array 156 advance(R &r, value_type &index) : index_(index), i_(0) { 157 namespace fusion = boost::fusion; 158 index[M-1] += 1; // increment index 159 fusion::for_each(r, *this); // update indices 160 state_ = index[M-1] >= fusion::at_c<M-1>(r).upper(index); 161 if (state_) { // out of bounds 162 typename boost::mpl::if_c<(M > 1), 163 advance<M-1>, stop>::type(r, index); 164 } 165 } 166 /// apply lower bound of range to index 167 template<typename R_> void operator()(R_& r) const { 168 if (i_ >= M) index_[i_] = r.lower(index_); 169 ++i_; 170 } 171 /// @return false if out of bounds, true otherwise 172 operator bool() { return state_; } 173 private: 174 value_type &index_; ///< index array reference 175 mutable size_t i_; ///< running index 176 bool state_; ///< out of bounds state 177 }; 178 179 value_type index; 180 range_tuple r_; 181 bool state_; 182 }; 183 184 185 /// polymorphic generator template base 186 template<typename T,size_t N> 187 struct For : boost::noncopyable { 188 typedef boost::array<T,N> value_type; 189 /// @return next index value and increment 190 value_type next() { return for_->next(); } 191 /// @return false if out of bounds, true otherwise 192 operator bool() const { return for_; } 193 protected: 194 /// reset smart pointer 195 void reset(for_base<T,N> *f) { for_.reset(f); } 196 std::auto_ptr<for_base<T,N> > for_; 197 }; 198 199 /// range [T,R) type 200 template<typename T, typename R> 201 struct range_type { 202 typedef range_<T,R> type; 203 }; 204 205 /// range identity specialization 206 template<typename T, class L, class U> 207 struct range_type<T, range_<L,U> > { 208 typedef range_<L,U> type; 209 }; 210 211 namespace fusion = boost::fusion; 212 namespace mpl = boost::mpl; 213 214 template<typename T, size_t N, class R1, class R2, class R3, class R4> 215 struct range_tuple { 216 // full range vector 217 typedef typename mpl::vector<R1,R2,R3,R4> v; 218 typedef typename mpl::end<v>::type end; 219 typedef typename mpl::advance_c<typename mpl::begin<v>::type, N>::type pos; 220 // [0:N) range vector 221 typedef typename mpl::erase<v, pos, end>::type t; 222 // transform into proper range fusion::vector 223 typedef typename fusion::result_of::as_vector< 224 typename mpl::transform<t,range_type<T, mpl::_1> >::type 225 >::type type; 226 }; 227 228 229 template<typename T, size_t N, 230 class R1, class R2, class R3, class R4, 231 class O> 232 struct for_type { 233 typedef typename range_tuple<T,N,R1,R2,R3,R4>::type range_tuple; 234 typedef for_<T, N, range_tuple, O> type; 235 }; 236 237 } // namespace detail 238 239 240 /// default index order, [0:N) 241 template<size_t N> 242 struct order { 243 typedef boost::mpl::range_c<size_t,0, N> type; 244 }; 245 246 /// N-loop generator, 0 < N <= 5 247 /// @tparam T index type 248 /// @tparam N number of indices/loops 249 /// @tparam R1,... range types 250 /// @tparam O index order 251 template<typename T, size_t N, 252 class R1, class R2 = void, class R3 = void, class R4 = void, 253 class O = typename order<N>::type> 254 struct for_ : detail::for_type<T, N, R1, R2, R3, R4, O>::type { 255 typedef typename detail::for_type<T, N, R1, R2, R3, R4, O>::type base_type; 256 typedef typename base_type::range_tuple range_tuple; 257 for_(const range_tuple &range) : base_type(range) {} 258 }; 259 260 /// loop range [L:U) 261 /// @tparam L lower bound type 262 /// @tparam U upper bound type 263 /// @return range 264 template<class L, class U> 265 detail::range_<L,U> range(L lower, U upper) { 266 return detail::range_<L,U>(lower, upper); 267 } 268 269 /// make 4-loop generator with specified index ordering 270 template<typename T, class R1, class R2, class R3, class R4, class O> 271 for_<T, 4, R1, R2, R3, R4, O> 272 make_for(R1 r1, R2 r2, R3 r3, R4 r4, const O&) { 273 typedef for_<T, 4, R1, R2, R3, R4, O> F; 274 return F(F::range_tuple(r1, r2, r3, r4)); 275 } 276 277 /// polymorphic generator template forward declaration 278 template<typename T,size_t N> 279 struct For; 280 281 /// polymorphic 4-loop generator 282 template<typename T> 283 struct For<T,4> : detail::For<T,4> { 284 /// generator with default index ordering 285 template<class R1, class R2, class R3, class R4> 286 For(R1 r1, R2 r2, R3 r3, R4 r4) { 287 this->reset(make_for<T>(r1, r2, r3, r4).new_()); 288 } 289 /// generator with specified index ordering 290 template<class R1, class R2, class R3, class R4, class O> 291 For(R1 r1, R2 r2, R3 r3, R4 r4, O o) { 292 this->reset(make_for<T>(r1, r2, r3, r4, o).new_()); 293 } 294 }; 295 296 } 297 298 299 #endif /* _GENERATOR_HPP_ */

    Read the article

  • Sending typedef struct containing void* by creating MPI drived datatype.

    - by hankol
    what I understand studying MPI specification is that an MPI send primitive refer to a memory location (or a send buffer) pointed by the data to be sent and take the data in that location which then passed as a message to the another Process. Though it is true that virtual address of a give process will be meaningless in another process memory address; It is ok to send data pointed by pointer such as void pointer as MPI will any way pass the data itself as a message For example the following works correctly: // Sender Side. int x = 100; void* snd; MPI_Send(snd,4,MPI_BYTE,1,0,MPI_COMM_WORLD); // Receiver Side. void* rcv; MPI_Recv(rcv, 4,MPI_BYTE,0,0,MPI_COMM_WORLD); but when I add void* snd in a struct and try to send the struct this will no succeed. I don't understand why the previous example work correctly but not the following. Here, I have defined a typedef struct and then create an MPI_DataType from it. With the same explanation of the above the following should also have succeed, unfortunately it is not working. here is the code: #include "mpi.h" #include<stdio.h> int main(int args, char *argv[]) { int rank, source =0, tag=1, dest=1; int bloackCount[2]; MPI_Init(&args, &argv); typedef struct { void* data; int tag; } data; data myData; MPI_Datatype structType, oldType[2]; MPI_Status stat; /* MPI_Aint type used to idetify byte displacement of each block (array)*/ MPI_Aint offsets[2], extent; MPI_Comm_rank(MPI_COMM_WORLD, &rank); offsets[0] = 0; oldType[0] = MPI_BYTE; bloackCount[0] = 1; MPI_Type_extent(MPI_INT, &extent); offsets[1] = 4 * extent; /*let say the MPI_BYTE will contain ineteger : size of int * extent */ oldType[1] = MPI_INT; bloackCount[1] = 1; MPI_Type_create_struct(2, bloackCount,offsets,oldType, &structType); MPI_Type_commit(&structType); if(rank == 0){ int x = 100; myData.data = &x; myData.tag = 99; MPI_Send(&myData,1,structType, dest, tag, MPI_COMM_WORLD); } if(rank == 1 ){ MPI_Recv(&myData, 1, structType, source, tag, MPI_COMM_WORLD, &stat); // with out this the following printf() will properly print the value 99 for // myData.tag int x = *(int *) myData.data; printf(" \n Process %d, Received : %d , %d \n\n", rank , myData.tag, x); } MPI_Type_free(&structType); MPI_Finalize(); } Error message running the code: [Looks like I am trying to access an invalid memory address space in the second process] [ubuntu:04123] *** Process received signal *** [ubuntu:04123] Signal: Segmentation fault (11) [ubuntu:04123] Signal code: Address not mapped (1) [ubuntu:04123] Failing at address: 0xbfe008bc [ubuntu:04123] [ 0] [0xb778240c] [ubuntu:04123] [ 1] GenericstructType(main+0x161) [0x8048935] [ubuntu:04123] [ 2] /lib/i386-linux-gnu/libc.so.6(__libc_start_main+0xf3) [0xb750f4d3] [ubuntu:04123] [ 3] GenericstructType() [0x8048741] [ubuntu:04123] *** End of error message *** Can some please explain to me why it is not working. any advice will also be appreciated thanks,

    Read the article

  • Identifying the parts of this typedef struct in C?

    - by Tommy
    Please help me identify the parts of this typdef struct and what each part does and how it can be used: typedef struct my_struct { int a; int b; int c; } struct_int, *p_s; struct_int struct_array[5]; my_struct is the...? struct_int is the...? *p_s is the...and can be used to point to what? struct_array is the...? Also, when creating the array of structs, why do we use struct_int instead of my_struct ? Thank You!

    Read the article

  • Is there command-line tool to extract typedef, structure, enumeration, variable, function from a C or C++ file?

    - by FooF
    I am desiring a command-line tool to extract a definition or declaration (typedef, structure, enumeration, variable, or function) from a C or C++ source file. Also a way to replace an existing definition/declaration would be handy (after transforming the extracted definition by a user-submitted script). Is there such generic tool available, or is some resonably close approximation of such a tool? Scriptability and ability to hook-up with user created scripts or programs is of importance here, although I am academically curious of GUI programs too. Open source solutions for Unix/Linux camp are preferred (although I am curious of Windows and OS X tools too). Primary language interests are C and C++ but more generic solution would be even better (I think we do not need super accurate parsing capabilities for finding, extracting and replacing a definition in a program source file). Sample Use Cases (extra - for the curious mind): Given deeply nested structs and variable (array) initializations of these types, suppose there is a need to change a struct definition by adding or reordering fields or rewriting the variable/array definitions in more readable format without introducing errors resulting from manual labor. This would work by extracting the old initializations, then using a script/program to write the new initializations to replace the old ones. For implementing a code browsing tool - extract a definition. Decorative code generation (e.g. logging function entries / returns). Scripted code structuring (e.g. extract this and that thing and put in different place without change - version control commit comment could document the command to perform this operation to make it evident and verifiable that nothing changed). Note about tags: More accurate tag than code-generation would be code-transformation but it does not exist.

    Read the article

  • Using boost::iterator

    - by Neil G
    I wrote a sparse vector class (see #1, #2.) I would like to provide two kinds of iterators: The first set, the regular iterators, can point any element, whether set or unset. If they are read from, they return either the set value or value_type(), if they are written to, they create the element and return the lvalue reference. Thus, they are: Random Access Traversal Iterator and Readable and Writable Iterator The second set, the sparse iterators, iterate over only the set elements. Since they don't need to lazily create elements that are written to, they are: Random Access Traversal Iterator and Readable and Writable and Lvalue Iterator I also need const versions of both, which are not writable. I can fill in the blanks, but not sure how to use boost::iterator_adaptor to start out. Here's what I have so far: template<typename T> class sparse_vector { public: typedef size_t size_type; typedef T value_type; private: typedef T& true_reference; typedef const T* const_pointer; typedef sparse_vector<T> self_type; struct ElementType { ElementType(size_type i, T const& t): index(i), value(t) {} ElementType(size_type i, T&& t): index(i), value(t) {} ElementType(size_type i): index(i) {} ElementType(ElementType const&) = default; size_type index; value_type value; }; typedef vector<ElementType> array_type; public: typedef T* pointer; typedef T& reference; typedef const T& const_reference; private: size_type size_; mutable typename array_type::size_type sorted_filled_; mutable array_type data_; // lots of code for various algorithms... public: class sparse_iterator : public boost::iterator_adaptor< sparse_iterator // Derived , array_type::iterator // Base (the internal array) (this paramater does not compile! -- says expected a type, got 'std::vector::iterator'???) , boost::use_default // Value , boost::random_access_traversal_tag? // CategoryOrTraversal > class iterator_proxy { ??? }; class iterator : public boost::iterator_facade< iterator // Derived , ????? // Base , ????? // Value , boost::?????? // CategoryOrTraversal > { }; };

    Read the article

  • mysql++ compile error

    - by rizzo0917
    when i complie code that includes mysql headers i get the following errors: c:\qt\2010.03\mingw\bin../lib/gcc/mingw32/4.4.0/../../../../include/stdint.h:27: error: 'int8_t' has a previous declaration as 'typedef signed char int8_t' c:\qt\2010.03\mingw\bin../lib/gcc/mingw32/4.4.0/../../../../include/stdint.h:31: error: 'int32_t' has a previous declaration as 'typedef int int32_t' c:\qt\2010.03\mingw\bin../lib/gcc/mingw32/4.4.0/../../../../include/stdint.h:32: error: 'uint32_t' has a previous declaration as 'typedef unsigned int uint32_t' Literally all I do is this. include cppconn/driver.h include cppconn/exception.h include cppconn/resultset.h include cppconn/statement.h include Now I can go into the file and comment the lines out that give me errors //typedef signed char int8_t; //typedef int int32_t; //typedef unsigned uint32_t; It compiles, but when I try to run the mysql code: sql::Driver *driver; driver = get_driver_instance(); I get this output test.exe exited with code -1073741515 Any Ideas?

    Read the article

  • How can I implement a database TableView like thing in C++?

    - by Industrial-antidepressant
    How can I implement a TableView like thing in C++? I want to emulating a tiny relation database like thing in C++. I have data tables, and I want to transform it somehow, so I need a TableView like class. I want filtering, sorting, freely add and remove items and transforming (ex. view as UPPERCASE and so on). The whole thing is inside a GUI application, so datatables and views are attached to a GUI (or HTML or something). So how can I identify an item in the view? How can I signal it when the table is changed? Is there some design pattern for this? Here is a simple table, and a simple data item: #include <string> #include <boost/multi_index_container.hpp> #include <boost/multi_index/member.hpp> #include <boost/multi_index/ordered_index.hpp> #include <boost/multi_index/random_access_index.hpp> using boost::multi_index_container; using namespace boost::multi_index; struct Data { Data() {} int id; std::string name; }; struct row{}; struct id{}; struct name{}; typedef boost::multi_index_container< Data, indexed_by< random_access<tag<row> >, ordered_unique<tag<id>, member<Data, int, &Data::id> >, ordered_unique<tag<name>, member<Data, std::string, &Data::name> > > > TDataTable; class DataTable { public: typedef Data item_type; typedef TDataTable::value_type value_type; typedef TDataTable::const_reference const_reference; typedef TDataTable::index<row>::type TRowIndex; typedef TDataTable::index<id>::type TIdIndex; typedef TDataTable::index<name>::type TNameIndex; typedef TRowIndex::iterator iterator; DataTable() : row_index(rule_table.get<row>()), id_index(rule_table.get<id>()), name_index(rule_table.get<name>()), row_index_writeable(rule_table.get<row>()) { } TDataTable::const_reference operator[](TDataTable::size_type n) const { return rule_table[n]; } std::pair<iterator,bool> push_back(const value_type& x) { return row_index_writeable.push_back(x); } iterator erase(iterator position) { return row_index_writeable.erase(position); } bool replace(iterator position,const value_type& x) { return row_index_writeable.replace(position, x); } template<typename InputIterator> void rearrange(InputIterator first) { return row_index_writeable.rearrange(first); } void print_table() const; unsigned size() const { return row_index.size(); } TDataTable rule_table; const TRowIndex& row_index; const TIdIndex& id_index; const TNameIndex& name_index; private: TRowIndex& row_index_writeable; }; class DataTableView { DataTableView(const DataTable& source_table) {} // How can I implement this? // I want filtering, sorting, signaling upper GUI layer, and sorting, and ... }; int main() { Data data1; data1.id = 1; data1.name = "name1"; Data data2; data2.id = 2; data2.name = "name2"; DataTable table; table.push_back(data1); DataTable::iterator it1 = table.row_index.iterator_to(table[0]); table.erase(it1); table.push_back(data1); Data new_data(table[0]); new_data.name = "new_name"; table.replace(table.row_index.iterator_to(table[0]), new_data); for (unsigned i = 0; i < table.size(); ++i) std::cout << table[i].name << std::endl; #if 0 // using scenarios: DataTableView table_view(table); table_view.fill_from_source(); // synchronization with source table_view.remove(data_item1); // remove item from view table_view.add(data_item2); // add item from source table table_view.filter(filterfunc); // filtering table_view.sort(sortfunc); // sorting // modifying from source_able, hot to signal the table_view? // FYI: Table view is atteched to a GUI item table.erase(data); table.replace(data); #endif return 0; }

    Read the article

  • What is the best way to store meshes or 3d models in a class

    - by Robse
    I am wondering, how I should store my mesh into memory after loading it from whatever file. I have Questions floating in my head: Should a mesh could have sub meshes or does the 3d model just store a list of meshes all on the same level Is there one material assigned to one mesh 1:1? What do I have to consider, if I want to store skeletal animations? Btw it's a OpenGL|ES2 iOS game using GLKit. I came up with some basic struct types: (But I think they are way to simple and I need to add padding or change the vector3 to vector4.) typedef union _N3DShortVector2 { struct { short x, y; }; struct { short s, t; }; short v[2]; } N3DShortVector2; typedef union _N3DShortVector3 { struct { short x, y, z; }; struct { short r, g, b; }; struct { short s, t, p; }; short v[3]; } N3DShortVector3; typedef GLKVector3 N3DFloatVector3; typedef struct _N3DMeshRecordSV3 { N3DShortVector3 v1, v2, v3; } N3DMeshRecordSV3; typedef struct _N3DMeshRecordSV3FN3ST2 { N3DShortVector3 v1, v2, v3; N3DFloatVector3 n1, n2, n3; N3DShortVector2 t1, t2, t3; } N3DMeshRecordSV3FN3ST2;

    Read the article

  • Boost::Interprocess Container Container Resizing No Default Constructor

    - by CuppM
    Hi, After combing through the Boost::Interprocess documentation and Google searches, I think I've found the reason/workaround to my issue. Everything I've found, as I understand it, seems to be hinting at this, but doesn't come out and say "do this because...". But if anyone can verify this I would appreciate it. I'm writing a series of classes that represent a large lookup of information that is stored in memory for fast performance in a parallelized application. Because of the size of data and multiple processes that run at a time on one machine, we're using Boost::Interprocess for shared memory to have a single copy of the structures. I looked at the Boost::Interprocess documentation and examples, and they typedef classes for shared memory strings, string vectors, int vector vectors, etc. And when they "use" them in their examples, they just construct them passing the allocator and maybe insert one item that they've constructed elsewhere. Like on this page: http://www.boost.org/doc/libs/1_42_0/doc/html/interprocess/allocators_containers.html So following their examples, I created a header file with typedefs for shared memory classes: namespace shm { namespace bip = boost::interprocess; // General/Utility Types typedef bip::managed_shared_memory::segment_manager segment_manager_t; typedef bip::allocator<void, segment_manager_t> void_allocator; // Integer Types typedef bip::allocator<int, segment_manager_t> int_allocator; typedef bip::vector<int, int_allocator> int_vector; // String Types typedef bip::allocator<char, segment_manager_t> char_allocator; typedef bip::basic_string<char, std::char_traits<char>, char_allocator> string; typedef bip::allocator<string, segment_manager_t> string_allocator; typedef bip::vector<string, string_allocator> string_vector; typedef bip::allocator<string_vector, segment_manager_t> string_vector_allocator; typedef bip::vector<string_vector, string_vector_allocator> string_vector_vector; } Then for one of my lookup table classes, it's defined something like this: class Details { public: Details(const shm::void_allocator & alloc) : m_Ids(alloc), m_Labels(alloc), m_Values(alloc) { } ~Details() {} int Read(BinaryReader & br); private: shm::int_vector m_Ids; shm::string_vector m_Labels; shm::string_vector_vector m_Values; }; int Details::Read(BinaryReader & br) { int num = br.ReadInt(); m_Ids.resize(num); m_Labels.resize(num); m_Values.resize(num); for (int i = 0; i < num; i++) { m_Ids[i] = br.ReadInt(); m_Labels[i] = br.ReadString().c_str(); int count = br.ReadInt(); m_Value[i].resize(count); for (int j = 0; j < count; j++) { m_Value[i][j] = br.ReadString().c_str(); } } } But when I compile it, I get the error: 'boost::interprocess::allocator<T,SegmentManager>::allocator' : no appropriate default constructor available And it's due to the resize() calls on the vector objects. Because the allocator types do not have a empty constructor (they take a const segment_manager_t &) and it's trying to create a default object for each location. So in order for it to work, I have to get an allocator object and pass a default value object on resize. Like this: int Details::Read(BinaryReader & br) { shm::void_allocator alloc(m_Ids.get_allocator()); int num = br.ReadInt(); m_Ids.resize(num); m_Labels.resize(num, shm::string(alloc)); m_Values.resize(num, shm::string_vector(alloc)); for (int i = 0; i < num; i++) { m_Ids[i] = br.ReadInt(); m_Labels[i] = br.ReadString().c_str(); int count = br.ReadInt(); m_Value[i].resize(count, shm::string(alloc)); for (int j = 0; j < count; j++) { m_Value[i][j] = br.ReadString().c_str(); } } } Is this the best/correct way of doing it? Or am I missing something. Thanks!

    Read the article

  • Problem with GCC calling static templates functions in templated parent class.

    - by Adisak
    I have some code that compiles and runs on MSVC++ but will not compile on GCC. I have made a test snippet that follows. My goal was to move the static method from BFSMask to BFSMaskSized. Can someone explain what is going on with the errors (esp. the weird 'operator<' error)? Thank you. In the case of both #defines are 0, then the code compiles on GCC. #define DOESNT_COMPILE_WITH_GCC 0 #define FUNCTION_IN_PARENT 0 I get errors if I change either #define to 1. Here are the errors I see. #define DOESNT_COMPILE_WITH_GCC 0 #define FUNCTION_IN_PARENT 1 Test.cpp: In static member function 'static typename Snapper::BFSMask<T>::T_Parent::T_SINT Snapper::BFSMask<T>::Create_NEZ(TCMP)': Test.cpp(492): error: 'CreateMaskFromHighBitSized' was not declared in this scope #define DOESNT_COMPILE_WITH_GCC 1 #define FUNCTION_IN_PARENT 0 Test.cpp: In static member function 'static typename Snapper::BFSMask<T>::T_Parent::T_SINT Snapper::BFSMask<T>::Create_NEZ(TCMP) [with TCMP = int, T = int]': Test.cpp(500): instantiated from 'TVAL Snapper::BFWrappedInc(TVAL, TVAL, TVAL) [with TVAL = int]' Test.cpp(508): instantiated from here Test.cpp(490): error: invalid operands of types '<unresolved overloaded function type>' and 'unsigned int' to binary 'operator<' #define DOESNT_COMPILE_WITH_GCC 1 #define FUNCTION_IN_PARENT 1 Test.cpp: In static member function 'static typename Snapper::BFSMask<T>::T_Parent::T_SINT Snapper::BFSMask<T>::Create_NEZ(TCMP) [with TCMP = int, T = int]': Test.cpp(500): instantiated from 'TVAL Snapper::BFWrappedInc(TVAL, TVAL, TVAL) [with TVAL = int]' Test.cpp(508): instantiated from here Test.cpp(490): error: invalid operands of types '<unresolved overloaded function type>' and 'unsigned int' to binary 'operator<' Here is the code namespace Snapper { #define DOESNT_COMPILE_WITH_GCC 0 #define FUNCTION_IN_PARENT 0 // MASK TYPES // NEZ - Not Equal to Zero #define BFSMASK_NEZ(A) ( ( A ) | ( 0 - A ) ) #define BFSELECT_MASK(MASK,VTRUE,VFALSE) ( ((MASK)&(VTRUE)) | ((~(MASK))&(VFALSE)) ) template<typename TVAL> TVAL BFSelect_MASK(TVAL MASK,TVAL VTRUE,TVAL VFALSE) { return(BFSELECT_MASK(MASK,VTRUE,VFALSE)); } //----------------------------------------------------------------------------- // Branch Free Helpers template<int BYTESIZE> struct BFSMaskBase {}; template<> struct BFSMaskBase<2> { typedef UINT16 T_UINT; typedef SINT16 T_SINT; }; template<> struct BFSMaskBase<4> { typedef UINT32 T_UINT; typedef SINT32 T_SINT; }; template<int BYTESIZE> struct BFSMaskSized : public BFSMaskBase<BYTESIZE> { static const int SizeBytes = BYTESIZE; static const int SizeBits = SizeBytes*8; static const int MaskShift = SizeBits-1; typedef typename BFSMaskBase<BYTESIZE>::T_UINT T_UINT; typedef typename BFSMaskBase<BYTESIZE>::T_SINT T_SINT; #if FUNCTION_IN_PARENT template<int N> static T_SINT CreateMaskFromHighBitSized(typename BFSMaskBase<N>::T_SINT inmask); #endif }; template<typename T> struct BFSMask : public BFSMaskSized<sizeof(T)> { // BFSMask = -1 (all bits set) typedef BFSMask<T> T_This; // "Import" the Parent Class typedef BFSMaskSized<sizeof(T)> T_Parent; typedef typename T_Parent::T_SINT T_SINT; #if FUNCTION_IN_PARENT typedef T_Parent T_MaskGen; #else typedef T_This T_MaskGen; template<int N> static T_SINT CreateMaskFromHighBitSized(typename BFSMaskSized<N>::T_SINT inmask); #endif template<typename TCMP> static T_SINT Create_NEZ(TCMP A) { //ReDefineType(const typename BFSMask<TCMP>::T_SINT,SA,A); //const typename BFSMask<TCMP>::T_SINT cmpmask = BFSMASK_NEZ(SA); const typename BFSMask<TCMP>::T_SINT cmpmask = BFSMASK_NEZ(A); #if DOESNT_COMPILE_WITH_GCC return(T_MaskGen::CreateMaskFromHighBitSized<sizeof(TCMP)>(cmpmask)); #else return(CreateMaskFromHighBitSized<sizeof(TCMP)>(cmpmask)); #endif } }; template<typename TVAL> TVAL BFWrappedInc(TVAL x,TVAL minval,TVAL maxval) { const TVAL diff = maxval-x; const TVAL mask = BFSMask<TVAL>::Create_NEZ(diff); const TVAL incx = x + 1; return(BFSelect_MASK(mask,incx,minval)); } SINT32 currentsnap = 0; SINT32 SetSnapshot() { currentsnap=BFWrappedInc<SINT32>(currentsnap,0,20); return(currentsnap); } }

    Read the article

  • Iterator category

    - by Knowing me knowing you
    In code: //I know that to get this effect (being able to use it with std algorithms) I can inherit like I did in line below: class Iterator //: public std::iterator<std::bidirectional_iterator_tag,T> { private: T** itData_; public: //BUT I WOULD LIKE TO BE ABLE TO DO IT BY HAND AS WELL typedef std::bidirectional_iterator_tag iterator_category; typedef T* value_type;//SHOULD IT BE T AS value_type or T*? typedef std::ptrdiff_t difference_type; typedef T** pointer;//SHOULD IT BE T* AS pointer or T**? typedef T*& reference;//SHOULD IT BE T& AS reference or T*&? }; Basically what I'm asking is if I have my variable of type T** in iterator class is it right assumption that value type for this iterator will be T* and so on as I described in comments in code, right next to relevant lines. Thank you.

    Read the article

  • Applying policy based design question

    - by Arthur
    I've not read the Modern C++ Design book but have found the idea of behavior injection through templates interesting. I am now trying to apply it myself. I have a class that has a logger that I thought could be injected as a policy. The logger has a log() method which takes an std::string or std::wstring depending on its policy: // basic_logger.hpp template<class String> class basic_logger { public: typedef String string_type; void log(const string_type & s) { ... } }; typedef basic_logger<std::string> logger; typedef basic_logger<std::wstring> wlogger; // reader.hpp template<class Logger = logger> class reader { public: typedef Logger logger_type; void read() { _logger.log("Reading..."); } private: logger_type _logger; }; Now the questing is, should the reader take a Logger as an argument, like above, or should it take a String and then instantiate a basic_logger as an instance variable? Like so: template<class String> class reader { public: typedef String string_type; typedef basic_logger<string_type> logger_type; // ... private: logger_type _logger; }; What is the right way to go?

    Read the article

  • Speedup writing C programs using a subset of the Python syntax

    - by psihodelia
    I am constantly trying to optimize my time. Writing a C code takes a lot of time and requires much more keyboard touches than say writing a Python program. However, in order to speed up the time required to create a C program, one can automatize many things. I'd like to write my programs using smth. like Python but with C semantics. It means, all keywords are C keywords, but syntax is optimized. For example, this C code: #include "dsplib.h" #include "coeffs.h" #define MODULENAME "dsplib" #define NUM_SAMPLES 320 typedef float t_Vec; typedef struct s_Inter { char *pc_Name; struct s_Inter *px_Next; }t_Inter; typedef struct s_DspLibControl { t_Vec f_Y; }t_DspLibControl; void v_DspLibName(void) { printf("Module: %s", MODULENAME); printf("\n"); } int v_DspLibInitInterControl(t_DspLibControl *px_Con) { int y; px_Con->f_Y = 0.0; for(int i=0;i<10;i++) { y += i * i; } return y; } in optimized pythonized version can look like: include dsplib, coeffs define MODULENAME="dsplib", NUM_SAMPLES=320 typedef float t_Vec typedef struct s_Inter: char *pc_Name struct s_Inter *px_Next t_Inter typedef struct s_DspLibControl: t_Vec f_Y t_DspLibControl v_DspLibName(): printf("Module: %s", MODULENAME); printf("\n") int v_DspLibInitInterControl(t_DspLibControl *px_Con): int y px_Con->f_Y = 0.0 for int i=0;i<10;i++: y += i * i return y My question is: Do you know any VIM script, which allows to translate an original pythonized C code into a standard C code? For example, one is writing a C code but uses pythonized syntax, once she decides to translate pythonized blocks into standard C, she selects such blocks and press some key. And she doesn't save such pythonized code of course, VIM translates it into standard C.

    Read the article

  • What is the merit of the "function" type (not "pointer to function")

    - by anatolyg
    Reading the C++ Standard, i see that there are "function" types and "pointer to function" types: typedef int func(int); // function typedef int (*pfunc)(int); // pointer to function typedef func* pfunc; // same as above I have never seen the function types used outside of examples (or maybe i didn't recognize their usage?). Some examples: func increase, decrease; // declares two functions int increase(int), decrease(int); // same as above int increase(int x) {return x + 1;} // cannot use the typedef when defining functions int decrease(int x) {return x - 1;} // cannot use the typedef when defining functions struct mystruct { func add, subtract, multiply; // declares three member functions int member; }; int mystruct::add(int x) {return x + member;} // cannot use the typedef int mystruct::subtract(int x) {return x - member;} int main() { func k; // the syntax is correct but the variable k is useless! mystruct myobject; myobject.member = 4; cout << increase(5) << ' ' << decrease(5) << '\n'; // outputs 6 and 4 cout << myobject.add(5) << ' ' << myobject.subtract(5) << '\n'; // 9 and 1 } Seeing that the function types support syntax that doesn't appear in C (declaring member functions), i guess they are not just a part of C baggage that C++ has to support for backward compatibility. So is there any use for function types, other than demonstrating some funky syntax?

    Read the article

  • Problems installing PIL after OSX 10.9

    - by user2632417
    I installed Mac OSX 10.9 the day it came out. Afterwards I decided I needed to install PIL. I'd installed it before, but it appeared the update had broken that. When I try to use pip to install PIL, it fails when building _imaging. It appears the root cause is this. /usr/include/sys/cdefs.h:655:2: error: Unsupported architecture Theres also a similar error here: /usr/include/machine/limits.h:8:2: error: architecture not supported and here: /usr/include/machine/_types.h:34:2: error: architecture not supported Then there's a whole list of missing types. /usr/include/sys/_types.h:94:9: error: unknown type name '__int64_t' typedef __int64_t __darwin_blkcnt_t; /* total blocks */ ^ /usr/include/sys/_types.h:95:9: error: unknown type name '__int32_t' typedef __int32_t __darwin_blksize_t; /* preferred block size */ ^ /usr/include/sys/_types.h:96:9: error: unknown type name '__int32_t' typedef __int32_t __darwin_dev_t; /* dev_t */ ^ /usr/include/sys/_types.h:99:9: error: unknown type name '__uint32_t' typedef __uint32_t __darwin_gid_t; /* [???] process and group IDs */ ^ /usr/include/sys/_types.h:100:9: error: unknown type name '__uint32_t' typedef __uint32_t __darwin_id_t; /* [XSI] pid_t, uid_t, or gid_t*/ ^ /usr/include/sys/_types.h:101:9: error: unknown type name '__uint64_t' typedef __uint64_t __darwin_ino64_t; /* [???] Used for 64 bit inodes */ Needless to say I don't know where to go from here. I've got a couple of guesses, but I don't even know how to check. Wrong include probably as a result of a badly configured environment variable Problem with Xcode's installation/ missing command line tools Messed up header files If anyone has any suggestions either to check one of those possibilities or for one of their own I'm all ears.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >