Search Results

Search found 1081 results on 44 pages for 'combinations'.

Page 40/44 | < Previous Page | 36 37 38 39 40 41 42 43 44  | Next Page >

  • Ajax Control Toolkit and Superexpert

    - by Stephen Walther
    Microsoft has asked my company, Superexpert Consulting, to take ownership of the development and maintenance of the Ajax Control Toolkit moving forward. In this blog entry, I discuss our strategy for improving the Ajax Control Toolkit. Why the Ajax Control Toolkit? The Ajax Control Toolkit is one of the most popular projects on CodePlex. In fact, some have argued that it is among the most successful open-source projects of all time. It consistently receives over 3,500 downloads a day (not weekends -- workdays). A mind-boggling number of developers use the Ajax Control Toolkit in their ASP.NET Web Forms applications. Why does the Ajax Control Toolkit continue to be such a popular project? The Ajax Control Toolkit fills a strong need in the ASP.NET Web Forms world. The Toolkit enables Web Forms developers to build richly interactive JavaScript applications without writing any JavaScript. For example, by taking advantage of the Ajax Control Toolkit, a Web Forms developer can add modal dialogs, popup calendars, and client tabs to a web application simply by dragging web controls onto a page. The Ajax Control Toolkit is not for everyone. If you are comfortable writing JavaScript then I recommend that you investigate using jQuery plugins instead of the Ajax Control Toolkit. However, if you are a Web Forms developer and you don’t want to get your hands dirty writing JavaScript, then the Ajax Control Toolkit is a great solution. The Ajax Control Toolkit is Vast The Ajax Control Toolkit consists of 40 controls. That’s a lot of controls (For the sake of comparison, jQuery UI consists of only 8 controls – those slackers J). Furthermore, developers expect the Ajax Control Toolkit to work on browsers both old and new. For example, people expect the Ajax Control Toolkit to work with Internet Explorer 6 and Internet Explorer 9 and every version of Internet Explorer in between. People also expect the Ajax Control Toolkit to work on the latest versions of Mozilla Firefox, Apple Safari, and Google Chrome. And, people expect the Ajax Control Toolkit to work with different operating systems. Yikes, that is a lot of combinations. The biggest challenge which my company faces in supporting the Ajax Control Toolkit is ensuring that the Ajax Control Toolkit works across all of these different browsers and operating systems. Testing, Testing, Testing Because we wanted to ensure that we could easily test the Ajax Control Toolkit with different browsers, the very first thing that we did was to set up a dedicated testing server. The dedicated server -- named Schizo -- hosts 4 virtual machines so that we can run Internet Explorer 6, Internet Explorer 7, Internet Explorer 8, and Internet Explorer 9 at the same time (We also use the virtual machines to host the latest versions of Firefox, Chrome, Opera, and Safari). The five developers on our team (plus me) can each publish to a separate FTP website on the testing server. That way, we can quickly test how changes to the Ajax Control Toolkit affect different browsers. QUnit Tests for the Ajax Control Toolkit Introducing regressions – introducing new bugs when trying to fix existing bugs – is the concern which prevents me from sleeping well at night. There are so many people using the Ajax Control Toolkit in so many unique scenarios, that it is difficult to make improvements to the Ajax Control Toolkit without introducing regressions. In order to avoid regressions, we decided early on that it was extremely important to build good test coverage for the 40 controls in the Ajax Control Toolkit. We’ve been focusing a lot of energy on building automated JavaScript unit tests which we can use to help us discover regressions. We decided to write the unit tests with the QUnit test framework. We picked QUnit because it is quickly becoming the standard unit testing framework in the JavaScript world. For example, it is the unit testing framework used by the jQuery team, the jQuery UI team, and many jQuery UI plugin developers. We had to make several enhancements to the QUnit framework in order to test the Ajax Control Toolkit. For example, QUnit does not support tests which include postbacks. We modified the QUnit framework so that it works with IFrames so we could perform postbacks in our automated tests. At this point, we have written hundreds of QUnit tests. For example, we have written 135 QUnit tests for the Accordion control. The QUnit tests are included with the Ajax Control Toolkit source code in a project named AjaxControlToolkit.Tests. You can run all of the QUnit tests contained in the project by opening the Default.aspx page. Automating the QUnit Tests across Multiple Browsers Automated tests are useless if no one ever runs them. In order for the QUnit tests to be useful, we needed an easy way to run the tests automatically against a matrix of browsers. We wanted to run the unit tests against Internet Explorer 6, Internet Explorer 7, Internet Explorer 8, Internet Explorer 9, Firefox, Chrome, and Safari automatically. Expecting a developer to run QUnit tests against every browser after every check-in is just too much to expect. It takes 20 seconds to run the Accordion QUnit tests. We are testing against 8 browsers. That would require the developer to open 8 browsers and wait for the results after each change in code. Too much work. Therefore, we built a JavaScript Test Server. Our JavaScript Test Server project was inspired by John Resig’s TestSwarm project. The JavaScript Test Server runs our QUnit tests in a swarm of browsers (running on different operating systems) automatically. Here’s how the JavaScript Test Server works: 1. We created an ASP.NET page named RunTest.aspx that constantly polls the JavaScript Test Server for a new set of QUnit tests to run. After the RunTest.aspx page runs the QUnit tests, the RunTest.aspx records the test results back to the JavaScript Test Server. 2. We opened the RunTest.aspx page on instances of Internet Explorer 6, Internet Explorer 7, Internet Explorer 8, Internet Explorer 9, FireFox, Chrome, Opera, Google, and Safari. Now that we have the JavaScript Test Server setup, we can run all of our QUnit tests against all of the browsers which we need to support with a single click of a button. A New Release of the Ajax Control Toolkit Each Month The Ajax Control Toolkit Issue Tracker contains over one thousand five hundred open issues and feature requests. So we have plenty of work on our plates J At CodePlex, anyone can vote for an issue to be fixed. Originally, we planned to fix issues in order of their votes. However, we quickly discovered that this approach was inefficient. Constantly switching back and forth between different controls was too time-consuming. It takes time to re-familiarize yourself with a control. Instead, we decided to focus on two or three controls each month and really focus on fixing the issues with those controls. This way, we can fix sets of related issues and avoid the randomization caused by context switching. Our team works in monthly sprints. We plan to do another release of the Ajax Control Toolkit each and every month. So far, we have competed one release of the Ajax Control Toolkit which was released on April 1, 2011. We plan to release a new version in early May. Conclusion Fortunately, I work with a team of smart developers. We currently have 5 developers working on the Ajax Control Toolkit (not full-time, they are also building two very cool ASP.NET MVC applications). All the developers who work on our team are required to have strong JavaScript, jQuery, and ASP.NET MVC skills. In the interest of being as transparent as possible about our work on the Ajax Control Toolkit, I plan to blog frequently about our team’s ongoing work. In my next blog entry, I plan to write about the two Ajax Control Toolkit controls which are the focus of our work for next release.

    Read the article

  • SSIS Lookup component tuning tips

    - by jamiet
    Yesterday evening I attended a London meeting of the UK SQL Server User Group at Microsoft’s offices in London Victoria. As usual it was both a fun and informative evening and in particular there seemed to be a few questions arising about tuning the SSIS Lookup component; I rattled off some comments and figured it would be prudent to drop some of them into a dedicated blog post, hence the one you are reading right now. Scene setting A popular pattern in SSIS is to use a Lookup component to determine whether a record in the pipeline already exists in the intended destination table or not and I cover this pattern in my 2006 blog post Checking if a row exists and if it does, has it changed? (note to self: must rewrite that blog post for SSIS2008). Fundamentally the SSIS lookup component (when using FullCache option) sucks some data out of a database and holds it in memory so that it can be compared to data in the pipeline. One of the big benefits of using SSIS dataflows is that they process data one buffer at a time; that means that not all of the data from your source exists in the dataflow at the same time and is why a SSIS dataflow can process data volumes that far exceed the available memory. However, that only applies to data in the pipeline; for reasons that are hopefully obvious ALL of the data in the lookup set must exist in the memory cache for the duration of the dataflow’s execution which means that any memory used by the lookup cache will not be available to be used as a pipeline buffer. Moreover, there’s an obvious correlation between the amount of data in the lookup cache and the time it takes to charge that cache; the more data you have then the longer it will take to charge and the longer you have to wait until the dataflow actually starts to do anything. For these reasons your goal is simple: ensure that the lookup cache contains as little data as possible. General tips Here is a simple tick list you can follow in order to tune your lookups: Use a SQL statement to charge your cache, don’t just pick a table from the dropdown list made available to you. (Read why in SELECT *... or select from a dropdown in an OLE DB Source component?) Only pick the columns that you need, ignore everything else Make the database columns that your cache is populated from as narrow as possible. If a column is defined as VARCHAR(20) then SSIS will allocate 20 bytes for every value in that column – that is a big waste if the actual values are significantly less than 20 characters in length. Do you need DT_WSTR typed columns or will DT_STR suffice? DT_WSTR uses twice the amount of space to hold values that can be stored using a DT_STR so if you can use DT_STR, consider doing so. Same principle goes for the numerical datatypes DT_I2/DT_I4/DT_I8. Only populate the cache with data that you KNOW you will need. In other words, think about your WHERE clause! Thinking outside the box It is tempting to build a large monolithic dataflow that does many things, one of which is a Lookup. Often though you can make better use of your available resources by, well, mixing things up a little and here are a few ideas to get your creative juices flowing: There is no rule that says everything has to happen in a single dataflow. If you have some particularly resource intensive lookups then consider putting that lookup into a dataflow all of its own and using raw files to pass the pipeline data in and out of that dataflow. Know your data. If you think, for example, that the majority of your incoming rows will match with only a small subset of your lookup data then consider chaining multiple lookup components together; the first would use a FullCache containing that data subset and the remaining data that doesn’t find a match could be passed to a second lookup that perhaps uses a NoCache lookup thus negating the need to pull all of that least-used lookup data into memory. Do you need to process all of your incoming data all at once? If you can process different partitions of your data separately then you can partition your lookup cache as well. For example, if you are using a lookup to convert a location into a [LocationId] then why not process your data one region at a time? This will mean your lookup cache only has to contain data for the location that you are currently processing and with the ability of the Lookup in SSIS2008 and beyond to charge the cache using a dynamically built SQL statement you’ll be able to achieve it using the same dataflow and simply loop over it using a ForEach loop. Taking the previous data partitioning idea further … a dataflow can contain more than one data path so why not split your data using a conditional split component and, again, charge your lookup caches with only the data that they need for that partition. Lookups have two uses: to (1) find a matching row from the lookup set and (2) put attributes from that matching row into the pipeline. Ask yourself, do you need to do these two things at the same time? After all once you have the key column(s) from your lookup set then you can use that key to get the rest of attributes further downstream, perhaps even in another dataflow. Are you using the same lookup data set multiple times? If so, consider the file caching option in SSIS 2008 and beyond. Above all, experiment and be creative with different combinations. You may be surprised at what works. Final  thoughts If you want to know more about how the Lookup component differs in SSIS2008 from SSIS2005 then I have a dedicated blog post about that at Lookup component gets a makeover. I am on a mini-crusade at the moment to get a BULK MERGE feature into the database engine, the thinking being that if the database engine can quickly merge massive amounts of data in a similar manner to how it can insert massive amounts using BULK INSERT then that’s a lot of work that wouldn’t have to be done in the SSIS pipeline. If you think that is a good idea then go and vote for BULK MERGE on Connect. If you have any other tips to share then please stick them in the comments. Hope this helps! @Jamiet Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Oracle Data Mining a Star Schema: Telco Churn Case Study

    - by charlie.berger
    There is a complete and detailed Telco Churn case study "How to" Blog Series just posted by Ari Mozes, ODM Dev. Manager.  In it, Ari provides detailed guidance in how to leverage various strengths of Oracle Data Mining including the ability to: mine Star Schemas and join tables and views together to obtain a complete 360 degree view of a customer combine transactional data e.g. call record detail (CDR) data, etc. define complex data transformation, model build and model deploy analytical methodologies inside the Database  His blog is posted in a multi-part series.  Below are some opening excerpts for the first 3 blog entries.  This is an excellent resource for any novice to skilled data miner who wants to gain competitive advantage by mining their data inside the Oracle Database.  Many thanks Ari! Mining a Star Schema: Telco Churn Case Study (1 of 3) One of the strengths of Oracle Data Mining is the ability to mine star schemas with minimal effort.  Star schemas are commonly used in relational databases, and they often contain rich data with interesting patterns.  While dimension tables may contain interesting demographics, fact tables will often contain user behavior, such as phone usage or purchase patterns.  Both of these aspects - demographics and usage patterns - can provide insight into behavior.Churn is a critical problem in the telecommunications industry, and companies go to great lengths to reduce the churn of their customer base.  One case study1 describes a telecommunications scenario involving understanding, and identification of, churn, where the underlying data is present in a star schema.  That case study is a good example for demonstrating just how natural it is for Oracle Data Mining to analyze a star schema, so it will be used as the basis for this series of posts...... Mining a Star Schema: Telco Churn Case Study (2 of 3) This post will follow the transformation steps as described in the case study, but will use Oracle SQL as the means for preparing data.  Please see the previous post for background material, including links to the case study and to scripts that can be used to replicate the stages in these posts.1) Handling missing values for call data recordsThe CDR_T table records the number of phone minutes used by a customer per month and per call type (tariff).  For example, the table may contain one record corresponding to the number of peak (call type) minutes in January for a specific customer, and another record associated with international calls in March for the same customer.  This table is likely to be fairly dense (most type-month combinations for a given customer will be present) due to the coarse level of aggregation, but there may be some missing values.  Missing entries may occur for a number of reasons: the customer made no calls of a particular type in a particular month, the customer switched providers during the timeframe, or perhaps there is a data entry problem.  In the first situation, the correct interpretation of a missing entry would be to assume that the number of minutes for the type-month combination is zero.  In the other situations, it is not appropriate to assume zero, but rather derive some representative value to replace the missing entries.  The referenced case study takes the latter approach.  The data is segmented by customer and call type, and within a given customer-call type combination, an average number of minutes is computed and used as a replacement value.In SQL, we need to generate additional rows for the missing entries and populate those rows with appropriate values.  To generate the missing rows, Oracle's partition outer join feature is a perfect fit.  select cust_id, cdre.tariff, cdre.month, minsfrom cdr_t cdr partition by (cust_id) right outer join     (select distinct tariff, month from cdr_t) cdre     on (cdr.month = cdre.month and cdr.tariff = cdre.tariff);   ....... Mining a Star Schema: Telco Churn Case Study (3 of 3) Now that the "difficult" work is complete - preparing the data - we can move to building a predictive model to help identify and understand churn.The case study suggests that separate models be built for different customer segments (high, medium, low, and very low value customer groups).  To reduce the data to a single segment, a filter can be applied: create or replace view churn_data_high asselect * from churn_prep where value_band = 'HIGH'; It is simple to take a quick look at the predictive aspects of the data on a univariate basis.  While this does not capture the more complex multi-variate effects as would occur with the full-blown data mining algorithms, it can give a quick feel as to the predictive aspects of the data as well as validate the data preparation steps.  Oracle Data Mining includes a predictive analytics package which enables quick analysis. begin  dbms_predictive_analytics.explain(   'churn_data_high','churn_m6','expl_churn_tab'); end; /select * from expl_churn_tab where rank <= 5 order by rank; ATTRIBUTE_NAME       ATTRIBUTE_SUBNAME EXPLANATORY_VALUE RANK-------------------- ----------------- ----------------- ----------LOS_BAND                                      .069167052          1MINS_PER_TARIFF_MON  PEAK-5                   .034881648          2REV_PER_MON          REV-5                    .034527798          3DROPPED_CALLS                                 .028110322          4MINS_PER_TARIFF_MON  PEAK-4                   .024698149          5From the above results, it is clear that some predictors do contain information to help identify churn (explanatory value > 0).  The strongest uni-variate predictor of churn appears to be the customer's (binned) length of service.  The second strongest churn indicator appears to be the number of peak minutes used in the most recent month.  The subname column contains the interior piece of the DM_NESTED_NUMERICALS column described in the previous post.  By using the object relational approach, many related predictors are included within a single top-level column. .....   NOTE:  These are just EXCERPTS.  Click here to start reading the Oracle Data Mining a Star Schema: Telco Churn Case Study from the beginning.    

    Read the article

  • Regression testing with Selenium GRID

    - by Ben Adderson
    A lot of software teams out there are tasked with supporting and maintaining systems that have grown organically over time, and the web team here at Red Gate is no exception. We're about to embark on our first significant refactoring endeavour for some time, and as such its clearly paramount that the code be tested thoroughly for regressions. Unfortunately we currently find ourselves with a codebase that isn't very testable - the three layers (database, business logic and UI) are currently tightly coupled. This leaves us with the unfortunate problem that, in order to confidently refactor the code, we need unit tests. But in order to write unit tests, we need to refactor the code :S To try and ease the initial pain of decoupling these layers, I've been looking into the idea of using UI automation to provide a sort of system-level regression test suite. The idea being that these tests can help us identify regressions whilst we work towards a more testable codebase, at which point the more traditional combination of unit and integration tests can take over. Ending up with a strong battery of UI tests is also a nice bonus :) Following on from my previous posts (here, here and here) I knew I wanted to use Selenium. I also figured that this would be a good excuse to put my xUnit [Browser] attribute to good use. Pretty quickly, I had a raft of tests that looked like the following (this particular example uses Reflector Pro). In a nut shell the test traverses our shopping cart and, for a particular combination of number of users and months of support, checks that the price calculations all come up with the correct values. [BrowserTheory] [Browser(Browsers.Firefox3_6, "http://www.red-gate.com")] public void Purchase1UserLicenceNoSupport(SeleniumProvider seleniumProvider) {     //Arrange     _browser = seleniumProvider.GetBrowser();     _browser.Open("http://www.red-gate.com/dynamic/shoppingCart/ProductOption.aspx?Product=ReflectorPro");                  //Act     _browser = ShoppingCartHelpers.TraverseShoppingCart(_browser, 1, 0, ".NET Reflector Pro");     //Assert     var priceResult = PriceHelpers.GetNewPurchasePrice(db, "ReflectorPro", 1, 0, Currencies.Euros);         Assert.Equal(priceResult.Price, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl01_Price"));     Assert.Equal(priceResult.Tax, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Tax"));     Assert.Equal(priceResult.Total, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Total")); } These tests are pretty concise, with much of the common code in the TraverseShoppingCart() and GetNewPurchasePrice() methods. The (inevitable) problem arose when it came to execute these tests en masse. Selenium is a very slick tool, but it can't mask the fact that UI automation is very slow. To give you an idea, the set of cases that covers all of our products, for all combinations of users and support, came to 372 tests (for now only considering purchases in dollars). In the world of automated integration tests, that's a very manageable number. For unit tests, it's a trifle. However for UI automation, those 372 tests were taking just over two hours to run. Two hours may not sound like a lot, but those cases only cover one of the three currencies we deal with, and only one of the many different ways our systems can be asked to calculate a price. It was already pretty clear at this point that in order for this approach to be viable, I was going to have to find a way to speed things up. Up to this point I had been using Selenium Remote Control to automate Firefox, as this was the approach I had used previously and it had worked well. Fortunately,  the guys at SeleniumHQ also maintain a tool for executing multiple Selenium RC tests in parallel: Selenium Grid. Selenium Grid uses a central 'hub' to handle allocation of Selenium tests to individual RCs. The Remote Controls simply register themselves with the hub when they start, and then wait to be assigned work. The (for me) really clever part is that, as far as the client driver library is concerned, the grid hub looks exactly the same as a vanilla remote control. To create a new browser session against Selenium RC, the following C# code suffices: new DefaultSelenium("localhost", 4444, "*firefox", "http://www.red-gate.com"); This assumes that the RC is running on the local machine, and is listening on port 4444 (the default). Assuming the hub is running on your local machine, then to create a browser session in Selenium Grid, via the hub rather than directly against the control, the code is exactly the same! Behind the scenes, the hub will take this request and hand it off to one of the registered RCs that provides the "*firefox" execution environment. It will then pass all communications back and forth between the test runner and the remote control transparently. This makes running existing RC tests on a Selenium Grid a piece of cake, as the developers intended. For a more detailed description of exactly how Selenium Grid works, see this page. Once I had a test environment capable of running multiple tests in parallel, I needed a test runner capable of doing the same. Unfortunately, this does not currently exist for xUnit (boo!). MbUnit on the other hand, has the concept of concurrent execution baked right into the framework. So after swapping out my assembly references, and fixing up the resulting mismatches in assertions, my example test now looks like this: [Test] public void Purchase1UserLicenceNoSupport() {    //Arrange    ISelenium browser = BrowserHelpers.GetBrowser();    var db = DbHelpers.GetWebsiteDBDataContext();    browser.Start();    browser.Open("http://www.red-gate.com/dynamic/shoppingCart/ProductOption.aspx?Product=ReflectorPro");                 //Act     browser = ShoppingCartHelpers.TraverseShoppingCart(browser, 1, 0, ".NET Reflector Pro");    var priceResult = PriceHelpers.GetNewPurchasePrice(db, "ReflectorPro", 1, 0, Currencies.Euros);    //Assert     Assert.AreEqual(priceResult.Price, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl01_Price"));     Assert.AreEqual(priceResult.Tax, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Tax"));     Assert.AreEqual(priceResult.Total, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Total")); } This is pretty much the same as the xUnit version. The exceptions are that the attributes have changed,  the //Arrange phase now has to handle setting up the ISelenium object, as the attribute that previously did this has gone away, and the test now sets up its own database connection. Previously I was using a shared database connection, but this approach becomes more complicated when tests are being executed concurrently. To avoid complexity each test has its own connection, which it is responsible for closing. For the sake of readability, I snipped out the code that closes the browser session and the db connection at the end of the test. With all that done, there was only one more step required before the tests would execute concurrently. It is necessary to tell the test runner which tests are eligible to run in parallel, via the [Parallelizable] attribute. This can be done at the test, fixture or assembly level. Since I wanted to run all tests concurrently, I marked mine at the assembly level in the AssemblyInfo.cs using the following: [assembly: DegreeOfParallelism(3)] [assembly: Parallelizable(TestScope.All)] The second attribute marks all tests in the assembly as [Parallelizable], whilst the first tells the test runner how many concurrent threads to use when executing the tests. I set mine to three since I was using 3 RCs in separate VMs. With everything now in place, I fired up the Icarus* test runner that comes with MbUnit. Executing my 372 tests three at a time instead of one at a time reduced the running time from 2 hours 10 minutes, to 55 minutes, that's an improvement of about 58%! I'd like to have seen an improvement of 66%, but I can understand that either inefficiencies in the hub code, my test environment or the test runner code (or some combination of all three most likely) contributes to a slightly diminished improvement. That said, I'd love to hear about any experience you have in upping this efficiency. Ultimately though, it was a saving that was most definitely worth having. It makes regression testing via UI automation a far more plausible prospect. The other obvious point to make is that this approach scales far better than executing tests serially. So if ever we need to improve performance, we just register additional RC's with the hub, and up the DegreeOfParallelism. *This was just my personal preference for a GUI runner. The MbUnit/Gallio installer also provides a command line runner, a TestDriven.net runner, and a Resharper 4.5 runner. For now at least, Resharper 5 isn't supported.

    Read the article

  • Ubuntu: Failure to login with multiple video adapters

    - by tsilb
    Forgive my ignorance, for I am a complete linux noob. I have a computer with three video cards and six monitors. Works great on Windows. Trying to get it to run Ubuntu as well. It loads fine when I have it configured to run on one adapter; detects both screens, runs ok. But I want to turn the other 4 monitors on and run the whole thing as one extended desktop (one session, etc). So I downloaded and installed the newest ATI driver for Linux, which seems to work, kinda. I ran this to set up the screens: aticonfig --adapter=all --initial -f Now when I boot, Ubuntu seems to turn on all the screens (3 viewports, each with two cloned displays from what I can tell). When I enter my login info OR move the mouse off the main screen, the screens freeze and the kbd/ms become unresponsive. aticonfig generated xorg.conf included below. Have tried the following: aticonfig -initial -f - works, but only detects the primary adapter and 2 screens aticccle - Tells me I have to reboot after enabling the other cards. Then goes into above described freezing state. aticonfig --adapter=all --initial -f - see above Manually editing xorg.conf file with my limited knowledge - Was able to get two adapters running, but only the second adapter initialized while the primary stopped at the Ubuntu boot screen. Was unable to see the login prompt. Froze after I logged in blindly (was able to hear the login sound). Using generic "radeon" driver instead of ATI Proprietary driver with the above init attempts Toggling xinerama Various combinations of the above Hardware: Intel Core 2 Quad q6600 8GB DDR2 (3x) ATI Radeon HD 4680 5 monitors (21W, 21W, 22W Portrait, 22W Portrait, 19")and an HDTV (26"W, HDMI) in a horizontal arrangement I know next to nothing about Linux/Ubuntu aside from basic filesystem navigation, editing text files, and accessing my local and networked Windows stores and shares. Basically this is the most advanced thing I've had to do. I installed today. Please advise how to make this configuration work. my xorg.conf: Section "ServerLayout" Identifier "Layout0" Screen 0 "aticonfig-Screen[0]-0" 0 0 Screen "aticonfig-Screen[1]-0" RightOf "aticonfig-Screen[0]-0" Screen "aticonfig-Screen[2]-0" RightOf "aticonfig-Screen[1]-0" Option "RenderAccel" "true" Option "AllowGLXWithComposite" "true" EndSection Section "Files" EndSection Section "Module" EndSection Section "ServerFlags" Option "Xinerama" "0" EndSection Section "Monitor" Identifier "aticonfig-Monitor[0]-0" Option "VendorName" "ATI Proprietary Driver" Option "ModelName" "Generic Autodetecting Monitor" Option "DPMS" "true" EndSection Section "Monitor" Identifier "aticonfig-Monitor[1]-0" Option "VendorName" "ATI Proprietary Driver" Option "ModelName" "Generic Autodetecting Monitor" Option "DPMS" "true" EndSection Section "Monitor" Identifier "aticonfig-Monitor[2]-0" Option "VendorName" "ATI Proprietary Driver" Option "ModelName" "Generic Autodetecting Monitor" Option "DPMS" "true" EndSection Section "Device" Identifier "aticonfig-Device[0]-0" Driver "fglrx" BusID "PCI:1:0:0" EndSection Section "Device" Identifier "aticonfig-Device[1]-0" Driver "fglrx" BusID "PCI:3:0:0" EndSection Section "Device" Identifier "aticonfig-Device[2]-0" Driver "fglrx" BusID "PCI:4:0:0" EndSection Section "Screen" Identifier "aticonfig-Screen[0]-0" Device "aticonfig-Device[0]-0" Monitor "aticonfig-Monitor[0]-0" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection Section "Screen" Identifier "aticonfig-Screen[1]-0" Device "aticonfig-Device[1]-0" Monitor "aticonfig-Monitor[1]-0" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection Section "Screen" Identifier "aticonfig-Screen[2]-0" Device "aticonfig-Device[2]-0" Monitor "aticonfig-Monitor[2]-0" DefaultDepth 24 SubSection "Display" Viewport 0 0 Depth 24 EndSubSection EndSection

    Read the article

  • Permissions restoring from Time Machine - Finder copy vs "cp" copy

    - by Ben Challenor
    Note: this question was starting to sprawl so I rewrote it. I have a folder that I'm trying to restore from a Time Machine backup. Using cp -R works fine, but certain folders cannot be restored with either the Time Machine UI or Finder. Other users have reported similar errors and the cp -R workaround was suggested (e.g. Restoring from Time Machine - Permissions Error). But I wanted to understand: Why cp -R works when the Finder and the Time Machine UI do not. Whether I could prevent the errors by changing file permissions before the backup. There do indeed seem to be some permissions that Finder works with and some that it does not. I've narrowed the errors down to folders with the user ben (that's me) and the group wheel. Here's a simplified reproduction. I have four folders with the owner/group combinations I've seen so far: ben ~/Desktop/test $ ls -lea total 16 drwxr-xr-x 7 ben staff 238 27 Nov 14:31 . drwx------+ 17 ben staff 578 27 Nov 14:29 .. 0: group:everyone deny delete -rw-r--r--@ 1 ben staff 6148 27 Nov 14:31 .DS_Store drwxr-xr-x 3 ben staff 102 27 Nov 14:30 ben-staff drwxr-xr-x 3 ben wheel 102 27 Nov 14:30 ben-wheel drwxr-xr-x 3 root admin 102 27 Nov 14:31 root-admin drwxr-xr-x 3 root wheel 102 27 Nov 14:31 root-wheel Each contains a single file called file with the same owner/group: ben ~/Desktop/test $ cd ben-staff ben ~/Desktop/test/ben-staff $ ls -lea total 0 drwxr-xr-x 3 ben staff 102 27 Nov 14:30 . drwxr-xr-x 7 ben staff 238 27 Nov 14:31 .. -rw-r--r-- 1 ben staff 0 27 Nov 14:30 file In the backup, they look like this: ben /Volumes/Deimos/Backups.backupdb/Ben’s MacBook Air/Latest/Macintosh HD/Users/ben/Desktop/test $ ls -leA total 16 -rw-r--r--@ 1 ben staff 6148 27 Nov 14:34 .DS_Store 0: group:everyone deny write,delete,append,writeattr,writeextattr,chown drwxr-xr-x@ 3 ben staff 102 27 Nov 14:51 ben-staff 0: group:everyone deny add_file,delete,add_subdirectory,delete_child,writeattr,writeextattr,chown drwxr-xr-x@ 3 ben wheel 102 27 Nov 14:51 ben-wheel 0: group:everyone deny add_file,delete,add_subdirectory,delete_child,writeattr,writeextattr,chown drwxr-xr-x@ 3 root admin 102 27 Nov 14:52 root-admin 0: group:everyone deny add_file,delete,add_subdirectory,delete_child,writeattr,writeextattr,chown drwxr-xr-x@ 3 root wheel 102 27 Nov 14:52 root-wheel 0: group:everyone deny add_file,delete,add_subdirectory,delete_child,writeattr,writeextattr,chown Of these, ben-staff can be restored with Finder without errors. root-wheel and root-admin ask for my password and then restore without errors. But ben-wheel does not prompt for my password and gives the error: The operation can’t be completed because you don’t have permission to access “file”. Interestingly, I can restore the file from this folder by dragging it directly to my local drive (instead of dragging its parent folder), but when I do so its permissions are changed to ben/staff. Here are the permissions after the restore for the three folders that worked correctly, and the file from ben-wheel that was changed to ben/staff. ben ~/Desktop/test-restore $ ls -leA total 16 -rw-r--r--@ 1 ben staff 6148 27 Nov 14:46 .DS_Store drwxr-xr-x 3 ben staff 102 27 Nov 14:30 ben-staff -rw-r--r-- 1 ben staff 0 27 Nov 14:30 file drwxr-xr-x 3 root admin 102 27 Nov 14:31 root-admin drwxr-xr-x 3 root wheel 102 27 Nov 14:31 root-wheel Can anyone explain this behaviour? Why do Finder and the Time Machine UI break with the ben / wheel permissions? And why does cp -R work (even without sudo)?

    Read the article

  • Integrating HP Systems Insight Manager into an existing environment

    - by ewwhite
    I'm working with an environment that spans multiple data centers/sites and consists primarily of HP ProLiant servers (G5-G7) running Linux. The mix is 30% RHEL/CentOS, the rest are Gentoo :(. I also have a few dozen virtual machines running back-office and Windows servers on VMWare ESX hosts. I run OpenNMS to pull SNMP data from the various server nodes and networking devices. While OpenNMS works wonderfully for up/down, thresholds and notifications, it's native handling of traps is a little rough and the graphs are not particularly pretty. I use Orca/RRD graphs for performance trending and nice graphs. I'm tasked with inventorying the environment and wanted to come up with a clean way to organize server information. Since my environment is mostly HP, I've been playing with HP Systems Insight Manager as a way to extract server data and to deploy HP health/monitoring packages and firmware. The Gentoo systems eventually have to be converted to CentOS, so getting a quick assessment of what hardware is where would be great. Although I've read through a few hundred pages of HP manuals, I'm having a difficult time understanding how to get HP SIM to do what I want, though. My main problems are: I have about 40 subnets to deal with; 98% connected with private lines to facilities across the globe. I don't want to initiate an HP SIM discovery only to pull back every piece of intermediate networking hardware and equipment from all of the locations. I'd like this to focus on the servers. I have OpenNMS configured to accept traps. I don't want HP SIM to duplicate that effort. It seems like the built-in software deployment tool wants to overwrite the trapsink parameters for the systems it encounters during discovery. I have about 10 administrative username/password combinations in use across this infrastructure. Is there a more efficient way to get HP SIM to do the discovery or break discovery into manageable chunks? In terms of general workflow, do people typically install the HP Management Agents during the initial OS deployment (e.g. kickstart post script) or afterwards from HP SIM? Is HP SIM too thick/fat to be an inventory tool? I can't tell if it's meant to be used standalone or alongside other monitoring products. Since the majority of the systems I'm trying to track are those running Gentoo (in order to plan the move to CentOS), is there any way for HP SIM to extract system model information from them ( like dmidecode)? I have systems here where I may have an SSH key established, but not direct user or login access. Is there a way for me to import an SSH private/public key pair into HP SIM to reach out to the servers that can't accept standard credentials? There are a handful of sites where I have inconsistent access or have a double-NAT situation. I may be able to poke a server, but it may not be able to find its way back to the management system. Is there a workaround for this? The certificate configuration for HP SIM seems complicated. What is the preferred setup for trust between systems? I'd also appreciate any notes or recommendations to using this product. Or if there's a better way to do this, I'd like to know.

    Read the article

  • Network authentication + roaming home directory - which technology should I look into using?

    - by Brian
    I'm looking into software which provides a user with a single identity across multiple computers. That is, a user should have the same permissions on each computer, and the user should have access to all of his or her files (roaming home directory) on each computer. There seem to be many solutions for this general idea, but I'm trying to determine the best one for me. Here are some details along with requirements: The network of machines are Amazon EC2 instances running Ubuntu. We access the machines with SSH. Some machines on this LAN may have different uses, but I am only discussing machines for a certain use (running a multi-tenancy platform). The system will not necessarily have a constant amount of machines. We may have to permanently or temporarily alter the amount of machines running. This is the the reason why I'm looking into centralized authentication/storage. The implementation of this effect should be a secure one. We're unsure if users will have direct shell access, but their software will potentially be running (under restricted Linux user names, of course) on our systems, which is as good as direct shell access. Let's assume that their software could potentially be malicious for the sake of security. I have heard of several technologies/combinations to achieve my goal, but I'm unsure of the ramifications of each. An older ServerFault post recommended NFS & NIS, though the combination has security problems according to this old article by Symantec. The article suggests moving to NIS+, but, as it is old, this Wikipedia article has cited statements suggesting a trending away from NIS+ by Sun. The recommended replacement is another thing I have heard of... LDAP. It looks like LDAP can be used to save user information in a centralized location on a network. NFS would still need to be used to cover the 'roaming home folder' requirement, but I see references of them being used together. Since the Symantec article pointed out security problems in both NIS and NFS, is there software to replace NFS, or should I heed that article's suggestions for locking it down? I'm tending toward LDAP because another fundamental piece of our architecture, RabbitMQ, has a authentication/authorization plugin for LDAP. RabbitMQ will be accessible in a restricted manner to users on the system, so I would like to tie the security systems together if possible. Kerberos is another secure authentication protocol that I have heard of. I learned a bit about it some years ago in a cryptography class but don't remember much about it. I have seen suggestions online that it can be combined with LDAP in several ways. Is this necessary? What are the security risks of LDAP without Kerberos? I also remember Kerberos being used in another piece of software developed by Carnegie Mellon University... Andrew File System, or AFS. OpenAFS is available for use, though its setup seems a bit complicated. At my university, AFS provides both requirements... I can log in to any machine, and my "AFS folder" is always available (at least when I acquire an AFS token). Along with suggestions for which path I should look into, does anybody have any guides which were particularly helpful? As the bold text pointed out, LDAP looks to be the best choice, but I'm particularly interested in the implementation details (Keberos? NFS?) with respect to security.

    Read the article

  • The DOS DEBUG Environment

    - by MarkPearl
    Today I thought I would go back in time and have a look at the DEBUG command that has been available since the beginning of dawn in DOS, MS-DOS and Microsoft Windows. up to today I always knew it was there, but had no clue on how to use it so for those that are interested this might be a great geek party trick to pull out when you want the awe the younger generation and want to show them what “real” programming is about. But wait, you will have to do it relatively quickly as it seems like DEBUG was finally dumped from the Windows group in Windows 7. Not to worry, pull out that Windows XP box which will get you even more geek points and you can still poke DEBUG a bit. So, for those that are interested and want to find out a bit about the history of DEBUG read the wiki link here. That all put aside, lets get our hands dirty.. How to Start DEBUG in Windows Make sure your version of Windows supports DEBUG. Open up a console window Make a directory where you want to play with debug – in my instance I called it C221 Enter the directory and type Debug You will get a response with a – as illustrated in the image below…   The commands available in DEBUG There are several commands available in DEBUG. The most common ones are A (Assemble) R (Register) T (Trace) G (Go) D (Dump or Display) U (Unassemble) E (Enter) P (Proceed) N (Name) L (Load) W (Write) H (Hexadecimal) I (Input) O (Output) Q (Quit) I am not going to cover all these commands, but what I will do is go through a few of them briefly. A is for Assemble Command (to write code) The A command translates assembly language statements into machine code. It is quite useful for writing small assembly programs. Below I have written a very basic assembly program. The code typed out is as follows mov ax,0015 mov cx,0023 sub cx,ax mov [120],al mov cl,[120]A nop R is for Register (to jump to a point in memory) The r command turns out to be one of the most frequent commands you will use in DEBUG. It allows you to view the contents of registers and to change their values. It can be used with the following combinations… R – Displays the contents of all the registers R f – Displays the flags register R register_name – Displays the contents of a specific register All three methods are illustrated in the image above T is for Trace (To execute a program step by step) The t command allows us to execute the program step by step. Before we can trace the program we need to point back to the beginning of the program. We do this by typing in r ip, which moves us back to memory point 100. We then type trace which executes the first line of code (line 100) (As shown in the image below starting from the red arrow). You can see from the above image that the register AX now contains 0015 as per our instruction mov ax,0015 You can also see that the IP points to line 0103 which has the MOV CX,0023 command If we type t again it will now execute the second line of the program which moves 23 in the cx register. Again, we can see that the line of code was executed and that the CX register now holds the value of 23. What I would like to highlight now is the section underlined in red. These are the status flags. The ones we are going to look at now are 1st (NV), 4th (PL), 5th (NZ) & 8th (NC) NV means no overflow, the alternate would be OV PL means that the sign of the previous arithmetic operation was Plus, the alternate would be NG (Negative) NZ means that the results of the previous arithmetic operation operation was Not Zero, the alternate would be ZR NC means that No final Carry resulted from the previous arithmetic operation. CY means that there was a final Carry. We could now follow this process of entering the t command until the entire program is executed line by line. G is for Go (To execute a program up to a certain line number) So we have looked at executing a program line by line, which is fine if your program is minuscule BUT totally unpractical if we have any decent sized program. A quicker way to run some lines of code is to use the G command. The ‘g’ command executes a program up to a certain specified point. It can be used in connection with the the reset IP command. You would set your initial point and then run the G command with the line you want to end on. P is for Proceed (Similar to trace but slightly more streamlined) Another command similar to trace is the proceed command. All that the p command does is if it is called and it encounters a CALL, INT or LOOP command it terminates the program execution. In the example below I modified our example program to include an int 20 at the end of it as illustrated in the image below… Then when executing the code when I encountered the int 20 command I typed the P command and the program terminated normally (illustrated below). D is for Dump (or for those more polite Display) So, we have all these assembly lines of code, but if you have ever opened up an exe or com file in a text/hex editor, it looks nothing like assembly code. The D command is a way that we can see what our code looks like in memory (or in a hex editor). If we examined the image above, we can see that Debug is storing our assembly code with each instruction following immediately after the previous one. For instance in memory address 110 we have int and 111 we have 20. If we examine the dump of memory we can see at memory point 110 CD is stored and at memory point 111 20 is stored. U is for Unassemble (or Convert Machine code to Assembly Code) So up to now we have gone through a bunch of commands, but probably one of the most useful is the U command. Let’s say we don’t understand machine code so well and so instead we want to see it in its equivalent assembly code. We can type the U command followed by the start memory point, followed by the end memory point and it will show us the assembly code equivalent of the machine code. E is for a bunch of things… The E command can be used for a bunch of things… One example is to enter data or machine code instructions directly into memory. It can also be used to display the contents of memory locations. I am not going to worry to much about it in this post. N / L / W is for Name, Load & Write So we have written out assembly code in debug, and now we want to save it to disk, or write it as a com file or load it. This is where the N, L & W command come in handy. The n command is used to give a name to the executable program file and is pretty simple to use. The w command is a bit trickier. It saves to disk all the memory between point bx and point cx so you need to specify the bx memory address and the cx memory address for it to write your code. Let’s look at an example illustrated below. You do this by calling the r command followed by the either bx or cx. We can then go to the directory where we were working and will see the new file with the name we specified. The L command is relatively simple. You would first specify the name of the file you would like to load using the N command, and then call the L command. Q is for Quit The last command that I am going to write about in this post is the Q command. Simply put, calling the Q command exits DEBUG. Commands we did not Cover Out of the standard DEBUG commands we covered A, T, G, D, U, E, P, R, N, L & W. The ones we did not cover were H, I & O – I might make mention of these in a later post, but for the basics they are not really needed. Some Useful Resources Please note this post is based on the COS2213 handouts for UNISA A Guide to DEBUG - http://mirror.href.com/thestarman/asm/debug/debug.htm#NT

    Read the article

  • Intelligent "Subtraction" of one text logfile from another

    - by Vi
    Example: Application generates large text log file A with many different messages. It generates similarly large log file B when does not function correctly. I want to see what messages in file B are essentially new, i.e. to filter-out everything from A. Trivial prototype is: Sort | uniq both files Join files sort | uniq -c grep -v "^2" This produces symmetric difference and inconvenient. How to do it better? (including non-symmetric difference and preserving of messages order in B) Program should first analyse A and learn which messages are common, then analyse B showing with messages needs attention. Ideally it should automatically disregard things like timestamps, line numbers or other volatile things. Example. A: 0:00:00.234 Received buffer 0x324234 0:00:00.237 Processeed buffer 0x324234 0:00:00.238 Send buffer 0x324255 0:00:03.334 Received buffer 0x324255 0:00:03.337 Processeed buffer 0x324255 0:00:03.339 Send buffer 0x324255 0:00:05.171 Received buffer 0x32421A 0:00:05.173 Processeed buffer 0x32421A 0:00:05.178 Send buffer 0x32421A B: 0:00:00.134 Received buffer 0x324111 0:00:00.137 Processeed buffer 0x324111 0:00:00.138 Send buffer 0x324111 0:00:03.334 Received buffer 0x324222 0:00:03.337 Processeed buffer 0x324222 0:00:03.338 Error processing buffer 0x324222 0:00:03.339 Send buffer 0x3242222 0:00:05.271 Received buffer 0x3242FA 0:00:05.273 Processeed buffer 0x3242FA 0:00:05.278 Send buffer 0x3242FA 0:00:07.280 Send buffer 0x3242FA failed Result: 0:00:03.338 Error processing buffer 0x324222 0:00:07.280 Send buffer 0x3242FA failed One of ways of solving it can be something like that: Split each line to logical units: 0:00:00.134 Received buffer 0x324111,0:00:00.134,Received,buffer,0x324111,324111,Received buffer, \d:\d\d:\d\d\.\d\d\d, \d+:\d+:\d+.\d+, 0x[0-9A-F]{6}, ... It should find individual words, simple patterns in numbers, common layouts (e.g. "some date than text than number than text than end_of_line"), also handle combinations of above. As it is not easy task, user assistance (adding regexes with explicit "disregard that","make the main factor","don't split to parts","consider as date/number","take care of order/quantity of such messages" rules) should be supported (but not required) for it. Find recurring units and "categorize" lines, filter out too volatile things like timestamps, addresses or line numbers. Analyse the second file, find things that has new logical units (one-time or recurring), or anything that will "amaze" the system which has got used to the first file. Example of doing some bit of this manually: $ cat A | head -n 1 0:00:00.234 Received buffer 0x324234 $ cat A | egrep -v "Received buffer" | head -n 1 0:00:00.237 Processeed buffer 0x324234 $ cat A | egrep -v "Received buffer|Processeed buffer" | head -n 1 0:00:00.238 Send buffer 0x324255 $ cat A | egrep -v "Received buffer|Processeed buffer|Send buffer" | head -n 1 $ cat B | egrep -v "Received buffer|Processeed buffer|Send buffer" 0:00:03.338 Error processing buffer 0x324222 0:00:07.280 Send buffer 0x3242FA failed This is a boring thing (there are a lot of message types); also I can accidentally include some too broad pattern. Also it can't handle complicated things like interrelation between messages. I know that it is AI-related. May be there are already developed tools?

    Read the article

  • Using Upstart to manage Unicorn w/ rbenv + bundler binstubs w/ ruby-local-exec shebang

    - by codykrieger
    Alright, this is melting my brain. It might have something to do with the fact that I don't understand Upstart as well as I should. Sorry in advance for the long question. I'm trying to use Upstart to manage a Rails app's Unicorn master process. Here is my current /etc/init/app.conf: description "app" start on runlevel [2] stop on runlevel [016] console owner # expect daemon script APP_ROOT=/home/deploy/app PATH=/home/deploy/.rbenv/shims:/home/deploy/.rbenv/bin:$PATH $APP_ROOT/bin/unicorn -c $APP_ROOT/config/unicorn.rb -E production # >> /tmp/upstart.log 2>&1 end script # respawn That works just fine - the Unicorns start up great. What's not great is that the PID detected is not of the Unicorn master, it's of an sh process. That in and of itself isn't so bad, either - if I wasn't using the automagical Unicorn zero-downtime deployment strategy. Because shortly after I send -USR2 to my Unicorn master, a new master spawns up, and the old one dies...and so does the sh process. So Upstart thinks my job has died, and I can no longer restart it with restart or stop it with stop if I want. I've played around with the config file, trying to add -D to the Unicorn line (like this: $APP_ROOT/bin/unicorn -c $APP_ROOT/config/unicorn.rb -E production -D) to daemonize Unicorn, and I added the expect daemon line, but that didn't work either. I've tried expect fork as well. Various combinations of all of those things can cause start and stop to hang, and then Upstart gets really confused about the state of the job. Then I have to restart the machine to fix it. I think Upstart is having problems detecting when/if Unicorn is forking because I'm using rbenv + the ruby-local-exec shebang in my $APP_ROOT/bin/unicorn script. Here it is: #!/usr/bin/env ruby-local-exec # # This file was generated by Bundler. # # The application 'unicorn' is installed as part of a gem, and # this file is here to facilitate running it. # require 'pathname' ENV['BUNDLE_GEMFILE'] ||= File.expand_path("../../Gemfile", Pathname.new(__FILE__).realpath) require 'rubygems' require 'bundler/setup' load Gem.bin_path('unicorn', 'unicorn') Additionally, the ruby-local-exec script looks like this: #!/usr/bin/env bash # # `ruby-local-exec` is a drop-in replacement for the standard Ruby # shebang line: # # #!/usr/bin/env ruby-local-exec # # Use it for scripts inside a project with an `.rbenv-version` # file. When you run the scripts, they'll use the project-specified # Ruby version, regardless of what directory they're run from. Useful # for e.g. running project tasks in cron scripts without needing to # `cd` into the project first. set -e export RBENV_DIR="${1%/*}" exec ruby "$@" So there's an exec in there that I'm worried about. It fires up a Ruby process, which fires up Unicorn, which may or may not daemonize itself, which all happens from an sh process in the first place...which makes me seriously doubt the ability of Upstart to track all of this nonsense. Is what I'm trying to do even possible? From what I understand, the expect stanza in Upstart can only be told (via daemon or fork) to expect a maximum of two forks.

    Read the article

  • techniques for an AI for a highly cramped turn-based tactics game

    - by Adam M.
    I'm trying to write an AI for a tactics game in the vein of Final Fantasy Tactics or Vandal Hearts. I can't change the game rules in any way, only upgrade the AI. I have experience programming AI for classic board games (basically minimax and its variants), but I think the branching factor is too great for the approach to be reasonable here. I'll describe the game and some current AI flaws that I'd like to fix. I'd like to hear ideas for applicable techniques. I'm a decent enough programmer, so I only need the ideas, not an implementation (though that's always appreciated). I'd rather not expend effort chasing (too many) dead ends, so although speculation and brainstorming are good and probably helpful, I'd prefer to hear from somebody with actual experience solving this kind of problem. For those who know it, the game is the land battle mini-game in Sid Meier's Pirates! (2004) and you can skim/skip the next two paragraphs. For those who don't, here's briefly how it works. The battle is turn-based and takes place on a 16x16 grid. There are three terrain types: clear (no hindrance), forest (hinders movement, ranged attacks, and sight), and rock (impassible, but does not hinder attacks or sight). The map is randomly generated with roughly equal amounts of each type of terrain. Because there are many rock and forest tiles, movement is typically very cramped. This is tactically important. The terrain is not flat; higher terrain gives minor bonuses. The terrain is known to both sides. The player is always the attacker and the AI is always the defender, so it's perfectly valid for the AI to set up a defensive position and just wait. The player wins by killing all defenders or by getting a unit to the city gates (a tile on the other side of the map). There are very few units on each side, usually 4-8. Because of this, it's crucial not to take damage without gaining some advantage from it. Units can take multiple actions per turn. All units on one side move before any units on the other side. Order of execution is important, and interleaving of actions between units is often useful. Units have melee and ranged attacks. Melee attacks vary widely in strength; ranged attacks have the same strength but vary in range. The main challenges I face are these: Lots of useful move combinations start with a "useless" move that gains no immediate advantage, or even loses advantage, in order to set up a powerful flank attack in the future. And, since the player units are stronger and have longer range, the AI pretty much always has to take some losses before they can start to gain kills. The AI must be able to look ahead to distinguish between sacrificial actions that provide a future benefit and those that don't. Because the terrain is so cramped, most of the tactics come down to achieving good positioning with multiple units that work together to defend an area. For instance, two defenders can often dominate a narrow pass by positioning themselves so an enemy unit attempting to pass must expose itself to a flank attack. But one defender in the same pass would be useless, and three units can defend a slightly larger pass. Etc. The AI should be able to figure out where the player must go to reach the city gates and how to best position its few units to cover the approaches, shifting, splitting, or combining them appropriately as the player moves. Because flank attacks are extremely deadly (and engineering flank attacks is key to the player strategy), the AI should be competent at moving its units so that they cover each other's flanks unless the sacrifice of a unit would give a substantial benefit. They should also be able to force flank attacks on players, for instance by threatening a unit from two different directions such that responding to one threat exposes the flank to the other. The AI should attack if possible, but sometimes there are no good ways to approach the player's position. In that case, the AI should be able to recognize this and set up a defensive position of its own. But the AI shouldn't be vulnerable to a trivial exploit where the player repeatedly opens and closes a hole in his defense and shoots at the AI as it approaches and retreats. That is, the AI should ideally be able to recognize that the player is capable of establishing a solid defense of an area, even if the defense is not currently in place. (I suppose if a good unit allocation algorithm existed, as needed for the second bullet point, the AI could run it on the player units to see where they could defend.) Because it's important to choose a good order of action and interleave actions between units, it's not as simple as just finding the best move for each unit in turn. All of these can be accomplished with a minimax search in theory, but the search space is too large, so specialized techniques are needed. I thought about techniques such as influence mapping, but I don't see how to use the technique to great effect. I thought about assigning goals to the units. This can help them work together in some limited way, and the problem of "how do I accomplish this goal?" is easier to solve than "how do I win this battle?", but assigning good goals is a hard problem in itself, because it requires knowing whether the goal is achievable and whether it's a good use of resources. So, does anyone have specific ideas for techniques that can help cleverize this AI? Update: I found a related question on Stackoverflow: http://stackoverflow.com/questions/3133273/ai-for-a-final-fantasy-tactics-like-game The selected answer gives a decent approach to choosing between alternative actions, but it doesn't seem to have much ability to look into the future and discern beneficial sacrifices from wasteful ones. It also focuses on a single unit at a time and it's not clear how it could be extended to support cooperation between units in defending or attacking.

    Read the article

  • Security in Software

    The term security has many meanings based on the context and perspective in which it is used. Security from the perspective of software/system development is the continuous process of maintaining confidentiality, integrity, and availability of a system, sub-system, and system data. This definition at a very high level can be restated as the following: Computer security is a continuous process dealing with confidentiality, integrity, and availability on multiple layers of a system. Key Aspects of Software Security Integrity Confidentiality Availability Integrity within a system is the concept of ensuring only authorized users can only manipulate information through authorized methods and procedures. An example of this can be seen in a simple lead management application.  If the business decided to allow each sales member to only update their own leads in the system and sales managers can update all leads in the system then an integrity violation would occur if a sales member attempted to update someone else’s leads. An integrity violation occurs when a team member attempts to update someone else’s lead because it was not entered by the sales member.  This violates the business rule that leads can only be update by the originating sales member. Confidentiality within a system is the concept of preventing unauthorized access to specific information or tools.  In a perfect world the knowledge of the existence of confidential information/tools would be unknown to all those who do not have access. When this this concept is applied within the context of an application only the authorized information/tools will be available. If we look at the sales lead management system again, leads can only be updated by originating sales members. If we look at this rule then we can say that all sales leads are confidential between the system and the sales person who entered the lead in to the system. The other sales team members would not need to know about the leads let alone need to access it. Availability within a system is the concept of authorized users being able to access the system. A real world example can be seen again from the lead management system. If that system was hosted on a web server then IP restriction can be put in place to limit access to the system based on the requesting IP address. If in this example all of the sales members where accessing the system from the 192.168.1.23 IP address then removing access from all other IPs would be need to ensure that improper access to the system is prevented while approved users can access the system from an authorized location. In essence if the requesting user is not coming from an authorized IP address then the system will appear unavailable to them. This is one way of controlling where a system is accessed. Through the years several design principles have been identified as being beneficial when integrating security aspects into a system. These principles in various combinations allow for a system to achieve the previously defined aspects of security based on generic architectural models. Security Design Principles Least Privilege Fail-Safe Defaults Economy of Mechanism Complete Mediation Open Design Separation Privilege Least Common Mechanism Psychological Acceptability Defense in Depth Least Privilege Design PrincipleThe Least Privilege design principle requires a minimalistic approach to granting user access rights to specific information and tools. Additionally, access rights should be time based as to limit resources access bound to the time needed to complete necessary tasks. The implications of granting access beyond this scope will allow for unnecessary access and the potential for data to be updated out of the approved context. The assigning of access rights will limit system damaging attacks from users whether they are intentional or not. This principle attempts to limit data changes and prevents potential damage from occurring by accident or error by reducing the amount of potential interactions with a resource. Fail-Safe Defaults Design PrincipleThe Fail-Safe Defaults design principle pertains to allowing access to resources based on granted access over access exclusion. This principle is a methodology for allowing resources to be accessed only if explicit access is granted to a user. By default users do not have access to any resources until access has been granted. This approach prevents unauthorized users from gaining access to resource until access is given. Economy of Mechanism Design PrincipleThe Economy of mechanism design principle requires that systems should be designed as simple and small as possible. Design and implementation errors result in unauthorized access to resources that would not be noticed during normal use. Complete Mediation Design PrincipleThe Complete Mediation design principle states that every access to every resource must be validated for authorization. Open Design Design PrincipleThe Open Design Design Principle is a concept that the security of a system and its algorithms should not be dependent on secrecy of its design or implementation Separation Privilege Design PrincipleThe separation privilege design principle requires that all resource approved resource access attempts be granted based on more than a single condition. For example a user should be validated for active status and has access to the specific resource. Least Common Mechanism Design PrincipleThe Least Common Mechanism design principle declares that mechanisms used to access resources should not be shared. Psychological Acceptability Design PrincipleThe Psychological Acceptability design principle refers to security mechanisms not make resources more difficult to access than if the security mechanisms were not present Defense in Depth Design PrincipleThe Defense in Depth design principle is a concept of layering resource access authorization verification in a system reduces the chance of a successful attack. This layered approach to resource authorization requires unauthorized users to circumvent each authorization attempt to gain access to a resource. When designing a system that requires meeting a security quality attribute architects need consider the scope of security needs and the minimum required security qualities. Not every system will need to use all of the basic security design principles but will use one or more in combination based on a company’s and architect’s threshold for system security because the existence of security in an application adds an additional layer to the overall system and can affect performance. That is why the definition of minimum security acceptably is need when a system is design because this quality attributes needs to be factored in with the other system quality attributes so that the system in question adheres to all qualities based on the priorities of the qualities. Resources: Barnum, Sean. Gegick, Michael. (2005). Least Privilege. Retrieved on August 28, 2011 from https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles/351-BSI.html Saltzer, Jerry. (2011). BASIC PRINCIPLES OF INFORMATION PROTECTION. Retrieved on August 28, 2011 from  http://web.mit.edu/Saltzer/www/publications/protection/Basic.html Barnum, Sean. Gegick, Michael. (2005). Defense in Depth. Retrieved on August 28, 2011 from  https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles/347-BSI.html Bertino, Elisa. (2005). Design Principles for Security. Retrieved on August 28, 2011 from  http://homes.cerias.purdue.edu/~bhargav/cs526/security-9.pdf

    Read the article

  • Multiple Homed Windows 2008 Server / Windows 7 Client

    - by Daniel Scott
    I have a small Windows 2008 network, with some Windows 7 clients. The clients are both laptops with docking stations and I would like them to communicate with the Windows 2008 server (for filesharing) through the wired network whilst they're docked. Internet connectivity for all machines (clients and server) is via a Wireless LAN, so the wireless adapter in the Windows 7 clients stays active while they're docked. When the laptops are un-docked, it would be nice to still be able to contact the windows 2008 server for print sharing (and slower file sharing) - hence the server also being on the wireless LAN. The windows 2008 server is running Active Directory, DHCP and DNS. It controls DHCP leases on the wired network and holds the DNS records for "myserver.mycompany.local", which is what the filesharing clients connect to. Ideally I'd like the DNS records to return the wired IP first so that this is the address that the laptops will attempt initially - but there doesn't seem to be a way to do that? At present the server's IP on the wireless LAN comes out of an nslookup above the wired Lan IP. The multi-homing works perfectly - but in the wrong order! Switch on the wireless lan and ping myserver and it goes to the wireless IP. Disable the wireless on the client and do the same ping again and after a couple of seconds it starts pinging the wired address. Does anyone have any suggestions on how to make this work in a predictable order? - or even if it can work. Alternative 1? If it can't work, then would this work: Remove the wireless adapter from the server, put a wireless router/bridge on the wired network (set up to route to/from the wireless LAN's subnet), then configure the clients with two routes to the (now) single IP of the server with metrics favouring direct communication over the wired LAN first? Alternative 2? Should I instead single-home the laptops so all of their connectivity is via the wired-LAN while they're docked? (and route via the windows 2008 server - or a dedicated wireless bridge/router)? My concern here is that I'd like undocking to be seamless - and if the clients are in the middle of downloading something from the internet I wouldn't want whatever they're doing interupted as they switch IP addresses onto the Wireless network. Perhaps this isn't the case and I'm concerned over nothing? Any thoughts? :) UPDATE I seem to have cracked it (at least DNS entries come out in the order I hope for - and pinging the server with various combinations of wired, wireless and both interfaces enabled uses the IP I want) ... I set the binding order of the NICs on the Server (which is acting as Domain Controller, DHCP and DNS server) so that the Wired NIC is before the Wireless adapter. (Start -- type "Network Interfaces" -- Select "View Network Connections" -- Press Alt to show classic dropdown menus -- Advanced -- Advanced Settings) Now, an nslookup (from the client) of the server's hostname returns the Wired IP first, followed by the Wireless IP. The wired IP now seems to be used whenever it's contactable. Incidentally, the metrics on the wired and wireless routes (on the client) also favour the wired LAN (based on Windows' automatically assigned metrics) - but this was always the case, even when I was having trouble getting the wired IP to be "favoured". I'm not entirely sure if this is coincidence - or if a DNS server running on Windows, handing back IP addresses for itself does actually take the binding order of it's own network interfaces into account? It would be interesting to hear from someone who can confirm or deny that (or confirm that the binding order on the server plays a role for some other reason?)

    Read the article

  • CLR Version issues with CorBindRuntimeEx

    - by Rick Strahl
    I’m working on an older FoxPro application that’s using .NET Interop and this app loads its own copy of the .NET runtime through some of our own tools (wwDotNetBridge). This all works fine and it’s fairly straightforward to load and host the runtime and then make calls against it. I’m writing this up for myself mostly because I’ve been bitten by these issues repeatedly and spend 15 minutes each However, things get tricky when calling specific versions of the .NET runtime since .NET 4.0 has shipped. Basically we need to be able to support both .NET 2.0 and 4.0 and we’re currently doing it with the same assembly – a .NET 2.0 assembly that is the AppDomain entry point. This works as .NET 4.0 can easily host .NET 2.0 assemblies and the functionality in the 2.0 assembly provides all the features we need to call .NET 4.0 assemblies via Reflection. In wwDotnetBridge we provide a load flag that allows specification of the runtime version to use. Something like this: do wwDotNetBridge LOCAL loBridge as wwDotNetBridge loBridge = CreateObject("wwDotNetBridge","v4.0.30319") and this works just fine in most cases.  If I specify V4 internally that gets fixed up to a whole version number like “v4.0.30319” which is then actually used to host the .NET runtime. Specifically the ClrVersion setting is handled in this Win32 DLL code that handles loading the runtime for me: /// Starts up the CLR and creates a Default AppDomain DWORD WINAPI ClrLoad(char *ErrorMessage, DWORD *dwErrorSize) { if (spDefAppDomain) return 1; //Retrieve a pointer to the ICorRuntimeHost interface HRESULT hr = CorBindToRuntimeEx( ClrVersion, //Retrieve latest version by default L"wks", //Request a WorkStation build of the CLR STARTUP_LOADER_OPTIMIZATION_MULTI_DOMAIN | STARTUP_CONCURRENT_GC, CLSID_CorRuntimeHost, IID_ICorRuntimeHost, (void**)&spRuntimeHost ); if (FAILED(hr)) { *dwErrorSize = SetError(hr,ErrorMessage); return hr; } //Start the CLR hr = spRuntimeHost->Start(); if (FAILED(hr)) return hr; CComPtr<IUnknown> pUnk; WCHAR domainId[50]; swprintf(domainId,L"%s_%i",L"wwDotNetBridge",GetTickCount()); hr = spRuntimeHost->CreateDomain(domainId,NULL,&pUnk); hr = pUnk->QueryInterface(&spDefAppDomain.p); if (FAILED(hr)) return hr; return 1; } CorBindToRuntimeEx allows for a specific .NET version string to be supplied which is what I’m doing via an API call from the FoxPro code. The behavior of CorBindToRuntimeEx is a bit finicky however. The documentation states that NULL should load the latest version of the .NET runtime available on the machine – but it actually doesn’t. As far as I can see – regardless of runtime overrides even in the .config file – NULL will always load .NET 2.0 even if 4.0 is installed. <supportedRuntime> .config File Settings Things get even more unpredictable once you start adding runtime overrides into the application’s .config file. In my scenario working inside of Visual FoxPro this would be VFP9.exe.config in the FoxPro installation folder (not the current folder). If I have a specific runtime override in the .config file like this: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v2.0.50727" /> </startup> </configuration> Not surprisingly with this I can load a .NET 2.0  runtime, but I will not be able to load Version 4.0 of the .NET runtime even if I explicitly specify it in my call to ClrLoad. Worse I don’t get an error – it will just go ahead and hand me a V2 version of the runtime and assume that’s what I wanted. Yuck! However, if I set the supported runtime to V4 in the .config file: <?xml version="1.0"?> <configuration> <startup> <supportedRuntime version="v4.0.30319" /> </startup> </configuration> Then I can load both V4 and V2 of the runtime. Specifying NULL however will STILL only give me V2 of the runtime. Again this seems pretty inconsistent. If you’re hosting runtimes make sure you check which version of the runtime is actually loading first to ensure you get the one you’re looking for. If the wrong version loads – say 2.0 and you want 4.0 - and you then proceed to load 4.0 assemblies they will all fail to load due to version mismatches. This is how all of this started – I had a bunch of assemblies that weren’t loading and it took a while to figure out that the host was running the wrong version of the CLR and therefore caused the assemblies loading to fail. Arrggh! <supportedRuntime> and Debugger Version <supportedRuntime> also affects the use of the .NET debugger when attached to the target application. Whichever runtime is specified in the key is the version of the debugger that fires up. This can have some interesting side effects. If you load a .NET 2.0 assembly but <supportedRuntime> points at V4.0 (or vice versa) the debugger will never fire because it can only debug in the appropriate runtime version. This has bitten me on several occasions where code runs just fine but the debugger will just breeze by breakpoints without notice. The default version for the debugger is the latest version installed on the system if <supportedRuntime> is not set. Summary Besides all the hassels, I’m thankful I can build a .NET 2.0 assembly and have it host .NET 4.0 and call .NET 4.0 code. This way we’re able to ship a single assembly that provides functionality that supports both .NET 2 and 4 without having to have separate DLLs for both which would be a deployment and update nightmare. The MSDN documentation does point at newer hosting API’s specifically for .NET 4.0 which are way more complicated and even less documented but that doesn’t help here because the runtime needs to be able to host both .NET 4.0 and 2.0. Not pleased about that – the new APIs look way more complex and of course they’re not available with older versions of the runtime installed which in our case makes them useless to me in this scenario where I have to support .NET 2.0 hosting (to provide greater ‘built-in’ platform support). Once you know the behavior above, it’s manageable. However, it’s quite easy to get tripped up here because there are multiple combinations that can really screw up behaviors.© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  FoxPro  

    Read the article

  • NVIDIA x server - "sudo nvidia config" does not generate a working 'xorg.config'

    - by Mike
    I am over 18 hours deep on this challenge. I got to this point and am stuck. very stuck. Maybe you can figure it out? Ubuntu Version 12.04 LTS with all the updates installed. Problem: The default settings in "etc/X11/xorg.conf" that are generated by the "nvidia-xconfig" tool, do not allow the NVIDIA x server to connect to the driver in my "System Settings Additional Driver window". (that's how I understand it. Lots of information below). Symptoms of Problem "System Settings Additional Driver" window has drivers, but the nvidia x server cannot connect/utilize any of the 4 drivers. the drivers are activated, but not in use. When I go to "System Tools Administration NVIDIA x server settings" I get an error that basically tells me to create a default file to initialize the NVIDIA X server (screen shot below). This is the messages the terminal gives after running a "sudo nvidia-xconfig" command for the first time. It seems that the generated file by the tool i just ran is generating a bad/unusable file: If I run the "sudo nvidia-xconfig" command again, I wont get an error the second time. However when I reboot, the default file that is generated (etc/X11/xorg.conf) simply puts the screen resolution at 800 x 600 (or something big like that). When I try to go to NVIDIA x server settings I am greeted with the same screen as the screen shot as in symptom 2 (no option to change the resolution). If I try to go to "system settings display" there are no other resolutions to choose from. At this point I must delete the newly minted "xorg.conf" and reinstate the original in its place. Here are the contents of the "xorg.conf" that is generated first (the one missing required information): # nvidia-xconfig: X configuration file generated by nvidia-xconfig # nvidia-xconfig: version 304.88 (buildmeister@swio-display-x86-rhel47-06) Wed Mar 27 15:32:58 PDT 2013 Section "ServerLayout" Identifier "Layout0" Screen 0 "Screen0" InputDevice "Keyboard0" "CoreKeyboard" InputDevice "Mouse0" "CorePointer" EndSection Section "Files" EndSection Section "InputDevice" # generated from default Identifier "Mouse0" Driver "mouse" Option "Protocol" "auto" Option "Device" "/dev/psaux" Option "Emulate3Buttons" "no" Option "ZAxisMapping" "4 5" EndSection Section "InputDevice" # generated from default Identifier "Keyboard0" Driver "kbd" EndSection Section "Monitor" Identifier "Monitor0" VendorName "Unknown" ModelName "Unknown" HorizSync 28.0 - 33.0 VertRefresh 43.0 - 72.0 Option "DPMS" EndSection Section "Device" Identifier "Device0" Driver "nvidia" VendorName "NVIDIA Corporation" EndSection Section "Screen" Identifier "Screen0" Device "Device0" Monitor "Monitor0" DefaultDepth 24 SubSection "Display" Depth 24 EndSubSection EndSection Hardware: I ran the "lspci|grep VGA". There results are: 00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family Integrated Graphics Controller (rev 09) 01:00.0 VGA compatible controller: NVIDIA Corporation GF108 [Quadro 1000M] (rev a1) More Hardware info: Ram: 16GB CPU: Intel Core i7-2720QM @2.2GHz * 8 Other: 64 bit. This is a triple boot computer and not a VM. Attempts With Not Success on My End: 1) Tried to append the "xorg.conf" with what I perceive is missing information and obviously it didn't fly. 2) All the other stuff I tried got me to this point. 3) See if this link is helpful to you (I barely get it, but i get enough knowing that a smarter person might find this useful): http://manpages.ubuntu.com/manpages/lucid/man1/nvidia-xconfig.1.html 4) I am completely new to Linux (40 hours over past week), but not to programming. However I am very serious about changing over to Linux. When you respond (I hope someone responds...) please respond in a way that a person new to Linux can understand. 5) By the way, the reason I am in this mess is because I MUST have a second monitor running from my laptop, and "System Settings Display" doesn't recognize my second display. I know it is possible to make the second display work in my system, because when I boot from the install CD, I perform work on the native laptop monitor, but the second monitor shows a purple screen with Ubuntu in the middle, so I know the VGA port is sending a signal out. If this is too much for you to tackle please suggest an alternative method to get a second display. I don't want to go to windows but I cannot have a single display. I am really fudged here. I hope some smart person can help. Thanks in advance. Mike. **********************EDIT #1********************** More Details About Graphics Card I was asked "which brand of nvidia-card do you have exactly?" Here is what I did to provide more info (maybe relevant, maybe not, but here is everything): 1) Took my Lenovo W520 right apart to see if there is an identifier on the actual card. However I realized that if I get deep enough to take a look, the laptop "won't like it". so I put it back together. Figuring out the card this way is not an option for me right now. 2) (My computer is triple boot) I logged into Win7 and ran 'dxdiag' command. here is the screen shot: 3) I tried to look on the lenovo website for more details... but no luck. I took a look at my receipts and here is info form receipt: System Unit: W520 NVIDIA Quadro 1000M 2GB 4) In win7 I went to the NVIDIA website and used the option to have my card 'scanned' by a Java applet to determine the latest update for my card. I tried the same with Ubuntu but I can't get the applet to run. Here is the recommended driver from from the NVIDIA Applet for my card for Win7 (I hope this shines some light on the specifics of the card): Quadro/NVS/Tesla/GRID Desktop Driver Release R319 Version: 320.00 WHQL Release Date: 3.5.2013 5) Also I went on the NVIDIA driver search and looked through every possible combination of product type + product series + product to find all the combinations that yield a 1000M card. My card is: Product Type: Quadro Product Series: Quadro Series (Notebooks) Product: 1000M ***********************EDIT #2******************* Additional Symptoms Another question that generated more symptoms I previously didn't mention was: "After generating xorg.conf by nvidia-xconfig, go to additional drivers, do you see nvidia-304?" 1) I took a screen shot of the "additional drivers" right after generating xorg.conf by nvidia-xconfig. Here it is: 2) Then I did a reboot. Now Ubuntu is 600 x 800 resolution. When I logged in after the computer came up I got an error (which I always get after generating xorg.conf by nvidia-xconfig and rebooting) 3) To finally answer the question - No. There is no "NVIDIA-304" driver. Screen shot of additional drivers after generating xorg.conf by nvidia-xconfig and rebooting : At this point I revert to the original xorg.conf and delete the xorg.conf generated by Nvidia.

    Read the article

  • T4 Performance Counters explained

    - by user13346607
    Now that T4 is out for a few month some people might have wondered what details of the new pipeline you can monitor. A "cpustat -h" lists a lot of events that can be monitored, and only very few are self-explanatory. I will try to give some insight on all of them, some of these "PIC events" require an in-depth knowledge of T4 pipeline. Over time I will try to explain these, for the time being these events should simply be ignored. (Side note: some counters changed from tape-out 1.1 (*only* used in the T4 beta program) to tape-out 1.2 (used in the systems shipping today) The table only lists the tape-out 1.2 counters) 0 0 1 1058 6033 Oracle Microelectronics 50 14 7077 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;} pic name (cpustat) Prose Comment Sel-pipe-drain-cycles, Sel-0-[wait|ready], Sel-[1,2] Sel-0-wait counts cycles a strand waits to be selected. Some reasons can be counted in detail; these are: Sel-0-ready: Cycles a strand was ready but not selected, that can signal pipeline oversubscription Sel-1: Cycles only one instruction or µop was selected Sel-2: Cycles two instructions or µops were selected Sel-pipe-drain-cycles: cf. PRM footnote 8 to table 10.2 Pick-any, Pick-[0|1|2|3] Cycles one, two, three, no or at least one instruction or µop is picked Instr_FGU_crypto Number of FGU or crypto instructions executed on that vcpu Instr_ld dto. for load Instr_st dto. for store SPR_ring_ops dto. for SPR ring ops Instr_other dto. for all other instructions not listed above, PRM footnote 7 to table 10.2 lists the instructions Instr_all total number of instructions executed on that vcpu Sw_count_intr Nr of S/W count instructions on that vcpu (sethi %hi(fc000),%g0 (whatever that is))  Atomics nr of atomic ops, which are LDSTUB/a, CASA/XA, and SWAP/A SW_prefetch Nr of PREFETCH or PREFETCHA instructions Block_ld_st Block loads or store on that vcpu IC_miss_nospec, IC_miss_[L2_or_L3|local|remote]\ _hit_nospec Various I$ misses, distinguished by where they hit. All of these count per thread, but only primary events: T4 counts only the first occurence of an I$ miss on a core for a certain instruction. If one strand misses in I$ this miss is counted, but if a second strand on the same core misses while the first miss is being resolved, that second miss is not counted This flavour of I$ misses counts only misses that are caused by instruction that really commit (note the "_nospec") BTC_miss Branch target cache miss ITLB_miss ITLB misses (synchronously counted) ITLB_miss_asynch dto. but asynchronously [I|D]TLB_fill_\ [8KB|64KB|4MB|256MB|2GB|trap] H/W tablewalk events that fill ITLB or DTLB with translation for the corresponding page size. The “_trap” event occurs if the HWTW was not able to fill the corresponding TLB IC_mtag_miss, IC_mtag_miss_\ [ptag_hit|ptag_miss|\ ptag_hit_way_mismatch] I$ micro tag misses, with some options for drill down Fetch-0, Fetch-0-all fetch-0 counts nr of cycles nothing was fetched for this particular strand, fetch-0-all counts cycles nothing was fetched for all strands on a core Instr_buffer_full Cycles the instruction buffer for a strand was full, thereby preventing any fetch BTC_targ_incorrect Counts all occurences of wrongly predicted branch targets from the BTC [PQ|ROB|LB|ROB_LB|SB|\ ROB_SB|LB_SB|RB_LB_SB|\ DTLB_miss]\ _tag_wait ST_q_tag_wait is listed under sl=20. These counters monitor pipeline behaviour therefore they are not strand specific: PQ_...: cycles Rename stage waits for a Pick Queue tag (might signal memory bound workload for single thread mode, cf. Mail from Richard Smith) ROB_...: cycles Select stage waits for a ROB (ReOrderBuffer) tag LB_...: cycles Select stage waits for a Load Buffer tag SB_...: cycles Select stage waits for Store Buffer tag combinations of the above are allowed, although some of these events can overlap, the counter will only be incremented once per cycle if any of these occur DTLB_...: cycles load or store instructions wait at Pick stage for a DTLB miss tag [ID]TLB_HWTW_\ [L2_hit|L3_hit|L3_miss|all] Counters for HWTW accesses caused by either DTLB or ITLB misses. Canbe further detailed by where they hit IC_miss_L2_L3_hit, IC_miss_local_remote_remL3_hit, IC_miss I$ prefetches that were dropped because they either miss in L2$ or L3$ This variant counts misses regardless if the causing instruction commits or not DC_miss_nospec, DC_miss_[L2_L3|local|remote_L3]\ _hit_nospec D$ misses either in general or detailed by where they hit cf. the explanation for the IC_miss in two flavours for an explanation of _nospec and the reasoning for two DC_miss counters DTLB_miss_asynch counts all DTLB misses asynchronously, there is no way to count them synchronously DC_pref_drop_DC_hit, SW_pref_drop_[DC_hit|buffer_full] L1-D$ h/w prefetches that were dropped because of a D$ hit, counted per core. The others count software prefetches per strand [Full|Partial]_RAW_hit_st_[buf|q] Count events where a load wants to get data that has not yet been stored, i. e. it is still inside the pipeline. The data might be either still in the store buffer or in the store queue. If the load's data matches in the SB and in the store queue the data in buffer takes precedence of course since it is younger [IC|DC]_evict_invalid, [IC|DC|L1]_snoop_invalid, [IC|DC|L1]_invalid_all Counter for invalidated cache evictions per core St_q_tag_wait Number of cycles pipeline waits for a store queue tag, of course counted per core Data_pref_[drop_L2|drop_L3|\ hit_L2|hit_L3|\ hit_local|hit_remote] Data prefetches that can be further detailed by either why they were dropped or where they did hit St_hit_[L2|L3], St_L2_[local|remote]_C2C, St_local, St_remote Store events distinguished by where they hit or where they cause a L2 cache-to-cache transfer, i.e. either a transfer from another L2$ on the same die or from a different die DC_miss, DC_miss_\ [L2_L3|local|remote]_hit D$ misses either in general or detailed by where they hit cf. the explanation for the IC_miss in two flavours for an explanation of _nospec and the reasoning for two DC_miss counters L2_[clean|dirty]_evict Per core clean or dirty L2$ evictions L2_fill_buf_full, L2_wb_buf_full, L2_miss_buf_full Per core L2$ buffer events, all count number of cycles that this state was present L2_pipe_stall Per core cycles pipeline stalled because of L2$ Branches Count branches (Tcc, DONE, RETRY, and SIT are not counted as branches) Br_taken Counts taken branches (Tcc, DONE, RETRY, and SIT are not counted as branches) Br_mispred, Br_dir_mispred, Br_trg_mispred, Br_trg_mispred_\ [far_tbl|indir_tbl|ret_stk] Counter for various branch misprediction events.  Cycles_user counts cycles, attribute setting hpriv, nouser, sys controls addess space to count in Commit-[0|1|2], Commit-0-all, Commit-1-or-2 Number of times either no, one, or two µops commit for a strand. Commit-0-all counts number of times no µop commits for the whole core, cf. footnote 11 to table 10.2 in PRM for a more detailed explanation on how this counters interacts with the privilege levels

    Read the article

  • From J2EE to Java EE: what has changed?

    - by Bruno.Borges
    See original @Java_EE tweet on 29 May 2014 Yeap, it has been 8 years since the term J2EE was replaced, and still some people refer to it (mostly recruiters, luckily!). But then comes the question: what has changed besides the name? Our community friend Abhishek Gupta worked on this question and provided an excellent response titled "What's in a name? Java EE? J2EE?". But let me give you a few highlights here so you don't lose yourself with YATO (yet another tab opened): J2EE used to be an infrastructure and resources provider only, requiring developers to depend on external 3rd-party frameworks to then implement application requirements or improve productivity J2EE used to require hundreds of XML lines of codes to define just a dozen of resources like EJBs, MDBs, Servlets, and so on J2EE used to support only EAR (Enterprise Archives) with a bunch of other archives like JARs and WARs just to run a simple Web application And so on, and so on! It was a great technology but still required a lot of work to get something up and running. Remember xDoclet? Remember Struts? The old days of pure Hibernate code? Or when Ajax became a trending topic and we were all implementing it with DWR Servlet? Still, we J2EE developers survived, and learned, and helped evolve the platform to a whole new level of DX (Developer Experience). A new DX for J2EE suggested a new name. One that referred to the platform as the Enterprise Edition of Java, because "Java is why we're here" quoting Bill Shannon. The release of Java EE 5 included so many features that clearly showed developers the platform was going after all those DX gaps. Radical simplification of the persistence model with the introduction of JPA Support of Annotations following the launch of Java SE 5.0 Updated XML APIs with the introduction of StAX Drastic simplification of the EJB component model (with annotations!) Convention over Configuration and Dependency Injection A few bullets you may say but that represented a whole new DX and a vision for upcoming versions. Clearly, the release of Java EE 5 helped drive the future of the platform by reducing the number of XMLs, Java Interfaces, simplified configurations, provided convention-over-configuration, etc! We then saw the release of Java EE 6 with even more great features like Managed Beans, CDI, Bean Validation, improved JSP and Servlets APIs, JASPIC, the posisbility to deploy plain WARs and so many other improvements it is difficult to list in one sentence. And we've gotta give Spring Framework some credit here: thanks to Rod Johnson and team, concepts like Dependency Injection fit perfectly into the Java EE Platform. Clearly, Spring used to be one of the most inspiring frameworks for the Java EE platform, and it is great to see things like Pivotal and Spring supporting JSR 352 Batch API standard! Cooperation to keep improving DX at maximum in the server-side Java landscape.  The master piece result of these previous releases is seen and called today as Java EE 7, which by providing a newly and improved JavaServer Faces release, with new features for Web Development like WebSockets API, improved JAX-RS, and JSON-P, but also including Batch API and so many other great improvements, has increased developer productivity and brought innovation to server-side Java developers. Java EE is not just a new name (which was introduced back in May 2006!) but a new Developer Experience for server-side Java developers. To show you why we are here and where we are going (see the Java EE 8 update), we wanted to share with you a draft of the new Java EE logos that the evangelist team created, to help you spread the word about Java EE. You can get access to these images at the Java EE Platform Facebook Album, or the Google+ Java EE Platform Album whichever is better for you, but don't forget to like and/or +1 those social network profiles :-) A message to all job recruiters: stop using J2EE and start using Java EE if you want to find great Java EE 5, Java EE 6, or Java EE 7 developers To not only save you recruiter valuable characters when tweeting that job opportunity but to also match the correct term, we invite you to replace long terms like "Java/J2EE" or even worse "#Java #J2EE #JEE" or all these awkward combinations with the only acceptable hashtag: #JavaEE. And to prove that Java EE is catching among developers and even recruiters, and that J2EE is past, let me highlight here how are the jobs trends! The image below is from Indeed.com trends page, for the following keywords: J2EE, Java/J2EE, Java/JEE, JEE. As you can see, J2EE is indeed going away, while JEE saw some increase. Perhaps because some people are just lazy to type "Java" but at the same time they are aware that J2EE (the '2') is past. We shall forgive that for a while :-) Another proof that J2EE is going away is by looking at its trending statistics at Google. People have been showing less and less interest in the term J2EE. See the chart below:  Recruiter, if you still need proof that J2EE is past, that Java EE is trending, and that other job recruiters are seeking for Java EE developers, and that the developer community is aware of the new term, perhaps these other charts can show you what term you should be using. See for example the Job Trends for Java EE at Indeed.com and notice where it started... 2006! 8 years ago :-) Last but not least, the Google Trends for Java EE term (including the still wrong but forgivable JavaEE term) shows us that the new term is catching up very well. J2EE is past. Oh, and don't worry about the curves going down. We developers like to be hipsters sometimes and today only AngularJS, NodeJS, BigData are going up. Java EE and other traditional server-side technologies such as Spring, or even from other platforms such as Ruby on Rails, PHP, Grails, are pretty much consolidated and the curves... well, they are consolidated too. So If you are a Java EE developer, drop that J2EE from your résumé, and let recruiters also know that this term is past. Embrace Java EE, and enjoy a new developer experience for server-side Java developers. Java EE on TwitterJava EE on Google+Java EE on Facebook

    Read the article

  • Outlook 2013 keeps freezing, semi-consistently

    - by AviD
    I have an oddity of problem with my Outlook's stability. It seems to be freezing up, not at random intervals, but based on a seemingly strange combination of configurations. I have been trying many different combinations, I've even devolved to "Cargo-cult" debugging, since I have no clue what is causing this... Here is my set up - since I don't know for sure which settings are causing the lockup, I'll probably mention irrelevant things: (relatively) clean install of Windows 8 (on hyper-v, if that matters) Clean install of Outlook 2013, fully updated 3 accounts configured: Hotmail account configured with ActiveSync Gmail account Large-ish account (several GB) connected with IMAP Only a few folders are subscribed in IMAP Outlook is set to only display subscribed folders configured to keep messages permanently Google Apps account, connected with IMAP Small account connected with IMAP All folders IMAP subscribed Outlook is set to only display subscribed folders configured to keep messages permanently Several Send/Receive Groups configured, to try different configurations of enabling/disable/partial the different accounts - with different send times, from 60 minutes down to 5 minutes. The problem is that at certain points Outlook completely freezes up and I have to kill it. This is not consistent - there are some things that cause it immediately almost consistently, there are some times that it just happens by itself after some period of time (sometimes a few moments, sometimes a few hours; sometimes while using it, sometimes after I've been away from it for a few hours). I have searched all over, and there seem to be many with similar (apparently) problem, and found numerous "solutions" (some even more cargocultish than mine), but so far none of them worked. I've removed all the accounts, both all together and one at a time, and re-configured them - eventually it freezes up. I've tried uninstalling Outlook, cleaning it up completely - removing files, app settings, registry keys, etc - then reinstalling - eventually it freezes up. I've only enabled the Hotmail account, disabling (but not removing) the Google accounts - apparently this does not lock up. I've enabled the Hotmail and the Gmail accounts, leaving the Apps one disabled - it seems like it does not lock up. With all accounts enabled, it locks up almost immediately after doing a send/receive. With only the Apps account enabled, it seems to not lock up. With the Hotmail and the Apps accounts enabled (Gmail disabled), it seems like it locks up after a random amount of time. With Hotmail enabled, and Gmail and Apps both enabled but set to receive only custom folder downloading (not all subscribed folders) - sometimes it locks up right after a send/receive, sometimes it goes for hours without locking up, and sometimes it only locks up when I send an email. I've tried switching the ports for the Google accounts (SSL/465 vs TLS/587), though I have no idea if this should affect, but no real difference. In short, I honestly have no idea what is actually causing Outlook to lock up, I might be completely barking up the wrong tree. At this point I don't really know what else to try, I'm flipping switches at random here. I would like to have all 3 accounts enabled, ideally in several groups (e.g. pull down only important folders in a group with short interval, and all other folders in a longer interval) - obviously without freezing up at all. I've tried putting in all the important details, if there is anything else important to add please let me know. Another issue that occurred to me might also be connected - the Google accounts don't always synchronize properly, even after a send/receive or "update folder". At least not consistently... though I haven't been able to find a significant connection between this and that.

    Read the article

  • hostapd running on Ubuntu Server 13.04 only allows single station to connect when using wpa

    - by user450688
    Problem Only a single station can connect to hostapd at a time. Any single station can connect (W8, OSX, iOS, Nexus) but when two or more hosts are connected at the same time the first client loses its connectivity. However there are no connectivity issues when WPA is not used. Setup Linux (Ubuntu server 13.04) wireless router (with separate networks for wired WAN, wired LAN, and Wireless LAN. iptables-save output: *nat :PREROUTING ACCEPT [0:0] :INPUT ACCEPT [0:0] :OUTPUT ACCEPT [0:0] :POSTROUTING ACCEPT [0:0] -A POSTROUTING -s 10.0.0.0/24 -o p4p1 -j MASQUERADE -A POSTROUTING -s 10.0.1.0/24 -o p4p1 -j MASQUERADE COMMIT *mangle :PREROUTING ACCEPT [13:916] :INPUT ACCEPT [9:708] :FORWARD ACCEPT [4:208] :OUTPUT ACCEPT [9:3492] :POSTROUTING ACCEPT [13:3700] COMMIT *filter :INPUT DROP [0:0] :FORWARD DROP [0:0] :OUTPUT ACCEPT [9:3492] -A INPUT -i p4p1 -m state --state RELATED,ESTABLISHED -j ACCEPT -A INPUT -i p4p1 -p tcp -m tcp --dport 22 -m state --state NEW -j ACCEPT -A INPUT -i eth0 -j ACCEPT -A INPUT -i wlan0 -j ACCEPT -A INPUT -i lo -j ACCEPT -A FORWARD -i p4p1 -m state --state RELATED,ESTABLISHED -j ACCEPT -A FORWARD -i eth0 -j ACCEPT -A FORWARD -i wlan0 -j ACCEPT -A FORWARD -i lo -j ACCEPT COMMIT /etc/hostapd/hostapd.conf #Wireless Interface interface=wlan0 driver=nl80211 ssid=<removed> hw_mode=g channel=6 max_num_sta=15 auth_algs=3 ieee80211n=1 wmm_enabled=1 wme_enabled=1 #Configure Hardware Capabilities of Interface ht_capab=[HT40+][SMPS-STATIC][GF][SHORT-GI-20][SHORT-GI-40][RX-STBC12] #Accept all MAC address macaddr_acl=0 #Shared Key Authentication wpa=1 wpa_passphrase=<removed> wpa_key_mgmt=WPA-PSK wpa_pairwise=CCMP rsn_pairwise=CCMP ###IPad Connectivevity Repair ieee8021x=0 eap_server=0 Wireless Card #lshw output product: RT2790 Wireless 802.11n 1T/2R PCIe vendor: Ralink corp. physical id: 0 bus info: pci@0000:03:00.0 logical name: mon.wlan0 version: 00 serial: <removed> width: 32 bits clock: 33MHz capabilities: pm msi pciexpress bus_master cap_list logical wireless ethernet physical configuration: broadcast=yes driver=rt2800pci driverversion=3.8.0-25-generic firmware=0.34 ip=10.0.1.254 latency=0 link=yes multicast=yes wireless=IEEE 802.11bgn #iw list output Band 1: Capabilities: 0x272 HT20/HT40 Static SM Power Save RX Greenfield RX HT20 SGI RX HT40 SGI RX STBC 2-streams Max AMSDU length: 3839 bytes No DSSS/CCK HT40 Maximum RX AMPDU length 65535 bytes (exponent: 0x003) Minimum RX AMPDU time spacing: 2 usec (0x04) HT RX MCS rate indexes supported: 0-15, 32 TX unequal modulation not supported HT TX Max spatial streams: 1 HT TX MCS rate indexes supported may differ Frequencies: * 2412 MHz [1] (27.0 dBm) * 2417 MHz [2] (27.0 dBm) * 2422 MHz [3] (27.0 dBm) * 2427 MHz [4] (27.0 dBm) * 2432 MHz [5] (27.0 dBm) * 2437 MHz [6] (27.0 dBm) * 2442 MHz [7] (27.0 dBm) * 2447 MHz [8] (27.0 dBm) * 2452 MHz [9] (27.0 dBm) * 2457 MHz [10] (27.0 dBm) * 2462 MHz [11] (27.0 dBm) * 2467 MHz [12] (disabled) * 2472 MHz [13] (disabled) * 2484 MHz [14] (disabled) Bitrates (non-HT): * 1.0 Mbps * 2.0 Mbps (short preamble supported) * 5.5 Mbps (short preamble supported) * 11.0 Mbps (short preamble supported) * 6.0 Mbps * 9.0 Mbps * 12.0 Mbps * 18.0 Mbps * 24.0 Mbps * 36.0 Mbps * 48.0 Mbps * 54.0 Mbps max # scan SSIDs: 4 max scan IEs length: 2257 bytes Coverage class: 0 (up to 0m) Supported Ciphers: * WEP40 (00-0f-ac:1) * WEP104 (00-0f-ac:5) * TKIP (00-0f-ac:2) * CCMP (00-0f-ac:4) Available Antennas: TX 0 RX 0 Supported interface modes: * IBSS * managed * AP * AP/VLAN * WDS * monitor * mesh point software interface modes (can always be added): * AP/VLAN * monitor valid interface combinations: * #{ AP } <= 8, total <= 8, #channels <= 1 Supported commands: * new_interface * set_interface * new_key * new_beacon * new_station * new_mpath * set_mesh_params * set_bss * authenticate * associate * deauthenticate * disassociate * join_ibss * join_mesh * set_tx_bitrate_mask * set_tx_bitrate_mask * action * frame_wait_cancel * set_wiphy_netns * set_channel * set_wds_peer * Unknown command (84) * Unknown command (87) * Unknown command (85) * Unknown command (89) * Unknown command (92) * testmode * connect * disconnect Supported TX frame types: * IBSS: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * managed: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * AP: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * AP/VLAN: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * mesh point: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * P2P-client: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * P2P-GO: 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 * Unknown mode (10): 0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xa0 0xb0 0xc0 0xd0 0xe0 0xf0 Supported RX frame types: * IBSS: 0x40 0xb0 0xc0 0xd0 * managed: 0x40 0xd0 * AP: 0x00 0x20 0x40 0xa0 0xb0 0xc0 0xd0 * AP/VLAN: 0x00 0x20 0x40 0xa0 0xb0 0xc0 0xd0 * mesh point: 0xb0 0xc0 0xd0 * P2P-client: 0x40 0xd0 * P2P-GO: 0x00 0x20 0x40 0xa0 0xb0 0xc0 0xd0 * Unknown mode (10): 0x40 0xd0 Device supports RSN-IBSS. HT Capability overrides: * MCS: ff ff ff ff ff ff ff ff ff ff * maximum A-MSDU length * supported channel width * short GI for 40 MHz * max A-MPDU length exponent * min MPDU start spacing Device supports TX status socket option. Device supports HT-IBSS.

    Read the article

  • Windows XP Video Configuration Issues

    - by Matt
    Recently I had my motherboard burn out on me. Needing the machine for work, I purchased a different motherboard and installed that. Generally a reinstall of windows is good at that point but I am not in a position to do that so I just decided I would live with it for now. When I can log-in, everything works fine, what doesn't is getting to the log-in prompt to begin with. Basically when I first installed the new mobo, every time I rebooted the machine, I would not get the windows login prompt. One of the monitors would receive a signal but the screen would be black. Moving the mouse would not show the cursor and hitting the up arrow key and typing my password and hitting enter (which will normally log you in without mouse) wouldn't change anything. I would then change the monitor configuration around (2 lcd's and a crt) and reboot and at least one of the monitors would work and display the login prompt. I could then go into display properties and turn on the other monitors. However if I rebooted again, I would get the black screen on one monitor again. I would then have to change the configuration again to one not used before and I could re-do the manual setup at that point. I think windows saves the configurations so I had to keep giving it new ones. Needless to say I've been trying to not turn off my machine. Early this week I actually got the prompt to come up without playing musical monitors. Thinking everything was getting better, I found no harm in rebooting to install the latest windows updates. Boy was I wrong. Now no matter what I do I can't get a windows log-in prompt to display. I've tried almost every conceivable combination. The new mobo has onboard video so I set that in the bios (yea bios screen always displays fine, its not until windows boots that there is a problem) to be the primary video. Still no luck. I have two other graphics cards in the machine which I'm using. Tried all kinds of configurations between those and on-board but still get this black screen of death. I read somewhere that deleting the video drivers would reset the configurations. I logged into safe mode (which works on one monitor), and uninstalled the display drivers. Still no luck and when I booted back into safe mode, it wanted to install new hardware and the display adapters weren't there as expected. Anyone have any ideas? A fresh install would be a pain and I might be getting my old board back from RMA soon so not sure I want to go through with that just yet. Only thing I can think of is to continue to try other combinations like physically removing the graphics cards. They are both EVGA 8600 cards and the windows boot screen does display fwiw.

    Read the article

  • Oracle Enterprise Manager Ops Center : Using Operational Profiles to Install Packages and other Content

    - by LeonShaner
    Oracle Enterprise Manager Ops Center provides numerous ways to deploy content, such as through OS Update Profiles, or as part of an OS Provisioning plan or combinations of those and other "Install Software" capabilities of Deployment Plans.  This short "how-to" blog will highlight an alternative way to deploy content using Operational Profiles. Usually we think of Operational Profiles as a way to execute a simple "one-time" script to perform a basic system administration function, which can optionally be based on user input; however, Operational Profiles can be much more powerful than that.  There is often more to performing an action than merely running a script -- sometimes configuration files, packages, binaries, and other scripts, etc. are needed to perform the action, and sometimes the user would like to leave such content on the system for later use. For shell scripts and other content written to be generic enough to work on any flavor of UNIX, converting the same scripts and configuration files into Solaris 10 SVR4 package, Solaris 11 IPS package, and/or a Linux RPM's might be seen as three times the work, for little appreciable gain.   That is where using an Operational Profile to deploy simple scripts and other generic content can be very helpful.  The approach is so powerful, that pretty much any kind of content can be deployed using an Operational Profile, provided the files involved are not overly large, and it is not necessary to convert the content into UNIX variant-specific formats. The basic formula for deploying content with an Operational Profile is as follows: Begin with a traditional script header, which is a UNIX shell script that will be responsible for decoding and extracting content, copying files into the right places, and executing any other scripts and commands needed to install and configure that content. Include steps to make the script platform-aware, to do the right thing for a given UNIX variant, or a "sorry" message if the operator has somehow tried to run the Operational Profile on a system where the script is not designed to run.  Ops Center can constrain execution by target type, so such checks at this level are an added safeguard, but also useful with the generic target type of "Operating System" where the admin wants the script to "do the right thing," whatever the UNIX variant. Include helpful output to show script progress, and any other informational messages that can help the admin determine what has gone wrong in the case of a problem in script execution.  Such messages will be shown in the job execution log. Include necessary "clean up" steps for normal and error exit conditions Set non-zero exit codes when appropriate -- a non-zero exit code will cause an Operational Profile job to be marked failed, which is the admin's cue to look into the job details for diagnostic messages in the output from the script. That first bullet deserves some explanation.  If Operational Profiles are usually simple "one-time" scripts and binary content is not allowed, then how does the actual content, packages, binaries, and other scripts get delivered along with the script?  More specifically, how does one include such content without needing to first create some kind of traditional package?   All that is required is to simply encode the content and append it to the end of the Operational Profile.  The header portion of the Operational Profile will need to contain the commands to decode the embedded content that has been appended to the bottom of the script.  The header code can do whatever else is needed, and finally clean up any intermediate files that were created during the decoding and extraction of the content. One way to encode binary and other content for inclusion in a script is to use the "uuencode" utility to convert the content into simple base64 ASCII text -- a form that is suitable to be appended to an Operational Profile.   The behavior of the "uudecode" utility is such that it will skip over any parts of the input that do not fit the uuencoded "begin" and "end" clauses.  For that reason, your header script will be skipped over, and uudecode will find your embedded content, that you will uuencode and paste at the end of the Operational Profile.  You can have as many "begin" / "end" clauses as you need -- just separate each embedded file by an empty line between "begin" and "end" clauses. Example:  Install SUNWsneep and set the system serial number Script:  deploySUNWsneep.sh ( <- right-click / save to download) Highlights: #!/bin/sh # Required variables: OC_SERIAL="$OC_SERIAL" # The user-supplied serial number for the asset ... Above is a good practice, showing right up front what kind of input the Operational Profile will require.   The right-hand side where $OC_SERIAL appears in this example will be filled in by Ops Center based on the user input at deployment time. The script goes on to restrict the use of the program to the intended OS type (Solaris 10 or older, in this example, but other content might be suitable for Solaris 11, or Linux -- it depends on the content and the script that will handle it). A temporary working directory is created, and then we have the command that decodes the embedded content from "self" which in scripting terms is $0 (a variable that expands to the name of the currently executing script): # Pass myself through uudecode, which will extract content to the current dir uudecode $0 At that point, whatever content was appended in uuencoded form at the end of the script has been written out to the current directory.  In this example that yields a file, SUNWsneep.7.0.zip, which the rest of the script proceeds to unzip, and pkgadd, followed by running "/opt/SUNWsneep/bin/sneep -s $OC_SERIAL" which is the command that stores the system serial for future use by other programs such as Explorer.   Don't get hung up on the example having used a pkgadd command.  The content started as a zip file and it could have been a tar.gz, or any other file.  This approach simply decodes the file.  The header portion of the script has to make sense of the file and do the right thing (e.g. it's up to you). The script goes on to clean up after itself, whether or not the above was successful.  Errors are echo'd by the script and a non-zero exit code is set where appropriate. Second to last, we have: # just in case, exit explicitly, so that uuencoded content will not cause error OPCleanUP exit # The rest of the script is ignored, except by uudecode # # UUencoded content follows # # e.g. for each file needed, #  $ uuencode -m {source} {source} > {target}.uu5 # then paste the {target}.uu5 files below # they will be extracted into the workding dir at $TDIR # The commentary above also describes how to encode the content. Finally we have the uuencoded content: begin-base64 444 SUNWsneep.7.0.zip UEsDBBQAAAAIAPsRy0Di3vnukAAAAMcAAAAKABUAcmVhZG1lLnR4dFVUCQADOqnVT7up ... VXgAAFBLBQYAAAAAAgACAJEAAADTNwEAAAA= ==== That last line of "====" is the base64 uuencode equivalent of a blank line, followed by "end" and as mentioned you can have as many begin/end clauses as you need.  Just separate each embedded file by a blank line after each ==== and before each begin-base64. Deploying the example Operational Profile looks like this (where I have pasted the system serial number into the required field): The job succeeded, but here is an example of the kind of diagnostic messages that the example script produces, and how Ops Center displays them in the job details: This same general approach could be used to deploy Explorer, and other useful utilities and scripts. Please let us know what you think?  Until next time...\Leon-- Leon Shaner | Senior IT/Product ArchitectSystems Management | Ops Center Engineering @ Oracle The views expressed on this [blog; Web site] are my own and do not necessarily reflect the views of Oracle. For more information, please go to Oracle Enterprise Manager  web page or  follow us at :  Twitter | Facebook | YouTube | Linkedin | Newsletter

    Read the article

  • Augmenting your Social Efforts via Data as a Service (DaaS)

    - by Mike Stiles
    The following is the 3rd in a series of posts on the value of leveraging social data across your enterprise by Oracle VP Product Development Don Springer and Oracle Cloud Data and Insight Service Sr. Director Product Management Niraj Deo. In this post, we will discuss the approach and value of integrating additional “public” data via a cloud-based Data-as-as-Service platform (or DaaS) to augment your Socially Enabled Big Data Analytics and CX Management. Let’s assume you have a functional Social-CRM platform in place. You are now successfully and continuously listening and learning from your customers and key constituents in Social Media, you are identifying relevant posts and following up with direct engagement where warranted (both 1:1, 1:community, 1:all), and you are starting to integrate signals for communication into your appropriate Customer Experience (CX) Management systems as well as insights for analysis in your business intelligence application. What is the next step? Augmenting Social Data with other Public Data for More Advanced Analytics When we say advanced analytics, we are talking about understanding causality and correlation from a wide variety, volume and velocity of data to Key Performance Indicators (KPI) to achieve and optimize business value. And in some cases, to predict future performance to make appropriate course corrections and change the outcome to your advantage while you can. The data to acquire, process and analyze this is very nuanced: It can vary across structured, semi-structured, and unstructured data It can span across content, profile, and communities of profiles data It is increasingly public, curated and user generated The key is not just getting the data, but making it value-added data and using it to help discover the insights to connect to and improve your KPIs. As we spend time working with our larger customers on advanced analytics, we have seen a need arise for more business applications to have the ability to ingest and use “quality” curated, social, transactional reference data and corresponding insights. The challenge for the enterprise has been getting this data inline into an easily accessible system and providing the contextual integration of the underlying data enriched with insights to be exported into the enterprise’s business applications. The following diagram shows the requirements for this next generation data and insights service or (DaaS): Some quick points on these requirements: Public Data, which in this context is about Common Business Entities, such as - Customers, Suppliers, Partners, Competitors (all are organizations) Contacts, Consumers, Employees (all are people) Products, Brands This data can be broadly categorized incrementally as - Base Utility data (address, industry classification) Public Master Reference data (trade style, hierarchy) Social/Web data (News, Feeds, Graph) Transactional Data generated by enterprise process, workflows etc. This Data has traits of high-volume, variety, velocity etc., and the technology needed to efficiently integrate this data for your needs includes - Change management of Public Reference Data across all categories Applied Big Data to extract statics as well as real-time insights Knowledge Diagnostics and Data Mining As you consider how to deploy this solution, many of our customers will be using an online “cloud” service that provides quality data and insights uniformly to all their necessary applications. In addition, they are requesting a service that is: Agile and Easy to Use: Applications integrated with the service can obtain data on-demand, quickly and simply Cost-effective: Pre-integrated into applications so customers don’t have to Has High Data Quality: Single point access to reference data for data quality and linkages to transactional, curated and social data Supports Data Governance: Becomes more manageable and cost-effective since control of data privacy and compliance can be enforced in a centralized place Data-as-a-Service (DaaS) Just as the cloud has transformed and now offers a better path for how an enterprise manages its IT from their infrastructure, platform, and software (IaaS, PaaS, and SaaS), the next step is data (DaaS). Over the last 3 years, we have seen the market begin to offer a cloud-based data service and gain initial traction. On one side of the DaaS continuum, we see an “appliance” type of service that provides a single, reliable source of accurate business data plus social information about accounts, leads, contacts, etc. On the other side of the continuum we see more of an online market “exchange” approach where ISVs and Data Publishers can publish and sell premium datasets within the exchange, with the exchange providing a rich set of web interfaces to improve the ease of data integration. Why the difference? It depends on the provider’s philosophy on how fast the rate of commoditization of certain data types will occur. How do you decide the best approach? Our perspective, as shown in the diagram below, is that the enterprise should develop an elastic schema to support multi-domain applicability. This allows the enterprise to take the most flexible approach to harness the speed and breadth of public data to achieve value. The key tenet of the proposed approach is that an enterprise carefully federates common utility, master reference data end points, mobility considerations and content processing, so that they are pervasively available. One way you may already be familiar with this approach is in how you do Address Verification treatments for accounts, contacts etc. If you design and revise this service in such a way that it is also easily available to social analytic needs, you could extend this to launch geo-location based social use cases (marketing, sales etc.). Our fundamental belief is that value-added data achieved through enrichment with specialized algorithms, as well as applying business “know-how” to weight-factor KPIs based on innovative combinations across an ever-increasing variety, volume and velocity of data, will be where real value is achieved. Essentially, Data-as-a-Service becomes a single entry point for the ever-increasing richness and volume of public data, with enrichment and combined capabilities to extract and integrate the right data from the right sources with the right factoring at the right time for faster decision-making and action within your core business applications. As more data becomes available (and in many cases commoditized), this value-added data processing approach will provide you with ongoing competitive advantage. Let’s look at a quick example of creating a master reference relationship that could be used as an input for a variety of your already existing business applications. In phase 1, a simple master relationship is achieved between a company (e.g. General Motors) and a variety of car brands’ social insights. The reference data allows for easy sort, export and integration into a set of CRM use cases for analytics, sales and marketing CRM. In phase 2, as you create more data relationships (e.g. competitors, contacts, other brands) to have broader and deeper references (social profiles, social meta-data) for more use cases across CRM, HCM, SRM, etc. This is just the tip of the iceberg, as the amount of master reference relationships is constrained only by your imagination and the availability of quality curated data you have to work with. DaaS is just now emerging onto the marketplace as the next step in cloud transformation. For some of you, this may be the first you have heard about it. Let us know if you have questions, or perspectives. In the meantime, we will continue to share insights as we can.Photo: Erik Araujo, stock.xchng

    Read the article

  • Dynamic DNS registration for VPN clients

    - by Eric Falsken
    I've got a VPN server set up in my Active Directory on a remote network. (VPN Server is separate box from DNS/AD) When I dial into the network (client machine is not a member of the AD) the machine does not register its IP or Hostname in the DNS. I've played with all possible combinations of DHCP and RRAS-allocated IP pools, and none of them seem to cause my client to register. Is it because my client has to be a member of the domain? Are there some security settins I can tweak so that it can register its hostname/ip? I've looked in the event logs (System and Security) for the AD, DNS, DHCP, RRAS, and the client machine, and don't see anything relating to DNS Registration. Here's the IPConfig on the client machine (once connected): PPP adapter My VPN Name: Connection-specific DNS Suffix . : mydomain.local Description . . . . . . . . . . . : My VPN Name Physical Address. . . . . . . . . : DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes IPv4 Address. . . . . . . . . . . : 192.168.1.22(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.255 Default Gateway . . . . . . . . . : DNS Servers . . . . . . . . . . . : 192.168.1.52 <- DC1 192.168.1.53 <- DC2 NetBIOS over Tcpip. . . . . . . . : Enabled

    Read the article

  • How to delete files and folders that cannot be deleted?

    - by glenneroo
    I have a backup copy of a previous Windows' Documents and Settings folder which only contains my original user and within 2 more directories: Favorites and Local Settings. When I try to delete Local Settings I get this error: When I try to delete Favorites, I get this error: I ran this in a cmd shell: attrib *.* -r -a -s -h /s ...but it did not help, nor did it return any errors/warnings. I used Unlocker v1.8.5 and LockHunter repeatedly at multiple levels to see if any files are in use, but both always say: No Files Locked. Update #1: I was able to rename the directory, which now gives me this warning before (trying to) delete: If I press Yes (or Yes to All) then I get this error: Update #2: I let chkdsk /f run which required a reboot since it's on my primary system partition. During Stage 2 scanning, I received about 40 of these: Deleting an index entry from index $0 of file 25. ...followed by: Deleting index entry cookies in index $I30 of file 37576. ...but I still get the first error dialog above when trying to delete. I ran chkdsk again, this time: chkdsk /f /r. Produced no messages. Same result when deleting. Update #3: Digging deeper, the 99 is the name of one of many directories located deep in here: C:\Documents and Settings.OLD\User\Local Settings\Application Data\Microsoft\Messenger\[email protected]\SharingMetadata\[email protected]\DFSR\Staging\CS{D4E4AE55-B5E2-F03B-5189-6C4DA6E41788}\ Inside each of those directories were files with names such as: 2300-{C93D01AC-0739-4FD9-88C7-13D2F21A208E}-v2300-{C93D01AC-0739-4FD9-88C7-13D2F21A208E}-v2300-Downloaded.frx I noticed that, unlike all the directories, I couldn't rename any of these files. I also noticed that the file + dir names were extremely long: Original directory = 194 characters Filenames = 100+ characters Together the length exceeds the 255-char limit which is bad and would explain the error message I posted in Update #1. Partial Solution: Rename all directories until the total path length is less than 100. Afterwards I was able to rename the .frx files, not to mention delete everything inside the Local Settings directory. This is only a partial solution because these (empty) directories are still not deleteable, C:\1\2\Favorites\Wien\What To Do.. C:\1\2\Favorites\Photography\FIRE Same error as above: Here is what Explorer properties shows for both folders: Update #4 (another partial solution): Using harrymc's answer combined with thoroughly reading through this amazing MS-KB article which contains nearly everyone's idea and then some, inconspicuously titled: You cannot delete a file or a folder on an NTFS file system volume. I was able to delete the 2nd folder C:\1\2\Favorites\Photography\FIRE - the problem being that there was an invisible trailing space at the end. I got lucky when I did an auto-complete whilst playing around with the del "\\?\<path>" command which he suggested. NOTE: A normal del did NOT work, nor did deleting from explorer. Now all that is left is the first directory C:\1\2\Favorites\Wien\What To Do.. (yes I tried endlessly with multiple combinations of the above solution ;) Keep 'em coming! =)

    Read the article

< Previous Page | 36 37 38 39 40 41 42 43 44  | Next Page >