Search Results

Search found 81 results on 4 pages for 'typeid'.

Page 4/4 | < Previous Page | 1 2 3 4 

  • C++ game designing & polymorphism question

    - by Kotti
    Hi! I'm trying to implement some sort of 'just-for-me' game engine and the problem's plot goes the following way: Suppose I have some abstract interface for a renderable entity, e.g. IRenderable. And it's declared the following way: interface IRenderable { // (...) // Suppose that Backend is some abstract backend used // for rendering, and it's implementation is not important virtual void Render(Backend& backend) = 0; }; What I'm doing right now is something like declaring different classes like class Ball : public IRenderable { virtual void Render(Backend& backend) { // Rendering implementation, that is specific for // the Ball object // (...) } }; And then everything looks fine. I can easily do something like std::vector<IRenderable*> items, push some items like new Ball() in this vector and then make a call similiar to foreach (IRenderable* in items) { item->Render(backend); } Ok, I guess it is the 'polymorphic' way, but what if I want to have different types of objects in my game and an ability to manipulate their state, where every object can be manipulated via it's own interface? I could do something like struct GameState { Ball ball; Bonus bonus; // (...) }; and then easily change objects state via their own methods, like ball.Move(...) or bonus.Activate(...), where Move(...) is specific for only Ball and Activate(...) - for only Bonus instances. But in this case I lose the opportunity to write foreach IRenderable* simply because I store these balls and bonuses as instances of their derived, not base classes. And in this case the rendering procedure turns into a mess like ball.Render(backend); bonus.Render(backend); // (...) and it is bad because we actually lose our polymorphism this way (no actual need for making Render function virtual, etc. The other approach means invoking downcasting via dynamic_cast or something with typeid to determine the type of object you want to manipulate and this looks even worse to me and this also breaks this 'polymorphic' idea. So, my question is - is there some kind of (probably) alternative approach to what I want to do or can my current pattern be somehow modified so that I would actually store IRenderable* for my game objects (so that I can invoke virtual Render method on each of them) while preserving the ability to easily change the state of these objects? Maybe I'm doing something absolutely wrong from the beginning, if so, please point it out :) Thanks in advance!

    Read the article

  • Specializing a template on a lambda in C++0x

    - by Tony A.
    I've written a traits class that lets me extract information about the arguments and type of a function or function object in C++0x (tested with gcc 4.5.0). The general case handles function objects: template <typename F> struct function_traits { template <typename R, typename... A> struct _internal { }; template <typename R, typename... A> struct _internal<R (F::*)(A...)> { // ... }; typedef typename _internal<decltype(&F::operator())>::<<nested types go here>>; }; Then I have a specialization for plain functions at global scope: template <typename R, typename... A> struct function_traits<R (*)(A...)> { // ... }; This works fine, I can pass a function into the template or a function object and it works properly: template <typename F> void foo(F f) { typename function_traits<F>::whatever ...; } int f(int x) { ... } foo(f); What if, instead of passing a function or function object into foo, I want to pass a lambda expression? foo([](int x) { ... }); The problem here is that neither specialization of function_traits<> applies. The C++0x draft says that the type of the expression is a "unique, unnamed, non-union class type". Demangling the result of calling typeid(...).name() on the expression gives me what appears to be gcc's internal naming convention for the lambda, main::{lambda(int)#1}, not something that syntactically represents a C++ typename. In short, is there anything I can put into the template here: template <typename R, typename... A> struct function_traits<????> { ... } that will allow this traits class to accept a lambda expression?

    Read the article

  • Login loop in Snow Leopard

    - by hgpc
    I can't get out of a login loop of a particular admin user. After entering the password the login screen is shown again after about a minute. Other users work fine. It started happening after a simple reboot. Can you please help me? Thank you! Tried to no avail: Change the password Remove the password Repair disk (no errors) Boot in safe mode Reinstall Snow Leopard and updating to 10.6.6 Remove content of ~/Library/Caches Removed content of ~/Library/Preferences Replaced /etc/authorization with Install DVD copy The system.log mentions a crash report. I'm including both below. system.log Jan 8 02:43:30 loginwindow218: Login Window - Returned from Security Agent Jan 8 02:43:30 loginwindow218: USER_PROCESS: 218 console Jan 8 02:44:42 kernel[0]: Jan 8 02:44:43: --- last message repeated 1 time --- Jan 8 02:44:43 com.apple.launchd[1] (com.apple.loginwindow218): Job appears to have crashed: Bus error Jan 8 02:44:43 com.apple.UserEventAgent-LoginWindow223: ALF error: cannot find useragent 1102 Jan 8 02:44:43 com.apple.UserEventAgent-LoginWindow223: plugin.UserEventAgentFactory: called with typeID=FC86416D-6164-2070-726F-70735C216EC0 Jan 8 02:44:43 /System/Library/CoreServices/loginwindow.app/Contents/MacOS/loginwindow233: Login Window Application Started Jan 8 02:44:43 SecurityAgent228: CGSShutdownServerConnections: Detaching application from window server Jan 8 02:44:43 com.apple.ReportCrash.Root232: 2011-01-08 02:44:43.936 ReportCrash232:2903 Saved crash report for loginwindow218 version ??? (???) to /Library/Logs/DiagnosticReports/loginwindow_2011-01-08-024443_localhost.crash Jan 8 02:44:44 SecurityAgent228: MIG: server died: CGSReleaseShmem : Cannot release shared memory Jan 8 02:44:44 SecurityAgent228: kCGErrorFailure: Set a breakpoint @ CGErrorBreakpoint() to catch errors as they are logged. Jan 8 02:44:44 SecurityAgent228: CGSDisplayServerShutdown: Detaching display subsystem from window server Jan 8 02:44:44 SecurityAgent228: HIToolbox: received notification of WindowServer event port death. Jan 8 02:44:44 SecurityAgent228: port matched the WindowServer port created in BindCGSToRunLoop Jan 8 02:44:44 loginwindow233: Login Window Started Security Agent Jan 8 02:44:44 WindowServer234: kCGErrorFailure: Set a breakpoint @ CGErrorBreakpoint() to catch errors as they are logged. Jan 8 02:44:44 com.apple.WindowServer234: Sat Jan 8 02:44:44 .local WindowServer234 <Error>: kCGErrorFailure: Set a breakpoint @ CGErrorBreakpoint() to catch errors as they are logged. Jan 8 02:44:54 SecurityAgent243: NSSecureTextFieldCell detected a field editor ((null)) that is not a NSTextView subclass designed to work with the cell. Ignoring... Crash report Process: loginwindow 218 Path: /System/Library/CoreServices/loginwindow.app/Contents/MacOS/loginwindow Identifier: loginwindow Version: ??? (???) Code Type: X86-64 (Native) Parent Process: launchd [1] Date/Time: 2011-01-08 02:44:42.748 +0100 OS Version: Mac OS X 10.6.6 (10J567) Report Version: 6 Exception Type: EXC_BAD_ACCESS (SIGBUS) Exception Codes: 0x000000000000000a, 0x000000010075b000 Crashed Thread: 0 Dispatch queue: com.apple.main-thread Thread 0 Crashed: Dispatch queue: com.apple.main-thread 0 com.apple.security 0x00007fff801c6e8b Security::ReadSection::at(unsigned int) const + 25 1 com.apple.security 0x00007fff801c632f Security::DbVersion::open() + 123 2 com.apple.security 0x00007fff801c5e41 Security::DbVersion::DbVersion(Security::AppleDatabase const&, Security::RefPointer<Security::AtomicBufferedFile> const&) + 179 3 com.apple.security 0x00007fff801c594e Security::DbModifier::getDbVersion(bool) + 330 4 com.apple.security 0x00007fff801c57f5 Security::DbModifier::openDatabase() + 33 5 com.apple.security 0x00007fff801c5439 Security::Database::_dbOpen(Security::DatabaseSession&, unsigned int, Security::AccessCredentials const*, void const*) + 221 6 com.apple.security 0x00007fff801c4841 Security::DatabaseManager::dbOpen(Security::DatabaseSession&, Security::DbName const&, unsigned int, Security::AccessCredentials const*, void const*) + 77 7 com.apple.security 0x00007fff801c4723 Security::DatabaseSession::DbOpen(char const*, cssm_net_address const*, unsigned int, Security::AccessCredentials const*, void const*, long&) + 285 8 com.apple.security 0x00007fff801d8414 cssm_DbOpen(long, char const*, cssm_net_address const*, unsigned int, cssm_access_credentials const*, void const*, long*) + 108 9 com.apple.security 0x00007fff801d7fba CSSM_DL_DbOpen + 106 10 com.apple.security 0x00007fff801d62f6 Security::CssmClient::DbImpl::open() + 162 11 com.apple.security 0x00007fff801d8977 SSDatabaseImpl::open(Security::DLDbIdentifier const&) + 53 12 com.apple.security 0x00007fff801d8715 SSDLSession::DbOpen(char const*, cssm_net_address const*, unsigned int, Security::AccessCredentials const*, void const*, long&) + 263 13 com.apple.security 0x00007fff801d8414 cssm_DbOpen(long, char const*, cssm_net_address const*, unsigned int, cssm_access_credentials const*, void const*, long*) + 108 14 com.apple.security 0x00007fff801d7fba CSSM_DL_DbOpen + 106 15 com.apple.security 0x00007fff801d62f6 Security::CssmClient::DbImpl::open() + 162 16 com.apple.security 0x00007fff802fa786 Security::CssmClient::DbImpl::unlock(cssm_data const&) + 28 17 com.apple.security 0x00007fff80275b5d Security::KeychainCore::KeychainImpl::unlock(Security::CssmData const&) + 89 18 com.apple.security 0x00007fff80291a06 Security::KeychainCore::StorageManager::login(unsigned int, void const*, unsigned int, void const*) + 3336 19 com.apple.security 0x00007fff802854d3 SecKeychainLogin + 91 20 com.apple.loginwindow 0x000000010000dfc5 0x100000000 + 57285 21 com.apple.loginwindow 0x000000010000cfb4 0x100000000 + 53172 22 com.apple.Foundation 0x00007fff8721e44f __NSThreadPerformPerform + 219 23 com.apple.CoreFoundation 0x00007fff82627401 __CFRunLoopDoSources0 + 1361 24 com.apple.CoreFoundation 0x00007fff826255f9 __CFRunLoopRun + 873 25 com.apple.CoreFoundation 0x00007fff82624dbf CFRunLoopRunSpecific + 575 26 com.apple.HIToolbox 0x00007fff8444493a RunCurrentEventLoopInMode + 333 27 com.apple.HIToolbox 0x00007fff8444473f ReceiveNextEventCommon + 310 28 com.apple.HIToolbox 0x00007fff844445f8 BlockUntilNextEventMatchingListInMode + 59 29 com.apple.AppKit 0x00007fff80b01e64 _DPSNextEvent + 718 30 com.apple.AppKit 0x00007fff80b017a9 -NSApplication nextEventMatchingMask:untilDate:inMode:dequeue: + 155 31 com.apple.AppKit 0x00007fff80ac748b -NSApplication run + 395 32 com.apple.loginwindow 0x0000000100004b16 0x100000000 + 19222 33 com.apple.loginwindow 0x0000000100004580 0x100000000 + 17792 Thread 1: Dispatch queue: com.apple.libdispatch-manager 0 libSystem.B.dylib 0x00007fff8755216a kevent + 10 1 libSystem.B.dylib 0x00007fff8755403d _dispatch_mgr_invoke + 154 2 libSystem.B.dylib 0x00007fff87553d14 _dispatch_queue_invoke + 185 3 libSystem.B.dylib 0x00007fff8755383e _dispatch_worker_thread2 + 252 4 libSystem.B.dylib 0x00007fff87553168 _pthread_wqthread + 353 5 libSystem.B.dylib 0x00007fff87553005 start_wqthread + 13 Thread 0 crashed with X86 Thread State (64-bit): rax: 0x000000010075b000 rbx: 0x00007fff5fbfd990 rcx: 0x00007fff875439da rdx: 0x0000000000000000 rdi: 0x00007fff5fbfd990 rsi: 0x0000000000000000 rbp: 0x00007fff5fbfd5d0 rsp: 0x00007fff5fbfd5d0 r8: 0x0000000000000007 r9: 0x0000000000000000 r10: 0x00007fff8753beda r11: 0x0000000000000202 r12: 0x0000000100133e78 r13: 0x00007fff5fbfda50 r14: 0x00007fff5fbfda50 r15: 0x00007fff5fbfdaa0 rip: 0x00007fff801c6e8b rfl: 0x0000000000010287 cr2: 0x000000010075b000

    Read the article

  • xamlparser error after clickonce deployment.Application crashing after installation

    - by black sensei
    Hello Good People, I've built an WPF application with visual studio 2008 and created an installer for it.Works fine so far.I realized it lacks the automatic updates feature, and after trying several solutions, i decided to give a try to clickonce deployment.After a successful deployment on a network server, i 've noticed that the application crashes after installation of the downloaded app.It complains about this: Cannot create instance of 'Login' defined in assembly 'MyApplication, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null'. Exception has been thrown by the target of an invocation. Error in markup file 'MyApplication;component/login.xaml' Line 1 Position 9. here is the stacktrace at System.Windows.Markup.XamlParseException.ThrowException(String message, Exception innerException, Int32 lineNumber, Int32 linePosition, Uri baseUri, XamlObjectIds currentXamlObjectIds, XamlObjectIds contextXamlObjectIds, Type objectType) at System.Windows.Markup.XamlParseException.ThrowException(ParserContext parserContext, Int32 lineNumber, Int32 linePosition, String message, Exception innerException) at System.Windows.Markup.BamlRecordReader.ThrowExceptionWithLine(String message, Exception innerException) at System.Windows.Markup.BamlRecordReader.CreateInstanceFromType(Type type, Int16 typeId, Boolean throwOnFail) at System.Windows.Markup.BamlRecordReader.GetElementAndFlags(BamlElementStartRecord bamlElementStartRecord, Object& element, ReaderFlags& flags, Type& delayCreatedType, Int16& delayCreatedTypeId) at System.Windows.Markup.BamlRecordReader.BaseReadElementStartRecord(BamlElementStartRecord bamlElementRecord) at System.Windows.Markup.BamlRecordReader.ReadElementStartRecord(BamlElementStartRecord bamlElementRecord) at System.Windows.Markup.BamlRecordReader.ReadRecord(BamlRecord bamlRecord) at System.Windows.Markup.BamlRecordReader.Read(Boolean singleRecord) at System.Windows.Markup.TreeBuilderBamlTranslator.ParseFragment() at System.Windows.Markup.TreeBuilder.Parse() at System.Windows.Markup.XamlReader.LoadBaml(Stream stream, ParserContext parserContext, Object parent, Boolean closeStream) at System.Windows.Application.LoadBamlStreamWithSyncInfo(Stream stream, ParserContext pc) at System.Windows.Application.LoadComponent(Uri resourceLocator, Boolean bSkipJournaledProperties) at System.Windows.Application.DoStartup() at System.Windows.Application.<.ctorb__0(Object unused) at System.Windows.Threading.ExceptionWrapper.InternalRealCall(Delegate callback, Object args, Boolean isSingleParameter) at System.Windows.Threading.ExceptionWrapper.TryCatchWhen(Object source, Delegate callback, Object args, Boolean isSingleParameter, Delegate catchHandler) at System.Windows.Threading.Dispatcher.WrappedInvoke(Delegate callback, Object args, Boolean isSingleParameter, Delegate catchHandler) at System.Windows.Threading.DispatcherOperation.InvokeImpl() at System.Windows.Threading.DispatcherOperation.InvokeInSecurityContext(Object state) at System.Threading.ExecutionContext.runTryCode(Object userData) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.RunInternal(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Windows.Threading.DispatcherOperation.Invoke() at System.Windows.Threading.Dispatcher.ProcessQueue() at System.Windows.Threading.Dispatcher.WndProcHook(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam, Boolean& handled) at MS.Win32.HwndWrapper.WndProc(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam, Boolean& handled) at MS.Win32.HwndSubclass.DispatcherCallbackOperation(Object o) at System.Windows.Threading.ExceptionWrapper.InternalRealCall(Delegate callback, Object args, Boolean isSingleParameter) at System.Windows.Threading.ExceptionWrapper.TryCatchWhen(Object source, Delegate callback, Object args, Boolean isSingleParameter, Delegate catchHandler) at System.Windows.Threading.Dispatcher.WrappedInvoke(Delegate callback, Object args, Boolean isSingleParameter, Delegate catchHandler) at System.Windows.Threading.Dispatcher.InvokeImpl(DispatcherPriority priority, TimeSpan timeout, Delegate method, Object args, Boolean isSingleParameter) at System.Windows.Threading.Dispatcher.Invoke(DispatcherPriority priority, Delegate method, Object arg) at MS.Win32.HwndSubclass.SubclassWndProc(IntPtr hwnd, Int32 msg, IntPtr wParam, IntPtr lParam) at MS.Win32.UnsafeNativeMethods.DispatchMessage(MSG& msg) at System.Windows.Threading.Dispatcher.PushFrameImpl(DispatcherFrame frame) at System.Windows.Threading.Dispatcher.PushFrame(DispatcherFrame frame) at System.Windows.Threading.Dispatcher.Run() at System.Windows.Application.RunDispatcher(Object ignore) at System.Windows.Application.RunInternal(Window window) at System.Windows.Application.Run(Window window) at System.Windows.Application.Run() at myApplication.App.Main() here is just the region the debugger is pointing to <Window x:Class="MyApplication.Login" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:src="clr-namespace:MyApplication" xmlns:UI="clr-namespace:UI;assembly=UI" Title="My Application" Height="400" Width="550" ResizeMode="NoResize" WindowStyle="ThreeDBorderWindow" WindowStartupLocation="CenterScreen" Name="Logine" Loaded="Logine_Loaded" Closed="Logine_Closed" Icon="orLogo.ico"> But the installer version as in the msi from setup project works fine.so i cannot see where the error is comming from since i can have design view. Question 1 : Does any one have a similar issue, or is that a known issue? Question 2 : If it's a known issue then what are alternative.I might give up on the clickonce but then i my automatic update feature will be lost (as in there is none which is not ovekill or seriously outdated that i can find right now). thanks for reading this and for pointing me to the right direction.

    Read the article

  • Forms bound to updateable ADO recordsets are not updateable when the source includes a JOIN

    - by Art
    I'm developing an application in Access 2007. It uses an .accdb front end connecting to an SQL Server 2005 backend. I use forms that are bound to ADO recordsets at runtime. For the sake of efficiency, the recordsets usually contain only one record, and are queried out on the server: Public Sub SetUpFormRecordset(cn As ADODB.Connection, rstIn As ADODB.Recordset, rstSource As String) Dim cmd As ADODB.Command Dim I As Long Set cmd = New ADODB.Command cn.Errors.Clear ' Recordsets based on command object Execute method are Read Only! With cmd Set .ActiveConnection = cn .CommandType = adCmdText .CommandText = rstSource End With With rstIn .CursorType = adOpenKeyset .LockType = adLockPessimistic 'Check the locktype after opening; optimistic locking is worthless on a bound End With ' form, and ADO might open optimistically without firing an error! rstIn.Open cmd, , adOpenKeyset, adLockPessimistic 'This should run the query on the server and return an updatable recordset With cn If .Errors.Count <> 0 Then For Each errADO In .Errors Call HandleADOErrors(.Errors(I)) I = I + 1 Next errADO End If End With End Sub rstSource (the string containg the TSQL on which the recordset is based) is assembled by the calling routine, in this case from the Open event of the form being bound: Private Sub Form_Open(Cancel As Integer) Dim rst As ADODB.Recordset Dim strSource As String, DefaultSource as String Dim lngID As Long lngID = Forms!MyParent.CurrentID strSource = "SELECT TOP (100) PERCENT dbo.Customers.CustomerID, dbo.Customers.LegacyID, dbo.Customers.Active, dbo.Customers.TypeID, dbo.Customers.Category, " & _ "dbo.Customers.Source, dbo.Customers.CustomerName, dbo.Customers.CustAddrID, dbo.Customers.Email, dbo.Customers.TaxExempt, dbo.Customers.SalesTaxCode, " & _ "dbo.Customers.SalesTax2Code, dbo.Customers.CreditLimit, dbo.Customers.CreationDate, dbo.Customers.FirstOrder, dbo.Customers.LastOrder, " & _ "dbo.Customers.nOrders, dbo.Customers.Concurrency, dbo.Customers.LegacyLN, dbo.Addresses.AddrType, dbo.Addresses.AddrLine1, dbo.Addresses.AddrLine2, " & _ "dbo.Addresses.City, dbo.Addresses.State, dbo.Addresses.Country, dbo.Addresses.PostalCode, dbo.Addresses.PhoneLandline, dbo.Addresses.Concurrency " & _ "FROM dbo.Customers INNER JOIN " & _ "dbo.Addresses ON dbo.Customers.CustAddrID = dbo.Addresses.AddrID " strSource = strSource & "WHERE dbo.Customers.CustomerID= " & lngID With Me 'Default is Set up for editing one record If Not Nz(.RecordSource, vbNullString) = vbNullString Then If .Dirty Then .Dirty = False 'Save any changes on the form .RecordSource = vbNullString End If If rst Is Nothing Then 'Might not be first time through DefaultSource = .RecordSource Else rst.Close Set rst = Nothing End If End With Set rst = New ADODB.Recordset Call setupformrecordset(dbconn, rst, strSource) 'dbconn is a global variable With Me Set .Recordset = rst End With End Sub The recordset that is returned from setupformrecordset is fully updateable, and its .Supports property shows this. It can be edited and updated in code. The entire form, however, is read only, even though it's .AllowEdits and .AllowAdditions properties are both true. Even the fields from the right hand side (the 'many' side) cannot be edited. Removing the INNER JOIN clause from the TSQL (restricting strSource to one table) makes the form fully editable. I've verified that the TSQL includes priimary key fields from both tables, and each table includes a timestamp field for concurrency. I tried changing the .CursorType and .CursorLocation properties of the recordset to no avail. What am I doing wrong?

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

< Previous Page | 1 2 3 4