Search Results

Search found 976 results on 40 pages for 'typedef'.

Page 2/40 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Calling cli::array<int>::Reverse via a typedef in C++/CLI

    - by Vulcan Eager
    Here is what I'm trying: typedef cli::array<int> intarray; int main(){ intarray ^ints = gcnew intarray { 0, 1, 2, 3 }; intarray::Reverse(ints); // C2825, C2039, C3149 return 0; } Compilation resulted in the following errors: .\ints.cpp(46) : error C2825: 'intarray': must be a class or namespace when followed by '::' .\ints.cpp(46) : error C2039: 'Reverse' : is not a member of '`global namespace'' .\ints.cpp(46) : error C3149: 'cli::array<Type>' : cannot use this type here without a top-level '^' with [ Type=int ] Am I doing something wrong here?

    Read the article

  • Using sizeof operator on a typedef-ed struct

    - by sskanitk
    This might be something too obvious. However, I couldn't find the specific answer though many stackoverflow threads talk about different aspects of this. typedef struct _tmp { unsigned int a; unsigned int b; } tmp; int main() { int c=10; if (c <= sizeof tmp) { printf("less\n"); } else { printf("more\n"); } return 0; } I compile this prog as - g++ -lstdc++ a.cpp I get an error - expected primary-expression before ‘)’ token I think I am missing something very obvious and straightforward. But can't seem to pinpoint it :-/ Thanks!

    Read the article

  • C++ template + typedef

    - by MMS
    What is wrong in the following code: Point2D.h template <class T> class Point2D { private: T x; T y; ... }; PointsList.h template <class T> class Point2D; template <class T> struct TPointsList { typedef std::vector <Point2D <T> > Type; }; template <class T> class PointsList { private: TPointsList <T>::Type points; //Compiler error ... }; I would like to create new user type TPointsList without direct type specification...

    Read the article

  • When to use typedef?

    - by futlib
    I'm a bit confused about if and when I should use typedef in C++. I feel it's a balancing act between readability and clarity. Here's a code sample without any typedefs: int sum(std::vector<int>::const_iterator first, std::vector<int>::const_iterator last) { static std::map<std::tuple<std::vector<int>::const_iterator, std::vector<int>::const_iterator>, int> lookup_table; std::map<std::tuple<std::vector<int>::const_iterator, std::vector<int>::const_iterator>, int>::iterator lookup_it = lookup_table.find(lookup_key); if (lookup_it != lookup_table.end()) return lookup_it->second; ... } Pretty ugly IMO. So I'll add some typedefs within the function to make it look nicer: int sum(std::vector<int>::const_iterator first, std::vector<int>::const_iterator last) { typedef std::tuple<std::vector<int>::const_iterator, std::vector<int>::const_iterator> Lookup_key; typedef std::map<Lookup_key, int> Lookup_table; static Lookup_table lookup_table; Lookup_table::iterator lookup_it = lookup_table.find(lookup_key); if (lookup_it != lookup_table.end()) return lookup_it->second; ... } The code is still a bit clumsy, but I get rid of most nightmare material. But there's still the int vector iterators, this variant gets rid of those: typedef std::vector<int>::const_iterator Input_iterator; int sum(Input_iterator first, Input_iterator last) { typedef std::tuple<Input_iterator, Input_iterator> Lookup_key; typedef std::map<Lookup_key, int> Lookup_table; static Lookup_table lookup_table; Lookup_table::iterator lookup_it = lookup_table.find(lookup_key); if (lookup_it != lookup_table.end()) return lookup_it->second; ... } This looks clean, but is it still readable? When should I use a typedef? As soon as I have a nightmare type? As soon as it occurs more than once? Where should I put them? Should I use them in function signatures or keep them to the implementation?

    Read the article

  • Equivalent of typedef in C#

    - by Matthew Scharley
    Is there a typedef equivalent in C#, or someway to get some sort of similar behaviour? I've done some googling, but everywhere I look seems to be negative. Currently I have a situation similar to the following: class GenericClass<T> { public event EventHandler<EventData> MyEvent; public class EventData : EventArgs { /* snip */ } // ... snip } Now, it doesn't take a rocket scientist to figure out that this can very quickly lead to alot of typing (appologies for the horrible pun) when trying to implement a handler for that event. It'd end up being something like this: GenericClass<int> gcInt = new GenericClass<int>; gcInt.MyEvent += new EventHandler<GenericClass<int>.EventData>(gcInt_MyEvent); // ... private void gcInt_MyEvent(object sender, GenericClass<int>.EventData e) { throw new NotImplementedException(); } Except, in my case, I was already using a complex type, not just an int. It'd be nice if it was possible to simplify this a little... Edit: ie. perhaps typedefing the EventHandler instead of needing to redefine it to get similar behaviour.

    Read the article

  • Typedef equivalence in function arguments

    - by Warren Seine
    Hi guys, The question is kind of hard to ask without an example so here it is: #include <vector> struct O { }; struct C { template <typename T> void function1(void (C::*callback)(const O*)); template <typename T> void function2(void (C::*callback)(const typename T::value_type)); void print(const O*); }; int main() { C c; c.function1< std::vector<O*> >(&C::print); // Success. c.function2< std::vector<O*> >(&C::print); // Fail. } The error that I am given is: error: no matching function for call to ‘C::function2(void (C::*)(const O*))’. Basically, the only difference between calls is that in function2, I'm more generic since I use the typedef std::vector<O*>::value_type which should resolve to O*, hence similar to function1. I'm using G++ 4.2.1 (I know it's old), but Comeau confirms I'm wrong. Why does the compilation fail?

    Read the article

  • Objective C - when should "typedef" precede "enum", and when should an enum be named?

    - by Scott Pendleton
    In sample code, I have seen this: typedef enum Ename { Bob, Mary, John} EmployeeName; and this: typedef enum {Bob, Mary, John} EmployeeName; and this: typedef enum {Bob, Mary, John}; but what compiled successfully for me was this: enum {Bob, Mary, John}; I put that line in a .h file above the @interface line, and then when I #import that .h file into a different class's .m file, methods there can see the enum. So, when are the other variants needed? If I could name the enum something like EmployeeNames, and then, when I type "EmployeeNames" followed by a ".", it would be nice if a list pops up showing what the enum choices are.

    Read the article

  • Naming a typedef for a boost::shared_ptr<const Foo>

    - by Blair Zajac
    Silly question, but say you have class Foo: class Foo { public: typedef boost::shared_ptr<Foo> RcPtr; void non_const_method() {} void const_method() const {} }; Having a const Foo::RcPtr doesn't prevent non-const methods from being invoked on the class, the following will compile: #include <boost/shared_ptr.hpp> int main() { const Foo::RcPtr const_foo_ptr(new Foo); const_foo_ptr->non_const_method(); const_foo_ptr->const_method(); return 0; } But naming a typedef ConstRcPtr implies, to me, that the typedef would be typedef const boost::shared_ptr<Foo> ConstRcPtr; which is not what I'm interested in. An odder name, but maybe more accurate, is RcPtrConst: typedef boost::shared_ptr<const Foo> RcPtrConst; However, Googling for RcPtrConst gets zero hits, so people don't use this as a typedef name :) Does anyone have any other suggestions?

    Read the article

  • Gnu Emacs indenting of my typedef

    - by Kinopiko
    Gnu Emacs is insisting on indenting my typedef as follows: typedef enum { horizontal, vertical, } shapes; I want it to indent as follows: typedef enum { horizontal, vertical, } shapes; What switch can I use to get that?

    Read the article

  • Template specialization to use default type if class member typedef does not exist

    - by Frank
    Hi Everyone, I'm trying to write code that uses a member typedef of a template argument, but want to supply a default type if the template argument does not have that typedef. A simplified example I've tried is this: struct DefaultType { DefaultType() { printf("Default "); } }; struct NonDefaultType { NonDefaultType() { printf("NonDefault "); } }; struct A {}; struct B { typedef NonDefaultType Type; }; template<typename T, typename Enable = void> struct Get_Type { typedef DefaultType Type; }; template<typename T> struct Get_Type< T, typename T::Type > { typedef typename T::Type Type; }; int main() { Get_Type::Type test1; Get_Type::Type test2; } I would expect this to print "Default NonDefault", but instead it prints "Default Default". My expectation is that the second line in main() should match the specialized version of Get_Type, because B::Type exists. However, this does not happen. Can anyone explain what's going on here and how to fix it, or another way to accomplish the same goal? Thank you.

    Read the article

  • Why do I get "unsupported architecture" errors trying to install a Python library in OSX?

    - by Emma518
    I am trying to install a Python library in the Presto package, source http://www.cv.nrao.edu/~sransom/presto/ Using 'gmake fftfit' I get the following error: cd fftfit_src ; f2py-2.7 -c fftfit.pyf *.f running build running config_cc unifing config_cc, config, build_clib, build_ext, build commands --compiler options running config_fc unifing config_fc, config, build_clib, build_ext, build commands --fcompiler options running build_src build_src building extension "fftfit" sources creating /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx-10.9-x86_64-2.7 f2py options: [] f2py: fftfit.pyf Reading fortran codes... Reading file 'fftfit.pyf' (format:free) Post-processing... Block: fftfit Block: cprof Block: fftfit Post-processing (stage 2)... Building modules... Building module "fftfit"... Constructing wrapper function "cprof"... c,amp,pha = cprof(y,[nmax,nh]) Constructing wrapper function "fftfit"... shift,eshift,snr,esnr,b,errb,ngood = fftfit(prof,s,phi,[nmax]) Wrote C/API module "fftfit" to file "/var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx-10.9-x86_64- 2.7/fftfitmodule.c" adding '/var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx-10.9-x86_64-2.7/fortranobject.c' to sources. adding '/var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx-10.9-x86_64-2.7' to include_dirs. copying /Library/Python/2.7/site-packages/numpy-1.8.2-py2.7-macosx-10.9- intel.egg/numpy/f2py/src/fortranobject.c -> /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx-10.9-x86_64-2.7 copying /Library/Python/2.7/site-packages/numpy-1.8.2-py2.7-macosx-10.9-intel.egg/numpy/f2py/src/fortranobject.h -> /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx-10.9-x86_64-2.7 build_src: building npy-pkg config files running build_ext customize UnixCCompiler customize UnixCCompiler using build_ext customize Gnu95FCompiler Found executable /usr/local/bin/gfortran customize Gnu95FCompiler customize Gnu95FCompiler using build_ext building 'fftfit' extension compiling C sources C compiler: /usr/bin/clang -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -arch ppc -arch i386 -arch x86_64 -g -O2 creating /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/var creating /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/var/folders creating /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/var/folders/sx creating /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp creating /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/var/folders/sx/j_l_qvys4bv00_38pfvy3m8h00 00gp/T creating /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/var/folders/sx/j_l_qvys4bv00_38pfvy3m8h00 00gp/T/tmp9MmLz8 creating /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/var/folders/sx/j_l_qvys4bv00_38pfvy3m8h00 00gp/T/tmp9MmLz8/src.macosx-10.9-x86_64-2.7 compile options: '-I/var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx-10.9- x86_64-2.7 -I/Library/Python/2.7/site-packages/numpy-1.8.2-py2.7-macosx-10.9- intel.egg/numpy/core/include - I/opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7 -c' clang: /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx-10.9-x86_64- 2.7/fftfitmodule.c In file included from /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx- 10.9-x86_64-2.7/fftfitmodule.c:16: In file included from /opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7/Python.h:19: In file included from /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/../lib/clang/ 5.1/include/limits.h:38: In file included from /usr/include/limits.h:63: /usr/include/sys/cdefs.h:658:2: error: Unsupported architecture #error Unsupported architecture ^ In file included from /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx- 10.9-x86_64-2.7/fftfitmodule.c:16: In file included from /opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7/Python.h:19: In file included from /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/../lib/clang/ 5.1/include/limits.h:38: In file included from /usr/include/limits.h:64: /usr/include/machine/limits.h:8:2: error: architecture not supported #error architecture not supported ^ In file included from /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx- 10.9-x86_64-2.7/fftfitmodule.c:16: In file included from /opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7/Python.h:33: In file included from /usr/include/stdio.h:67: In file included from /usr/include/_types.h:27: In file included from /usr/include/sys/_types.h:33: /usr/include/machine/_types.h:34:2: error: architecture not supported #error architecture not supported ^ In file included from /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx- 10.9-x86_64-2.7/fftfitmodule.c:16: In file included from /opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7/Python.h:33: In file included from /usr/include/stdio.h:67: In file included from /usr/include/_types.h:27: /usr/include/sys/_types.h:94:9: error: unknown type name '__int64_t' typedef __int64_t __darwin_blkcnt_t; /* total blocks */ ^ /usr/include/sys/_types.h:95:9: error: unknown type name '__int32_t' typedef __int32_t __darwin_blksize_t; /* preferred block size */ ^ /usr/include/sys/_types.h:96:9: error: unknown type name '__int32_t' typedef __int32_t __darwin_dev_t; /* dev_t */ ^ /usr/include/sys/_types.h:99:9: error: unknown type name '__uint32_t' typedef __uint32_t __darwin_gid_t; /* [???] process and group IDs */ ^ /usr/include/sys/_types.h:100:9: error: unknown type name '__uint32_t' typedef __uint32_t __darwin_id_t; /* [XSI] pid_t, uid_t, or gid_t*/ ^ /usr/include/sys/_types.h:101:9: error: unknown type name '__uint64_t' typedef __uint64_t __darwin_ino64_t; /* [???] Used for 64 bit inodes */ ^ /usr/include/sys/_types.h:107:9: error: unknown type name '__darwin_natural_t' typedef __darwin_natural_t __darwin_mach_port_name_t; /* Used by mach */ ^ /usr/include/sys/_types.h:109:9: error: unknown type name '__uint16_t' typedef __uint16_t __darwin_mode_t; /* [???] Some file attributes */ ^ /usr/include/sys/_types.h:110:9: error: unknown type name '__int64_t' typedef __int64_t __darwin_off_t; /* [???] Used for file sizes */ ^ /usr/include/sys/_types.h:111:9: error: unknown type name '__int32_t' typedef __int32_t __darwin_pid_t; /* [???] process and group IDs */ ^ /usr/include/sys/_types.h:131:9: error: unknown type name '__uint32_t' typedef __uint32_t __darwin_sigset_t; /* [???] signal set */ ^ /usr/include/sys/_types.h:132:9: error: unknown type name '__int32_t' typedef __int32_t __darwin_suseconds_t; /* [???] microseconds */ ^ /usr/include/sys/_types.h:133:9: error: unknown type name '__uint32_t' typedef __uint32_t __darwin_uid_t; /* [???] user IDs */ ^ /usr/include/sys/_types.h:134:9: error: unknown type name '__uint32_t' typedef __uint32_t __darwin_useconds_t; /* [???] microseconds */ ^ In file included from /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx- 10.9-x86_64-2.7/fftfitmodule.c:16: In file included from /opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7/Python.h:33: In file included from /usr/include/stdio.h:71: /usr/include/sys/_types/_va_list.h:31:9: error: unknown type name '__darwin_va_list'; did you mean '__builtin_va_list'? typedef __darwin_va_list va_list; ^ note: '__builtin_va_list' declared here In file included from /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx- 10.9-x86_64-2.7/fftfitmodule.c:16: In file included from /opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7/Python.h:33: In file included from /usr/include/stdio.h:72: /usr/include/sys/_types/_size_t.h:30:9: error: unknown type name '__darwin_size_t'; did you mean '__darwin_ino_t'? typedef __darwin_size_t size_t; ^ /usr/include/sys/_types.h:103:26: note: '__darwin_ino_t' declared here typedef __darwin_ino64_t __darwin_ino_t; /* [???] Used for inodes */ ^ fatal error: too many errors emitted, stopping now [-ferror-limit=] 20 errors generated. In file included from /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx- 10.9-x86_64-2.7/fftfitmodule.c:16: In file included from /opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7/Python.h:19: In file included from /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/../lib/clang/5.1/include/limits.h:38: In file included from /usr/include/limits.h:63: /usr/include/sys/cdefs.h:658:2: error: Unsupported architecture #error Unsupported architecture ^ In file included from /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx- 10.9-x86_64-2.7/fftfitmodule.c:16: In file included from /opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7/Python.h:19: In file included from /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/../lib/clang/ 5.1/include/limits.h:38: In file included from /usr/include/limits.h:64: /usr/include/machine/limits.h:8:2: error: architecture not supported #error architecture not supported ^ In file included from /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx- 10.9-x86_64-2.7/fftfitmodule.c:16: In file included from /opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7/Python.h:33: In file included from /usr/include/stdio.h:67: In file included from /usr/include/_types.h:27: In file included from /usr/include/sys/_types.h:33: /usr/include/machine/_types.h:34:2: error: architecture not supported #error architecture not supported ^ In file included from /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx- 10.9-x86_64-2.7/fftfitmodule.c:16: In file included from /opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7/Python.h:33: In file included from /usr/include/stdio.h:67: In file included from /usr/include/_types.h:27: /usr/include/sys/_types.h:94:9: error: unknown type name '__int64_t' typedef __int64_t __darwin_blkcnt_t; /* total blocks */ ^ /usr/include/sys/_types.h:95:9: error: unknown type name '__int32_t' typedef __int32_t __darwin_blksize_t; /* preferred block size */ ^ /usr/include/sys/_types.h:96:9: error: unknown type name '__int32_t' typedef __int32_t __darwin_dev_t; /* dev_t */ ^ /usr/include/sys/_types.h:99:9: error: unknown type name '__uint32_t' typedef __uint32_t __darwin_gid_t; /* [???] process and group IDs */ ^ /usr/include/sys/_types.h:100:9: error: unknown type name '__uint32_t' typedef __uint32_t __darwin_id_t; /* [XSI] pid_t, uid_t, or gid_t*/ ^ /usr/include/sys/_types.h:101:9: error: unknown type name '__uint64_t' typedef __uint64_t __darwin_ino64_t; /* [???] Used for 64 bit inodes */ ^ /usr/include/sys/_types.h:107:9: error: unknown type name '__darwin_natural_t' typedef __darwin_natural_t __darwin_mach_port_name_t; /* Used by mach */ ^ /usr/include/sys/_types.h:109:9: error: unknown type name '__uint16_t' typedef __uint16_t __darwin_mode_t; /* [???] Some file attributes */ ^ /usr/include/sys/_types.h:110:9: error: unknown type name '__int64_t' typedef __int64_t __darwin_off_t; /* [???] Used for file sizes */ ^ /usr/include/sys/_types.h:111:9: error: unknown type name '__int32_t' typedef __int32_t __darwin_pid_t; /* [???] process and group IDs */ ^ /usr/include/sys/_types.h:131:9: error: unknown type name '__uint32_t' typedef __uint32_t __darwin_sigset_t; /* [???] signal set */ ^ /usr/include/sys/_types.h:132:9: error: unknown type name '__int32_t' typedef __int32_t __darwin_suseconds_t; /* [???] microseconds */ ^ /usr/include/sys/_types.h:133:9: error: unknown type name '__uint32_t' typedef __uint32_t __darwin_uid_t; /* [???] user IDs */ ^ /usr/include/sys/_types.h:134:9: error: unknown type name '__uint32_t' typedef __uint32_t __darwin_useconds_t; /* [???] microseconds */ ^ In file included from /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx-10.9-x86_64-2.7/fftfitmodule.c:16: In file included from /opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7/Python.h:33: In file included from /usr/include/stdio.h:71: /usr/include/sys/_types/_va_list.h:31:9: error: unknown type name '__darwin_va_list'; did you mean '__builtin_va_list'? typedef __darwin_va_list va_list; ^ note: '__builtin_va_list' declared here In file included from /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx-10.9-x86_64-2.7/fftfitmodule.c:16: In file included from /opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7/Python.h:33: In file included from /usr/include/stdio.h:72: /usr/include/sys/_types/_size_t.h:30:9: error: unknown type name '__darwin_size_t'; did you mean '__darwin_ino_t'? typedef __darwin_size_t size_t; ^ /usr/include/sys/_types.h:103:26: note: '__darwin_ino_t' declared here typedef __darwin_ino64_t __darwin_ino_t; /* [???] Used for inodes */ ^ fatal error: too many errors emitted, stopping now [-ferror-limit=] 20 errors generated. error: Command "/usr/bin/clang -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -arch ppc -arch i386 -arch x86_64 -g -O2 -I/var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx- 10.9-x86_64-2.7 -I/Library/Python/2.7/site-packages/numpy-1.8.2-py2.7-macosx-10.9- intel.egg/numpy/core/include - I/opt/local/Library/Frameworks/Python.framework/Versions/2.7/include/python2.7 -c /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/src.macosx-10.9-x86_64-2.7/fftfitmodule.c -o /var/folders/sx/j_l_qvys4bv00_38pfvy3m8h0000gp/T/tmp9MmLz8/var/folders/sx/j_l_qvys4bv00_38pfvy3m8h00 00gp/T/tmp9MmLz8/src.macosx-10.9-x86_64-2.7/fftfitmodule.o" failed with exit status 1 Makefile:5: recipe for target 'fftfit' failed gmake: *** [fftfit] Error 1 How can I solve this architecture problem?

    Read the article

  • C++ visibility of privately inherited typedefs to nested classes

    - by beldaz
    First time on StackOverflow, so please be tolerant. In the following example (apologies for the length) I have tried to isolate some unexpected behaviour I've encountered when using nested classes within a class that privately inherits from another. I've often seen statements to the effect that there is nothing special about a nested class compared to an unnested class, but in this example one can see that a nested class (at least according to GCC 4.4) can see the public typedefs of a class that is privately inherited by the closing class. I appreciate that typdefs are not the same as member data, but I found this behaviour surprising, and I imagine many others would, too. So my question is threefold: Is this standard behaviour? (a decent explanation of why would be very helpful) Can one expect it to work on most modern compilers (i.e., how portable is it)? #include <iostream> class Base { typedef int priv_t; priv_t priv; public: typedef int pub_t; pub_t pub; Base() : priv(0), pub(1) {} }; class PubDerived : public Base { public: // Not allowed since Base::priv is private // void foo() {std::cout << priv << "\n";} class Nested { // Not allowed since Nested has no access to PubDerived member data // void foo() {std::cout << pub << "\n";} // Not allowed since typedef Base::priv_t is private // void bar() {priv_t x=0; std::cout << x << "\n";} }; }; class PrivDerived : private Base { public: // Allowed since Base::pub is public void foo() {std::cout << pub << "\n";} class Nested { public: // Works (gcc 4.4 - see below) void fred() {pub_t x=0; std::cout << x << "\n";} }; }; int main() { // Not allowed since typedef Base::priv_t private // std::cout << PubDerived::priv_t(0) << "\n"; // Allowed since typedef Base::pub_t is inaccessible std::cout << PubDerived::pub_t(0) << "\n"; // Prints 0 // Not allowed since typedef Base::pub_t is inaccessible //std::cout << PrivDerived::pub_t(0) << "\n"; // Works (gcc 4.4) PrivDerived::Nested o; o.fred(); // Prints 0 return 0; }

    Read the article

  • Alias for a C++ template?

    - by porgarmingduod
    typedef boost::interprocess::managed_shared_memory::segment_manager segment_manager_t; // Works fine, segment_manager is a class typedef boost::interprocess::adaptive_pool allocator_t; // Can't do this, adaptive_pool is a template The idea is that if I want to switch between boost interprocess' several different options for shared memory and allocators, I just modify the typedefs. Unfortunately the allocators are templates, so I can't typedef the allocator I want to use. Is there a way to achieve an alias to a template in C++? (Except for the obvious #define ALLOCATOR_T boost::interprocess::adaptive_pool)

    Read the article

  • C++ how to make typedefs globally visible

    - by user231536
    I have a typedef typedef unsigned int my_type; used in a file. I would like to make it visible across all my files, without putting it in a header file included by everything. I don't want to go the header file route because as it stands this will be the only declaration in the header file (and it seems unnecessary to add a file just for this). Is there a way to do this? If instead I had: typedef X my_type; where X was a class, would I need to include X.h everywhere and have the typedef at the end of X.h ?

    Read the article

  • In C++, how can I make typedefs visible to every file in my project?

    - by user231536
    I have a typedef typedef unsigned int my_type; used in a file. I would like to make it visible across all my files, without putting it in a header file included by everything. I don't want to go the header file route because as it stands this will be the only declaration in the header file (and it seems unnecessary to add a file just for this). Is there a way to do this? If instead I had: typedef X my_type; where X was a class, would I need to include X.h everywhere and have the typedef at the end of X.h ?

    Read the article

  • "Inherited" types using CRTP and typedef

    - by Ken Moynihan
    The following code does not compile. I get an error message: error C2039: 'Asub' : is not a member of 'C' Can someone help me to understand this? Tried VS2008 & 2010 compiler. template <class T> class B { typedef int Asub; public: void DoSomething(typename T::Asub it) { } }; class C : public B<C> { public: typedef int Asub; }; class A { public: typedef int Asub; }; int _tmain(int argc, _TCHAR* argv[]) { C theThing; theThing.DoSomething(C::Asub()); return 0; }

    Read the article

  • error: typedef name may not be a nested-name-specifier

    - by Autopulated
    I am trying to do something along the lines of this answer, and struggling: $ gcc --version gcc (GCC) 4.2.4 (Ubuntu 4.2.4-1ubuntu4) file.cpp:7: error: template argument 1 is invalid file.cpp:7: error: typedef name may not be a nested-name-specifier And the offending part of the file: template <class R, class C, class T0=void, class T1=void, class T2=void> struct MemberWrap; template <class R, class C, class T0> struct MemberWrap<R, C, T0>{ typedef R (C::*member_t)(T0); typedef typename boost::add_reference<typename T0>::type> TC0; // <---- offending line MemberWrap(member_t f) : m_wrapped(f){ } R operator()(C* p, TC0 p0){ GILRelease guard; return (p->*(this->m_wrapped))(p0); } member_t m_wrapped; };

    Read the article

  • Please explain syntax rules and scope for "typedef"

    - by unknown google user
    What are the rules? OTOH the simple case seems to imply the new type is the last thing on a line. Like here Uchar is the new type. typedef unsigned char Uchar; But a function pointer is completely different. Here the new type is pFunc: typedef int (*pFunc) (int); I can't think of any other examples offhand but I have come across some very confusing usages. So are there rules or are people just suppose to know from experience that this is how it is done because they have seen it done this way before? ALSO: What is the scope of a typedef. Thanks to everyone.

    Read the article

  • Regarding C typedef struct

    - by Bruce Duncan
    I have multiple instances of typedef struct box so box box1, box box2 etc. The members of the struct are length, width, height etc. typedef struct { int width; int height; } box; box box1; box box2; How can I create a function that operates on all the width members of each box instance? My confusion is how do I pass a pointer to a typedef struct member that works across all instances of box. I know how to pass a pointer to a specific instance member like box1.width but how to pass .width and then do box1.width=value; box2.width=value; box3.width=value; within the function?

    Read the article

  • Resolve circular typedef dependency?

    - by Nick
    What is the best way to resolve the following circular dependency in typedef-ing these structs? Note the C language tag - I'm looking for a solution in standard gcc C. typedef struct { char* name; int age; int lefthanded; People* friends; } Person; typedef struct { int count; int max; Person* data; } People;

    Read the article

  • struct size is different from typedef version?

    - by samoz
    I have the following struct declaration and typedef in my code: struct blockHeaderStruct { bool allocated; unsigned int length; }; typedef struct blockHeaderStruct blockHeader; When I do sizeof(blockheader), I get the value of 4 bytes back, but when I do sizeof(blockHeaderStruct), I get 8 bytes. Why is this happening? Why am I not getting 5 back instead?

    Read the article

  • typedef and operator overloading in C

    - by jocapco
    Suppose I typedef an integer or integer array or any known type: typedef int int2 Then I overload operator * for int2 pairs, now if I initialize variables a and b as int. Then will my * between a and b be the overloaded * ? How do I achieve overloading an int and yet also use * for int the way they are. Should I create a new type?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >