Search Results

Search found 2235 results on 90 pages for 'dictionary'.

Page 40/90 | < Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >

  • What is the structure of network managers system-connections files?

    - by Oyks Livede
    could anyone list the complete structure of the configuration files, which network manager stores for known networks in /etc/NetworkManager/system-connections for known networks? Sample (filename askUbuntu): [connection] id=askUbuntu uuid=81255b2e-bdf1-4bdb-b6f5-b94ef16550cd type=802-11-wireless [802-11-wireless] ssid=askUbuntu mode=infrastructure mac-address=00:08:CA:E6:76:D8 [ipv6] method=auto [ipv4] method=auto I would like to create some of them by my own using a script. However, before doing so I would like to know every possible option. Furthermore, this structure seems somehow to resemble the information you can get using the dbus for active connections. dbus-send --system --print-reply \ --dest=org.freedesktop.NetworkManager \ "$active_setting_path" \ # /org/freedesktop/NetworkManager/Settings/2 org.freedesktop.NetworkManager.Settings.Connection.GetSettings Will tell you: array [ dict entry( string "802-11-wireless" array [ dict entry( string "ssid" variant array of bytes "askUbuntu" ) dict entry( string "mode" variant string "infrastructure" ) dict entry( string "mac-address" variant array of bytes [ 00 08 ca e6 76 d8 ] ) dict entry( string "seen-bssids" variant array [ string "02:1A:11:F8:C5:64" string "02:1A:11:FD:1F:EA" ] ) ] ) dict entry( string "connection" array [ dict entry( string "id" variant string "askUbuntu" ) dict entry( string "uuid" variant string "81255b2e-bdf1-4bdb-b6f5-b94ef16550cd" ) dict entry( string "timestamp" variant uint64 1383146668 ) dict entry( string "type" variant string "802-11-wireless" ) ] ) dict entry( string "ipv4" array [ dict entry( string "addresses" variant array [ ] ) dict entry( string "dns" variant array [ ] ) dict entry( string "method" variant string "auto" ) dict entry( string "routes" variant array [ ] ) ] ) dict entry( string "ipv6" array [ dict entry( string "addresses" variant array [ ] ) dict entry( string "dns" variant array [ ] ) dict entry( string "method" variant string "auto" ) dict entry( string "routes" variant array [ ] ) ] ) ] I can create new setting files using the dbus (AddSettings() in /org/freedesktop/NetworkManager/Settings) passing this type of input, so explaining me this structure and telling me all possible options will also help. Afaik, this is a Dictionary{String, Dictionary{String, Variant}}. Will there be any difference creating config files directly or using the dbus?

    Read the article

  • What are the best practices for phasing out obsolete code?

    - by P.Brian.Mackey
    I have the need to phase out an obsolete method. I am aware of the [Obsolete] attribute. Does Microsoft have a recommended best practice guide for doing this? Here's my current plan: A. I do not want to create a new assembly because developers would have to add a new reference to their projects and I expect to get a lot of grief from my boss and co-workers if they must do this. We also do not maintain multiple assembly versions. We only use the latest version. Changing this practice would require changing our deployment process which is a big issue (have to teach people how to do things with TFS instead of FinalBuilder and get them to give up FinalBuilder) B. Mark the old method obsolete. C. Because the implementation is changing (not the method signature), I need to rename the method rather than create an overload. So, to make users aware of the proper method I plan to add a message to the [Obsolete] attribute. This part bothers me, because the only change I'm making is decoupling the method from the connection string. But, because I'm not adding a new assembly, I see no way around this. Result: [Obsolete("Please don't use this anymore because it does not implement IMyDbProvider. Use XXX instead.")]; /// <summary> /// /// </summary> /// <param name="settingName"></param> /// <returns></returns> public static Dictionary<string, Setting> ReadSettings(string settingName) { return ReadSettings(settingName, SomeGeneralClass.ConnectionString); } public Dictionary<string, Setting> ReadSettings2(string settingName) { return ReadSettings(settingName);// IMyDbProvider.ConnectionString private member added to class. Probably have to make this an instance method. }

    Read the article

  • OOP concept: is it possible to update the class of an instantiated object?

    - by Federico
    I am trying to write a simple program that should allow a user to save and display sets of heterogeneous, but somehow related data. For clarity sake, I will use a representative example of vehicles. The program flow is like this: The program creates a Garage object, which is basically a class that can contain a list of vehicles objects Then the users creates Vehicles objects, these Vehicles each have a property, lets say License Plate Nr. Once created, the Vehicle object get added to a list within the Garage object --Later on--, the user can specify that a given Vehicle object is in fact a Car object or a Truck object (thus giving access to some specific attributes such as Number of seats for the Car, or Cargo weight for the truck) At first sight, this might look like an OOP textbook question involving a base class and inheritance, but the problem is more subtle because at the object creation time (and until the user decides to give more info), the computer doesn't know the exact Vehicle type. Hence my question: how would you proceed to implement this program flow? Is OOP the way to go? Just to give an initial answer, here is what I've came up until now. There is only one Vehicle class and the various properties/values are handled by the main program (not the class) through a dictionary. However, I'm pretty sure that there must be a more elegant solution (I'm developing using VB.net): Public Class Garage Public GarageAdress As String Private _ListGarageVehicles As New List(Of Vehicles) Public Sub AddVehicle(Vehicle As Vehicles) _ListGarageVehicles.Add(Vehicle) End Sub End Class Public Class Vehicles Public LicensePlateNumber As String Public Enum VehicleTypes Generic = 0 Car = 1 Truck = 2 End Enum Public VehicleType As VehicleTypes Public DictVehicleProperties As New Dictionary(Of String, String) End Class NOTE that in the example above the public/private modifiers do not necessarily reflect the original code

    Read the article

  • Wordnik Accelerator

    - by prabhpreet
    Wow, creating IE Accelerators is superbly easy. If you want to learn how to create one, go here (some MSDN blog) and the MSDN documentation (clearly written). I was fed up of dictionary.com bringing all those popups and the stupid definitions of Google's dictionary. So I decided to scratch my own itch. I randomly stumbled on the site called Wordnik and it provides with all examples plus definitions plus lots more for words and its popup-free (as far as I know). So I decided to write and accelerator. Here is the source code (Yes, this is it): <?xml version="1.0" encoding="utf-8"?> <os:openServiceDescription xmlns:os="http://www.microsoft.com/schemas/openservicedescription/1.0"> <os:homepageUrl>http://www.wordnik.com</os:homepageUrl> <os:display> <os:name>View on Wordnik</os:name> <os:description>Looking up words on an awesome word site called Wordnik </os:description> <os:icon>http://www.wordnik.com/favicon.ico</os:icon> </os:display> <os:activity category="Define"> <os:activityAction context="selection"> <os:execute method="get" action="http://www.wordnik.com/words/{selection}" ></os:execute> </os:activityAction> </os:activity> </os:openServiceDescription> That’s it. To get it, go here. Enjoy!

    Read the article

  • Wordnik Accelerator

    - by prabhpreet
    Wow, creating IE Accelerators is superbly easy. If you want to learn how to create one, go here (some MSDN blog) and the MSDN documentation (clearly written). I was fed up of dictionary.com bringing all those popups and the stupid definitions of Google's dictionary. So I decided to scratch my own itch. I randomly stumbled on the site called Wordnik and it provides with all examples plus definitions plus lots more for words and its popup-free (as far as I know). So I decided to write and accelerator. Here is the source code (Yes, this is it): <?xml version="1.0" encoding="utf-8"?> <os:openServiceDescription xmlns:os="http://www.microsoft.com/schemas/openservicedescription/1.0"> <os:homepageUrl>http://www.wordnik.com</os:homepageUrl> <os:display> <os:name>View on Wordnik</os:name> <os:description>Looking up words on an awesome word site called Wordnik </os:description> <os:icon>http://www.wordnik.com/favicon.ico</os:icon> </os:display> <os:activity category="Define"> <os:activityAction context="selection"> <os:execute method="get" action="http://www.wordnik.com/words/{selection}" ></os:execute> </os:activityAction> </os:activity> </os:openServiceDescription> That’s it. To get it, go here. Enjoy!

    Read the article

  • Unnamed Refactoring

    - by Liam McLennan
    This post is a message in a bottle. It cast it into the sea in the hope that it will one day return to me, stuffed to the cork with enlightenment. Yesterday I  tweeted, what is the name of the pattern where you replace a multi-way conditional with an associative array? I said ‘pattern’ but I meant ‘refactoring’. Anyway, no one replied so I will describe the refactoring here. Programmers tend to think imperatively, which leads to code such as: public int GetPopulation(string country) { if (country == "Australia") { return 22360793; } else if (country == "China") { return 1324655000; } else if (country == "Switzerland") { return 7782900; } else { throw new Exception("What ain't no country I ever heard of. They speak English in what?"); } } which is horrid. We can write a cleaner version, replacing the multi-way conditional with an associative array, treating the conditional as data: public int GetPopulation(string country) { if (!Populations.ContainsKey(country)) throw new Exception("The population of " + country + " could not be found."); return Populations[country]; } private Dictionary<string, int> Populations { get { return new Dictionary<string, int> { {"Australia", 22360793}, {"China", 1324655000}, {"Switzerland", 7782900} }; } } Does this refactoring already have a name? Otherwise, I propose Replace multi-way conditional with associative array

    Read the article

  • Caching by in-memory dictionaries. Are we doing it all wrong?

    - by user73983
    This approach is pretty much the accepted way to do anything in our company. A simple example : when a piece of data for a customer is requested from a service, we fetch all the data for that customer(relevant part to the service) and save it in a in-memory dictionary then serve it from there on following requests(we run singleton services). Any update goes to DB, then updates the in memory dictionary. It seems all simple and harmless but as we implement more complicated business rules the cache gets out of sync and we have to deal with hard to find bugs. Sometimes we defer writing to database, keeping new data in cache till then. There are cases when we store millions of rows in memory because the table has many relations to other tables and we need to show aggregate data quickly. All this cache handling is a big part of our codebase and I sense this is not the right way to do it. All of this juggling adds too much noise to the code and it makes it hard to understand the actual business logic. However I don't think we can serve data in a reasonable amount of time if we have to hit the database every time. I am unhappy about the current situation but I don't have a better alternative. My only solution would be to use NHibernate 2nd level cache but I have nearly no experience with it. I know many campanies use Redis or MemCached heavily to gain performance but I have no idea how I would integrate them into our system. I also don't know if they can perform better than in-memory data structures and queries. Are there any alternative approaches that I should look into?

    Read the article

  • How and what should I be (unit) testing for in this method?

    - by user460667
    I am relatively new to unit testing and have a query about what/how I should be testing a certain method. For the following (psudo-c#) method I have created (not a real-life example) what would you test for? Initially, my thoughts would be to test the output with variations on the dictionary of form fields, e.g. valid, invalid, missing values. However I also wonder how you would test to make sure the object values have been changed to the correct value and that the correct email message was attempted to be sent (obviously both services could/would be mocked). I hope what I am asking makes sense, I appreciate this is a subjective question and the answers may be 'it depends' ;) public bool ProcessInput(Dictionary<string, string> formFields, ObjService objService, EmailService emailService) { try { // Get my object id int objId; if(!int.TryParse(formField["objId"], out objId) { return false; } // Update my object - would you validate the save against a DB or a mocked inmemory db? var myObj = objService.Find(objId); myObj.Name = formField["objName"]; objService.Save(myObj); // Send an email - how would you test to make sure content, recipient, etc was correct? emailService.SendEmail(formField("email"), "Hello World"); return true; } catch(Exception ex) { return false; } }

    Read the article

  • Solving the EXC_BAD_ACCESS in WhatATool Part 2

    - by Allen
    #import <Cocoa/Cocoa.h> @interface PolygonShape : NSObject { int numberOfSides, maximumNumberOfSides, minimumNumberOfSides; } @property (readwrite) int numberOfSides, maximumNumberOfSides, minimumNumberOfSides; @property (readonly) float angleInDegrees, angleInRadians; @property (readonly) NSString * name; @property (readonly) NSString * description; -(id) init; -(void) setNumberOfSides:(int)sides; -(void) setMinimumNumberOfSides:(int)min; -(void) setMaximumNumberOfSides:(int)max; -(float) angleInDegrees; -(float) angleInRadians; -(NSString *) name; -(id) initWithNumberOfSides:(int) sides minimumNumberOfSides:(int) min maximumNumberOfSides:(int) max; -(NSString *) description; -(void) dealloc; @end #import "PolygonShape.h" @implementation PolygonShape -(id) init { return [self initWithNumberOfSides:4 minimumNumberOfSides:3 maximumNumberOfSides:5]; } @synthesize numberOfSides, minimumNumberOfSides, maximumNumberOfSides, angleInRadians; -(void) setNumberOfSides:(int)sides { numberOfSides = sides; NSLog(@"The number of sides is off limit so the number of sides is %@.",sides); } -(void)setMaximumNumberOfSides:(int)max { if (maximumNumberOfSides <= 12) { maximumNumberOfSides = max; } } -(void)setMinimumNumberOfSides: (int)min { if (minimumNumberOfSides > 2) { minimumNumberOfSides = min; } } - (id)initWithNumberOfSides:(int)sides minimumNumberOfSides:(int)min maximumNumberOfSides:(int)max { if(self=[super init]) { [self setNumberOfSides:(int)sides]; [self setMaximumNumberOfSides:(int)max]; [self setMinimumNumberOfSides: (int)min]; } return self; } -(float) angleInDegrees { float anglesInDegrees = (180 * (numberOfSides - 2) / numberOfSides); return anglesInDegrees; } -(float)angleInRadiants { float anglesInRadiants = ((180 * (numberOfSides - 2) / numberOfSides) * (180 / M_PI)); return anglesInRadiants; } -(NSString *)name { NSString * output; switch (numberOfSides) { case 3: output = @"Triangle"; break; case 4: output = @"Square"; break; case 5: output = @"Pentagon"; break; case 6: output = @"Hexagon"; break; case 7: output = @"Heptagon"; break; case 8: output = @"Octagon"; break; case 9: output = @"Nonagon"; break; case 10: output = @"Decagon"; break; case 11: output = @"Hendecagon"; break; case 12: output = @"Dodecabgon"; break; default: output = @"Invalid number of sides: %i is greater than maximum of five allowed."; } return output; } -(NSString *)description { NSString * output; NSLog(@"Hello I am a %i-sided polygon (aka a %@) with angles of %f degrees (%f radians).", numberOfSides, output, [self angleInDegrees], [self angleInRadiants]); return [self description]; } -(void)dealloc { [super dealloc]; } @end #import <Foundation/Foundation.h> #import "PolygonShape.h" void PrintPathInfo() { NSLog(@"Section 1"); NSLog(@"--------------------"); NSString *path = [@"~" stringByExpandingTildeInPath]; NSLog(@"My home folder is at '%@'.", path); NSArray *pathComponent = [path pathComponents]; for (path in pathComponent) { NSLog(@"%@",path); } NSLog(@"--------------------"); NSLog(@"\n"); } void PrintProcessInfo() { NSLog(@"Section 2"); NSLog(@"--------------------"); NSString * processName = [[NSProcessInfo processInfo] processName]; int processIdentifier = [[NSProcessInfo processInfo] processIdentifier]; NSLog(@"Process Name: '%@', Process ID: '%i'", processName, processIdentifier); NSLog(@"--------------------"); NSLog(@"\n"); } void PrintBookmarkInfo() { NSLog(@"Section 3"); NSLog(@"--------------------"); NSArray * keys = [NSArray arrayWithObjects: @"Stanford University", @"Apple", @"CS193P", @"Stanford on iTunes U", @"Stanford Mall", nil]; NSArray * objects = [NSArray arrayWithObjects: [NSURL URLWithString: @"http://www.stanford.edu"], @"http://www.apple.com", @"http://cs193p.stanford.edu", @"http://itunes.stanford.edu", @"http://stanfordshop.com",nil]; NSMutableDictionary * dictionary = [NSMutableDictionary dictionaryWithObjects:objects forKeys:keys]; NSEnumerator * enumerator = [keys objectEnumerator]; for (id keys in dictionary) { NSLog(@"key: '%@', value: '%@'", keys, [dictionary objectForKey:keys]); } NSLog(@" "); NSLog(@"These are the ones that has the prefix 'Stanford'."); NSLog(@" "); id object; while (object = [enumerator nextObject]) { if ([object hasPrefix: @"Stanford"]) { NSLog(@"key: '%@', value: '%@'", object, [dictionary objectForKey:object]); } } NSLog(@"--------------------"); NSLog(@"\n"); } void PrintIntrospectionInfo() { NSLog(@"Section 4"); NSLog(@"--------------------"); SEL lowercase = @selector (lowercaseString); NSMutableArray * array = [NSMutableArray array]; [array addObject: [NSString stringWithString: @"Here is a string"]]; [array addObject: [NSDictionary dictionary]]; [array addObject: [NSURL URLWithString: @"http://www.stanford.edu"]]; [array addObject: [[NSProcessInfo processInfo]processName]]; for (id keys in array) { NSLog(@"\n"); NSLog(@"Class Name: %@", [keys className]); NSLog(@"Is Member of NSString: %@", [keys isMemberOfClass:[NSString class]]?@"Yes":@"No"); NSLog(@"Is Kind of NSString: %@", [keys isKindOfClass:[NSString class]]?@"Yes":@"No"); if ([keys respondsToSelector: lowercase]==YES) { NSLog(@"Responds to lowercaseString: %@",[keys respondsToSelector: lowercase]?@"Yes":@"No"); NSLog(@"lowercaseString is: %@", [keys performSelector: lowercase]); } else { NSLog(@"Responds to lowercaseString: %@",[keys respondsToSelector: lowercase]?@"Yes":@"No" ); } } NSLog(@"--------------------"); } void PrintPolygonInfo() { NSMutableArray * array = [NSMutableArray array]; PolygonShape * polygon1 = [[PolygonShape alloc]initWithNumberOfSides:4 minimumNumberOfSides:3 maximumNumberOfSides:7]; [array addObject:polygon1]; [array description]; PolygonShape * polygon2 = [[PolygonShape alloc]initWithNumberOfSides:6 minimumNumberOfSides:5 maximumNumberOfSides:9]; [array addObject:polygon2]; [array description]; PolygonShape * polygon3 = [[PolygonShape alloc]initWithNumberOfSides:12 minimumNumberOfSides:9 maximumNumberOfSides:12]; [array addObject:polygon3]; [array description]; [array release]; [polygon1 release]; [polygon2 release]; [polygon3 release]; } int main (int argc, const char * argv[]) { NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init]; PrintPathInfo(); PrintProcessInfo(); PrintBookmarkInfo(); PrintIntrospectionInfo(); PrintPolygonInfo(); [pool release]; return 0; } //The result was "EXC_BAD_ACCESS", but I couldn't figure out how to resolve this problem.

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Online Password Security Tactics

    - by BuckWoody
    Recently two more large databases were attacked and compromised, one at the popular Gawker Media sites and the other at McDonald’s. Every time this kind of thing happens (which is FAR too often) it should remind the technical professional to ensure that they secure their systems correctly. If you write software that stores passwords, it should be heavily encrypted, and not human-readable in any storage. I advocate a different store for the login and password, so that if one is compromised, the other is not. I also advocate that you set a bit flag when a user changes their password, and send out a reminder to change passwords if that bit isn’t changed every three or six months.    But this post is about the *other* side – what to do to secure your own passwords, especially those you use online, either in a cloud service or at a provider. While you’re not in control of these breaches, there are some things you can do to help protect yourself. Most of these are obvious, but they contain a few little twists that make the process easier.   Use Complex Passwords This is easily stated, and probably one of the most un-heeded piece of advice. There are three main concepts here: ·         Don’t use a dictionary-based word ·         Use mixed case ·         Use punctuation, special characters and so on   So this: password Isn’t nearly as safe as this: P@ssw03d   Of course, this only helps if the site that stores your password encrypts it. Gawker does, so theoretically if you had the second password you’re in better shape, at least, than the first. Dictionary words are quickly broken, regardless of the encryption, so the more unusual characters you use, and the farther away from the dictionary words you get, the better.   Of course, this doesn’t help, not even a little, if the site stores the passwords in clear text, or the key to their encryption is broken. In that case…   Use a Different Password at Every Site What? I have hundreds of sites! Are you kidding me? Nope – I’m not. If you use the same password at every site, when a site gets attacked, the attacker will store your name and password value for attacks at other sites. So the only safe thing to do is to use different names or passwords (or both) at each site. Of course, most sites use your e-mail as a username, so you’re kind of hosed there. So even though you have hundreds of sites you visit, you need to have at least a different password at each site.   But it’s easier than you think – if you use an algorithm.   What I’m describing is to pick a “root” password, and then modify that based on the site or purpose. That way, if the site is compromised, you can still use that root password for the other sites.   Let’s take that second password: P@ssw03d   And now you can append, prepend or intersperse that password with other characters to make it unique to the site. That way you can easily remember the root password, but make it unique to the site. For instance, perhaps you read a lot of information on Gawker – how about these:   P@ssw03dRead ReadP@ssw03d PR@esasdw03d   If you have lots of sites, tracking even this can be difficult, so I recommend you use password software such as Password Safe or some other tool to have a secure database of your passwords at each site. DO NOT store this on the web. DO NOT use an Office document (Microsoft or otherwise) that is “encrypted” – the encryption office automation packages use is very trivial, and easily broken. A quick web search for tools to do that should show you how bad a choice this is.   Change Your Password on a Schedule I know. It’s a real pain. And it doesn’t seem worth it…until your account gets hacked. A quick note here – whenever a site gets hacked (and I find out about it) I change the password at that site immediately (or quit doing business with them) and then change the root password on every site, as quickly as I can.   If you follow the tip above, it’s not as hard. Just add another number, year, month, day, something like that into the mix. It’s not unlike making a Primary Key in an RDBMS.   P@ssw03dRead10242010   Change the site, and then update your password database. I do this about once a month, on the first or last day, during staff meetings. (J)   If you have other tips, post them here. We can all learn from each other on this.

    Read the article

  • Detecting Duplicates Using Oracle Business Rules

    - by joeywong-Oracle
    Recently I was involved with a Business Process Management Proof of Concept (BPM PoC) where we wanted to show how customers could use Oracle Business Rules (OBR) to easily define some rules to detect certain conditions, such as duplicate account numbers, duplicate names, high transaction amounts, etc, in a set of transactions. Traditionally you would have to loop through the transactions and compare each transaction with each other to find matching conditions. This is not particularly nice as it relies on more traditional approaches (coding) and is not the most efficient way. OBR is a great place to house these types’ of rules as it allows users/developers to externalise the rules, in a simpler manner, externalising the rules from the message flows and allows users to change them when required. So I went ahead looking for some examples. After quite a bit of time spent Googling, I did not find much out in the blogosphere. In fact the best example was actually from...... wait for it...... Oracle Documentation! (http://docs.oracle.com/cd/E28271_01/user.1111/e10228/rules_start.htm#ASRUG228) However, if you followed the link there was not much explanation provided with the example. So the aim of this article is to provide a little more explanation to the example so that it can be better understood. Note: I won’t be covering the BPM parts in great detail. Use case: Payment instruction file is required to be processed. Before instruction file can be processed it needs to be approved by a business user. Before the approval process, it would be useful to run the payment instruction file through OBR to look for transactions of interest. The output of the OBR can then be used to flag the transactions for the approvers to investigate. Example BPM Process So let’s start defining the Business Rules Dictionary. For the input into our rules, we will be passing in an array of payments which contain some basic information for our demo purposes. Input to Business Rules And for our output we want to have an array of rule output messages. Note that the element I am using for the output is only for one rule message element and not an array. We will configure the Business Rules component later to return an array instead. Output from Business Rules Business Rule – Create Dictionary Fill in all the details and click OK. Open the Business Rules component and select Decision Functions from the side. Modify the Decision Function Configuration Select the decision function and click on the edit button (the pencil), don’t worry that JDeveloper indicates that there is an error with the decision function. Then click the Ouputs tab and make sure the checkbox under the List column is checked, this is to tell the Business Rules component that it should return an array of rule message elements. Updating the Decision Service Next we will define the actual rules. Click on Ruleset1 on the side and then the Create Rule in the IF/THEN Rule section. Creating new rule in ruleset Ok, this is where some detailed explanation is required. Remember that the input to this Business Rules dictionary is a list of payments, each of those payments were of the complex type PaymentType. Each of those payments in the Oracle Business Rules engine is treated as a fact in its working memory. Implemented rule So in the IF/THEN rule, the first task is to grab two PaymentType facts from the working memory and assign them to temporary variable names (payment1 and payment2 in our example). Matching facts Once we have them in the temporary variables, we can then start comparing them to each other. For our demonstration we want to find payments where the account numbers were the same but the account name was different. Suspicious payment instruction And to stop the rule from comparing the same facts to each other, over and over again, we have to include the last test. Stop rule from comparing endlessly And that’s it! No for loops, no need to keep track of what you have or have not compared, OBR handles all that for you because everything is done in its working memory. And once all the tests have been satisfied we need to assert a new fact for the output. Assert the output fact Save your Business Rules. Next step is to complete the data association in the BPM process. Pay extra care to use Copy List instead of the default Copy when doing data association at an array level. Input and output data association Deploy and test. Test data Rule matched Parting words: Ideally you would then use the output of the Business Rules component to then display/flag the transactions which triggered the rule so that the approver can investigate. Link: SOA Project Archive [Download]

    Read the article

  • Developing Schema Compare for Oracle (Part 5): Query Snapshots

    - by Simon Cooper
    If you've emailed us about a bug you've encountered with the EAP or beta versions of Schema Compare for Oracle, we probably asked you to send us a query snapshot of your databases. Here, I explain what a query snapshot is, and how it helps us fix your bug. Problem 1: Debugging users' bug reports When we started the Schema Compare project, we knew we were going to get problems with users' databases - configurations we hadn't considered, features that weren't installed, unicode issues, wierd dependencies... With SQL Compare, users are generally happy to send us a database backup that we can restore using a single RESTORE DATABASE command on our test servers and immediately reproduce the problem. Oracle, on the other hand, would be a lot more tricky. As Oracle generally has a 1-to-1 mapping between instances and databases, any databases users sent would have to be restored to their own instance. Furthermore, the number of steps required to get a properly working database, and the size of most oracle databases, made it infeasible to ask every customer who came across a bug during our beta program to send us their databases. We also knew that there would be lots of issues with data security that would make it hard to get backups. So we needed an easier way to be able to debug customers issues and sort out what strange schema data Oracle was returning. Problem 2: Test execution time Another issue we knew we would have to solve was the execution time of the tests we would produce for the Schema Compare engine. Our initial prototype showed that querying the data dictionary for schema information was going to be slow (at least 15 seconds per database), and this is generally proportional to the size of the database. If you're running thousands of tests on the same databases, each one registering separate schemas, not only would the tests would take hours and hours to run, but the test servers would be hammered senseless. The solution To solve these, we needed to be able to populate the schema of a database without actually connecting to it. Well, the IDataReader interface is the primary way we read data from an Oracle server. The data dictionary queries we use return their data in terms of simple strings and numbers, which we then process and reconstruct into an object model, and the results of these queries are identical for identical schemas. So, we can record the raw results of the queries once, and then replay these results to construct the same object model as many times as required without needing to actually connect to the original database. This is what query snapshots do. They are binary files containing the raw unprocessed data we get back from the oracle server for all the queries we run on the data dictionary to get schema information. The core of the query snapshot generation takes the results of the IDataReader we get from running queries on Oracle, and passes the row data to a BinaryWriter that writes it straight to a file. The query snapshot can then be replayed to create the same object model; when the results of a specific query is needed by the population code, we can simply read the binary data stored in the file on disk and present it through an IDataReader wrapper. This is far faster than querying the server over the network, and allows us to run tests in a reasonable time. They also allow us to easily debug a customers problem; using a simple snapshot generation program, users can generate a query snapshot that could be sent along with a bug report that we can immediately replay on our machines to let us debug the issue, rather than having to obtain database backups and restore databases to test systems. There are also far fewer problems with data security; query snapshots only contain schema information, which is generally less sensitive than table data. Query snapshots implementation However, actually implementing such a feature did have a couple of 'gotchas' to it. My second blog post detailed the development of the dependencies algorithm we use to ensure we get all the dependencies in the database, and that algorithm uses data from both databases to find all the needed objects - what database you're comparing to affects what objects get populated from both databases. We get information on these additional objects using an appropriate WHERE clause on all the population queries. So, in order to accurately replay the results of querying the live database, the query snapshot needs to be a snapshot of a comparison of two databases, not just populating a single database. Furthermore, although the code population queries (eg querying all_tab_cols to get column information) can simply be passed straight from the IDataReader to the BinaryWriter, we need to hook into and run the live dependencies algorithm while we're creating the snapshot to ensure we get the same WHERE clauses, and the same query results, as if we were populating straight from a live system. We also need to store the results of the dependencies queries themselves, as the resulting dependency graph is stored within the OracleDatabase object that is produced, and is later used to help order actions in synchronization scripts. This is significantly helped by the dependencies algorithm being a deterministic algorithm - given the same input, it will always return the same output. Therefore, when we're replaying a query snapshot, and processing dependency information, we simply have to return the results of the queries in the order we got them from the live database, rather than trying to calculate the contents of all_dependencies on the fly. Query snapshots are a significant feature in Schema Compare that really helps us to debug problems with the tool, as well as making our testers happier. Although not really user-visible, they are very useful to the development team to help us fix bugs in the product much faster than we otherwise would be able to.

    Read the article

  • Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and cach

    - by SeanMcAlinden
    I’ve recently started a project with a few mates to learn the ins and outs of Dependency Injection, AOP and a number of other pretty crucial patterns of development as we’ve all been using these patterns for a while but have relied totally on third part solutions to do the magic. We thought it would be interesting to really get into the details by rolling our own IoC container and hopefully learn a lot on the way, and you never know, we might even create an excellent framework. The open source project is called Rapid IoC and is hosted at http://rapidioc.codeplex.com/ One of the most interesting tasks for me is creating the dynamic proxy generator for enabling Aspect Orientated Programming (AOP). In this series of articles, I’m going to track each step I take for creating the dynamic proxy generator and I’ll try my best to explain what everything means - mainly as I’ll be using Reflection.Emit to emit a fair amount of intermediate language code (IL) to create the proxy types at runtime which can be a little taxing to read. It’s worth noting that building the proxy is without a doubt going to be slightly painful so I imagine there will be plenty of areas I’ll need to change along the way. Anyway lets get started…   Part 1 - Creating the Assembly builder, Module builder and caching mechanism Part 1 is going to be a really nice simple start, I’m just going to start by creating the assembly, module and type caches. The reason we need to create caches for the assembly, module and types is simply to save the overhead of recreating proxy types that have already been generated, this will be one of the important steps to ensure that the framework is fast… kind of important as we’re calling the IoC container ‘Rapid’ – will be a little bit embarrassing if we manage to create the slowest framework. The Assembly builder The assembly builder is what is used to create an assembly at runtime, we’re going to have two overloads, one will be for the actual use of the proxy generator, the other will be mainly for testing purposes as it will also save the assembly so we can use Reflector to examine the code that has been created. Here’s the code: DynamicAssemblyBuilder using System; using System.Reflection; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Assembly {     /// <summary>     /// Class for creating an assembly builder.     /// </summary>     internal static class DynamicAssemblyBuilder     {         #region Create           /// <summary>         /// Creates an assembly builder.         /// </summary>         /// <param name="assemblyName">Name of the assembly.</param>         public static AssemblyBuilder Create(string assemblyName)         {             AssemblyName name = new AssemblyName(assemblyName);               AssemblyBuilder assembly = AppDomain.CurrentDomain.DefineDynamicAssembly(                     name, AssemblyBuilderAccess.Run);               DynamicAssemblyCache.Add(assembly);               return assembly;         }           /// <summary>         /// Creates an assembly builder and saves the assembly to the passed in location.         /// </summary>         /// <param name="assemblyName">Name of the assembly.</param>         /// <param name="filePath">The file path.</param>         public static AssemblyBuilder Create(string assemblyName, string filePath)         {             AssemblyName name = new AssemblyName(assemblyName);               AssemblyBuilder assembly = AppDomain.CurrentDomain.DefineDynamicAssembly(                     name, AssemblyBuilderAccess.RunAndSave, filePath);               DynamicAssemblyCache.Add(assembly);               return assembly;         }           #endregion     } }   So hopefully the above class is fairly explanatory, an AssemblyName is created using the passed in string for the actual name of the assembly. An AssemblyBuilder is then constructed with the current AppDomain and depending on the overload used, it is either just run in the current context or it is set up ready for saving. It is then added to the cache.   DynamicAssemblyCache using System.Reflection.Emit; using Rapid.DynamicProxy.Exceptions; using Rapid.DynamicProxy.Resources.Exceptions;   namespace Rapid.DynamicProxy.Assembly {     /// <summary>     /// Cache for storing the dynamic assembly builder.     /// </summary>     internal static class DynamicAssemblyCache     {         #region Declarations           private static object syncRoot = new object();         internal static AssemblyBuilder Cache = null;           #endregion           #region Adds a dynamic assembly to the cache.           /// <summary>         /// Adds a dynamic assembly builder to the cache.         /// </summary>         /// <param name="assemblyBuilder">The assembly builder.</param>         public static void Add(AssemblyBuilder assemblyBuilder)         {             lock (syncRoot)             {                 Cache = assemblyBuilder;             }         }           #endregion           #region Gets the cached assembly                  /// <summary>         /// Gets the cached assembly builder.         /// </summary>         /// <returns></returns>         public static AssemblyBuilder Get         {             get             {                 lock (syncRoot)                 {                     if (Cache != null)                     {                         return Cache;                     }                 }                   throw new RapidDynamicProxyAssertionException(AssertionResources.NoAssemblyInCache);             }         }           #endregion     } } The cache is simply a static property that will store the AssemblyBuilder (I know it’s a little weird that I’ve made it public, this is for testing purposes, I know that’s a bad excuse but hey…) There are two methods for using the cache – Add and Get, these just provide thread safe access to the cache.   The Module Builder The module builder is required as the create proxy classes will need to live inside a module within the assembly. Here’s the code: DynamicModuleBuilder using System.Reflection.Emit; using Rapid.DynamicProxy.Assembly; namespace Rapid.DynamicProxy.Module {     /// <summary>     /// Class for creating a module builder.     /// </summary>     internal static class DynamicModuleBuilder     {         /// <summary>         /// Creates a module builder using the cached assembly.         /// </summary>         public static ModuleBuilder Create()         {             string assemblyName = DynamicAssemblyCache.Get.GetName().Name;               ModuleBuilder moduleBuilder = DynamicAssemblyCache.Get.DefineDynamicModule                 (assemblyName, string.Format("{0}.dll", assemblyName));               DynamicModuleCache.Add(moduleBuilder);               return moduleBuilder;         }     } } As you can see, the module builder is created on the assembly that lives in the DynamicAssemblyCache, the module is given the assembly name and also a string representing the filename if the assembly is to be saved. It is then added to the DynamicModuleCache. DynamicModuleCache using System.Reflection.Emit; using Rapid.DynamicProxy.Exceptions; using Rapid.DynamicProxy.Resources.Exceptions; namespace Rapid.DynamicProxy.Module {     /// <summary>     /// Class for storing the module builder.     /// </summary>     internal static class DynamicModuleCache     {         #region Declarations           private static object syncRoot = new object();         internal static ModuleBuilder Cache = null;           #endregion           #region Add           /// <summary>         /// Adds a dynamic module builder to the cache.         /// </summary>         /// <param name="moduleBuilder">The module builder.</param>         public static void Add(ModuleBuilder moduleBuilder)         {             lock (syncRoot)             {                 Cache = moduleBuilder;             }         }           #endregion           #region Get           /// <summary>         /// Gets the cached module builder.         /// </summary>         /// <returns></returns>         public static ModuleBuilder Get         {             get             {                 lock (syncRoot)                 {                     if (Cache != null)                     {                         return Cache;                     }                 }                   throw new RapidDynamicProxyAssertionException(AssertionResources.NoModuleInCache);             }         }           #endregion     } }   The DynamicModuleCache is very similar to the assembly cache, it is simply a statically stored module with thread safe Add and Get methods.   The DynamicTypeCache To end off this post, I’m going to create the cache for storing the generated proxy classes. I’ve spent a fair amount of time thinking about the type of collection I should use to store the types and have finally decided that for the time being I’m going to use a generic dictionary. This may change when I can actually performance test the proxy generator but the time being I think it makes good sense in theory, mainly as it pretty much maintains it’s performance with varying numbers of items – almost constant (0)1. Plus I won’t ever need to loop through the items which is not the dictionaries strong point. Here’s the code as it currently stands: DynamicTypeCache using System; using System.Collections.Generic; using System.Security.Cryptography; using System.Text; namespace Rapid.DynamicProxy.Types {     /// <summary>     /// Cache for storing proxy types.     /// </summary>     internal static class DynamicTypeCache     {         #region Declarations           static object syncRoot = new object();         public static Dictionary<string, Type> Cache = new Dictionary<string, Type>();           #endregion           /// <summary>         /// Adds a proxy to the type cache.         /// </summary>         /// <param name="type">The type.</param>         /// <param name="proxy">The proxy.</param>         public static void AddProxyForType(Type type, Type proxy)         {             lock (syncRoot)             {                 Cache.Add(GetHashCode(type.AssemblyQualifiedName), proxy);             }         }           /// <summary>         /// Tries the type of the get proxy for.         /// </summary>         /// <param name="type">The type.</param>         /// <returns></returns>         public static Type TryGetProxyForType(Type type)         {             lock (syncRoot)             {                 Type proxyType;                 Cache.TryGetValue(GetHashCode(type.AssemblyQualifiedName), out proxyType);                 return proxyType;             }         }           #region Private Methods           private static string GetHashCode(string fullName)         {             SHA1CryptoServiceProvider provider = new SHA1CryptoServiceProvider();             Byte[] buffer = Encoding.UTF8.GetBytes(fullName);             Byte[] hash = provider.ComputeHash(buffer, 0, buffer.Length);             return Convert.ToBase64String(hash);         }           #endregion     } } As you can see, there are two public methods, one for adding to the cache and one for getting from the cache. Hopefully they should be clear enough, the Get is a TryGet as I do not want the dictionary to throw an exception if a proxy doesn’t exist within the cache. Other than that I’ve decided to create a key using the SHA1CryptoServiceProvider, this may change but my initial though is the SHA1 algorithm is pretty fast to put together using the provider and it is also very unlikely to have any hashing collisions. (there are some maths behind how unlikely this is – here’s the wiki if you’re interested http://en.wikipedia.org/wiki/SHA_hash_functions)   Anyway, that’s the end of part 1 – although I haven’t started any of the fun stuff (by fun I mean hairpulling, teeth grating Relfection.Emit style fun), I’ve got the basis of the DynamicProxy in place so all we have to worry about now is creating the types, interceptor classes, method invocation information classes and finally a really nice fluent interface that will abstract all of the hard-core craziness away and leave us with a lightning fast, easy to use AOP framework. Hope you find the series interesting. All of the source code can be viewed and/or downloaded at our codeplex site - http://rapidioc.codeplex.com/ Kind Regards, Sean.

    Read the article

  • CodePlex Daily Summary for Tuesday, April 20, 2010

    CodePlex Daily Summary for Tuesday, April 20, 2010New ProjectsASP.NET MVC Extensibility: ASP.NET MVC Extensibility.ASP.NET MVC Starter: Tekpub's ASP.NET MVC 2.0 Starter Site, as put together by Rob Conery in Episode 15 of Mastering ASP.NET MVC (http://tekpub.com/production/starter)AzureDemo: An internal Azure demo and test bed for some projects. After demo is complete this project will be closed.Basic Sprite Sheet Creator: A basic c# program to create sprite sheets. CodeDefender: Protect your .Net codes easily with this smart obfuscator!Crawlr: Tema 2 projectDocument Session Manager - Visual Studio addin: Document Session Manager is a Visual Studio 2008 addin for saving and restoring the list of opened documents (xml files, source files, winforms, et...Esferatec.Text.RegularExpressions: assembly to build regular expression patternsFIFA World Cup 2010 Mobile Sticker Checklist: FIFA World Cup 2010 Mobile Sticker Checklist is a small application for Windows Mobile developed in CF 3.5 to keep tracking of your sticker album. ...Finia.net: 追忆 游乐网·幻之大地FusspawnsAI: Fusspawns UT AI is a small test engine for a classic ut remote bot api. intending to improve ut's ai to a god like level without cheating bots(bots...G.A.E.T.: This is a Graphical Asymmetric Encryption Tool based on R.S.A. algorithm with the help of Java Language.Even though, this may be a small applicatio...ItzyBitzySpider: Webcrawler project from computer science at UCN.JingQiao.Ads: My DDD NTier Architecture example project.Managed Meizu SDK Demo: In this project we are sharing the source code to demonstrate the usage of managed SDK for Meizu cell phones, currently for M8. With the help of th...MaxxUtils.MaxxTagger: MaxxTagger: An Mp3 Tag Editor.. Add /Edit/Remove MP3 ID3 V1 and 2.3 Tags like Title, Artist, Album, Album Art, Genre. Besides tag editing, it also ...Maya Project Management: The Maya Project Management is a clone of RedMine with all its functions and plug-in support, using the following technologies: Microsoft .net Fra...MessageBoxLib: A simple, robust library for Xbox 360 and Windows development using the XNA Game Studio that makes using the Guide class's message box functionalit...MyWSAT - ASP.NET Membership Administration Tool: MyWSAT aka ASP.NET WSAT is a WebForms based website Starter Kit for the ASP.NET Membership Provider. It is a feature rich application that takes ca...OntologyCreator: this is my thesis and it is not finished yetPOS for .Net Handheld Products Service Object: POS for .Net Service Object Handheld Products Bar Code ScannerPostBinder: PostBinder is a small helper library that deserializes ASP.NET requests into C# classes. This eliminates having to write repeated hand wiring co...PostSharp for ASP.NET Web Sites: Adds support for PostSharp 2.0 on ASP.NET Web Sites.Rapid Dictionary: * Rapid Dictionary is a Translation Dictionary initialized by language learning network http://wordsteps.com. * Dictionary developed in C# and Co...ROrganizer: If you feel your movie files are kept in messy way, try out the ROrganizer which helps you rearrange them.RoRoWoBlog: 萝萝窝个人博客开源项目SPGroupDeflector - Explicitly deny groups to webs within your Site Collection: Secure webs within your MOSS or WSS Portal by explicitly denying access to specific users in SharePoint groups.SSIS ShapeFileSource: SSIS ShapeFileSource imports ESRI Shapefiles, and the associated attribute file (.dbf). The component based on the free Shapefile C Library.StoreManagement: University assignment. The task is to build an application that can perform basic CRUD operations on a property and use an arbitrary database. ...Surfium: TODO ;-)TaskCleaner: This is a Windows Forms project created to kill some running process in order to enhace the performance of Windows execution. Sometimes it is desi...The Expert Calendar: The Expert Calendar is a MOSS 2007 webpart which allows to connect to a Event Item List and display event items in a small design customizable cale...Visual Studio Find Results Window Tweak: This is a Visual Studio 2010 add-in which enables you to adjust the format of the Find Results Window. It is written in C#, .NET 4.0 and requires ...Weightlifting Sinclair coeficient calculator: Weightlifting Sinclair coeficient calculator for competitors (for Windows Mobile platform)Windows Azure Web Storage Explorer: Windows Azure Web Storage Explorer makes it easier for developers to browse and manage Blobs, Queues and Tables from Windows Azure Storage account....New Releases#SNMP - C# Based Open Source SNMP for .NET and Mono: CatPaw (5.0) Beta 1: SNMP v3 support in snmpd is complete.ASP.Net MVC Crud with JqGrid: Mvc Crud with JqGrid 0.3.0: Fairly major reworking of the GenericDataGrid (with alot of work from James). Most noticeable is the replacing of Edit and Delete with action butt...Basic Sprite Sheet Creator: Sprite Tool v1.1: Fixed the progress bar, it now correctly displays text and progress. Also download will now come with an installer and an executable so you don't h...Basic Sprite Sheet Creator: Sprite Tool Version 1.0: Program used to make basic sprite sheets. please visit http://coderplex.blogspot.com for more infoBraintree Client Library: Braintree-1.2.1: Escape all XMLCodeDefender: CodeDefender v0.1: Protect your .Net exe and dll files with this smart tool.ColinTesting: test: testColinTesting: test2: test2ColinTesting: test3: test3ColinTesting: test4: test4ColinTesting: test6: test6CycleMania Starter Kit EAP - ASP.NET 4 Problem - Design - Solution: Cyclemania 0.08.63: See Source Code tab for recent change history.Document Session Manager - Visual Studio addin: Release v0.45948: Release v0.45948DotNetNuke® Community Edition: 05.04.00: Major Highlights Fixed issue where portal settings were not saved per portal. Fixed issue with importing page templates. Fixed issue with...DotNetNuke® Postgres Data Provider: DNN PG Provider 01.00.00 Beta2: Fixes problems with deprecated datatype money in Postgres. Upgrades DotnetNuke code base to 04.09.05 It comes with a patch for the DotNetNuke insta...FIFA World Cup 2010 Mobile Sticker Checklist: FIFA World Cup 2010 Mobile Sticker Checklist v0.1b: FIFA World Cup 2010 Mobile Sticker Checklist v0.1b First beta release. Requires Microsoft Compact Framework 3.5. It was tested on an HTC Touch Viva...FIFA World Cup 2010 Mobile Sticker Checklist: FIFA World Cup 2010 Mobile Sticker Checklist v0.2b: FIFA World Cup 2010 Mobile Sticker Checklist v0.2b Second beta release. Requires Microsoft Compact Framework 3.5. It was tested on an HTC Touch Viv...Fluent Ribbon Control Suite: Fluent Ribbon Control Suite 1.2: Fluent Ribbon Control Suite 1.2(supports .NET 3.5 and .NET 4 RTM) Includes: Fluent.dll (with .pdb and .xml) Showcase Application Samples Found...G.A.E.T.: Graphical Asymmetric Encryption Tool: User Interface The GAET User Interface is a window with five buttons. Each button is explained the following sections. Each button has a functional...HTML Ruby: 6.21.7: As long as I don't find anything else that I can improve, this will be submitted to Mozilla for review tomorrow. Added back process inserted conten...IBCSharp: IBCSharp 1.03: What IBCSharp 1.03.zip unzips to: http://i43.tinypic.com/24ffbqr.png Note: The above solution has MSTest, Typemock Isolator, and Microsoft CHESS c...LogikBug's IoC Container: Second Release: This project is dependent upon Microsoft.Practices.ServiceLocation and must be referenced when referencing LogikBug.Injection. Click here to view d...Managed Meizu SDK Demo: Library and Demo: Library and DemoMaxxUtils.MaxxTagger: MaxxUtils.MaxxTagger: Version: 1.0.0 (Beta) Instructions: Unzip the files to a folder and then dbl click on the exe. Known Issues: 1. When u copy or move a folde...OrthoLab: Cellule: Compile with Autodesk Maya 2008 32bit and 2010 64bit.OWASP Code Crawler: OWASP Code Crawler 2.7: Code Crawler 2.7 DescriptionIn terms of functionality there is not much new stuff in this release. We transplanted the new engine. Code Crawler is ...PerceptiveMCAPI - A .NET wrapper for the MailChimp Api: V1.2.3 PerceptiveMCAPI .Net Wrapper [Beta 2]: PerceptiveMCAPI – v 1.2.3 Change logFunctionality through MailChimp API announce v1.2.5 on 15-Feb-2010 .NET Wrapper New wrapper directives; api_Me...POS for .Net Handheld Products Service Object: POS for .Net Handhelp Products Service Object: The Service Object contained herein is a work in progress. This Service Object's is written as VS 2008 C# Project. The Target Platform is x86. ...PostSharp for ASP.NET Web Sites: R1: First release.Rich Ajax empowered Web/Cloud Applications: 6.4 beta 2c: A revisiov to the first fully featured version of Visual webGui offering web/cloud development tool that puts all ASP.NET Ajax limits behind with e...Should: Beta - 1.0: This is the initial release of the Should assertions extensions.Shrinkr: v1.0: First public release.Site Directory for SharePoint 2010 (from Microsoft Consulting Services, UK): v1.2: Address a bug found in v1.1 relating to the Delete Site Listings job not incrementing the 'Site Missing Count' for some SharePoint sites.Software Localization Tool: SharpSLT 1.0: New functions Backup before saving Delete entries Undo deletion Added more comments in the codeSPGroupDeflector - Explicitly deny groups to webs within your Site Collection: SPGroupDeflector: Download the source code, the wsp solution package, and Setup.docSSIS ShapeFileSource: Version 0.1: Short Preview of SSIS ShapeFileSource ComponentStarter Kit Mytrip.Mvc.Entity: Mytrip.Mvc.Entity 1.0: Warning Install MySql Connector/Net 6.3 MySQL Membership MSSQL Membership XML Membership UserManager FileManager Localization Captcha ...Surfium: Linux Expo Prebuild: First public releaseTaskCleaner: Initial Working Version: In this version we have all the features listed in the project description working fine. Built under Framework 3.5.Text to HTML: 0.4.5.0: CambiosSustitución de los siguientes caracteres: Anteriores: " < > ¡ © º ¿ Á Ä É Í Ñ Ó Ö Ú Ü ß á ä é í ñ ó ö ú ü € Nuevos: & ´ ≈ ¦ • ¸ ˆ ↓ ð … ∫ ...TS3QueryLib.Net: TS3QueryLib.Net Version 0.21.16.0: This release contains a bugfix for a bug that caused connection problems when connecting using an IP for some cases. So it's strongly recommended t...Tweety - Twitter Client: Tweety - 0.96: Form activation from system tray improved. General fixes. General code refactor.Web/Cloud Applications Development Framework | Visual WebGui: 6.4 Beta 2c: A revision to the first fully featured version of Visual webGui offering unique developer/designer interface and enhanced extensibility and customi...Windows Azure - PHP contributions: PhpAzureExtensions (Azure Drives) - 0.2.0: Extension for use with Windows Azure SDK 1.1! Breaking changes! Documentation can be found at http://phpazurecontrib.codeplex.com/wikipage?title=A...WoW Character Viewer: Viewer (40545): New setup build for 40545.Xrns2XMod: Xrns2XMod 0.0.5.3: Major Source code optimization: >> Separated logical code of xm/mod conversion from renoiseSong xml. Now all necessary renoise song data code is st...XsltDb - DotNetNuke XSLT module: 01.00.99: callable tag is introduced - create javascript ajax functions more easy import/export bug is fixed mdo:ajax checkbox processing is now the same...Most Popular ProjectsRawrWBFS ManagerSilverlight ToolkitAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseWindows Presentation Foundation (WPF)ASP.NETpatterns & practices – Enterprise LibraryPHPExcelMicrosoft SQL Server Community & SamplesMost Active ProjectsRawrpatterns & practices – Enterprise LibraryIndustrial DashboardIonics Isapi Rewrite FilterFarseer Physics EngineBlogEngine.NETPHPExcelCaliburn: An Application Framework for WPF and SilverlightNB_Store - Free DotNetNuke Ecommerce Catalog ModuleTweetSharp

    Read the article

  • C#/.NET Little Wonders: The Useful But Overlooked Sets

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  Today we will be looking at two set implementations in the System.Collections.Generic namespace: HashSet<T> and SortedSet<T>.  Even though most people think of sets as mathematical constructs, they are actually very useful classes that can be used to help make your application more performant if used appropriately. A Background From Math In mathematical terms, a set is an unordered collection of unique items.  In other words, the set {2,3,5} is identical to the set {3,5,2}.  In addition, the set {2, 2, 4, 1} would be invalid because it would have a duplicate item (2).  In addition, you can perform set arithmetic on sets such as: Intersections: The intersection of two sets is the collection of elements common to both.  Example: The intersection of {1,2,5} and {2,4,9} is the set {2}. Unions: The union of two sets is the collection of unique items present in either or both set.  Example: The union of {1,2,5} and {2,4,9} is {1,2,4,5,9}. Differences: The difference of two sets is the removal of all items from the first set that are common between the sets.  Example: The difference of {1,2,5} and {2,4,9} is {1,5}. Supersets: One set is a superset of a second set if it contains all elements that are in the second set. Example: The set {1,2,5} is a superset of {1,5}. Subsets: One set is a subset of a second set if all the elements of that set are contained in the first set. Example: The set {1,5} is a subset of {1,2,5}. If We’re Not Doing Math, Why Do We Care? Now, you may be thinking: why bother with the set classes in C# if you have no need for mathematical set manipulation?  The answer is simple: they are extremely efficient ways to determine ownership in a collection. For example, let’s say you are designing an order system that tracks the price of a particular equity, and once it reaches a certain point will trigger an order.  Now, since there’s tens of thousands of equities on the markets, you don’t want to track market data for every ticker as that would be a waste of time and processing power for symbols you don’t have orders for.  Thus, we just want to subscribe to the stock symbol for an equity order only if it is a symbol we are not already subscribed to. Every time a new order comes in, we will check the list of subscriptions to see if the new order’s stock symbol is in that list.  If it is, great, we already have that market data feed!  If not, then and only then should we subscribe to the feed for that symbol. So far so good, we have a collection of symbols and we want to see if a symbol is present in that collection and if not, add it.  This really is the essence of set processing, but for the sake of comparison, let’s say you do a list instead: 1: // class that handles are order processing service 2: public sealed class OrderProcessor 3: { 4: // contains list of all symbols we are currently subscribed to 5: private readonly List<string> _subscriptions = new List<string>(); 6:  7: ... 8: } Now whenever you are adding a new order, it would look something like: 1: public PlaceOrderResponse PlaceOrder(Order newOrder) 2: { 3: // do some validation, of course... 4:  5: // check to see if already subscribed, if not add a subscription 6: if (!_subscriptions.Contains(newOrder.Symbol)) 7: { 8: // add the symbol to the list 9: _subscriptions.Add(newOrder.Symbol); 10: 11: // do whatever magic is needed to start a subscription for the symbol 12: } 13:  14: // place the order logic! 15: } What’s wrong with this?  In short: performance!  Finding an item inside a List<T> is a linear - O(n) – operation, which is not a very performant way to find if an item exists in a collection. (I used to teach algorithms and data structures in my spare time at a local university, and when you began talking about big-O notation you could immediately begin to see eyes glossing over as if it was pure, useless theory that would not apply in the real world, but I did and still do believe it is something worth understanding well to make the best choices in computer science). Let’s think about this: a linear operation means that as the number of items increases, the time that it takes to perform the operation tends to increase in a linear fashion.  Put crudely, this means if you double the collection size, you might expect the operation to take something like the order of twice as long.  Linear operations tend to be bad for performance because they mean that to perform some operation on a collection, you must potentially “visit” every item in the collection.  Consider finding an item in a List<T>: if you want to see if the list has an item, you must potentially check every item in the list before you find it or determine it’s not found. Now, we could of course sort our list and then perform a binary search on it, but sorting is typically a linear-logarithmic complexity – O(n * log n) - and could involve temporary storage.  So performing a sort after each add would probably add more time.  As an alternative, we could use a SortedList<TKey, TValue> which sorts the list on every Add(), but this has a similar level of complexity to move the items and also requires a key and value, and in our case the key is the value. This is why sets tend to be the best choice for this type of processing: they don’t rely on separate keys and values for ordering – so they save space – and they typically don’t care about ordering – so they tend to be extremely performant.  The .NET BCL (Base Class Library) has had the HashSet<T> since .NET 3.5, but at that time it did not implement the ISet<T> interface.  As of .NET 4.0, HashSet<T> implements ISet<T> and a new set, the SortedSet<T> was added that gives you a set with ordering. HashSet<T> – For Unordered Storage of Sets When used right, HashSet<T> is a beautiful collection, you can think of it as a simplified Dictionary<T,T>.  That is, a Dictionary where the TKey and TValue refer to the same object.  This is really an oversimplification, but logically it makes sense.  I’ve actually seen people code a Dictionary<T,T> where they store the same thing in the key and the value, and that’s just inefficient because of the extra storage to hold both the key and the value. As it’s name implies, the HashSet<T> uses a hashing algorithm to find the items in the set, which means it does take up some additional space, but it has lightning fast lookups!  Compare the times below between HashSet<T> and List<T>: Operation HashSet<T> List<T> Add() O(1) O(1) at end O(n) in middle Remove() O(1) O(n) Contains() O(1) O(n)   Now, these times are amortized and represent the typical case.  In the very worst case, the operations could be linear if they involve a resizing of the collection – but this is true for both the List and HashSet so that’s a less of an issue when comparing the two. The key thing to note is that in the general case, HashSet is constant time for adds, removes, and contains!  This means that no matter how large the collection is, it takes roughly the exact same amount of time to find an item or determine if it’s not in the collection.  Compare this to the List where almost any add or remove must rearrange potentially all the elements!  And to find an item in the list (if unsorted) you must search every item in the List. So as you can see, if you want to create an unordered collection and have very fast lookup and manipulation, the HashSet is a great collection. And since HashSet<T> implements ICollection<T> and IEnumerable<T>, it supports nearly all the same basic operations as the List<T> and can use the System.Linq extension methods as well. All we have to do to switch from a List<T> to a HashSet<T>  is change our declaration.  Since List and HashSet support many of the same members, chances are we won’t need to change much else. 1: public sealed class OrderProcessor 2: { 3: private readonly HashSet<string> _subscriptions = new HashSet<string>(); 4:  5: // ... 6:  7: public PlaceOrderResponse PlaceOrder(Order newOrder) 8: { 9: // do some validation, of course... 10: 11: // check to see if already subscribed, if not add a subscription 12: if (!_subscriptions.Contains(newOrder.Symbol)) 13: { 14: // add the symbol to the list 15: _subscriptions.Add(newOrder.Symbol); 16: 17: // do whatever magic is needed to start a subscription for the symbol 18: } 19: 20: // place the order logic! 21: } 22:  23: // ... 24: } 25: Notice, we didn’t change any code other than the declaration for _subscriptions to be a HashSet<T>.  Thus, we can pick up the performance improvements in this case with minimal code changes. SortedSet<T> – Ordered Storage of Sets Just like HashSet<T> is logically similar to Dictionary<T,T>, the SortedSet<T> is logically similar to the SortedDictionary<T,T>. The SortedSet can be used when you want to do set operations on a collection, but you want to maintain that collection in sorted order.  Now, this is not necessarily mathematically relevant, but if your collection needs do include order, this is the set to use. So the SortedSet seems to be implemented as a binary tree (possibly a red-black tree) internally.  Since binary trees are dynamic structures and non-contiguous (unlike List and SortedList) this means that inserts and deletes do not involve rearranging elements, or changing the linking of the nodes.  There is some overhead in keeping the nodes in order, but it is much smaller than a contiguous storage collection like a List<T>.  Let’s compare the three: Operation HashSet<T> SortedSet<T> List<T> Add() O(1) O(log n) O(1) at end O(n) in middle Remove() O(1) O(log n) O(n) Contains() O(1) O(log n) O(n)   The MSDN documentation seems to indicate that operations on SortedSet are O(1), but this seems to be inconsistent with its implementation and seems to be a documentation error.  There’s actually a separate MSDN document (here) on SortedSet that indicates that it is, in fact, logarithmic in complexity.  Let’s put it in layman’s terms: logarithmic means you can double the collection size and typically you only add a single extra “visit” to an item in the collection.  Take that in contrast to List<T>’s linear operation where if you double the size of the collection you double the “visits” to items in the collection.  This is very good performance!  It’s still not as performant as HashSet<T> where it always just visits one item (amortized), but for the addition of sorting this is a good thing. Consider the following table, now this is just illustrative data of the relative complexities, but it’s enough to get the point: Collection Size O(1) Visits O(log n) Visits O(n) Visits 1 1 1 1 10 1 4 10 100 1 7 100 1000 1 10 1000   Notice that the logarithmic – O(log n) – visit count goes up very slowly compare to the linear – O(n) – visit count.  This is because since the list is sorted, it can do one check in the middle of the list, determine which half of the collection the data is in, and discard the other half (binary search).  So, if you need your set to be sorted, you can use the SortedSet<T> just like the HashSet<T> and gain sorting for a small performance hit, but it’s still faster than a List<T>. Unique Set Operations Now, if you do want to perform more set-like operations, both implementations of ISet<T> support the following, which play back towards the mathematical set operations described before: IntersectWith() – Performs the set intersection of two sets.  Modifies the current set so that it only contains elements also in the second set. UnionWith() – Performs a set union of two sets.  Modifies the current set so it contains all elements present both in the current set and the second set. ExceptWith() – Performs a set difference of two sets.  Modifies the current set so that it removes all elements present in the second set. IsSupersetOf() – Checks if the current set is a superset of the second set. IsSubsetOf() – Checks if the current set is a subset of the second set. For more information on the set operations themselves, see the MSDN description of ISet<T> (here). What Sets Don’t Do Don’t get me wrong, sets are not silver bullets.  You don’t really want to use a set when you want separate key to value lookups, that’s what the IDictionary implementations are best for. Also sets don’t store temporal add-order.  That is, if you are adding items to the end of a list all the time, your list is ordered in terms of when items were added to it.  This is something the sets don’t do naturally (though you could use a SortedSet with an IComparer with a DateTime but that’s overkill) but List<T> can. Also, List<T> allows indexing which is a blazingly fast way to iterate through items in the collection.  Iterating over all the items in a List<T> is generally much, much faster than iterating over a set. Summary Sets are an excellent tool for maintaining a lookup table where the item is both the key and the value.  In addition, if you have need for the mathematical set operations, the C# sets support those as well.  The HashSet<T> is the set of choice if you want the fastest possible lookups but don’t care about order.  In contrast the SortedSet<T> will give you a sorted collection at a slight reduction in performance.   Technorati Tags: C#,.Net,Little Wonders,BlackRabbitCoder,ISet,HashSet,SortedSet

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

  • WPF DataGrid AutoColumn generation via ICustomTypeDescriptor.

    - by panamack
    In a test project I've managed to AutoGenerate WPF DataGrid columns in the following scenario, where the data is stored in a Dictionary and binding is performed via PropertyDescriptors: public class People:List<Person>{ ... } public class Person:Dictionary<string,string>,INotifyPropertyChanged,ICustomTypeDescriptor { } The problem I'm having is in my real life project I'm using MVVM so it's *People*ViewModel which inherits ViewModelBase and hence can't inherit List<Person>. I've tried implementing IList<Person> instead with an internal List<Person> and explicitly setting the DataContext to an IList<Person> reference but that didn't work. I've seen a similar post on binding a win forms DataGridView here, so I'm wondering if the same sort of logic applies in WPF and primarily, what exactly causes the ICustomTypeDescriptor implementation to be picked up when inheriting List<T> that is missing when you simply implement IList<T> instead.

    Read the article

  • Can I use a class as an object in C# to create instances of that class?

    - by Troy
    I'm writing a fairly uncomplicated program which can "connect" to several different types of data sources including text files and various databases. I've decided to implement each of these connection types as a class inherited from an interface I called iConnection. So, for example, I have TextConnection, MySQLConnection, &c... as classes. In another static class I've got a dictionary with human-readable names for these connections as keys. For the value of each dictionary entry, I want the class itself. That way, I can do things like: newConnection = new dict[connectionTypeString](); Is there a way to do something like this? I'm fairly new to C# so I'd appreciate any help.

    Read the article

  • Saving a single NSMutableDictionary in a plist

    - by yesimarobot
    I have one dictionary I need to save into a plist. The paletteDictionary always returns nil: - (void)saveUserPalette:(id) sender { [paletteDictionary setObject:matchedPaletteColor1Array forKey:@"1"]; NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES); NSString *documentsDirectory = [paths objectAtIndex:0]; NSString *path = [documentsDirectory stringByAppendingPathComponent:@"UserPaletteData.plist"]; // write plist to disk [paletteDictionary writeToFile:path atomically:YES]; } I'm reading the data back in a different view like: NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES); NSString *documentsDirectory = [paths objectAtIndex:0]; NSString *path = [documentsDirectory stringByAppendingPathComponent:@"UserPaletteData.plist"]; NSMutableDictionary *plistDictionary = [NSMutableDictionary dictionaryWithContentsOfFile:path]; if(plistDictionary==nil ){ NSLog(@"failed to retrieve dictionary from disk"); }

    Read the article

  • GetAllUsers - MVC

    - by Jemes
    I’m using the Membership Provider and would like to display a list of all the users and their First Name, Last Name etc using the GetAllUsers function. I'm having trouble understanding how to implement this function in MVC. Has anyone implemented this in MVC or is there an easier way to list all the users in my application? Any help or advise would be really helpful. Controller public ActionResult GetUsers() { var users = Membership.GetAllUsers(); return View(users); } View Model public class GetUsers { [Required] [DisplayName("User name")] public string UserName { get; set; } [Required] [DisplayName("User name")] public string FirstName { get; set; } } View <%= Html.Encode(item.UserName) %> Error The model item passed into the dictionary is of type 'System.Web.Security.MembershipUserCollection', but this dictionary requires a model item of type 'System.Collections.Generic.IEnumerable`1[Account.Models.GetUsers]'.

    Read the article

  • Using LLBL as Model in MVC

    - by Quentin J S
    I have settled on trying to use ASP.NET MVC but the first part I want to replace is the Model. I am using LLBL Pro for the model. I have a table called "Groups" that is a simple look up table. I want to take thhe results of the table and populate a list in MVC. Something that should be very simple... or so I thought.... I've tried all kinds of things as I was getting errors like: The model item passed into the dictionary is of type 'System.Collections.Generic.List1[glossary.EntityClasses.GroupEntity]', but this dictionary requires a model item of type 'System.Collections.Generic.IEnumerable1[glossary.CollectionClasses.GroupCollection]'. private GroupCollection gc = new GroupCollection(); public ActionResult Index() { gc.GetMulti(null); return View( gc.?????? ); } This is all I am trying to do, I've tried lots of variations, but my goal is simply to take the data and display it.

    Read the article

  • Silverlight 4.0: DataTemplate Error

    - by xscape
    Im trying to get the specific template in my resource dictionary. This is my resource dictionary <ResourceDictionary xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:view="clr-namespace:Test.Layout.View" xmlns:toolkit="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Toolkit" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"><DataTemplate x:Key="LeftRightLayout"> <toolkit:DockPanel> <view:SharedContainerView toolkit:DockPanel.Dock="Left"/> <view:SingleContainerView toolkit:DockPanel.Dock="Right"/> </toolkit:DockPanel> </DataTemplate> However when it gets to XamlReader.Load private static ResourceDictionary GetResource(string resourceName) { ResourceDictionary resource = null; XDocument xDoc = XDocument.Load(resourceName); resource = (ResourceDictionary)XamlReader.Load(xDoc.ToString(SaveOptions.None)); return resource; } The type 'SharedContainerView' was not found because 'clr-namespace:Test.Layout.View' is an unknown namespace. [Line: 4 Position: 56]

    Read the article

  • What is an efficient way to write password cracking algorithm (python)

    - by Luminance
    This problem might be relatively simple, but I'm given two text files. One text file contains all encrypted passwords encrypted via crypt.crypt in python. The other list contains over 400k+ normal dictionary words. The assignment is that given 3 different functions which transform strings from their normal case to all different permutations of capitalizations, transforms a letter to a number (if it looks alike, e.g. G - 6, B - 8), and reverses a string. The thing is that given the 10 - 20 encrypted passwords in the password file, what is the most efficient way to get the fastest running solution in python to run those functions on dictionary word in the words file? It is given that all those words, when transformed in whatever way, will encrypt to a password in the password file. Here is the function which checks if a given string, when encrypted, is the same as the encrypted password passed in: def check_pass(plaintext,encrypted): crypted_pass = crypt.crypt(plaintext,encrypted) if crypted_pass == encrypted: return True else: return False Thanks in advance.

    Read the article

  • crossword algorithm....

    - by teddy
    I'm making algorithm like crossword, but i dont know how to design d algorith. for example, there are words like 'car', 'apple' in the dictionary. and the 'app' words is given on the board. and there are letters like 'l' 'e' 'c' 'r'....for making words. so the algorithm work is making correct words which are stored in dictionary. app - lapp- leapp- lecapp- .... - lappe - eappc - ... - appl - apple(correct answer) what is the best solution for this algorithm?

    Read the article

< Previous Page | 36 37 38 39 40 41 42 43 44 45 46 47  | Next Page >