Search Results

Search found 17940 results on 718 pages for 'algorithm design'.

Page 40/718 | < Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >

  • Special scheduling Algorithm (pattern expansion)

    - by tovare
    Question Do you think genetic algorithms worth trying out for the problem below, or will I hit local-minima issues? I think maybe aspects of the problem is great for a generator / fitness-function style setup. (If you've botched a similar project I would love hear from you, and not do something similar) Thank you for any tips on how to structure things and nail this right. The problem I'm searching a good scheduling algorithm to use for the following real-world problem. I have a sequence with 15 slots like this (The digits may vary from 0 to 20) : 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 (And there are in total 10 different sequences of this type) Each sequence needs to expand into an array, where each slot can take 1 position. 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 The constraints on the matrix is that: [row-wise, i.e. horizontally] The number of ones placed, must either be 11 or 111 [row-wise] The distance between two sequences of 1 needs to be a minimum of 00 The sum of each column should match the original array. The number of rows in the matrix should be optimized. The array then needs to allocate one of 4 different matrixes, which may have different number of rows: A, B, C, D A, B, C and D are real-world departments. The load needs to be placed reasonably fair during the course of a 10-day period, not to interfere with other department goals. Each of the matrix is compared with expansion of 10 different original sequences so you have: A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 B1, B2, B3, B4, B5, B6, B7, B8, B9, B10 C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 D1, D2, D3, D4, D5, D6, D7, D8, D9, D10 Certain spots on these may be reserved (Not sure if I should make it just reserved/not reserved or function-based). The reserved spots might be meetings and other events The sum of each row (for instance all the A's) should be approximately the same within 2%. i.e. sum(A1 through A10) should be approximately the same as (B1 through B10) etc. The number of rows can vary, so you have for instance: A1: 5 rows A2: 5 rows A3: 1 row, where that single row could for instance be: 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 etc.. Sub problem* I'de be very happy to solve only part of the problem. For instance being able to input: 1 1 2 3 4 2 2 3 4 2 2 3 3 2 3 And get an appropriate array of sequences with 1's and 0's minimized on the number of rows following th constraints above.

    Read the article

  • Making an efficient algorithm

    - by James P.
    Here's my recent submission for the FB programming contest (qualifying round only requires to upload program output so source code doesn't matter). The objective is to find two squares that add up to a given value. I've left it as it is as an example. It does the job but is too slow for my liking. Here's the points that are obviously eating up time: List of squares is being recalculated for each call of getNumOfDoubleSquares(). This could be precalculated or extended when needed. Both squares are being checked for when it is only necessary to check for one (complements). There might be a more efficient way than a double-nested loop to find pairs. Other suggestions? Besides this particular problem, what do you look for when optimizing an algorithm? public static int getNumOfDoubleSquares( Integer target ){ int num = 0; ArrayList<Integer> squares = new ArrayList<Integer>(); ArrayList<Integer> found = new ArrayList<Integer>(); int squareValue = 0; for( int j=0; squareValue<=target; j++ ){ squares.add(j, squareValue); squareValue = (int)Math.pow(j+1,2); } int squareSum = 0; System.out.println( "Target=" + target ); for( int i = 0; i < squares.size(); i++ ){ int square1 = squares.get(i); for( int j = 0; j < squares.size(); j++ ){ int square2 = squares.get(j); squareSum = square1 + square2; if( squareSum == target && !found.contains( square1 ) && !found.contains( square2 ) ){ found.add(square1); found.add(square2); System.out.println( "Found !" + square1 +"+"+ square2 +"="+ squareSum); num++; } } } return num; }

    Read the article

  • Optimizing Jaro-Winkler algorithm

    - by Pentium10
    I have this code for Jaro-Winkler algorithm taken from this website. I need to run 150,000 times to get distance between differences. It takes a long time, as I run on an Android mobile device. Can it be optimized more? public class Jaro { /** * gets the similarity of the two strings using Jaro distance. * * @param string1 the first input string * @param string2 the second input string * @return a value between 0-1 of the similarity */ public float getSimilarity(final String string1, final String string2) { //get half the length of the string rounded up - (this is the distance used for acceptable transpositions) final int halflen = ((Math.min(string1.length(), string2.length())) / 2) + ((Math.min(string1.length(), string2.length())) % 2); //get common characters final StringBuffer common1 = getCommonCharacters(string1, string2, halflen); final StringBuffer common2 = getCommonCharacters(string2, string1, halflen); //check for zero in common if (common1.length() == 0 || common2.length() == 0) { return 0.0f; } //check for same length common strings returning 0.0f is not the same if (common1.length() != common2.length()) { return 0.0f; } //get the number of transpositions int transpositions = 0; int n=common1.length(); for (int i = 0; i < n; i++) { if (common1.charAt(i) != common2.charAt(i)) transpositions++; } transpositions /= 2.0f; //calculate jaro metric return (common1.length() / ((float) string1.length()) + common2.length() / ((float) string2.length()) + (common1.length() - transpositions) / ((float) common1.length())) / 3.0f; } /** * returns a string buffer of characters from string1 within string2 if they are of a given * distance seperation from the position in string1. * * @param string1 * @param string2 * @param distanceSep * @return a string buffer of characters from string1 within string2 if they are of a given * distance seperation from the position in string1 */ private static StringBuffer getCommonCharacters(final String string1, final String string2, final int distanceSep) { //create a return buffer of characters final StringBuffer returnCommons = new StringBuffer(); //create a copy of string2 for processing final StringBuffer copy = new StringBuffer(string2); //iterate over string1 int n=string1.length(); int m=string2.length(); for (int i = 0; i < n; i++) { final char ch = string1.charAt(i); //set boolean for quick loop exit if found boolean foundIt = false; //compare char with range of characters to either side for (int j = Math.max(0, i - distanceSep); !foundIt && j < Math.min(i + distanceSep, m - 1); j++) { //check if found if (copy.charAt(j) == ch) { foundIt = true; //append character found returnCommons.append(ch); //alter copied string2 for processing copy.setCharAt(j, (char)0); } } } return returnCommons; } } I mention that in the whole process I make just instance of the script, so only once jaro= new Jaro(); If you are going to test and need examples so not break the script, you will find it here, in another thread for python optimization.

    Read the article

  • Design of Business Layer

    - by Adil Mughal
    Hi, We are currently revamping our architecture and design of application. We have just completed design of Data Access Layer which is generic in the sense that it works using XML and reflection to persist data. Any ways now we are in the phase of designing business layer. We have read some books related to Enterprise Architecture and Design so we have found that there are few patterns that can be applied on business layer. Table Pattern and Domain Model are example of such patterns. Also we have found Domain Driven Design as well. Earlier we decided to build Entities against table objects. But we found that there is difference in Entities and Value Objects when it comes to DDD. For those of you who have gone through such design. Please guide me related to pattern, practice and sample. Thank you in advance! Also please feel free to discuss if you didn't get any point of mine.

    Read the article

  • What design pattern do you use the most?

    - by spoon16
    I'm interested in understanding what design patterns people find themselves using often. Hopefully this list will help other recognize common scenarios and the associated design pattern that can be used to solve them. Please describe a common problem you find yourself solving and the design pattern(s) you use to solve it. Links to blogs or documentation describing the pattern are also appreciated. Edit: Please expand on your answers a bit, I would like this to be a useful reference for someone who wants to learn more about design patterns and is curious on what situations a specific design pattern might be used. Nobody has linked to any "more learning" resources.

    Read the article

  • Discovering a functional algorithm from a mutable one

    - by Garrett Rowe
    This isn't necessarily a Scala question, it's a design question that has to do with avoiding mutable state, functional thinking and that sort. It just happens that I'm using Scala. Given this set of requirements: Input comes from an essentially infinite stream of random numbers between 1 and 10 Final output is either SUCCEED or FAIL There can be multiple objects 'listening' to the stream at any particular time, and they can begin listening at different times so they all may have a different concept of the 'first' number; therefore listeners to the stream need to be decoupled from the stream itself. Pseudocode: if (first number == 1) SUCCEED else if (first number >= 9) FAIL else { first = first number rest = rest of stream for each (n in rest) { if (n == 1) FAIL else if (n == first) SUCCEED else continue } } Here is a possible mutable implementation: sealed trait Result case object Fail extends Result case object Succeed extends Result case object NoResult extends Result class StreamListener { private var target: Option[Int] = None def evaluate(n: Int): Result = target match { case None => if (n == 1) Succeed else if (n >= 9) Fail else { target = Some(n) NoResult } case Some(t) => if (n == t) Succeed else if (n == 1) Fail else NoResult } } This will work but smells to me. StreamListener.evaluate is not referentially transparent. And the use of the NoResult token just doesn't feel right. It does have the advantage though of being clear and easy to use/code. Besides there has to be a functional solution to this right? I've come up with 2 other possible options: Having evaluate return a (possibly new) StreamListener, but this means I would have to make Result a subtype of StreamListener which doesn't feel right. Letting evaluate take a Stream[Int] as a parameter and letting the StreamListener be in charge of consuming as much of the Stream as it needs to determine failure or success. The problem I see with this approach is that the class that registers the listeners should query each listener after each number is generated and take appropriate action immediately upon failure or success. With this approach, I don't see how that could happen since each listener is forcing evaluation of the Stream until it completes evaluation. There is no concept here of a single number generation. Is there any standard scala/fp idiom I'm overlooking here?

    Read the article

  • Documenting a policy based design

    - by academicRobot
    I'm re-working some prototype code into a policy based design in C++, and I'm wondering what the best practice is for documenting the design. My current plan is to document: Policy hierarchy Overview of each policy Description of each type/value/function in each policy I was thinking of putting this into a doxygen module, but this looks like it will be a bit awkward since formatting will have to be done by hand without code to base the doc on (that is, documenting the policies rather than the implementation of the policies). So my questions are: Are there other aspects of the design that should be documented? Are there any tricks to doing this efficiently in doxygen? Is there a tool other than doxygen thats better suited to this? What are some examples of well documented policy based design? This is my first serious attempt at policy based design. I think I have a working grasp of the principles, but whatever naivety I expose in this question is fair game for an answer too.

    Read the article

  • Algorithm to select groups of similar items in 2d array

    - by mafutrct
    There is a 2d array of items (in my case they are called Intersections). A certain item is given as a start. The task is to find all items directly or indirectly connected to this item that satisfy a certain function. So the basic algorithm is like this: Add the start to the result list. Repeat until no modification: Add each item in the array that satisfies the function and touches any item in the result list to the result list. My current implementation looks like this: private IList<Intersection> SelectGroup ( Intersection start, Func<Intersection, Intersection, bool> select) { List<Intersection> result = new List<Intersection> (); Queue<Intersection> source = new Queue<Intersection> (); source.Enqueue (start); while (source.Any ()) { var s = source.Dequeue (); result.Add (s); foreach (var neighbour in Neighbours (s)) { if (select (start, neighbour) && !result.Contains (neighbour) && !source.Contains (neighbour)) { source.Enqueue (neighbour); } } } Debug.Assert (result.Distinct ().Count () == result.Count ()); Debug.Assert (result.All (x => select (x, result.First ()))); return result; } private List<Intersection> Neighbours (IIntersection intersection) { int x = intersection.X; int y = intersection.Y; List<Intersection> list = new List<Intersection> (); if (x > 1) { list.Add (GetIntersection (x - 1, y)); } if (y > 1) { list.Add (GetIntersection (x, y - 1)); } if (x < Size) { list.Add (GetIntersection (x + 1, y)); } if (y < Size) { list.Add (GetIntersection (x, y + 1)); } return list; } (The select function takes a start item and returns true iff the second item satisfies.) This does its job and turned out to be reasonable fast for the usual array sizes (about 20*20). However, I'm interested in further improvements. Any ideas? Example (X satisfies in relation to other Xs, . does never satisfy): .... XX.. .XX. X... In this case, there are 2 groups: a central group of 4 items and a group of a single item in the lower left. Selecting the group (for instance by starting item [2, 2]) returns the former, while the latter can be selected using the starting item and sole return value [0, 3]. Example 2: .A.. ..BB A.AA This time there are 4 groups. The 3 A groups are not connected, so they are returned as separate groups. The bigger A and B groups are connected, but A does not related to B so they are returned as separate groups.

    Read the article

  • Analysis and Design for Functional Programming

    - by edalorzo
    How do you deal with analysis and design phases when you plan to develop a system using a functional programming language like Haskell? My background is in imperative/object-oriented programming languages, and therefore, I am used to use case analysis and the use of UML to document the design of program. But the thing is that UML is inherently related to the object-oriented way of doing software. And I am intrigued about what would be the best way to develop documentation and define software designs for a system that is going to be developed using functional programming. Would you still use use case analysis or perhaps structured analysis and design instead? How do software architects define the high-level design of the system so that developers follow it? What do you show to you clients or to new developers when you are supposed to present a design of the solution? How do you document a picture of the whole thing without having first to write it all? Is there anything comparable to UML in the functional world?

    Read the article

  • Flow-Design Cheat Sheet &ndash; Part I, Notation

    - by Ralf Westphal
    You want to avoid the pitfalls of object oriented design? Then this is the right place to start. Use Flow-Oriented Analysis (FOA) and –Design (FOD or just FD for Flow-Design) to understand a problem domain and design a software solution. Flow-Orientation as described here is related to Flow-Based Programming, Event-Based Programming, Business Process Modelling, and even Event-Driven Architectures. But even though “thinking in flows” is not new, I found it helpful to deviate from those precursors for several reasons. Some aim at too big systems for the average programmer, some are concerned with only asynchronous processing, some are even not very much concerned with programming at all. What I was looking for was a design method to help in software projects of any size, be they large or tiny, involing synchronous or asynchronous processing, being local or distributed, running on the web or on the desktop or on a smartphone. That´s why I took ideas from all of the above sources and some additional and came up with Event-Based Components which later got repositioned and renamed to Flow-Design. In the meantime this has generated some discussion (in the German developer community) and several teams have started to work with Flow-Design. Also I´ve conducted quite some trainings using Flow-Orientation for design. The results are very promising. Developers find it much easier to design software using Flow-Orientation than OOAD-based object orientation. Since Flow-Orientation is moving fast and is not covered completely by a single source like a book, demand has increased for at least an overview of the current state of its notation. This page is trying to answer this demand by briefly introducing/describing every notational element as well as their translation into C# source code. Take this as a cheat sheet to put next to your whiteboard when designing software. However, please do not expect any explanation as to the reasons behind Flow-Design elements. Details on why Flow-Design at all and why in this specific way you´ll find in the literature covering the topic. Here´s a resource page on Flow-Design/Event-Based Components, if you´re able to read German. Notation Connected Functional Units The basic element of any FOD are functional units (FU): Think of FUs as some kind of software code block processing data. For the moment forget about classes, methods, “components”, assemblies or whatever. See a FU as an abstract piece of code. Software then consists of just collaborating FUs. I´m using circles/ellipses to draw FUs. But if you like, use rectangles. Whatever suites your whiteboard needs best.   The purpose of FUs is to process input and produce output. FUs are transformational. However, FUs are not called and do not call other FUs. There is no dependency between FUs. Data just flows into a FU (input) and out of it (output). From where and where to is of no concern to a FU.   This way FUs can be concatenated in arbitrary ways:   Each FU can accept input from many sources and produce output for many sinks:   Flows Connected FUs form a flow with a start and an end. Data is entering a flow at a source, and it´s leaving it through a sink. Think of sources and sinks as special FUs which conntect wires to the environment of a network of FUs.   Wiring Details Data is flowing into/out of FUs through wires. This is to allude to electrical engineering which since long has been working with composable parts. Wires are attached to FUs usings pins. They are the entry/exit points for the data flowing along the wires. Input-/output pins currently need not be drawn explicitly. This is to keep designing on a whiteboard simple and quick.   Data flowing is of some type, so wires have a type attached to them. And pins have names. If there is only one input pin and output pin on a FU, though, you don´t need to mention them. The default is Process for a single input pin, and Result for a single output pin. But you´re free to give even single pins different names.   There is a shortcut in use to address a certain pin on a destination FU:   The type of the wire is put in parantheses for two reasons. 1. This way a “no-type” wire can be easily denoted, 2. this is a natural way to describe tuples of data.   To describe how much data is flowing, a star can be put next to the wire type:   Nesting – Boards and Parts If more than 5 to 10 FUs need to be put in a flow a FD starts to become hard to understand. To keep diagrams clutter free they can be nested. You can turn any FU into a flow: This leads to Flow-Designs with different levels of abstraction. A in the above illustration is a high level functional unit, A.1 and A.2 are lower level functional units. One of the purposes of Flow-Design is to be able to describe systems on different levels of abstraction and thus make it easier to understand them. Humans use abstraction/decomposition to get a grip on complexity. Flow-Design strives to support this and make levels of abstraction first class citizens for programming. You can read the above illustration like this: Functional units A.1 and A.2 detail what A is supposed to do. The whole of A´s responsibility is decomposed into smaller responsibilities A.1 and A.2. FU A thus does not do anything itself anymore! All A is responsible for is actually accomplished by the collaboration between A.1 and A.2. Since A now is not doing anything anymore except containing A.1 and A.2 functional units are devided into two categories: boards and parts. Boards are just containing other functional units; their sole responsibility is to wire them up. A is a board. Boards thus depend on the functional units nested within them. This dependency is not of a functional nature, though. Boards are not dependent on services provided by nested functional units. They are just concerned with their interface to be able to plug them together. Parts are the workhorses of flows. They contain the real domain logic. They actually transform input into output. However, they do not depend on other functional units. Please note the usage of source and sink in boards. They correspond to input-pins and output-pins of the board.   Implicit Dependencies Nesting functional units leads to a dependency tree. Boards depend on nested functional units, they are the inner nodes of the tree. Parts are independent, they are the leafs: Even though dependencies are the bane of software development, Flow-Design does not usually draw these dependencies. They are implicitly created by visually nesting functional units. And they are harmless. Boards are so simple in their functionality, they are little affected by changes in functional units they are depending on. But functional units are implicitly dependent on more than nested functional units. They are also dependent on the data types of the wires attached to them: This is also natural and thus does not need to be made explicit. And it pertains mainly to parts being dependent. Since boards don´t do anything with regard to a problem domain, they don´t care much about data types. Their infrastructural purpose just needs types of input/output-pins to match.   Explicit Dependencies You could say, Flow-Orientation is about tackling complexity at its root cause: that´s dependencies. “Natural” dependencies are depicted naturally, i.e. implicitly. And whereever possible dependencies are not even created. Functional units don´t know their collaborators within a flow. This is core to Flow-Orientation. That makes for high composability of functional units. A part is as independent of other functional units as a motor is from the rest of the car. And a board is as dependend on nested functional units as a motor is on a spark plug or a crank shaft. With Flow-Design software development moves closer to how hardware is constructed. Implicit dependencies are not enough, though. Sometimes explicit dependencies make designs easier – as counterintuitive this might sound. So FD notation needs a ways to denote explicit dependencies: Data flows along wires. But data does not flow along dependency relations. Instead dependency relations represent service calls. Functional unit C is depending on/calling services on functional unit S. If you want to be more specific, name the services next to the dependency relation: Although you should try to stay clear of explicit dependencies, they are fundamentally ok. See them as a way to add another dimension to a flow. Usually the functionality of the independent FU (“Customer repository” above) is orthogonal to the domain of the flow it is referenced by. If you like emphasize this by using different shapes for dependent and independent FUs like above. Such dependencies can be used to link in resources like databases or shared in-memory state. FUs can not only produce output but also can have side effects. A common pattern for using such explizit dependencies is to hook a GUI into a flow as the source and/or the sink of data: Which can be shortened to: Treat FUs others depend on as boards (with a special non-FD API the dependent part is connected to), but do not embed them in a flow in the diagram they are depended upon.   Attributes of Functional Units Creation and usage of functional units can be modified with attributes. So far the following have shown to be helpful: Singleton: FUs are by default multitons. FUs in the same of different flows with the same name refer to the same functionality, but to different instances. Think of functional units as objects that get instanciated anew whereever they appear in a design. Sometimes though it´s helpful to reuse the same instance of a functional unit; this is always due to valuable state it holds. Signify this by annotating the FU with a “(S)”. Multiton: FUs on which others depend are singletons by default. This is, because they usually are introduced where shared state comes into play. If you want to change them to be a singletons mark them with a “(M)”. Configurable: Some parts need to be configured before the can do they work in a flow. Annotate them with a “(C)” to have them initialized before any data items to be processed by them arrive. Do not assume any order in which FUs are configured. How such configuration is happening is an implementation detail. Entry point: In each design there needs to be a single part where “it all starts”. That´s the entry point for all processing. It´s like Program.Main() in C# programs. Mark the entry point part with an “(E)”. Quite often this will be the GUI part. How the entry point is started is an implementation detail. Just consider it the first FU to start do its job.   Patterns / Standard Parts If more than a single wire is attached to an output-pin that´s called a split (or fork). The same data is flowing on all of the wires. Remember: Flow-Designs are synchronous by default. So a split does not mean data is processed in parallel afterwards. Processing still happens synchronously and thus one branch after another. Do not assume any specific order of the processing on the different branches after the split.   It is common to do a split and let only parts of the original data flow on through the branches. This effectively means a map is needed after a split. This map can be implicit or explicit.   Although FUs can have multiple input-pins it is preferrable in most cases to combine input data from different branches using an explicit join: The default output of a join is a tuple of its input values. The default behavior of a join is to output a value whenever a new input is received. However, to produce its first output a join needs an input for all its input-pins. Other join behaviors can be: reset all inputs after an output only produce output if data arrives on certain input-pins

    Read the article

  • Problem Solving: Algorithm Required Urgently, Plz Help

    - by user616417
    Problem Solving: I've been working on something since last week. I am stuck at a point, where I want to find the minimum number of airplanes required to carry out a flight schedule given below. Plz, try out the brainstorming, i need the algorithm really badly, i'm also short of time. Thank u in advance. The Schedule---- Flight #,From,To,Departure,Arrival,Days,Via 6E 204,Agartala,Delhi,10:15:00,13:55:00,Daily,Kolkata 6E 360,Agartala,Imphal,13:50:00,14:35:00,Mo Th Sa, 6E 204,Agartala,Kolkata,10:15:00,11:00:00,Daily, 6E 360,Agartala,Kolkata,13:50:00,16:15:00,Mo Th Sa,Imphal 6E 362,Agartala,Kolkata,15:25:00,16:15:00,Tu We Fr Su, 6E 153,Ahmedabad,Bangalore,17:00:00,19:00:00,Daily, 6E 212,Ahmedabad,Chennai,9:00:00,12:55:00,Daily,Mumbai 6E 154,Ahmedabad,Delhi,12:30:00,14:00:00,Daily, 6E 211,Ahmedabad,Jaipur,19:10:00,20:20:00,Daily, 6E 410,Ahmedabad,Kolkata,15:00:00,17:30:00,Daily, 6E 212,Ahmedabad,Mumbai,9:00:00,10:10:00,Daily, 6E 409,Ahmedabad,Pune,14:25:00,15:40:00,Ex Sat, 6E 154,Bangalore,Ahmedabad,10:00:00,12:00:00,Daily, 6E 277,Bangalore,Chennai,15:35:00,16:25:00,Daily, 6E 132,Bangalore,Delhi,6:00:00,8:25:00,Daily, 6E 102,Bangalore,Delhi,9:50:00,13:45:00,Ex Sat,Pune 6E 154,Bangalore,Delhi,10:00:00,14:00:00,Daily,Ahmedabad 6E 104,Bangalore,Delhi,11:30:00,14:10:00,Sat, 6E 122,Bangalore,Delhi,17:20:00,20:00:00,Daily, 6E 108,Bangalore,Delhi,19:20:00,23:10:00,Sat,Pune 6E 106,Bangalore,Delhi,19:30:00,22:00:00,Ex Sat, 6E 275,Bangalore,Goa,12:15:00,13:15:00,Daily, 6E 351,Bangalore,Hyderabad,8:25:00,9:25:00,Daily, 6E 152,Bangalore,Hyderabad,19:10:00,20:10:00,Ex Sat, 6E 152,Bangalore,Hyderabad,19:30:00,20:35:00,Sat, 6E 152,Bangalore,Jaipur,19:10:00,22:30:00,Ex Sat,Hyderabad 6E 152,Bangalore,Jaipur,19:30:00,22:30:00,Sat,Hyderabad 6E 351,Bangalore,Kolkata,8:25:00,11:55:00,Daily,Hyderabad 6E 277,Bangalore,Kolkata,15:35:00,19:15:00,Daily,Chennai 6E 402,Bangalore,Mumbai,6:05:00,7:45:00,Daily, 6E 275,Bangalore,Mumbai,12:15:00,14:45:00,Daily,Goa 6E 414,Bangalore,Mumbai,12:45:00,14:20:00,Daily, 6E 412,Bangalore,Mumbai,21:20:00,23:20:00,Daily, 6E 102,Bangalore,Pune,9:50:00,11:10:00,Ex Sat, 6E 108,Bangalore,Pune,19:20:00,20:40:00,Sat, 6E 258,Bhubaneshwar,Delhi,18:55:00,20:55:00,Daily, 6E 257,Bhubaneshwar,Hyderabad,10:40:00,12:05:00,Daily, 6E 257,Bhubaneshwar,Mumbai,10:40:00,13:50:00,Daily,Hyderabad 6E 211,Chennai,Ahmedabad,15:10:00,18:40:00,Daily,Mumbai 6E 275,Chennai,Bangalore,10:50:00,11:40:00,Daily, 6E 302,Chennai,Delhi,11:35:00,15:20:00,Daily,Hyderabad 6E 282,Chennai,Delhi,19:45:00,22:30:00,Daily, 6E 275,Chennai,Goa,10:50:00,13:15:00,Daily,Bangalore 6E 302,Chennai,Hyderabad,11:35:00,12:40:00,Daily, 6E 211,Chennai,Jaipur,15:10:00,20:20:00,Daily,Mumbai/Ahmedabad 6E 523,Chennai,Kolkata,8:20:00,10:30:00,Daily, 6E 277,Chennai,Kolkata,16:55:00,19:15:00,Daily, 6E 211,Chennai,Mumbai,15:10:00,16:50:00,Daily, 6E 524,Chennai,Pune,21:15:00,23:00:00,Daily, 6E 273,Delhi,Agartala,6:15:00,9:45:00,Daily,Kolkata 6E 153,Delhi,Ahmedabad,14:45:00,16:30:00,Daily, 6E 101,Delhi,Bangalore,6:30:00,9:10:00,Ex Sat, 6E 103,Delhi,Bangalore,6:45:00,10:40:00,Sat,Pune 6E 121,Delhi,Bangalore,9:30:00,12:10:00,Daily, 6E 105,Delhi,Bangalore,14:20:00,18:30:00,Ex Sat,Pune 6E 153,Delhi,Bangalore,14:45:00,19:00:00,Daily,Ahmedabad 6E 107,Delhi,Bangalore,15:55:00,18:40:00,Sat, 6E 131,Delhi,Bangalore,20:45:00,23:15:00,Daily, 6E 257,Delhi,Bhubaneshwar,8:10:00,10:10:00,Daily, 6E 301,Delhi,Chennai,7:00:00,11:05:00,Daily,Hyderabad 6E 283,Delhi,Chennai,16:30:00,19:05:00,Daily, 6E 181,Delhi,Goa,9:15:00,13:35:00,Daily,Mumbai 6E 333,Delhi,Goa,11:45:00,14:15:00,Daily, 6E 201,Delhi,Guwahati,5:30:00,7:50:00,Daily, 6E 301,Delhi,Hyderabad,7:00:00,9:00:00,Daily, 6E 257,Delhi,Hyderabad,8:10:00,12:05:00,Daily,Bhubaneshwar 6E 305,Delhi,Hyderabad,14:00:00,15:55:00,Daily, 6E 307,Delhi,Hyderabad,21:00:00,22:55:00,Daily, 6E 201,Delhi,Imphal,5:30:00,9:10:00,Daily,Guwahati 6E 305,Delhi,Kochi,14:00:00,18:25:00,Daily,Hyderabad 6E 273,Delhi,Kolkata,6:15:00,8:20:00,Daily, 6E 203,Delhi,Kolkata,15:00:00,17:05:00,Daily, 6E 209,Delhi,Kolkata,18:30:00,20:45:00,Daily, 6E 183,Delhi,Mumbai,6:45:00,8:35:00,Daily, 6E 181,Delhi,Mumbai,9:15:00,11:35:00,Daily, 6E 481,Delhi,Mumbai,10:50:00,13:50:00,Daily,Vadodara 6E 189,Delhi,Mumbai,14:45:00,16:50:00,Daily, 6E 187,Delhi,Mumbai,17:50:00,19:50:00,Daily, 6E 185,Delhi,Mumbai,20:15:00,22:20:00,Daily, 6E 135,Delhi,Nagpur,8:55:00,10:40:00,Ex Sat, 6E 103,Delhi,Pune,6:45:00,8:45:00,Sat, 6E 135,Delhi,Pune,8:55:00,12:30:00,Ex Sat,Nagpur 6E 105,Delhi,Pune,14:20:00,16:30:00,Ex Sat, 6E 481,Delhi,Vadodara,10:50:00,12:20:00,Daily, 6E 277,Goa,Bangalore,14:05:00,15:00:00,Daily, 6E 277,Goa,Chennai,14:05:00,16:25:00,Daily,Bangalore 6E 334,Goa,Delhi,14:45:00,17:10:00,Daily, 6E 277,Goa,Kolkata,14:05:00,19:15:00,Daily,Bangalore/Chennai 6E 275,Goa,Mumbai,13:45:00,14:45:00,Daily, 6E 202,Guwahati,Delhi,11:00:00,13:25:00,Daily, 6E 201,Guwahati,Imphal,8:25:00,9:10:00,Daily, 6E 208,Guwahati,Jaipur,12:40:00,16:55:00,Daily,Kolkata 6E 208,Guwahati,Kolkata,12:40:00,14:00:00,Daily, 6E 322,Guwahati,Kolkata,15:30:00,16:50:00,Daily, 6E 322,Guwahati,Mumbai,15:30:00,20:20:00,Daily,Kolkata 6E 151,Hyderabad,Bangalore,8:20:00,9:20:00,Daily, 6E 352,Hyderabad,Bangalore,19:40:00,20:40:00,Daily, 6E 258,Hyderabad,Bhubaneshwar,16:40:00,18:20:00,Daily, 6E 301,Hyderabad,Chennai,9:50:00,11:05:00,Daily, 6E 308,Hyderabad,Delhi,6:10:00,8:00:00,Daily, 6E 302,Hyderabad,Delhi,13:10:00,15:20:00,Daily, 6E 258,Hyderabad,Delhi,16:40:00,20:55:00,Daily,Bhubaneshwar 6E 306,Hyderabad,Delhi,21:00:00,23:05:00,Daily, 6E 152,Hyderabad,Jaipur,20:50:00,22:30:00,Ex Sat, 6E 152,Hyderabad,Jaipur,21:10:00,22:30:00,Sat, 6E 305,Hyderabad,Kochi,16:45:00,18:25:00,Daily, 6E 351,Hyderabad,Kolkata,9:55:00,11:55:00,Daily, 6E 257,Hyderabad,Mumbai,12:35:00,13:50:00,Daily, 6E 362,Imphal,Agartala,14:15:00,14:55:00,Tu We Fr Su, 6E 202,Imphal,Delhi,9:40:00,13:25:00,Daily,Guwahati 6E 202,Imphal,Guwahati,9:40:00,10:25:00,Daily, 6E 362,Imphal,Kolkata,14:15:00,16:15:00,Tu We Fr Su,Agartala 6E 360,Imphal,Kolkata,15:05:00,16:15:00,Mo Th Sa, 6E 212,Jaipur,Ahmedabad,7:30:00,8:35:00,Daily, 6E 151,Jaipur,Bangalore,6:00:00,9:20:00,Daily,Hyderabad 6E 212,Jaipur,Chennai,7:30:00,12:55:00,Daily,Mumbai/Ahmedabad 6E 207,Jaipur,Guwahati,8:20:00,12:10:00,Daily,Kolkata 6E 151,Jaipur,Hyderabad,6:00:00,7:40:00,Daily, 6E 207,Jaipur,Kolkata,8:20:00,10:10:00,Daily, 6E 323,Jaipur,Kolkata,17:35:00,23:00:00,Daily,Mumbai 6E 212,Jaipur,Mumbai,7:30:00,10:10:00,Daily,Ahmedabad 6E 323,Jaipur,Mumbai,17:35:00,19:15:00,Daily, 6E 306,Kochi,Delhi,19:00:00,23:05:00,Daily,Hyderabad 6E 306,Kochi,Hyderabad,19:00:00,20:30:00,Daily, 6E 273,Kolkata,Agartala,8:50:00,9:45:00,Daily, 6E 360,Kolkata,Agartala,12:30:00,13:20:00,Mo Th Sa, 6E 362,Kolkata,Agartala,12:30:00,14:55:00,TuWeFrSu,Imphal 6E 409,Kolkata,Ahmedabad,11:10:00,13:50:00,Daily, 6E 275,Kolkata,Bangalore,7:30:00,11:40:00,Daily,Chennai 6E 352,Kolkata,Bangalore,16:50:00,20:40:00,Daily,Hyderabad 6E 275,Kolkata,Chennai,7:30:00,9:50:00,Daily, 6E 524,Kolkata,Chennai,18:15:00,20:25:00,Daily, 6E 210,Kolkata,Delhi,7:45:00,10:05:00,Daily, 6E 204,Kolkata,Delhi,11:40:00,13:55:00,Daily, 6E 274,Kolkata,Delhi,19:45:00,22:10:00,Daily, 6E 275,Kolkata,Goa,7:30:00,13:15:00,Daily,Chennai/Bangalore 6E 207,Kolkata,Guwahati,10:50:00,12:10:00,Daily, 6E 321,Kolkata,Guwahati,13:00:00,14:20:00,Daily, 6E 352,Kolkata,Hyderabad,16:50:00,19:00:00,Daily, 6E 362,Kolkata,Imphal,12:30:00,13:45:00,Tu We Fr Su, 6E 360,Kolkata,Imphal,12:30:00,14:35:00,MoThSa,Agartala 6E 208,Kolkata,Jaipur,14:35:00,16:55:00,Daily, 6E 320,Kolkata,Mumbai,6:00:00,8:30:00,Daily, 6E 322,Kolkata,Mumbai,17:35:00,20:20:00,Daily, 6E 404,Kolkata,Mumbai,18:35:00,21:55:00,Daily,Nagpur 6E 404,Kolkata,Nagpur,18:35:00,20:05:00,Daily, 6E 409,Kolkata,Pune,11:10:00,15:40:00,Ex Sat,Ahmedabad 6E 524,Kolkata,Pune,18:15:00,23:00:00,Daily,Chennai 6E 211,Mumbai,Ahmedabad,17:40:00,18:40:00,Daily, 6E 411,Mumbai,Bangalore,6:20:00,7:50:00,Daily, 6E 413,Mumbai,Bangalore,15:00:00,16:40:00,Daily, 6E 415,Mumbai,Bangalore,21:05:00,22:40:00,Daily, 6E 258,Mumbai,Bhubaneshwar,14:30:00,18:20:00,Daily,Hyderabad 6E 212,Mumbai,Chennai,11:00:00,12:55:00,Daily, 6E 184,Mumbai,Delhi,6:15:00,8:15:00,Daily, 6E 180,Mumbai,Delhi,8:25:00,10:35:00,Daily, 6E 482,Mumbai,Delhi,9:25:00,12:35:00,Daily,Vadodara 6E 188,Mumbai,Delhi,14:25:00,16:35:00,Daily, 6E 186,Mumbai,Delhi,17:50:00,19:55:00,Daily, 6E 182,Mumbai,Delhi,21:15:00,23:20:00,Daily, 6E 181,Mumbai,Goa,12:35:00,13:35:00,Daily, 6E 321,Mumbai,Guwahati,9:20:00,14:20:00,Daily,Kolkata 6E 258,Mumbai,Hyderabad,14:30:00,16:00:00,Daily, 6E 207,Mumbai,Jaipur,5:55:00,7:40:00,Daily, 6E 211,Mumbai,Jaipur,17:40:00,20:20:00,Daily,Ahmedabad 6E 207,Mumbai,Kolkata,5:55:00,10:10:00,Daily,Jaipur 6E 321,Mumbai,Kolkata,9:20:00,12:00:00,Daily, 6E 403,Mumbai,Kolkata,15:35:00,18:50:00,Daily,Nagpur 6E 323,Mumbai,Kolkata,20:05:00,23:00:00,Daily, 6E 403,Mumbai,Nagpur,15:35:00,16:50:00,Daily, 6E 482,Mumbai,Vadodara,9:25:00,10:25:00,Daily, 6E 136,Nagpur,Delhi,18:10:00,19:40:00,Ex Sat, 6E 403,Nagpur,Kolkata,17:20:00,18:50:00,Daily, 6E 404,Nagpur,Mumbai,20:35:00,21:55:00,Daily, 6E 135,Nagpur,Pune,11:20:00,12:30:00,Ex Sat, 6E 410,Pune,Ahmedabad,13:10:00,14:30:00,Ex Sat, 6E 103,Pune,Bangalore,9:15:00,10:40:00,Sat, 6E 105,Pune,Bangalore,17:00:00,18:30:00,Ex Sat, 6E 523,Pune,Chennai,5:55:00,7:40:00,Daily, 6E 102,Pune,Delhi,11:45:00,13:45:00,Ex Sat, 6E 136,Pune,Delhi,16:15:00,19:40:00,Ex Sat,Nagpur 6E 108,Pune,Delhi,21:10:00,23:10:00,Sat, 6E 523,Pune,Kolkata,5:55:00,10:30:00,Daily,Chennai 6E 410,Pune,Kolkata,13:10:00,17:30:00,Ex Sat,Ahmedabad 6E 136,Pune,Nagpur,16:15:00,17:40:00,Ex Sat, 6E 482,Vadodara,Delhi,10:55:00,12:35:00,Daily, 6E 481,Vadodara,Mumbai,12:50:00,13:50:00,Daily,

    Read the article

  • Problems with with A* algorithm

    - by V_Programmer
    I'm trying to implement the A* algorithm in Java. I followed this tutorial,in particular, this pseudocode: http://theory.stanford.edu/~amitp/GameProgramming/ImplementationNotes.html The problem is my code doesn't work. It goes into an infinite loop. I really don't know why this happens... I suspect that the problem are in F = G + H function implemented in Graph constructors. I suspect I am not calculate the neighbor F correclty. Here's my code: List<Graph> open; List<Graph> close; private void createRouteAStar(Unit u) { open = new ArrayList<Graph>(); close = new ArrayList<Graph>(); u.ai_route_endX = 11; u.ai_route_endY = 5; List<Graph> neigh; int index; int i; boolean finish = false; Graph current; int cost; Graph start = new Graph(u.xMap, u.yMap, 0, ManhattanDistance(u.xMap, u.yMap, u.ai_route_endX, u.ai_route_endY)); open.add(start); current = start; while(!finish) { index = findLowerF(); current = new Graph(open, index); System.out.println(current.x); System.out.println(current.y); if (current.x == u.ai_route_endX && current.y == u.ai_route_endY) { finish = true; } else { close.add(current); neigh = current.getNeighbors(); for (i = 0; i < neigh.size(); i++) { cost = current.g + ManhattanDistance(current.x, current.y, neigh.get(i).x, neigh.get(i).y); if (open.contains(neigh.get(i)) && cost < neigh.get(i).g) { open.remove(open.indexOf(neigh)); } else if (close.contains(neigh.get(i)) && cost < neigh.get(i).g) { close.remove(close.indexOf(neigh)); } else if (!open.contains(neigh.get(i)) && !close.contains(neigh.get(i))) { neigh.get(i).g = cost; neigh.get(i).f = cost + ManhattanDistance(neigh.get(i).x, neigh.get(i).y, u.ai_route_endX, u.ai_route_endY); neigh.get(i).setParent(current); open.add(neigh.get(i)); } } } } System.out.println("step"); for (i=0; i < close.size(); i++) { if (close.get(i).parent != null) { System.out.println(i); System.out.println(close.get(i).parent.x); System.out.println(close.get(i).parent.y); } } } private int findLowerF() { int i; int min = 10000; int minIndex = -1; for (i=0; i < open.size(); i++) { if (open.get(i).f < min) { min = open.get(i).f; minIndex = i; System.out.println("min"); System.out.println(min); } } return minIndex; } private int ManhattanDistance(int ax, int ay, int bx, int by) { return Math.abs(ax-bx) + Math.abs(ay-by); } And, as I've said. I suspect that the Graph class has the main problem. However I've not been able to detect and fix it. public class Graph { int x, y; int f,g,h; Graph parent; public Graph(int x, int y, int g, int h) { this.x = x; this.y = y; this.g = g; this.h = h; this.f = g + h; } public Graph(List<Graph> list, int index) { this.x = list.get(index).x; this.y = list.get(index).y; this.g = list.get(index).g; this.h = list.get(index).h; this.f = list.get(index).f; this.parent = list.get(index).parent; } public Graph(Graph gp) { this.x = gp.x; this.y = gp.y; this.g = gp.g; this.h = gp.h; this.f = gp.f; } public Graph(Graph gp, Graph parent) { this.x = gp.x; this.y = gp.y; this.g = gp.g; this.h = gp.h; this.f = g + h; this.parent = parent; } public List<Graph> getNeighbors() { List<Graph> aux = new ArrayList<Graph>(); aux.add(new Graph(x+1, y, g,h)); aux.add(new Graph(x-1, y, g,h)); aux.add(new Graph(x, y+1, g,h)); aux.add(new Graph(x, y-1, g,h)); return aux; } public void setParent(Graph g) { parent = g; } } Little Edit: Using the System.out and the Debugger I discovered that the program ALWAYS is check the same "current" graph, (15,8) which is the (u.xMap, u.yMap) position. Looks like it keeps forever in the first step.

    Read the article

  • Oracle Launches Mobile Applications User Experience Design Patterns

    - by ultan o'broin
    OK, you heard Joe Huang (@JoeHuang_Oracle) Product Manager for Oracle Application Development Framework (ADF) Mobile. If you're an ADF developer, or a Java (yeah, Java in iOS) developer, well now you're a mobile developer as well. And, using the newly launched Applications User Experience (UX) team's Mobile UX Design Patterns, you're a UX developer rockstar too, offering users so much more than just cool functionality. Mobile Design Pattern for Inline Actions Mobile design requires a different way of thinking. Use Oracle’s mobile design patterns to design iPhone, Android, or browser-based smartphone apps. Oracle's sharing these cutting edge mobile design patterns and their baked-in, scientifically proven usability to enable Oracle customers and partners to build mobile apps quickly. The design patterns are common solutions that developers can easily apply across all application suites. Crafted by the UX team's insight into Oracle Fusion Middleware, the patterns are designed to work with the mobile technology provided by the Oracle Application Development Framework. Other great UX-related information on using ADF Mobile to design task flows and the development experience on offer are on the ADF EMG podcast series. Check out FXAer Brian 'Bex' Huff (@bex of Bezzotech talking about ADF Mobile in podcast number 6 and also number 8 which has great tips about getting going with Android and iOS mobile app development too.

    Read the article

  • What modern design pattern / software engineering books for Java SE 6 do you recommend ?

    - by Scott Davies
    Hi, I am very familiar with Java 6 SE language features and am now looking for modern books that cover design patterns in Java for beginners as well as software engineering books that discuss architectures, algorithms and best practices in Java coding (sort of like the Effective C# books). I am aware of the classic GoF design patterns book, however, I'd like a more modern reference that takes advantage of the features of Java 6 SE. What books would you recommend ? Thanks, Scott

    Read the article

  • Software Architecture verses Software Design

    Recently, I was asked what the differences between software architecture and software design are. At a very superficial level both architecture and design seem to mean relatively the same thing. However, if we examine both of these terms further we will find that they are in fact very different due to the level of details they encompass. Software Architecture can be defined as the essence of an application because it deals with high level concepts that do not include any details as to how they will be implemented. To me this gives stakeholders a view of a system or application as if someone was viewing the earth from outer space. At this distance only very basic elements of the earth can be detected like land, weather and water. As the viewer comes closer to earth the details in this view start to become more defined. Details about the earth’s surface will start to actually take form as well as mane made structures will be detected. The process of transitioning a view from outer space to inside our earth’s atmosphere is similar to how an architectural concept is transformed to an architectural design. From this vantage point stakeholders can start to see buildings and other structures as if they were looking out of a small plane window. This distance is still high enough to see a large area of the earth’s surface while still being able to see some details about the surface. This viewing point is very similar to the actual design process of an application in that it takes the very high level architectural concept or concepts and applies concrete design details to form a software design that encompasses the actual implementation details in the form of responsibilities and functions. Examples of these details include: interfaces, components, data, and connections. In review, software architecture deals with high level concepts without regard to any implementation details. Software design on the other hand takes high level concepts and applies concrete details so that software can be implemented. As part of the transition between software architecture to the creation of software design an evaluation on the architecture is recommended. There are several benefits to including this step as part of the transition process. It allows for projects to ensure that they are on the correct path as to meeting the stakeholder’s requirement goals, identifies possible cost savings and can be used to find missing or nonspecific requirements that cause ambiguity in a design. In the book “Evaluating Software Architectures: Methods and Case Studies”, they define key benefits to adding an architectural review process to ensure that an architecture is ready to move on to the design phase. Benefits to evaluating software architecture: Gathers all stakeholders to communicate about the project Goals are clearly defined in regards to the creation or validation of specific requirements Goals are prioritized so that when conflicts occur decisions will be made based on goal priority Defines a clear expectation of the architecture so that all stakeholders have a keen understanding of the project Ensures high quality documentation of the architecture Enables discoveries of architectural reuse  Increases the quality of architecture practices. I can remember a few projects that I worked on that could have really used an architectural review prior to being passed on to developers. This project was to create some new advertising space on the company’s website in order to sell space based on the location and some other criteria. I was one of the developer selected to lead this project and I was given a high level design concept and a long list of ever changing requirements due to the fact that sales department had no clear direction as to what exactly the project was going to do or how they were going to bill the clients once they actually agreed to purchase the Ad space. In my personal opinion IT should have pushed back to have the requirements further articulated instead of forcing programmers to code blindly attempting to build such an ambiguous project.  Unfortunately, we had to suffer with this project for about 4 months when it should have only taken 1.5 to complete due to the constantly changing and unclear requirements. References  Clements, P., Kazman, R., & Klein, M. (2002). Evaluating Software Architectures. Westford, Massachusetts: Courier Westford. 

    Read the article

  • What design pattern shall I use in this question?

    - by iyad al aqel
    To be frank, this is a homework question, so I'll tell you my opinion. Can you let me know my mistakes rather than giving me the solution? This is the question : Assume a restaurant that only offers the following two types of meals: (a) a full meal and (b)an economic meal. The full meal consists of the following food items and is served in the following order: 1. Appetizer 2. Drink 3. Main dish 4. Dessert Meanwhile the economic meal consists of the following food items and is served in the following order: 1. Drink 2. Main dish Identify the most appropriate design pattern that can be used to allow a customer to only order using one of the two types of meals provided and that the meal components must be served in the given order. I'm confused between the Factory and the Iterator and using them both together. Using the factory Pattern we can create the two meals full and economic and provide the user with with a base object class that will decide upon. But how can we enforce the ordering of the elements, I thought of using the iterator along that will iterate through the the composite of the two created factories sort of speak. What do you think?

    Read the article

  • Tetris Piece Rotation Algorithm

    - by coppercoder
    What are the best algorithms (and explanations) for representing and rotating the pieces of a tetris game? I always find the piece rotation and representation schemes confusing. Most tetris games seem to use a naive "remake the array of blocks" at each rotation: http://www.codeplex.com/Project/ProjectDirectory.aspx?ProjectSearchText=tetris However, some use pre-built encoded numbers and bit shifting to represent each piece: http://www.codeplex.com/wintris Is there a method to do this using mathematics (not sure that would work on a cell based board)?

    Read the article

  • What is an Efficient algorithm to find Area of Overlapping Rectangles

    - by namenlos
    My situation Input: a set of rectangles each rect is comprised of 4 doubles like this: (x0,y0,x1,y1) they are not "rotated" at any angle, all they are "normal" rectangles that go "up/down" and "left/right" with respect to the screen they are randomly placed - they may be touching at the edges, overlapping , or not have any contact I will have several hundred rectangles this is implemented in C# I need to find The area that is formed by their overlap - all the area in the canvas that more than one rectangle "covers" (for example with two rectangles, it would be the intersection) I don't need the geometry of the overlap - just the area (example: 4 sq inches) Overlaps shouldn't be counted multiple times - so for example imagine 3 rects that have the same size and position - they are right on top of each other - this area should be counted once (not three times) Example The image below contains thre rectangles: A,B,C A and B overlap (as indicated by dashes) B and C overlap (as indicated by dashes) What I am looking for is the area where the dashes are shown - AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAA--------------BBB AAAAAAAAAAAAAAAA--------------BBB AAAAAAAAAAAAAAAA--------------BBB AAAAAAAAAAAAAAAA--------------BBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBB BBBBBB-----------CCCCCCCC BBBBBB-----------CCCCCCCC BBBBBB-----------CCCCCCCC CCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCC

    Read the article

  • Probability algorithm: Finding probable correct item in a list (e.g John, John, Jon)

    - by Andrew White
    Hi, Take for example the list (L): John, John, John, John, Jon We are to presume one item is to be correct (e.g. John in this case), and give a probability it is correct. First (and good!) attempt: MostFrequentItem(L).Count / L.Count (e.g. 4/5 or 80% likelihood) But consider the cases: John, John, Jon, Jonny John, John, Jon, Jon I want to consider the likelihood of the correct item being John to be higher in the first list! I know I have to count the SecondMostFrequent Item and compare them. Any ideas? This is really busting my brain! Thx, Andrew

    Read the article

  • Mysql Algorithm for Determining Closest Colour Match

    - by buggedcom
    I'm attempting to create a true mosaic application. At the moment I have one mosaic image, ie the one the mosaic is based on and about 4000 images from my iPhoto library that act as the image library. I have already done my research and analysed the mosaic image. I've converted it into 64x64 slices each of 8 pixels. I've calculated the average colour for each slice and assertain the r, g, b and brightness (Luminance (perceived option 1) = (0.299*R + 0.587*G + 0.114*B)) value. I have done the same for each of the image library photos. The mosaic slices table looks like so. slice_id, slice_image_id, slice_slice_id, slice_image_column, slice_image_row, slice_colour_hex, slice_rgb_red, slice_rgb_blue, slice_rgb_green, slice_rgb_brightness The image library table looks like so. upload_id, upload_file, upload_colour_hex, upload_rgb_red, upload_rgb_green, upload_rgb_blue, upload_rgb_brightness So basically I'm reading the image slices from the slices table into PHP and then pulling out the appropriate images from the library table based on the colour hexs. My trouble is that I've been on this too long and probably had too many energy drinks so am not concentrating properly, I can't figure out the way to pick out the nearest colour neighbor if the appropriate hex code doesn't exist. Any ideas on the perfect query? NB: I know pulling out the slices one by one is not ideal however the mosaic is only rebuilt periodically so a sudden burst in the mysql load doesn't really bother me, however if there us a way to pull the images out all at once that would also be a massive bonus.

    Read the article

  • Al Zimmermann's Son of Darts

    - by polygenelubricants
    There's about 2 months left in Al Zimmermann's Son of Darts programming contest, and I'd like to improve my standing (currently in the 60s) to something more respectable. I'd like to get some ideas from the great community of stackoverflow on how best to approach this problem. The contest problem is known as the Global Postage Stamp Problem in literatures. I don't have much experience with optimization algorithms (I know of hillclimbing and simulated annealing in concept only from college), and in fact the program that I have right now is basically sheer brute force, which of course isn't feasible for the larger search spaces. Here are some papers on the subject: A Postage Stamp Problem (Alter & Barnett, 1980) Algorithms for Computing the h-Range of the Postage Stamp Problem (Mossige, 1981) A Postage Stamp Problem (Lunnon, 1986) Two New Techniques for Computing Extremal h-bases Ak (Challis, 1992) Any hints and suggestions are welcome. Also, feel free to direct me to the proper site if stackoverflow isn't it.

    Read the article

< Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >